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Abstract

Existing models for shape analysis directly learn feature

representations on 3D point clouds. We argue that 3D point

clouds are highly redundant and hold irregular (permutation-

invariant) structure, which makes it difficult to achieve inter-

class discrimination efficiently. In this paper, we propose a

two-pronged solution to this problem that is seamlessly inte-

grated in a single blended convolution and synthesis layer.

This fully differentiable layer performs two critical tasks in

succession. In the first step, it projects the input 3D point

clouds into a latent 3D space to synthesize a highly compact

and inter-class discriminative point cloud representation.

Since, 3D point clouds do not follow a Euclidean topology,

standard 2/3D convolutional neural networks offer limited

representation capability. Therefore, in the second step, we

propose a novel 3D convolution operator functioning inside

the unit ball to extract useful volumetric features. We de-

rive formulae to achieve both translation and rotation of

our novel convolution kernels. Finally, using the proposed

techniques we present an extremely light-weight, end-to-end

architecture that achieves compelling results on 3D shape

recognition and retrieval.

1. Introduction

The human world is three-dimensional, therefore opti-

mally understanding and interpreting 3D data is an impor-

tant research problem. Although deep convolutional neural

networks (CNNs) have been greatly successful in 2D rep-

resentation learning, they still do not provide an adequate

solution to unique challenges that 3D data presents. Specif-

ically, there are two main issues pertinent to 3D data: (a)

3D point clouds and rasterized voxel based representations

encode redundant information thereby making inter-class

discrimination difficult, (b) 3D convolutions generally oper-

ate in Euclidean space, whereas real-world 3D data lie on a

non-Euclidean manifold. The representations thus learned

fail to encode the true geometric structure of input shapes.

The availability of low-cost 3D sensors and their vast ap-

plications in autonomous cars, medical imaging and scene

understanding demands a fresh look towards solving the

Figure 1: High-level comparison of our approach (bottom)

with the traditional approaches [44, 53, 45, 32, 35] (top). We

transform an input shape into a compact representation and

project it onto a discriminative latent space to capture more

discriminative features, before performing convolution in

B
3 with roto-translational kernels. Our novel convolution

operator has a clear advantage over existing works that only

work with Euclidean geometries. This results in a light-

weight and highly efficient network design with significantly

lower number of layers.

above-mentioned challenges.

Existing representation learning schemes for 3D shape

description either operate on voxels [7, 63] or point clouds

[45, 32, 14, 15, 12, 13, 14]. The voxelized data representa-

tions are highly sparse, thus prohibiting the design of large-

scale deep CNNs. Efficient data structures such as Octree

[42] and Kdtree [6] have been proposed to solve this prob-

lem, however neural networks based representation learning

on these tree-based indexing structures is an open research

problem [49]. In comparison, point clouds offer an elegant,

simple and compact representation for each point (x, y, z).
Additionally, they can be directly acquired from the 3D sen-

sors, e.g., low-cost structured light cameras. On the down

side, their irregular structure and high point redundancy pose

a serious challenge for feature learning.

We note that recent attempts on direct feature learning

from point clouds assume a simplistic pipeline (see Fig. 1)

that mainly aims to extract better global features considering

all points [44, 45, 32, 35]. However, all these approaches
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lack the capacity to work on non-Euclidean geometries and

have no inherent mechanism to deal with the high redun-

dancy of point clouds. In this work, we propose an inte-

grated solution, called Blended Convolution and Synthesis

(BCS), to address the above-mentioned problems. BCS can

effectively deal with the irregular, permutation-invariant and

redundant structure of point clouds. Our solution has two

key aspects. First, we map the input 3D shape into a more

discriminative 3D space. We posit that raw 3D point clouds

are sub-optimal to be directly used as input to classification

models, due to redundant information. This property ham-

pers the classification and retrieval performance by adding

an extra overhead to the network, as the network should then

disregard redundant features purely using convolution. In

contrast, we initially synthesize a more discriminative shape

by projecting the original shape to a latent space using a

newly derived set of functions which are complete in the unit

ball (B3). The structure of this latent shape is governed by

the loss function, and therefore, is optimized to pick up the

most discriminative features. This step reduces the number

of convolution layers significantly, as shown experimentally

in Sec. 5. Second, we propose a new convolution operation

that works on non-Euclidean typologies i.e., inside the unit

ball (B3). We derive a novel set of complete functions within

B
3 that perform convolution in the spectral domain.

Furthermore, since our network operates on the ‘spec-

tral domain’, it provides multiple advantages compared to

competing models that operate in Euclidean domains: 1) A

highly compact and structured representation of 3D objects,

which addresses the problem of redundancy and irregularity.

Effectively, a 3D shape is represented as a linear combina-

tion of complete-orthogonal functions, which allows only a

few coefficients to encode shape information, compared to

spatial domain representations. 2) Convolution is effectively

reduced to a multiplication-like operator which improves

computational efficiency, thereby significantly reducing the

number of FLOPS. 3) A theoretically sound way to treat

non-Euclidean geometries, which enables the convolution

to achieve translational and rotational equivariance; and 4)

Scalability to large-sized shapes with bounded complexity.

Most importantly, existing methods which perform con-

volution in the spectral domain [16, 18, 46] use spherical

harmonics or Zernike polynomials to project 3D functions

to the spectral domain for performing convolution. The

aforementioned function spaces entail certain limitations,

e.g.: 1) ‘Spherical harmonics’ only operate on the surface

of the unit sphere, which causes critical information loss

for non-polar shapes. 2) ‘Zernike polynomials’ cause the

convolution to achieve only 3D rotational movement of the

kernel. In contrast, our newly derived polynomials can han-

dle non-polar shapes, while achieving both 3D rotational and

translational movements of the convolution kernel as theoret-

ically proved in Sec. 4.2. Recently, Jiang et al. [28] proposed

a novel Fourier transform mechanism to optimally sample

non-uniform data signals defined on different topologies to

spectral domain without spatial sampling error. This allows

CNNs to analyze signals on mixed topologies, regardless of

the architecture. However, their spectral transformation does

not specifically focus on computational efficiency and equiv-

ariance properties, as ours. On the other hand, Jingwei et al.

[26] proposed a model which can directly segment textured

3D meshes, by extracting features from high-resolution sig-

nals on geodesic neighborhoods of surfaces. In contrast, our

model consumes point clouds and we propose a lightweight

convolution operator, which extracts useful features for 3D

classification.

The main contributions of this work are:

• A novel approach to obtain a learned 3D shape descrip-

tor, which enhances the convolutional feature extraction

process, by projecting the input 3D shape into a latent

space, using newly derived functions in B
3.

• Develop the theory of a novel convolution operation,

which allows both 3D rotational and 3D translational

movements of the kernel.

• Derive formulae to perform discriminative latent space

projection of the input shape and 3D convolution in a

single step, thereby making our approach computation-

ally efficient.

• Implement the proposed latent space projection and

convolution as a fully differentiable module which can

be integrated into any end-to-end learning architecture,

and developing a shallow experimental network which

produces results on par with state-of-the-art while being

computationally efficient.

2. Related Work

3D shape descriptors: A 3D shape descriptor is a rep-

resentation of the structural essence of a 3D shape. A vari-

ety of hand-crafted feature descriptors have been proposed

in past research efforts. A few key such works are based

on light field descriptors [11], Fourier transformation [59],

eigen value descriptors [27], and geometric moments [17].

Most recent hand-crafted 3D descriptors are based on diffu-

sion parameters [9, 50, 8]. On the other hand, learned 3D

shape descriptors have also been popular in the computer

vision literature. Litman et al. [39] propose a supervised

bag-of-features (BOF) method to learn a descriptor. Zhu et

al. follow an interesting approach, where they first project

the 3D shapes into multiple 2D shapes, and then perform

training on the 2D shapes to learn a descriptor. Xie et al. [67]

present a hybrid approach which combines both hand-crafted

features and deep networks. They first compute a geometric

feature vector from the 3D shape, and then employ a deep

network on the feature vector to learn a 3D descriptor. Xie et

al. [66] follow a similar approach, where they first calculate
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heat kernel signatures of 3D shapes and then use two deep

encoders to obtain descriptors. Our work is partially similar

to this, but has a key difference: instead of computing hand-

crafted features as the first step, we do a learned mapping of

input 3D shape into a more discriminative 3D space, which

allows us to get rid of high intra-class variances exhibited

by most 3D shape descriptors. This step provides another

advantage since it maximizes the distance between initial

shapes, before being fed to convolution layers later.

Orthogonal Moments and 3D Convolution: Generally,

orthogonal moments are used to obtain deformation invariant

descriptors from structured data. Compared to geometric

moments, orthogonal moments are robust to certain deforma-

tions such as rotation, translation and scaling. This property

of orthogonal moments has been exploited specially in 2D

data analysis in the past [25, 38, 1, 57, 30, 54]. Extension of

deformation invariant moments from 2D to 3D also has been

explored by many prior works [22, 48, 10, 19]. However, the

certain properties of these moments depend on the Hilbert

space on which they are defined. For example, orthogonal

moments defined in a sphere or a ball exhibit convenient

properties to extract rotation invariants, compared to orthog-

onal moments defined in a cube. These unique properties

of orthogonal moments have recently been used to derive

convolution operations which allows 3D rotational move-

ments of kernels [16, 18, 46, 47]. However, the moments

used in these works do not contain the necessary proper-

ties to achieve 3D translation of the kernels, and therefore,

we derive a novel set of functions in B
3 to overcome this

limitation.

3D Shape Classification and Retrieval: Recent works

developed for 3D shape classification and retrieval can be

broadly categorized into three classes: 1) hand-crafted fea-

ture based [58], [23] 2) unsupervised learning based [63],

[31] 3) deep learning based [44, 45, 37]. Generally, deep

learning based approaches have shown superior results com-

pared to other two categories. However, the aforementioned

deep learning architectures operate on Euclidean spaces,

which is sub-optimal for 3D shape analysis tasks, although

Weiler et al. [62] has shown impressive results using SE(3)-

equivariant convolutions in the Euclidean domain. In con-

trast, our network performs convolution on B
3 which allows

efficient feature extraction, since 3D rotation and translation

of kernels are easier to achieve in this space.

3. Preliminaries

We first provide an overview of basic concepts that will

be used later in proposed method.

3.1. Complete Orthogonal Systems

Orthogonal functions are useful tools in shape analysis.

Let Φm and Φn be two functions defined in some space S.

Then, Φm and Φn are orthogonal over the space S if and

only if, ∫
S

Φn(X)Φm(X)dX = 0, ∀n 6= m. (1)

Let f be a function defined in space S, and {Φm : m ∈ Z
+}

be a set of orthogonal functions defined in the same space.

Then, the set of orthogonal moments of f , with respect

to set {Φm}, can be obtained by f̂m =
∫
S
f(X)Φm(X)†

where † denotes the complex conjugate. If a set of functions

{Φm : m ∈ Z
+} is both complete and orthogonal, it can

reconstruct f(X) using its orthogonal moments as follows,

f(X) =
∑
m

f̂mΦm(X). (2)

3.2. Convolution in Unit Ball B3

The unit ball (B3) is the set of points x ∈ R
3, where

‖x‖<1. Any point in B
3 can be parameterized using coor-

dinates (θ, φ, r), where θ, φ, and r are azimuth angle, polar

angle, and radius respectively. Performing convolution on

3D shapes in non-linear topological spaces such as the unit

ball (B3) has a key advantage: compared to the Cartesian

coordinate system, it is efficient to formulate 3D rotational

movements of the convolutional kernel in B
3 [46]. To this

end, both the input 3D shape and the 3D kernel should be

represented as functions in B
3. However, performing convo-

lution in the spatial domain is difficult due to non-linearity

of B3 space [46]. Therefore, it is necessary to first obtain the

spectral representation of the 3D shape and the 3D kernel,

with respect to a set of orthogonal and complete functions in

B
3, and consequently perform spectral domain convolution.

4. Methodology

Here, we present our ‘Blended Convolution and Synthe-

sis’ layer in detail. First, we construct a set of orthogonal and

complete polynomials in B
3. Then, we relax the orthogonal-

ity condition of these polynomials, which allows us to project

the input shape to a latent space. This projection is a learned

process and depends on the softmax cross-entropy between

predicted and ground-truth object classes. Therefore, the

projected shape is optimized to contain more discriminative

properties across object classes. Afterwards, we convolve

the latent space shape with roto-translational kernels in B
3

to map it to the corresponding class. Besides, we derive

formulae to achieve both projection and convolution in a

single step, which makes our approach more efficient.

Below in Section 4.1, we explain the learned projection

of the object onto a latent space. Then, in Section 4.2, we

derive our convolution operation, which is able to capture

features efficiently using roto-translational kernels.

4.1. Learned Mapping for Shape Synthesis

In this section, we explain the projection of 3D point

clouds to a discriminative latent space in B
3. First, we derive
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a set of complete orthogonal functions in B
3. Orthogonal

moments obtained using orthogonal functions can be used

to reconstruct the original object. However, our requirement

here is not to reconstruct the original object, but to map it to

a more discriminative shape. Therefore, after deriving the

orthogonal functions, we relax the orthogonality condition

to facilitate the latent space projection. Furthermore, instead

of the input point cloud, we use a compact representation as

the input to the feature extraction layer, for efficiency and to

leverage the capacity of convolution in B
3. In Section 4.1.1,

we explain our compact representation.

4.1.1 Compact Representation of Point Clouds

Most 3D object datasets contain point clouds with uniform

texture. That is, if the 3D shape is formulated as a function

f in B
3, such that for any point on the shape, f(θ, φ, r) = c,

where c is a constant. However, formulating 3D shapes in

B
3 has the added advantage of representing both 2D texture

and 3D shape information simultaneously [46]. Therefore,

the advantage of convolution in B
3 can be utilized when the

input and kernel functions have texture information.

Following this motivation, we convert the uniform tex-

tured point clouds into non-uniform textured point clouds

using the following approach. First, we create a grid using

equal intervals along r, θ, and φ. We use 25, 36, and 18
interval spaces for r, θ, and φ, respectively. Then, we bin

the point cloud to grid points, which results in a less dense,

non-uniform surface valued point cloud. The obtained com-

pact representation does not contain all the fine-details of

the input point cloud. However in practice, it allows better

feature extraction using the kernels. A possible reason could

be that kernels are also non-uniform textured point clouds

with discontinuous space representations, and they can cap-

ture better features from non-uniform textured input point

clouds when performing convolution in B
3.

4.1.2 Derivation of orthogonal functions in B
3

In this section, we derive a novel set of orthogonal polynomi-

als with necessary properties to achieve the translation and

rotation of convolution kernels. Afterwards, in Section 4.1.4,

we relax the orthogonality condition of the polynomials to

facilitate latent space projection.

Canterakis et al. [10] showed that a set of orthogonal

functions which are complete in unit ball can take the form

Zn,l,m(r, θ, φ) = Qnl(r)Yl,m(θ, φ), where Qnl is the linear

component and Yl,m(θ, φ) is the angular component. The

variables r, θ and φ are radius, azimuth angle and polar

angle, respectively. We choose Yl,m(θ, φ) to be spherical

harmonics, since they are complete and orthogonal in S2.

For the linear component, we do not use the Zernike

linear polynomials as in Canterakis et al. [10], as they do not

contain the necessary properties to achieve the translational

behaviour of convolution kernels [46]. Therefore, we derive

a novel set of orthogonal functions, which are complete in

0 < r < 1, and can approximate any function in the same

range. Furthermore, it is crucial that these functions contain

necessary properties to achieve the translation of kernels

while performing convolution. Therefore, we choose the

following function as the base function:

fnl = (−1)ln

n∑
k=0

((n− l)r)k

k!
. (3)

It can be seen that,

fnl ≈ (−1)ln exp(r(n− l)), (4)

as n increases, for small r. Therefore, we use the approx-

imation given in Eq. 4 in future derivations. As we show

in Section 4.2, this property is vital for achieving the trans-

lation of kernels. Next, we orthogonalize fnl(r) to obtain

a new set of functions Qnl(r). Consider the orthogonality∫
B3 Zn,l,mZn′,l′,m′ = 0, ∀n 6= n′, l 6= l′,m 6= m′. If we

consider only the linear component, the orthogonality con-

dition should be
∫ 1

0
Qn,lQn′,l′r

2dr = 0, ∀n 6= n′, l 6= l′.

Therefore, Qn,l should be orthogonal with respect to the

weight function w(r) = r2. We define,

Qnl(r) = fnl(r)−

n−1∑
k=0

k∑
m=0

CnlkmQkm(r) (5)

where n ≥ 0, n ≥ l ≥ 0 and Cnlkm is a constant. Since Qnl

should be an orthogonal set, the inner product between any

two different Qnl functions is zero. Therefore, we obtain,

〈Qnl, Qn′l′〉 = 〈fnl, Qn′l′〉 −

n−1∑
k=0

k∑
m=0

Cnlkm〈Qkm, Qn′l′〉

Since 〈Qnl, Qn′l′〉 = 0, we get:

Cnln′l′ =
〈fnl, Qn′l′〉

‖ Qn′l′ ‖2
. (6)

Following this process, we can obtain the set of orthogonal

functions Qnl for n ≥ 0, n ≥ l. The derived polynomials up

to n = 5, l = 5 are shown in Appendix A. In Section 4.1.3,

we prove the completeness property of the derived functions.

4.1.3 Completeness in B
3

In this section, we prove the completeness in B
3 for the set

of functions {Qnl} derived in Section 4.1.2.

Condition 1: Consider the orthogonal set {pn} defined in

L2[0, 1]. Then, {pn} is complete in space L2[0, 1] if and only

if there is no non-zero element in L2[0, 1] that is orthogonal

to every {pn}.
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To show that fnl is complete over L2[0, 1], we first prove

the completeness of the set {Φn}, which is obtained by

orthogonalizing the set {1, x, x2, x3, ...}. Let Ψ(x) be an

element in L2[0, 1], which is orthogonal to every element of

{1, x, x2, x3, ...}. Then, suppose the following relationship

is true:

〈Ψ, e2πikx〉 =
∞∑

n=0

(2πikn)n

n!
〈Ψ, xn〉 = 0, (7)

where k is a constant. However, we know that {e2πikx}k=∞
k=0

is the complex exponential Fourier basis, and is both com-

plete and orthogonal. Therefore, if Eq. 7 is true, Ψ = 0,

which gives us the result, i.e., 〈Ψ, xn〉 = 0 ≡ Ψ = 0.

Equivalently, since {Φn} is obtained by orthogonalization

of {1, x, x2, x3, ...}, 〈Ψ, {Φn}〉 = 0 ≡ Ψ = 0. Hence, ac-

cording to Condition 1, {Φn} is complete in L2[0, 1].
Next, we consider the set Qn,l. Since Qn,l is orthogo-

nalized using the basis functions in Eq. 3, it is enough to

show that fnl is complete over L2[0, 1]. Let Θ be a function

defined in L2[0, 1]. Then, suppose the following relationship

is true:

〈Θ, fn,l〉 = (−1)ln
n∑

k=0

((n− l)k

k!
〈Θ, rk〉 = 0. (8)

For Eq. 8 to be true, 〈Θ, rk〉 = 0 for k = {0, 1, 2, ...}.

But we showed that this condition is satisfied if and only if

Θ = 0. Therefore, 〈Θ, fn,l〉 = 0, ∀n ≥ l ≥ 0 ≡ Θ = 0.

Hence, fn,l is complete in L2[0, 1].

4.1.4 Relaxation of orthogonality of functions in B
3

Computing Cnln′l′ using Eq. 6 ensures the orthogonality

of Qnl. Since Qnl and Ylm are both orthogonal and com-

plete, projecting the input shape f onto the set of functions

Znlm, n ≥ l ≥ m ≥ 0, enables us to reconstruct f by:

f(θ, φ, r) =
∞∑

n=0

n∑
l=0

l∑
m=−l

Ωn,l,m(f)Zn,l,m(θ, φ, r), (9)

where spectral moment Ωn,l,m(f) can be obtained using

Ωn,l,m(f) =
∫ 1

0

∫ 2π

0

∫ π

0
f(θ, φ, r)Zn,l,mr2 sinφ drdφdθ..

Representing f in spectral terms, as in Eq. 9, enables easier

convolution in spectral space, as derived in Section 4.2.

However, we argue that since 3D point clouds across

different object classes contain redundant information, pro-

jecting the point clouds in to a more discriminative latent

space can improve classification accuracy. Our aim here

is to reduce redundant information and noise from the in-

put point clouds and map it to a more discriminative point

cloud, which concentrates on discriminative geometric fea-

tures. Therefore, we make Cnln′l′ trainable, which allows

the latent space projection f̂ of the input shape f as follows:

f̂(θ, φ, r) =

∞∑
n=0

n∑
l=0

l∑
m=−l

Ω̂n,l,m(f)Ẑn,l,m(θ, φ, r),

(10)

where spectral moment Ω̂n,l,m(f) can be obtained using,

Ω̂n,l,m(f) =

∫ 1

0

∫ 2π

0

∫ π

0

f(θ, φ, r)Ẑ†
n,l,mr2 sinφ drdφdθ,

where Ẑn,l,m(θ, φ, r) = Q̂nl(r)Ylm(θ, φ) and Q̂nl(r) =

fnl(r) −
∑n−1

k=0

∑k

m=0 WnlkmQ̂km(r). Here, the set

{Wnlkm} denotes trainable weights. Note that since the

final orthogonal function is a product of the linear and the

angular parts, making both functions learnable is redundant.

4.2. Convolution of functions in B
3

Let the north pole be the y axis of the Cartesian coordinate

system and the kernel is symmetric around y. Let f(θ, φ, r),
g(θ, φ, r) be the functions of object and kernel respectively.

Then, convolution of functions in B
3 is defined by:

f ∗ g(α, β, r′) := 〈f(θ, φ, r), T ′
r{τ(α,β)(g(θ, φ, r))}〉

(11)

=

∫ 1

0

∫ 2π

0

∫ π

0

f(θ, φ, r)T ′
r{τ(α,β)(g(θ, φ, r))} sinφ dφdθdr,

where τ(α,β) is an arbitrary rotation that aligns the north

pole with the axis towards the (α, β) direction (α and β are

azimuth and polar angles respectively) and T ′
r is translation

by r′.

To achieve both latent space projection and convolution

in B
3 in single step, we present the following theorem.

Theorem 1: Suppose f, g : X −→ R
3 are square in-

tegrable functions defined in B
3 so that 〈f, f〉 < ∞ and

〈g, g〉 < ∞. Further, suppose g is symmetric around the

north pole and τ(α, β) = Ry(α)Rz(β) where R ∈ SO(3)
and T ′

r is translation of each point by r′. Then,

∫ 1

0

∫ 2π

0

∫ π

0

P{f(θ, φ, r)}T ′
r{τ(α,β)(g(θ, φ, r))} sinφ dφdθdr

≈
4π

3

∞∑
n=0

n∑
l=0

l∑
m=−l

〈fnl(r), Qn′l(r)〉(e
(n−l)r′ − e(n

′−l)r′)

Ω̂n,l,m(f)Ω̂n,l,0(g)Yl,m(θ, φ), (12)

where, Ω̂n,l,m(f), Ω̂n,l,0(g) and Yl,m(θ, φ) are (n, l,m)th

spectral moment of f , (n, l, 0)th spectral moment of g, and

spherical harmonics function, respectively. P{·} is the pro-

jection to a latent space, τ(α, β) = Ry(α)Rz(β) where

R ∈ SO(3) and Tr is translation of each point by r. The

proof to this theorem can be found in Appendix A.
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Figure 2: The overall CNN architecture. Our proposed design is a light-weight model, comprising of only three weight layers.

Our networks aims to achieve a compact latent representation and volumetric feature learning via convolutions in B
3.

4.3. Network Architecture

Our experimental architecture consists of two convolution

layers and a fully connected layer. We employ four kernels

in the first convolution layer and 16 kernels in the second

convolution layer, each followed by group normalization

[64] and a ReLU layer. The experimental architecture is

illustrated in Figure 2. We use n = 5 for implementing

Eq. 11 and softmax cross-entropy loss as the objective func-

tion during training. For training, we use a two step process.

First, we train polynomial weights using a learning rate of

10−5, and then train kernel weights using a learning rate of

0.01. We used the Adam optimizer for calculating gradients

with parameters β1 = 0.9, β2 = 0.999, and ǫ = 1 × 10−8,

where parameters refer to the usual notation. We use 20k
iterations to train polynomials weights and 30k iterations to

train kernel weights. We use a single GTX 1080Ti GPU for

training and the model takes around 30 minutes to complete

a single epoch during training on ModelNet10 dataset.

5. Experiments

We evaluate the proposed methodology on 3D object clas-

sification and 3D object retrieval tasks using recent datasets:

ModelNet10, ModelNet40, McGill 3D, SHREC17 and OA-

SIS. We also conduct a thorough ablation study to demon-

strate the effectiveness of our derivations and design choices.

5.1. 3D Object Classification Performance

A key feature of our proposed pipeline is the projection of

the input 3D shapes into a more discriminative latent shape,

before feeding them into convolution layers. One critical ad-

vantage of this step is that original subtle differences across

object classes are magnified in order to leverage the feature

extraction capacity of convolution layers. Therefore, the pro-

posed network should be able to capture more discriminative

features in the lower layers, and provide better classification

results with a smaller number of layers, compared to other

state-of-the-art works which directly extract features from

the original shape. To illustrate this, we present a model

depth vs accuracy analysis on ModelNet10 and ModelNet40

in Table 1, and compare the effectiveness of our network

with other comparable state-of-the-art approaches.

State-of-the-art work can be mainly categorized into three

types: volume based, RGB based and Points based. Volume

based methods generally rely on volumetric representation

of the 3D shape such as voxels. VoxNet [41] shows the best

performance among volume based models, with an accuracy

of 92.0% in ModelNet10 and 83.0% in ModelNet40, which

is lower than our model’s accuracy. It is interesting to see

that 3DShapeNets [65], and VRN [7] have significantly more

layers compared to our model, although accuracies are lower.

In general, our model performs better and has a lower model

depth compared to volume based methods.

RGB based models generally follow the projection of the

3D shape into 2D representations, as an initial step for feature

extraction. We perform better than all the RGB based meth-

ods, except for MHBN [68], which has accuracies 95.0%

and 94.7% over ModelNet10 and ModelNet40 respectively.

However, MHBN contains six views and for each view they

employ a VGG-M network for initial feature extraction. This

results in a significantly complex setup, which contains 96

trainable layers. In contrast, our model uses a single view

and three trainable layers. Generally, RGB based models use

multiple views, pre-trained deep networks and ensembled

models, which results in increased model complexity. In

contrast, our model use a single view and does not use pre-

trained models, and achieves the second highest performance

compared to RGB based models.

Point based models directly consume point clouds. Our

model achieves the second best performance in this category,
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Method Modality Views #Layers ModelNet10 ModelNet40

VoxNet (IROS’15) [41] Volume - - 92.0% 83.0%

3DGAN (NIPS’16) [63] Volume - - 91.0% 83.3%

3DShapeNet (CVPR’15) [65] Volume 4-3DConv + 2FC 83.5% 77%

VRN ((NIPS’16)) [7] Volume - 45Conv 93.6% 91.3 %

GIFT ((CVPR’16)) [3] RGB 64 - 92.4% 83.1%

Pairwise ((CVPR’16)) [29] RGB 12 23Conv 92.8% 90.7%

MVCNN (ICCV’16) [53] RGB 12 60Conv + 36FC - 90.1%

MHBN (CVPR’18) [68] RGB 6 78Conv + 18FC 95.0% 94.7%

DeepPano (SPL’15) [51] RGB 4Conv + 3FC 85.5% 77.63%

ECC (CVPR’17) [52] Points - 4Conv + 1FC 90.0% 83.2%

Kd-Networks (ICCV’17) [32] Points - 15KD 93.5% 91.8%

SO-Net (CVPR’18) [35] Points 11FC 95.7% 93.4%

PointNet (CVPR’17) [44] Points - 5Conv + 2STL - 89.2%

LP-3DCNN (CVPR’19) [33] Points - 15Conv + 3FC - 92.1%

Ours Points - 2Conv + 1FC 94.2% 91.8%

Table 1: Model accuracy vs depth analysis on ModelNet10 and ModelNet40 datasets.

Method FLOPS ModelNet40

(inference)

PointNet [44] 14.70B 89.2%

SpecGCN [60] 17.79B 92.1%

PCNN [2] 4.70B 92.3%

PointNet++ [45] 26.04B 91.9%

3DmFV-Net [5] 16.89B 91.6%

PointCNN [36] 25.30B 92.2%

DGCNN [61] 44.27B 93.5%

Ours 1.31B 91.8%

Table 2: Our model complexity is

much lower compared to state-of-the-

art 3D classification models. The

FLOPS (inference time) comparisons

are reported according to [36] settings

with 16 batch size.

the highest being SO-NET [35]. However, SO-NET contains

11 fully connected layers, while our model only contains

three layers. Our model is able to outperform the other point

based setups, although their model depths are larger.

Overall, our model achieves a performance mark compa-

rable to the best models, with a much shallower architecture.

Our model contains the lowest number of trainable layers

compared to all the models. This analysis on ModelNet10

and ModelNet40 clearly reveals the efficiency and better

feature extraction capacity of our approach. Table 2 depicts

the computational efficiency of BCS compared to state-of-

the-art. With just 1.31B FLOPs, we outperform the closest

contender PCNN [2] by a significant 3.39B margin.

5.2. 3D Object Retrieval Performance

In this section, we compare the performance of our ap-

proach in 3D object retrieval. We use the McGill 3D dataset

and SHREC’17 dataset for our experiments. We first obtain

the feature vectors computed by each kernel in the second

layer, and concatenate them. Then, we apply an autoencoder

on the concatenated vector and retrieve a 1000-dimensional

descriptor. Then we measure the cosine similarity between

input and target shapes to measure the 3D object retrieval per-

formance. We use the nearest neighbour performance and the

evaluation metric. Table 3 depicts the results on the McGill

Dataset. Out of the six state-of-the-art models compared, our

model achieves the best retrieval performance. Table 4 illus-

trates the performance comparison on the SHREC’17 dataset,

where our approach gives the second best performance, be-

low Furuya et al. [21]. Figure 4 depicts our training curves

for polynomial weights and kernel weights. The training

curves are obtained for ModelNet10.

5.3. Ablation Study

In this section, we conduct an ablation study on our model

and discuss various design choices, as illustrated in Figure 3.

Firstly, we use a single convolution layer instead of two, and

achieve an accuracy of 74.2% over ModelNet10. Then, we

investigate the effect of using a higher number of convolu-

tion layers. We get accuracies 91.3% and 87.5%, when using

three and four convolution layers respectively. Therefore,

using two convolution layers yields the best performance.

An important feature of our convolution layer is the trans-

lation of convolution kernels, in addition to rotation. To

evaluate the effect of this, we use only rotating kernels and

measure the performance, and achieve an accuracy of 80.2%.

Therefore, it can be concluded that having the translational

movements of the kernel has caused an accuracy increment

of 14%, which is significant. Next, we measure the effect

of latent space projection. To this end, we use orthogonal

polynomials derived in Equations 5-6 for convolution, in-

stead of making them learnable. This removes the latent

space projection of the input, as the original object is recon-

structed using spectral moments. After removing the latent

space projection, the accuracy is dropped by 20.3%, which

clearly reveals the significance of this feature. Then, we

replace our convolution layers with volumetric convolution

[46] layers and spherical convolution layers [16] and get

88.5% and 77.3% accuracy respectively. This shows that

our convolution layer has a better feature extraction capacity

compared to other convolution operations. One key reason

behind this can be the translational movements of our ker-

nels and the combined latent space projection step, which

the aforementioned convolution methods lack.

Moreover, we test our model using basis functions in

Eq. 3 as the projection functions, instead of learnable func-

tions. Also, we again test the model using orthogonal func-

tions. In both cases, the performance is lower compared to

learnable functions. Furthermore, instead of soft-max cross

entropy, we use WSoftmax [40] and GASoftmax [40] and

achieve only 84.0% and 83.0% respectively. Therefore, us-

ing soft-max cross entropy as the loss function is justified.

We also evaluate the effect of sampling density on accuracy.

As shown in Figure 3, accuracy drops below 94.2%—which
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Figure 3: Ablation study on ModelNet10 in 3D object clas-

sification (left) and SHREC’17 in 3D object retrieval (right).

Figure 4: Training curves of our architecture on ModelNet10

for polynomial weights (left) and kernel weights (right).

Method Accuracy

Bashiri et al. [4] (arxiv’19) 0.9646%

Zeng et al. [69] (IET’18) 0.981%

Han et al. [24] (IP’18) 0.8827%

Tabia et al. [55] (CVPR’14) 0.977%

Papadakis et al. [43] (3DOR’w) 0.957%

Lavoue et al. [34] (TVC’14) 0.925%

Xie et al. [66] (CVPR’15) 0.988%

Ours 0.990%

Table 3: 3D object

retrieval results com-

parison with state-

of-the-art on McGill

Dataset.

is reported by final architecture—when using a denser rep-

resentation. Similarly, accuracy drops to 86.7% when using

r = 10, θ = 18, φ = 9 as sampling intervals. Therefore,

using r = 25, θ = 36, φ = 18 as in the final architecture

seems to be the ideal design choice. We use four different

distance measures in the 3D object retrieval task and com-

pare the performance: cosine similarity, Euclidean distance,

KL divergence, and Bhattacharya distance. Out of these,

cosine similarity yields the best performance, with a mAP

of 0.466.

Method mAP

Furuya et al. [21] (BMVC’16) 0.476

Esteves et al. [18] (ECCV’18) 0.444

Tatsuma et al. [56] (TVC’09) 0.418

Bai et al. [3] (CVPR’16) 0.406

Ours 0.466

Table 4: 3D object re-

trieval results compari-

son with state-of-the-art

on SHREC’17.

5.4. Classification of Complex Shapes

The proposed convolution layer offers two key advan-

tages: 1) the ability to simultaneously model both shape

Model Accuracy

Ours (1 Conv layer) 66.3%

Ours (2 Conv layers) 82.7%

Ours (3 Conv layers) 86.7%

Ours (4 Conv layers) 88.1%

Ours (5 Conv layers) 87.0%

Table 5: Multi-layer archi-

tectures for highly non-

polar and textured shape

classification. Our model

shows an improvement

with more layers.

and texture information, and 2) handling non-polar objects.

However, we used ModelNet10 to conduct the ablation study

shown in Figure 4, which contains relatively simple shapes

(i.e. not dense in B
3), and it is clear from the results that

the accuracy drops when more than two convolution layers

are used. A possible reason for this behaviour is overfitting.

Since our convolution layer can capture highly discrimina-

tive features from the input functions, using more parameters

can cause overfitting on relatively simpler shapes, and thus,

a drop in classification accuracy. To test this hypothesis, we

conduct an experiment on a more challenging dataset, which

contains highly non-polar and textured objects.

In this experiment, we use OASIS-3 dataset [20] to sam-

ple 1000 3D brain scan images. The dataset includes brain

scan images from both Alzheimer’s disease patients and

healthy subjects. A key property of these images is that they

have texture information and are highly dense in B
3. Firstly,

we split the sampled data in to train and test sets, with 800
and 200 images for each set, respectively. To avoid bias, we

include an equal number of Alzheimer cases and healthy

cases in both train and test sets. Then, we evaluate different

network architectures using the dataset, varying the number

of convolution layers. We use cross entropy loss function in

this experiment. The results are shown in Table 5.

As evident from Table 5, the classification accuracy in-

creases with the number of convolution layers, up to four

layers. Hence, it can be concluded that more challenging

objects allow our model to demonstrate its full capacity.

6. Conclusion

In this paper, we propose a novel approach called

‘Blended Convolution and Synthesis’ to analyse 3D data,

which entails two key operations: (1) learning a 3D descrip-

tor obtained by projecting the input 3D shape into a discrim-

inative latent space and (2) convolving the 3D descriptor in

B
3 with roto-translational 3D kernels for extracting features.

We derive a novel set of polynomials in B
3, and project the

input data into a spectral space using the derived polynomials

to join these two operations into a single step. Furthermore,

we use a compact representation of the input data to reduce

the density of the data distribution and leverage the advan-

tage of convolving functions in B
3. Finally, we present a

light-weight architecture and achieve compelling results in

3D object classification and 3D object retrieval tasks.
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