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Abstract—Anomaly detection in encrypted traffic is a growing
problem, and many approaches have been proposed to solve it.
However, those approaches need to be trained in the massive of
normal traffic and specific-class abnormal traffic, so to achieve
good results in that specific-class. For a new anomaly class with
few labeled samples, the effectiveness of existing approaches
will decline sharply. How to train a model using only a few
anomaly samples to detect unseen new anomaly classes in
training is a huge challenge. In this paper, we propose a Few-
shot Class-adaptive Anomaly Detection framework (FCAD) with
model-agnostic meta-learning (MAML) to meet this challenge.
Given an input network flow, FCAD first extracts statistical
features by feature extractor and feature selector, and time-series
features using LSTM-based AutoEncoder. Then, FCAD designs
a MAML-based few-shot anomaly detection model, relying on
the episodic training paradigm and learning from the collection
of K-way-M-shot classification tasks, which can mimic the few-
shot regime faced at test time during training. Finally, FCAD
uses the pre-trained model to adapt the new class by a few
iterations steps. Our goal is to detect anomaly traffic in a
before unseen anomaly class with only a few samples. A reliable
solution to few-shot anomaly detection will have huge potential
for real-world applications since it is expensive and arduous to
collect a massive amount of data onto the new anomaly class;
extensive experimental results demonstrate the effectiveness of
our proposed approach.

Index Terms—Anomaly Detection, Few-Shot Learning, Meta-
Learning

I. INTRODUCTION

Anomaly detection in encrypted traffic is a growing prob-
lem, especially in mobile platforms. An application con-
taining a vulnerability might be exploited by the attackers,
consequently can jeopardize the confidentiality, integrity, and
availability of the user’s crucial information. For example,
since users usually download and register apps according to
their personal interests, users’ privacy and account information
would be compromised if an attacker attacks these vulnerable
apps. This might result in an immeasurable financial loss as
well as unrecoverable damage to a person. Most importantly,
the class of anomaly traffic is not static but is constantly
updated and iterated, which will pose a tremendous threat to
most state-of-the-art defense systems. To stop malicious traffic,
the first step is to detect anomaly traffic as soon as possible
by analyzing network traffic at the gateways, at edge servers,
or in a scrubbing center.
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The goal of anomaly detection is to identify malicious
behaviors automatically. Many existing approaches have been
proposed and can be divided into four classes: port-based, deep
packet inspection (DPI) based, Machine Learning (ML) based
[1], [2], Deep Learning (DL) based [3]-[6] approaches. Port-
based approaches detect anomaly traffic based on transport-
layer port numbers. However, many applications today have
port numbers assigned dynamically, which means the port-
based approaches are no longer reliable. DPI-based approaches
detect anomaly traffic by comparing the traffic payload with
known signatures. Since most Internet traffic is now encrypted,
this approach will also fail. ML-based approaches can realize
high-precision classification by summarizing the rules that
distinguish abnormal traffic from normal traffic. However, it
is heavily dependent on the distribution of the dataset studied
and have poor generalization performance to other datasets.
DL-based approaches can train a neural network to learn
the features of anomaly traffic and have a high accuracy in
anomaly detection tasks.

However, the key limitation of existing approaches is they
have poor generalization abilities to a new anomaly class with
few labeled samples. They need to be trained in a large number
of normal traffic and specific-class abnormal traffic, so to
achieve good results in that specific-class. Due to that the
class of anomaly traffic is not static but is in the continuous
update iteration, for the new anomaly class, which has few
labeled samples, the effectiveness of existing approaches will
decline sharply. This can be demonstrated in the evaluation
section: if we learn an anomaly detection model from existing
anomaly classes and directly test the model in a completely
new anomaly class, the performance will drop sharply. The
reason is that existing approaches are impossible to collect
training data that cover all possible anomaly classes; existing
approaches are usually over-fitting, for the new anomaly class
with few labeled samples, which is hard to generalize. How
to train a model from only a few anomaly samples to detect
unseen new anomaly classes in training is a huge challenge.

In this paper, we propose a Few-shot Class-adaptive
Anomaly Detection framework (FCAD) with model-agnostic
meta-learning (MAML) [7] to meet this challenge, as shown
in Fig, 1. Given an input network traffic, FCAD first divides
network traffic into flows sharing the same 5-tuple information.
Then, FCAD extracts flow features using feature extractor and
feature selector. Among them, flow features include statistical
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Fig. 1.

features and time-series features. Since the number of packets
in different flows is different, we use an LSTM-based AutoEn-
coder to obtain fixed-length time-series features of each flow.
We apply the MAML algorithm to learn a few-shot class-
adaptive anomaly detection model, relying on the episodic
training paradigm and learning from the collection of K-way-
M-shot classification tasks, which can mimic the few-shot
regime faced at test time during training. This model consists
of a meta-training phase and a meta-testing phase. The meta-
training phase will learn to adapt to a new class by training in
a large number of few-shot class-adaptive anomaly detection
tasks. The meta-testing phase will use the pre-trained model
to adapt the new class by a few iterations steps. Our goal
is to detect anomaly traffic in a previously unseen anomaly
class of only a few samples by using a few iterations steps.
To evaluate the efficiency of the FCAD, we carry out four
comparative experiments in the public network traffic dataset
and show the effectiveness of our proposed approach. The
results further demonstrate the superiority of FCAD.

A reliable solution to few-shot class-adaptive anomaly de-
tection will have huge potential for real-world applications
since it is expensive and arduous to collect a massive amount
of data onto the new anomaly class. To the best of our
knowledge, we are the first to cast network traffic anomaly
detection using the meta-learning approach. In summary, this
paper makes the following key contributions:

¢ We propose a Few-shot Class-adaptive Anomaly De-
tection framework (FCAD) with model-agnostic meta-
learning (MAML), which can detect anomaly flows in a
previously unseen anomaly class with only a few samples.
It consists of a meta-training phase and a meta-testing
phase. The meta-training phase will learn to adapt to a
new class by training in a large number of few-shot class-
adaptive anomaly detection tasks. The meta-testing phase
will use the pre-trained model to adapt the new class by
a few iterations steps.

o We extract 33 statistical features by feature extractor and
feature selector. Since the number of packets in different

An overview of the few-shot class-adaptive anomaly detection framework.

flows is different, we use an LSTM-based AutoEncoder
to obtain fixed-length time-series features of each flow.

o We implement the FCAD framework and collect two real-
world datasets for trace-driven experiments. We compare
FCAD with the state-of-the-art solutions and the results
further demonstrate the superiority of FCAD.

The rest of the paper is organized as follows. Section II
briefly reviews the related works. Section III describes the
design details of the FCAD framework. Section IV presents
the implementation details of the FCAD framework. Section
V presents evaluation results with comparison to the state-of-
the-art solutions. Conclusions and future works are discussed
in Section VL.

II. RELATED WORK

In this section, we review existing work on the network
traffic anomaly detection approaches, the few-shot learning
approaches, and the meta-learning approaches.

A. Anomaly Detection in Network Traffic

The goal of anomaly detection in network traffic is to
identify malicious behaviors automatically by learning exclu-
sively from normal traffic. In general, existing networking
traffic anomaly detection approaches can be divided into
four classes: port-based, deep packet inspection (DPI) based,
Machine Learning (ML) based, Deep Learning (DL) based ap-
proaches. Port-based approaches detect anomaly traffic based
on transport-layer port numbers. However, many applications
today have port numbers assigned dynamically, which means
the port-based approaches are no longer reliable. DPI-based
approaches detect anomaly traffic by comparing the traffic
payload with known signatures. Since most Internet traffic
is now encrypted, this approach will also fail. ML-based
approaches can identify abnormal traffic by summarizing the
characteristics of abnormal traffic, including C4.5 decision tree
(DT) [8], Naive Bayesian (NB) [9], K-means [10], Support
Vector Machine (SVM) [11], Random Forest (RF) [1], [2],
Xgboost [12] approaches and so on. ML-based techniques
have demonstrated higher classification accuracy than other



approaches. However, those approaches are to realize high-
precision classification by summarizing the rules that distin-
guish abnormal traffic from normal traffic, which is heavily
dependent on the distribution of the dataset studied and is
difficult to exploit the input of the model to mine com-
prehensive information. So that the ML-based approaches
have poor generalization performance to other datasets. DL-
based approaches can train a neural network to learn the
characteristics of anomaly traffic and then classify it. Most
existing works are in favor of using convolutional neural
network (CNN) [1], [2], [13], AutoEncoder [3]-[6], and Long
Shot-Term Memory (LSTM) [2] to build the traffic classifier
for anomaly traffic detection. The DL-based approaches can
automatically extract features of network traffic and support
to vary due to different tasks.

B. Few-Shot Learning

To mimic the fast and flexible learning ability of humans,
few-shot learning aims to learn representations that generalize
well to the novel classes where only a few samples are avail-
able. The research in few-shot learning can be categorized into
three common classes: meta-learning based, metric-learning
based, generative, and augmentation based approaches. Meta-
learning based approaches [14]-[16] search for models which
can transfer well to novel few-shot tasks. Typically, at training
time, these approaches will learn to adapt to a new class by
training from a large number of few-shot tasks; at testing time,
simple fine-tuning is used. Metric learning based approaches
[17]-[19], a non-linear metric is optimized base on classes
and applied to unseen few-shot test tasks. In [20], distance to
class prototype is replaced by distance to a class sub-space. As
opposed to [20] and TAFSSL [21] that try to optimize a sub-
space for each class, which seek a single sub-space optimally
adapted to the entire data onto the few-shot task. In [17],
non-meta-learning pre-training was used in combination with
large backbones and a nearest-neighbor classifier to achieve
state-of-the-art results. Generative and augmentation based
approaches [22], [23], it generates more samples from the one
or a few training examples to a given few-shot learning task.
Delta-encoder [24] based on a modified auto-encoder learns
to synthesize new samples for an unseen category just by
seeing a few examples from it. In [25], this approach learns to
map a novel sample instance to a concept, relates that concept
to the existing ones in the concept space and, using these
relationships, generates new instances, by interpolating among
the concepts, to help learning.

C. Meta-Learning

Meta-learning (also known as learning to learn) has been
shown to be an effective solution to the few-shot learn-
ing problem in the form of episodic training. The research
in meta-learning can be categorized into three common
classes: metric-based, model-based, and optimization-based
approaches. Metric-based approaches [26]-[29] learn a metric
with the intent of reducing the intra-class variations while

training on base categories. For example, Siamese [26] ex-
plores a method of learning siamese neural networks which
employ a unique structure to naturally rank similarity between
inputs; MMN [27] based on deep neural features and augment
neural networks with external memories; RN [28] learns to
learn a deep distance metric to compare a small number of
samples within episodes and can classify samples of new
classes by computing relation scores between query samples
and the few examples of each new class without further
updating the network; prototypical networks [29] is proposed
to learn a feature space where instances of a given class
are located close to the corresponding prototype (centroid),
allowing accurate distance-based classification. Model-based
approaches [30], [31] are devised for fast learning from
the model architecture perspective, where rapid parameter
updating during training steps is usually achieved by the archi-
tecture itself. Lastly, optimization-based approaches [7], [32],
[33] modify the optimization algorithm for quick adaptation.
These methods can quickly adapt to a new task through the
meta-update scheme among multiple tasks during parameter
optimization. In network traffic anomaly detection, we follow
a similar optimization-based meta-learning approach MAML
[7] and apply it to the much more challenging task of anomaly
detection with new classes. To the best of our knowledge, we
are the first to cast anomaly detection as meta-learning with
new classes.

III. METHODOLOGY

In this section, we introduce a Few-shot Class-adaptive
Anomaly Detection framework (FCAD) with model-agnostic
meta-learning (MAML), as shown in Fig 1. Given an input
network traffic, FCAD first divides network traffic into flows
sharing the same 5-tuple information. Then, FCAD extracts
flow features using feature extractor and feature selector.
Among them, flow features include statistical features (de-
scribe in III-A) and time-series features (describe in III-B).
Since the number of packets in different flows is different,
we use an LSTM-based AutoEncoder to obtain fixed-length
time-series features of each flow. We apply the MAML [7]
algorithm to learn a few-shot class-adaptive anomaly detection
model (describe in III-C), which consists of a meta-training
phase and a meta-testing phase. The meta-training phase will
learn to adapt to a new class by training in a large number
of few-shot class-adaptive anomaly detection tasks. The meta-
testing phase will use the pre-trained model to adapt the new
class by a few iterations steps. Our goal is to detect anomaly
traffic in a previously unseen anomaly class of only a few
samples by using a few iterations steps.

A. Statistical Features Extraction

In this subsection, we first introduce the basic unit of
feature extraction: flow. Then, we describe how to extract the
statistical features and design a feature selection algorithm to
select valid features.

Flow. We define flow as a series of packets sharing the same
5-tuple information: source IP address, destination IP address,



TABLE I
STATISTICAL FEATURES.

Up_flow Down_flow Flow
#1 max,mean,std,sum | max,mean,std,sum | max,mean,std,sum,ratio
#2 - mean,sum mean,ratio
#3 max,min,mean,std max,mean max,mean,sum
#4 sum sum sum,ratio
#5 - - sum
#6 pst_cnt - Ack_cnt

1 #1-6: Packet Length, Packet Number, Packet Interval, Packet Header
Length, Packet Window Size, Packet Control Character.

source port numbers, destination port numbers, and transport
layer protocol. We first divide the network traffic into flows
according to the 5-tuple information.

Feature extractor. We select 78 flow-level statistical features
to represent each flow. The extraction process is as follows:
for each flow, we first divide it into up_flow and down_flow.
Among them, the up_flow refers to the collection of packets
from the source IP address to the destination IP address for
data transmission and the down_flow is the rest. Then for
up_flow, down_flow, and flow, we calculate the maximum,
minimum, mean, variance, and sum of six types of features,
respectively. These six types features are packet length, packet
number, packet interval, packet header length, packet window
size, and packet control character. We also calculate the
numerical ratio between the up_flow and down_flow for these
six types of features in terms of the mean. Finally, a total of
78 statistical features are extracted.

Feature selector. We adopt three strategies for feature se-
lection: the proportion of missing values, the entropy, and the
cumulative importance. When the missing proportion of the
feature f is greater than 50% or the entropy of the feature
f is equal to O, the feature f is deleted. Because different
classification algorithms have a large difference in the order
of feature importance, we use the comprehensive cumulative
importance ranking of five different algorithms. First, the
accuracy of each algorithm Acc(;) is obtained by running the
dataset separately in five different algorithms, including RF,
Extraboost, Admboost, GBDT, and Lightgbm algorithm. Then
the feature importance value of each feature V/(; is calculated
in five different algorithms. Next, the cumulative feature
importance of each feature C|;) is calculated as follows:

5
1

Cijy = 5 D Acc) V) M

i=1
where i represents the different algorithms, ¢ € {1,2,..,5}
and j represents different features, j € {1,2, ..., 78}. Finally,
by sorting the importance of features C(;), the last 30% of
features are deleted. Through three strategies, 33 features were

selected as the basic statistical features. These features are
shown in TABLE 1.

B. Time-series Features Extraction

Since the number of packets in different flows is different,
in this subsection, we introduce how to use an LSTM-based

AutoEncoder to obtain fixed-length time-series features for
each flow. We first describe the construction of the feature
matrix. We then describe the design detail of the LSTM-based
AutoEncoder.

Feature matrix. In order to obtain the time-series features
of each flow, we first need to construct a flow feature matrix
X as the input of the AutoEncoder, which can represent the
time relationship between the package and the package in each
flow:

X ={z7,},5€{1,2,...,n} 2)

where (i, j) represents the j-th packet of the flow ¢; and x;
represents the feature vector of the j-th packet in the flow
i. Among them, x; ; contains 8 packet-level features: header
length, payload length, packet interval, window size, ack_cnt,
pst_cnt, direction. The reason why we do not select any of
the 5-tuple values as the packet feature is that the IP address
and port number will change frequently. Since the number of
packets between different flows is not equal, so we select n
as the maximum number of packets contained in the feature
matrix X;. If the number of packets in the flow i is greater than
n, we will select the first n packets to construct the feature
matrix. In contrast, we will fill the feature matrix by increasing

the O vector.

Construct feature
matrix: X, i:{m}'
je{l,..,n}

Fig. 2. Time-series features extraction LSTM-based AutoEncoder

The LSTM-based AutoEncoder. We use the outstanding
LSTM-based AutoEncoder to extract the time-series features
of each flow. The design details of it are as follows. Both the
encoder and the decoder use the LSTM network. The input of
the encoder is the flow feature matrix X(i), and the output is a
fixed-length 5-dimensional vector Y ;). The input of decoder
1S a vector Y(i), and the output of the decoder is a matrix X/(i),
which has the same matrix structure as the encoder input. The
iterative mechanism of the AutoEncoder is to reduce the mean
square error between the input of the encoder and the output
of the decoder:

1 n m , 9
Jowey =~ Kagw =X jm) @)
j=1k=1

where W and b are the network hyperparameter; X; ;1)
represents the k-th feature of the j-th packet in the flow i;
m represents the number of packet-level features, which is
equal to 8.
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Fig. 3. An overview of class-adaptive anomaly detection model with MAML algorithm.

C. Class-Adaptive Anomaly Detection with MAML

We propose a few-shot class-adaptive anomaly detection
model using the MAML algorithm. Figure 3 shows an
overview of the proposed approach.

Formally, we have a large training dataset D' (typically
anomaly classes of containing a large samples) and a test
dataset D**s! (new anomaly classes of containing one or
a few samples), in which their respective class setscolon
Ct’r‘ = {1, ceey |Ct7|} and Ctest = {|Ctr'| + 17 ceey ‘Ct7‘| + ‘Ctest‘}
are disjoint. Our approach aim to learn a classification model
on C' that can generalize to unseen classes Ci.o; With one
or few samples per class. Our approach is based on the
MAML algorithm, relying on the episodic training paradigm
and learning from collection of K-way-M-shot classification
tasks, which can mimic the few-shot regime faced at test
time during training on D!". It consists of a meta-training
phase and a meta-testing phase. In each episode of meta-
training phase, we first sample K classes from Ci,., CK ~ C.
Then, we sample M and N labelled flows per class in CX
to construct the support set D**? = {(x,,, Ym)m} and the
validation set D" = {(xy, Yn)n}, respectively. Meanwhile,
we construct the task 7; = {D;"?,DY*"} for each class C'
with a support set D;"" and a validation set DY*". D;"" is
used for inner update through gradient descent to obtain the
updated parameters 6, for each task. Then DY is used to
measure the performance of 6. An outer update procedure is
used to update the model parameters 6 by taking into account
of all the sampled tasks. In meta-testing phase, given a new
class C™*" ~ Cicst, wWe use only a few flows to get the
adapted parameters 6’ for this specific anomaly class C™¢".
In the process of model construction, specific details such
as task definition, meta-training, meta-testing, and backbone
architecture, are as follows.

Task Definition. The first challenge of constructing the
class-adaptive anomaly detection model is the implicit defi-

nition of the task, which is usually generated by randomly
mixed sampling K classes in each episode. We definite the
tasks for our application as follows. For a given anomaly
class C¢, we definite a task as 7; = {D;"?, D"}, where
D;"P and DY*" are the support and validation set in the
task 7;. In the meta-training phase, we randomly sample
M and N input/output pairs from 7; as the support set
D;"" = {(x1,y1), (x2,Y2), ..., (xar, ym)} and the validation
set DY = {(x1,y1), (T2,Y2), ..., (TN, yn)} (excluding those
in D;"?), respectively. In the testing phase, we need to
distinguish the new anomaly class from the normal traffic,
which is a two-class classification problem. So during the
training phase, in order to mimic the few-shot regime faced at
test time, we make sure that all the samples in task 7; come
from the same anomaly class C? rather than mixed classes

Meta-learning. The goal of meta-learning is to construct a
pre-trained anomaly detection model fy : x — y with param-
eters 6. It can learn the optimal initial model parameters 6, so
that the model can quickly adapt to a new task through the
meta-update scheme with a few fine-tuning steps. It includes
two modules: the inner update and the outer update. Algorithm
1 shows the process of meta-learning by the pseudocode.

In the inner update. The goal of the inner update is to
update the local parameters 6, for each task 7; through gradient
descent. Following the MAML algorithm, for a given anomaly
class C? and task 7;, we first definite a loss function on the
support set D;“":

Ly (fo: ;") =

2.

(i yi)€EDP

L(fo(i),yi) “4)

where L(fg(x;),y;) measure the difference between the pre-
diction class fp(x;) and the actual class y;. We define L(-) is
the cross entropy error function:

L(fo(wi),yi) = yilog(pz,) + (1 — yi)log(l — pz;)  (5)



Algorithm 1 Meta-learning for few-shot class-adaptive
anomaly detection with MAML

Input: Hyper-parameters «, [3;

1: Randomly initialize parameter  with a meta model fy(-);
2: while not done do
3:  Sample K classes from Cy,., CK = {C'} K |, CK ~ Cy,;
4. for each C* do
5: Construct the support set D*“P = {(Zy, Ym)m} by
sampling M labelled flows from class C%;
6: Construct the validation set D" = {(zy,, Yn)n} by
sampling N labelled flows from class C;
Construct the task 7; = {D;"“", Dy} for class C*;
Compute the loss function L7, (fo; D;"");
Update the local parameter:
0, = 0 — a o L7:(fo: D");
10:  end for
11:  Update the global parameter by taking into account of
all the sampled tasks:
6 =0~ B3, Vol (for: Di*):
12: end while

where p; is the probability that sample x; is predicted to
be positive. Then, we use one gradient update to change the
parameters from 6 to 6:

6; = 0 — a vy L7,(fo;D;") ©

where « is the step size. In the inner update, the updated
parameters ¢’ are specifically adapted to the task 7;.

In the outer update. The goal of the outer update is to
update the global parameters 6 by taking into account of all
the sampled tasks. For a given anomaly class C* and task T;,
we also definite a loss function on the validation set D}“":

Lr(fo; DY)y = > Llfo(x).w) (D

(wi,y:) DY

Then, we use one gradient update to change the parameters
from 0, to 6 by taking into account of all the sampled tasks:

K
0=0-8> VoLlr (for; Dy*) ()
i=1
where [ is the step size in the outer update.

Meta-testing. After meta-training, we obtain the pre-trained
model parameters . During meta-testing, for a given a new
target anomaly class C™“", we first obtain the adapted param-
eters ' with a few fine-tuning steps by the gradient update:

0" =0—aveL(fo()) ©)

Then, we use this model fy/(-) for anomaly detection in new
class C"™“" by measuring the difference between the prediction
class fp:(x;) and the actual class y;.

Backbone architecture. Our class-adaptive anomaly detec-
tion model is general. In theory, we can use any anomaly
detection network as the backbone architecture. Because the
data format of network traffic is irregular, the features of

network traffic have been extracted preliminarily through the
data preprocessing module. For the anomaly detection module,
we only need a simple backbone architecture to learn good
accuracy by using our approach. So we come up with the
Deep Neural Networks (DNN [34]) as backbone architecture.

IV. IMPLEMENTATION

In this section, we delve in-depth into the implementation
specifics of each component of FCAD and describe the best
hyper-parameters of the LSTM-based AutoEncoder and the
few-shot class-adaptive anomaly detection model.

The LSTM-based AutoEncoder. First, we select n = 20
as the maximum number of packets contained in the feature
matrix X;. The network structure of the encoder contains two
LSTM layers. The number of hidden cells in the first layer and
the second layer is 256 and 128, respectively. Results from
these layers are then aggregated in a hidden layer that uses 5
neurons to apply the softmax function. The network structure
of the decoder also contains two LSTM layers. the first layer
and the second layer includes 128 and 256 hidden cells,
respectively. But its final output is a matrix. In training, we use
mean square error as a loss function for model optimization.
Finally, for each flow, we will use a 5-dimensional vector to
represent the time-series features.

Backbone architecture. We use the DNN as backbone ar-
chitecture for the few-shot class-adaptive anomaly detection
model. The network structure contains three fully-connected
layers. The number of hidden cells in the first layer is 256 and
the number of hidden cells in other layers is 128. Outputs from
these layers are then aggregated in a hidden layer that uses V'
(V' = 2, which is equal to the number of action) neurons to
apply the loss function. We fix the hyperparameters « and 3
in meta-learning at 0.001. During meta-training, we sample
the batch size K of classes in each epoch to be 5; we sample
the batch size M and N of flows in each inner update is the
same (i.e. M = N).

V. EVALUATION

In this section, we compare our approach against existing
state-of-the-art solutions cover a broad set of realistic network
traffic datasets. Experiment results answer the following ques-
tions:

1) With the standard anomaly detection, how does the
FCAD compare to the existing state-of-the-art ML-based
approaches and the DL-based approaches in terms of
each evaluation metrics? We use the same train/test
split as prior work (i.e. train/test set contains the same
anomaly class and has large samples). TABLE II suggest
our approach is comparable to the state-of-the-art.

2) With the M-shot class-adaptive anomaly detection, how
does the FCAD compare to the existing state-of-the-art
ML-based approaches and the DL-based approaches in
terms of the AUC? We use 30 classes for training and the
remaining classes for testing. TABLE III report results
for M = 5,10, 20; our approach outperforms others.



3) Under the cross-dataset testing setting with M-shot
class-adaptive, how does the FCAD compare to the
existing state-of-the-art ML-based approaches and the
DL-based approaches in terms of the AUC? TABLE IV
demonstrate the effectiveness of our approach on few-
shot class-adaptive anomaly detection.

4) How much does the time-series features can improve
overall performance in terms of each evaluation metrics?
As shown in Fig. 4, time-series relationships between
packets are also critical for anomaly detection.

A. Methodology

Datasets. We consider the following publicly available
datasets of network traces to train and test our proposed
approaches.

CICAndMal2017 [35]. This dataset is gathered through
executing 5065 benign and 429 malware Apps on a real smart-
phone instead of any emulator. The benign APPs are collected
from the Google play market published in 2015-2017. These
APPs were collected based on their popularity and identified
based on the detection results from VirusTotal. The malware
Apps are collected from 4 main malware categories (i.e.,
adware, ransomware, scareware, and SMS malware), which
consists of 43 malware families. Finally, 1700 benign and 429
malware network traffics were captured in the installation of
APPs, before the restart and after the restart.

CICIDS2017 [36]. This dataset is provided by the Canadian
Institute of Cybersecurity, which contains benign traffic and
the most up-to-date common 8 attacks traffic include Brute
Force FTP, Brute Force SSH, DoS, Heartbleed, Web Attack,
Infiltration, Botnet, and DDoS. The data capturing period
started at 9 a.m., Monday, July 3, 2017, and ended at 5 p.m.
on Friday, July 7, 2017, for a total of 5 days, which is the
latest labeled dataset.

Evaluation metrics. Following prior work [7], [32], we
evaluate the performance of FCAD by using accuracy, recall,
precision, F1-score, and the area under the ROC curve (AUC):

accuracy = TP+ TN (10)

Y“TP+TN+FP+FN

TP
ll=——— 11
T = TP FN ab
TP

iston = ——— 12
precision TP+ PP (12)
Fl— score — 2 recall x precision (13)

recall + precision

where TN is True Negative, TP is True Positive, FN is False
Negative, and FP is False Positive.

Baselines. We select 3 types of ML-based approaches as
comparison algorithms: Support Vector Machine (SVM) [11],
C4.5 decision tree (DT) [8], and Random Forest (RF) [1], [2],
which can be implemented by scikit-learn [37]. Similarly, we
also choose 3 types of DL-based approaches as comparison
algorithms: convolutional neural network (CNN) [1], AutoEn-
coder [3], and Long Shot-Term Memory (LSTM) [2], which
can be implemented through parameter iteration.

TABLE Il
FCAD ON STANDARD ANOMALY DETECTION.
Metric
Category Approach Accuracy  Fl-score = AUC
SVM 0.73 0.71 0.81
ML-based DF 0.981 0.978 0.982
RF 0.985 0.989 0.99
LSTM 0.984 0.983 0.993
DL-based CNN 0.926 0.933 0.941
AutoEncoder 0.983 0.982 0.988
Ours FCAD 0.983 0.989 0.991

To the best of our knowledge, this is the first work on
the network traffic class-adaptive anomaly detection problem.
Therefore, Prior works will have very poor performance on this
problem. Nevertheless, we define an additional comparison
baseline. Pre-trained: the model learning from the meta-
learning phase is directly applied to the meta-test phase
without any adaptation. Fine-tuning: the model learning from
the meta-learning phase is applied to the meta-test phase by a
few iterations steps, which is the standard FCAD approach.

B. FCAD on Standard Anomaly Detection.

The goal of the FCAD is to detect anomaly traffic in a
previously unseen anomaly class of only a few samples. But
in real scenarios, the traditional anomaly family still accounts
for the majority of anomaly traffic. So in this subsection, we
first need to verify that the FCAD can be applied to traditional
anomaly detection problems. We compare it with the existing
state-of-the-art approaches using the standard training/testing
set dividing (training set and testing set are provided by the
same anomaly classes and contain a large number of samples).
Those outstanding existing approaches as listed in Section
V-A, including SVM, DT, RF, LSTM, CNN, and AutoEncoder.
We use three metrics to evaluate our approach: accuracy, F1-
score, and AUC. For comparison, we continue to iterate the
DL-based approaches until we get the optimal model of the
considered evaluation metrics. The experimental results are
collected on the CICAndMal2017 dataset and are shown in
TABLE I1.

From TABLE II, we can find that our approach performs as
well as the state-of-the-art. This is because, in a large number
of training samples, the ML-based and DL-based approaches
can comprehensively summarize and learn the rules of how
to distinguish abnormal traffic from normal traffic. So in
the testing set with the same anomaly distribution, those
approaches can achieve extremely high anomaly detection
accuracy. Therefore, in the traditional anomaly detection prob-
lem, our proposed approach can achieve good performance.

C. FCAD on M-shot Class-Adaptive Anomaly Detection.

Compared with the traditional anomaly detection problem
(having large samples; the training set and the test set are
equally distributed), the FCAD can also address the new
challenge: detecting anomaly traffic in a previously unseen
anomaly class with only a few samples. In this subsection,
we compare it with the existing state-of-the-art ML-based



approaches and the DL-based approaches on the M-shot class-
adaptive anomaly detection. In the CICAndMal2017 dataset,
we randomly selected 30 classes from 43 malware families as
the training set and the remaining classes as the testing set. For
each iteration, the sample number of the train/test set is equal
to 5,10, 20, respectively (i.e. M = 5,10, 20). For comparison,
we continue to iterate the DL-based approaches until we get
the optimal model of the considered evaluation metrics. For
ML-based approaches, because the sample number of the
train/test is very small, we choose to take the mean value of
multiple experiments (e.g. 10 times) to achieve the reliability
of the results. The experimental results are shown in TABLE
1.

TABLE III
M-SHOT CLASS-ADAPTIVE ANOMALY DETECTION.

Category Approach M
M=5 M=10 M=20
SVM 0.541  0.587  0.659
ML-based DF 0.617 0.633  0.724
RF 0.664 0.727  0.782
LSTM 0.749  0.823  0.903
DL-based CNN 0.675 0.741  0.790
AutoEncoder | 0.782  0.836  0.894
Ours P_re-traini_ng 0.882  0.903  0.935
Fine-turning | 0.943 0971  0.986

From TABLE III, we can find our approach is far superior
to the ML-based and DL-based approaches in terms of perfor-
mance. This is because existing approaches realize anomaly
detection by summarizing the rules that distinguish abnormal
traffic from normal traffic, which is heavily dependent on the
distribution of the dataset studied. They need to be trained in
a large number of normal traffic and specific-class abnormal
traffic, so to achieve good results in that specific-class. How-
ever, existing approaches are impossible to collect training data
that cover all possible anomaly classes. Due to that the class
of anomaly traffic is not static but is in the continuous update
iteration, for the new anomaly class, which has few labeled
samples, the effectiveness of existing approaches will decline
sharply. The FCAD using a meta-learning method to learn a
few-shot class-adaptive anomaly detection model, relying on
the episodic training paradigm and learning from the collection
of K-way-M-shot classification tasks, which can mimic the
few-shot regime faced at test time during training. In the
meta-training phase, we first learn a general few-shot class-
adaptive anomaly detection model. In the meta-testing phase,
we use the pre-trained model to adapt the new class by a few
iterations steps. So that our approach can quickly adapt to the
new anomaly class.

D. Generalization.

In this subsection, to verify the FCAD has a strong general-
ization, we compare it with existing state-of-the-art ML-based
approaches and the DL-based approaches in cross-dataset in
terms of AUC. We first use the CICAndMal2017 dataset
to train a pre-trained model. Then, we use it to adapt the
new class in the CICIDS2017 dataset by a few iterations

TABLE IV
CROSS-DATASET TESTING.
Cross-testing set
Category Approach R aMa2017 gCICID32017

SVM 0.542 0.535
ML-based DF 0.621 0.598
RF 0.669 0.615
LSTM 0.882 0.853
DL-based CNN 0.722 0.741
AutoEncoder 0.794 0.835
Ours Pre-training 0.915 0.893
) Fine-turning 0.966 0.951

steps. And conversely, the same operation is performed. In
this experiment, we set the M = 3. TABLE IV demonstrate
the effectiveness of our approach on few-shot class-adaptive
anomaly detection. We can find that our approach can still
achieve the optimal results in cross-dataset testing.

E. Feature Selection.

In this subsection, we set three sets of features: Fea-
ture_set_1 includes statistical features obtained through fea-
ture extractor; Feature_set 2 includes 33 statistical features
obtained through feature selector; Feature_set_3 inlucde 33
statistical features and 5 time-series features. By running these
feature sets separately in the FCAD, the experimental results
are shown in Fig. 4.

Feature set | === Feature set 2 Feature set 3

0.9

0.6

0.5 ——— =

= = =N |
Accuracy Precision Recall f score AUC

Fig. 4. Performance evaluation of different feature sets.

We can find that the performance of Feature_set_2 is
slightly higher than that of Feature_set_1, but the perfor-
mance of Feature_set_3 is significantly higher than that of
Feature_set_1. This is because the feature selection algorithm
can reduce the influence of the feature without discrimination
on the classification result. Time-series features allow a more
comprehensive and fine-grained evaluation of the entire flow to
obtain a more accurate flow description. Therefore, time-series
relationships between packets are also critical for anomaly
detection.

VI. CONCLUSION

Anomaly detection in encrypted traffic is a growing prob-
lem, especially in mobile platforms. The goal of anomaly



detection is to identify malicious behaviors automatically
by learning exclusively from normal traffic. Many existing
approaches have been proposed to address this problem.
However, most existing approaches are usually data-hungry
and have limited generalization abilities to new anomaly
classes. For a new anomaly class of few labeled samples, the
effectiveness of existing methods will decline sharply. How
to train a model from only a few anomaly samples to detect
unseen new anomaly classes in training is a huge challenge.
A reliable solution to this challenge will have huge potential
for real-world applications since it is expensive to collect a
massive amount of data onto a new anomaly class and is
difficult to detect unseen new anomaly classes in training with
few new anomaly samples. In this paper, we propose a Few-
shot Class-adaptive Anomaly Detection framework of model-
agnostic meta-learning to address the limitations of previous
approaches and extensive experimental results demonstrate the
effectiveness of our proposed approach.
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