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Crude proteinase inhibitors (CPIs) extracted from the seeds of Rhynchosia sublobata, a wild relative of
pigeon pea showed pronounced inhibitory activity on the larval gut trypsin-like proteases of lepidop-
teran insect pest — Achaea janata. Consequently, a full-length ¢cDNA of Bowman-Birk inhibitor gene
(RsBBI1) was cloned from the immature seeds of R. sublobata. It contained an ORF of 360 bp encoding a
119-amino acid polypeptide (13.3 kDa) chain with an N-terminus signal sequence comprising of 22
amino acids. The amino acid sequence and phylogenetic analysis together revealed that RsBBI1 exhibited
a close relation with BBIs from soybean and Phaseolus spp. A cDNA sequence corresponding to RsBBI1
Achaea janata mature protein (89 amino acid stretch) was expressed in E. coli. The recombinant rRsBBI1 protein with a
Bowman-Birk inhibitor molecular mass of 9.97 kDa was purified using trypsin affinity chromatography. The purified rRsBBI1
E. coli exhibited non-competitive mode of inhibition of both bovine trypsin (Ki of 358 + 11 nM) and chymo-
Helicoverpa armigera trypsin (Ki of 446 + 9 nM). Its inhibitory activity against these proteases was stable at high temperatures
Trypsin-like gut proteases (>95°C) and a wide pH range but sensitive to reduction with dithiothreitol (DTT), indicating the
importance of disulphide bridges in exhibiting its activity. Also, rRsBBI1 showed significant inhibitory
activity (ICsp =70 ng) on A. janata larval gut trypsin-like proteases (AjGPs). Conversely, it showed <1%
inhibitory activity (ICs5p = 8 pg) on H. armigera larval gut trypsin-like proteases (HaGPs) than it has against
AjGPs. Besides, in vivo feeding experiments clearly indicated the deleterious effects of rRsBBI1 on larval
growth and development in A. janata which suggests it can be further exploited for such properties.

© 2018 Elsevier Ltd. All rights reserved.

Keywords:

1. Introduction

Insect larvae feed on the vegetative and reproductive organs of
plants and digest them with the aid of serine, cysteine, aspartic or
metalloproteinases present in their gut environment (Terra and
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Ferreira, 1994). Upon infestation by larvae, plants display a
myriad of defense responses, including the production of bioactive
secondary metabolites and proteinaceous molecules such as a-
amylase inhibitors, lectins, polyphenol oxidases and proteinase/
protease inhibitors (PIs) (Furstenberg-Hagg et al., 2013). Serine PIs,
which are active against many serine proteases found in the
gastrointestinal tract of insects, are identified generally across the
plant kingdom. They are further classified into eight different
families viz. Kunitz inhibitors, Bowman-Birk inhibitors (BBIs), Po-
tato inhibitor-I and Potato inhibitor-II, Mustard trypsin inhibitors,
Squash inhibitors, Serpins and Cereal trypsin/oa-amylase inhibitors
(Mosolov and Valueva, 2005).

PIs are highly stable globular proteins constitutively expressed
in storage organs such as seeds and tubers. They are also induced in
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vegetative organs of plants during biotic and abiotic stresses and
participate in regulating endogenous proteolysis, seed develop-
ment, and programmed cell death. In addition, they serve as seed
reserves for sulfur-containing amino acids, cysteine (Jamal et al.,
2013; Mosolov and Valueva, 2005). PIs act against insect pest by
binding to their digestive proteases and block their proteolytic ac-
tivity. This mechanism lowers the pool of essential amino acids in
the insects’ gut required for their growth and thereby causing
mortality (Jongsma and Bolter, 1997). The PIs from wild relatives
and non-host plants are more effective than the PIs from host
plants in the management of the insect pests as the digestive en-
zymes present in their guts have not adapted to such PIs (Harsulkar
et al, 1999; Jongsma et al., 1996). Several transgenic plants
expressing PIs from the host or non-host plants are produced to
counteract the insect pests (Duan et al., 1996; Hilder et al., 1987;
Johnson et al., 1989; Macedo et al., 2015).

From an economic perspective, Helicoverpa armigera and
Achaea janata are relatively important among the lepidopteran
insect pests. H. armigera, being polyphagous has caused significant
loss to many crops (Lammers and Macleod, 2007). Further, the
management of H. armigera continued to be a major challenge as it
has developed resistance to a variety of pesticides. Conversely,
A. janata feeds on an oil-rich Ricinus communis and causes severe
loss to this cash crop owing to its foliar feeding behavior (Sujatha
et al., 2010).

The wild relatives of leguminous crops are known to harbor a
valuable gene pool for biotic, abiotic and disease resistance traits
(Mallikarjuna et al., 2011). Serine PIs such as BBIs are mostly
identified in leguminous plants and they contain two reactive sites
for trypsin and chymotrypsin inhibition. Besides, the larval gut
environment of lepidopteran insects possessed chiefly trypsin-like
and chymotrypsin-like proteases. Therefore, in the present study, a
BBI (RsBBI1) gene was cloned and sequenced from the immature
seeds of R. sublobata, a wild relative of pigeon pea. The recombinant
RsBBI1 (rRsBBI1) expressed in E. coli was examined for its
biochemical properties and inhibitory potential against AjGPs and
HaGPs. Based on the in vitro studies, in vivo feeding bioassays were
performed to reveal the importance of rRsBBI1 in inducing growth
retardation and mortality of A. janata larvae.

2. Results
2.1. Effect of seed crude PI on gut trypsin-like proteases

Seed crude PI (CPI) extracts of cultivars (ICP 332 and ICP 7182)
and wild relatives (C. volubilis and R. sublobata) of pigeon pea were
compared for their inhibitory potential against AjGPs and HaGPs in
a wide range of concentration, using trypsin and chymotrypsin as
reference controls (data not shown). The amount of CPI required
from cultivars and wild relatives to cause maximum inhibition in
activity of different proteases varied considerably (Fig. 1A—D). For
example, among the bovine proteases tested, an amount of 80 ug of
CPI from C. cajan cultivar ICP 332 was required to cause 100% in-
hibition in the activity of trypsin (Fig. 1A). Conversely, an amount of
552 ug of CPI was required from C. cajan wild relative R. sublobata to
cause 100% inhibition in the activity of chymotrypsin (Fig. 1B).
Among the larval gut trypsin-like proteases tested, the CPI from
both cultivars and wild relatives could not inhibit the activity of
AjGPs and HaGPs completely. However, the CPI from R. sublobata
caused 85 + 3% inhibition in the activity of AjGPs and 62 + 5% in-
hibition in the activity of HaGPs at 12 pg and 480 pg, respectively
(Fig. 1C and D). These results indicate R. sublobata CPI is 40-fold less
active against HaGPs than AjGPs.
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Fig. 1. Protease inhibition by seed CPI from cultivars and wild relatives of C. cajan.
Residual protease activity of (A) bovine trypsin, (B) bovine chymotrypsin, (C) AjGPs
and (D) HaGPs on incubation with CPI from seeds of C. cajan cultivars (ICP 332, ICP
7182) and wild relatives [C. volubilis (ICP 15774), R. sublobata (ICP 15868)]. Control bars
represent the 100% activity of the different proteases in the absence of CPI. An asterisk
(*) indicates the complete loss of protease activity in the presence of CPI. The values
indicated above the bars are the corresponding CPI concentrations required to obtain
maximum inhibition of respective proteases.

2.2. Cloning and sequencing of RsBBI1

In an attempt to clone BBI from R. sublobabta (wild relative), a
250 bp RT-PCR product was amplified from the cDNA generated
using oligo dT primer (Fig. 2A). Consequently, a full-length tran-
script sequence of RsBBI1 was obtained after 5 and 3’ RACE ex-
periments (Fig. 2B). Primary 5’ and 3’ RACE products obtained were
~250 bp and ~450 bp and the secondary PCR with the nested
primers yielded 207 bp and 361 bp, respectively. Development of
smaller products by the expected number of bases than the primary
RACE products preliminarily confirmed the desired gene amplifi-
cation. Contig sequence, generated out of the nucleotide sequences
of RACE products, yielded complete sequence (505 bp) information
of RsBBI1 transcript comprising of an open reading frame of 360 bp
encoding 119 amino acids, 21 bp of 5’ UTR and 109 bp of 3’ UTR
ending with a polyA tail (Fig. 2C). BLASTn of cDNA sequence ob-
tained showed greater identity with several other proteinase in-
hibitors belonging to BBI family (Supplementary Fig. 1). The
complete RsBBI1 CDS sequence was submitted to NCBI GenBank
(accession # KT119632.2).

In silico analysis of RsBBI1 protein sequence of 119 amino acids
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Fig. 2. Synthesis of full-length cDNA and cloning of RsBBI1. (A) PCR-amplified partial cDNA fragment (~250 bp) of RsBBI1 from immature seeds of R. sublobata. Lane M is loaded
with 100 bp DNA ladder and lanes 2-4 contained partially amplified RsBBI1 gene product; (B) RACE amplified 5’ and 3’ fragments of RsBBI1. Lane M contained 100 bp DNA ladder,
lanes 5’ and 5'N are loaded with the 5 RACE primary and nested gene products and lanes 3’ and 3’N are loaded with 3’ RACE primary and nested gene products of RsBBI1; (C)
Complete cDNA (505 bases) of RsBBI1 and in silico translated amino acid sequence. The straight arrow indicates the end of the signal peptide and the dotted arrow indicates the
starting point of the protein (89 amino acid stretch) overexpressed in E. coli. Primer sequences are shown in colour. Red colour indicates the primers used to get the partial sequence,
green colour indicates the 3’ RACE forward primers and blue colour indicates the 5 RACE reverse primers. The nested primers are italicised. Further details are indicated in
Supplementary Table 1. The complete RsBBI1 sequence is submitted to NCBI with accession number KT119632.2. (For interpretation of the references to colour in this figure legend,

the reader is referred to the Web version of this article.)

with a predicted mass of 13.303 kDa (Fig. 2C) using TargetP 1.1
(http://www.cbs.dtu.dk/services/TargetP/) revealed the presence of
a twenty-two-amino acid “MNNMVVLKACLVLLFLVGVATA” signal
peptide. However, N-terminus sequencing of native BBI shows that
it begins with serine followed by aspartic acid (Data not shown).
Therefore, only 89 amino acids stretch mature protein with serine
at N-terminus was cloned and expressed using pET23a (Fig. 2C).

Multiple sequence alignment with a pre-protein sequence of 119
amino acids revealed the alignment of RsBBI1 cysteine residues
with the conserved cysteine residues (fourteen) backbone of BBIs
from other leguminous plants (Fig. 3). The RsBBI1 possessed ‘Lys-
Ser’ and ‘Leu-Ser’ at the P1-P1’ positions of trypsin (TKSQPPQ) and
chymotrypsin (TLSIPAI) reactive site loops, respectively. However,
the P1-P1’ residues in the trypsin reactive site are conserved, while
those in the chymotrypsin reactive site of RsBBI1 matched with the
BBIs from Phaseolus, Glycine and Vigna spp. (Fig. 3).

2.3. Phylogenetic analysis and 3D modeling of RsBBI1

The phylogenetic relationship of RsBBI1 from R. sublobata with
BBIs from other legumes and cereals revealed, it is grouped be-
tween Phaseolus and Glycine spp. on one end, and between C. cajan
and Vigna spp. at the other end of the phylogenetic tree (Fig. 4A).
Further, C. cajan BBI outgrouped from RsBBI1 substantiating its
evolutionary association with its wild gene pool. Furthermore, the
BBIs from monocots were outgrouped from the dicots suggesting
that though widely distributed among the Leguminosae members,
they are highly conserved amongst dicots and monocots during
evolution.

A three-dimensional structure was predicted for RsBBI1 from

residues 44 to 113 using soybean BBI (PDB ID-1BBI) as a template
(Fig. 4B). The modeled RsBBI1 represented a symmetrical protein
with both trypsin and chymotrypsin reactive site loops on opposite
sides. In 3D modeling, the amino acids identical between RsBBI1
and the template 1BBI are represented by the same color (Fig. 4C).

2.4. Overexpression and purification of rRsBBI1 from E. coli

The purification profile of rRsBBI1 was analyzed using 15% Tri-
cine SDS-PAGE (Fig. 5D) and the trypsin inhibitory activity of
rRsBBI1 was visualized in gelatin SDS-PAGE (Fig. 5E). The induced
cell lysates of E. coli (trxB", gor”) SHuffle T7 express cells transformed
with pET23a-RsBBI1 construct encoding a recombinant peptide of
mature RsBBI1 of 89 amino acids (9970 Da) showed a dimeric band
of ~20 kDa (Fig. 5D-lane 7; 5E-lane 6). However, this band does not
appear in host cells transformed with vector alone i.e. pET23a
without RsBBI1 construct (negative control) (Fig. 5A-lane 7; 5B-lane
6). In-gel activity staining studies using gelatin SDS-PAGE clearly
showed the trypsin inhibitory activity of rRsBBI1 protein expressed
from the IPTG induced cell lysate (Fig. 5E). Conversely, such trypsin
inhibitory bands do not appear at the corresponding position in the
negative control (Fig. 5B). The elution profile of rRsBBI1 using
trypsin affinity column is depicted in Fig. 5F and the chromatogram
from negative control is devoid of any protein peak (Fig. 5C).

The purified rRsBBI1 with a yield of 2.5+0.3mgL~! culture
showed a single band in both SDS-PAGE as well as in-gel activity
staining studies (Fig. 5D and E). But, intact mass MALDI-TOF anal-
ysis of rRsBBI1 denoted two peaks with molecular masses of
9970.87 Da and 9693.74 Da (Fig. 6). However, the theoretical mass
(9971.02 Da) of 89 amino acid rRsBBI1 matched well with the peak
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Rhynchosia sublobata M----NNMVV LKACLVLLFL VGVATA-RME LNMLK--SDH HHHSSSSDEP SESSKPCCDQ CRCTKSQPPQ 63
Cajanus cajan M------- MV LKGCFFLLLL VGVTTA-RMD LGILK--SGH DQHHSS---- ---- KACCDE CRCTKSIPPQ 52
Phaseolus filiformis MGLKNNNTMV LKVCFVLLFL LG-TSTASLK LSELGQLMKS GHHHESTDEP SESSKACCDQ CACTKSIPPQ 69
Phaseolus microcarpus MGLKNNNTMV LKVCFMLLFL LG-TSTASLK LSELGLLMKS GHHHESTDEP SESSKPCCDQ CACTRSIPPQ 69
Phaseolus zimapanensis MGLKNNNTMV LKVCFMLLFL LG-TSTASLK LSELGLLMKS GHHHESTDEP SESSKPCCDQ CACTKSIPPQ 69
Phaseolus lunatus MGLKNNNTMV LKVCFVLLFL LG-TSTASLK LSELGLLMKS GHHHESTDEP SESSKPCCDH CACTKSIPPQ 69
Phaseolus grayanus MGLKNNNTMV LKVCFRLLFL LG-TSTASLK LSELGLLMKS GHHHESTDEP SESSKACCDQ CACTKSIPPQ 69
Phaseolus augusti MGLKNNNTMV LKVCFVLLFL LG-TSTASLK LSELGLLMKS GHHHESTDEP SDSSKPCCDQ CACTKSIPPQ 69
Phaseolus coccineus polya MGVKNNNTMV LKVCFVLLFL LG-TCTASLK LSELGLLMKS GHHHESTDEP SESSKACCDH CACTKSRPPQ 69
Phaseolus oligospermus MGLKNNNTMV LKVCFMLLFL LG-TSTASLK LSELGLLMKS GHHHESTDEP SESSKACCDH CACTKSIPPQ 69
Glycine microphylla M------- VV LKVCLVLLFL EGGTTSANLR LSKLGLLMKS DHHQHSNDD- -ESSKPCCDQ CACTKSNPPQ 61
Glycine soja MGLKN-NMVV LKVCLVLLFL VGGTTSANLR LSKLGLLMKS DHHQHSNDD- -ESSKPCCDQ CACTKSNPPQ 67
Phaseolus costaricensis MGLKNNNTMV LKVCFVLLFL LG-TCTASLK LSELGLLMKS GDHHESTDEP SESSKACCDH CACTKSRPPQ 69
Phaseolus hintonii MGLKNNNTMV LKVCFMLLFL LG-TSTASLK LSELGLLMKS G-HHESTDEP SESSKACCDQ CACTKSIPPQ 68
Phaseolus parvulus MGLKNNNTMV LKVCFMLLFL LG-TSTASLK LSELGLLMKS GHHHQSTDEP SESSKPCCDH CACTRSIPPQ 69
Phaseolus glabellus MGLKNNNTMV LKVCFMLLFL LG-TSTASLK LSELGLLMKS GHHHESTDEP SESSKACCDE CACTKSIPPQ 69
Phaseolus vulgaris MGLKNKNTKV LKMCFVLLFL LG-TCTASLK LSEKGQLMKS GDHDESTDEP SESSKPCCDQ CECTKSIPPQ 69
Vigna marina M-—————=- V LKVCFVLLFL LG-TSTASLK LSELGVLMKS GHHHQSTDES SESSTPCCDK CACTRSIPPQ 61
Vigna trilobata M------- MV LKVCVLVVFL VGVTAA-GMD LNHLR--SIH HHHDSSDE-P SESSEPCCDS CRCTKSIPPQ 59
Vigna vexillata M------- MV LKVCVLVLFL VGVTTANGMD LNHLR--SNH HD-DSSDE-P SESSEPCCDA CICTKSIPPQ 59
Vigna mungo M------- MV LKVCVLVVFL LGVTAA-GMD LNHLR--SIH HNHDSSDE-P SESSEPCCDS CRCTKSIPPQ 58
Vigna radiata var. sublob M------- MV LKVCVLVVFL VGVTAA-GMD LNHLR--SIH HNHDSSDE-P SESSEPCCDS CRCTKSIPPQ 58
##
Rhynchosia sublobata CRCVDVRLDS CHSACKSCIC TLSIPAICNC VDTTDFCYEP CKPRDDDEKD LVNRFE 119
Cajanus cajan CHCLDMRLNS CHSACESCVC TFSNPAMCHC VDTTDFCYKP CKSHDDDEKD LMNRF- 107
Phaseolus filiformis CRCSDLRLNS CHSACKSCIC TLSIPAQCVC TDINDFCYEP CKPSHDDDSD N----- 120
Phaseolus microcarpus CRCSDFRLNS CHSACKSCIC TFSIPAQCVC TDINDFCYEP CKPSHDDDSD N----- 120
Phaseolus zimapanensis CHCSDLRLNS CHSACKSCIC TFSIPAQCVC TDINDFCYEP CKPSHDDDSD N----- 120
Phaseolus lunatus CRCTDLRLDS CHSACKSCIC TLSIPAQCVC NDINDFCYEP CKSSHDDDSD N----- 120
Phaseolus grayanus CRCSDLRLNS CHSACKSCIC TFSIPAQCVC TDIDDFCYEP CKPSHDDDSD N----- 120
Phaseolus augusti CRCSDLRLDS CHSACKSCIC TLSIPAQCIC TDINDFCHEP CKSSHDDDSD N----- 120
Phaseolus coccineus polya CRCSDLRLNS CHSECKSCIC TLSIPAQCVC TDTNDFCYEP CKPSHDDDSG N----- 120
Phaseolus oligospermus CRCSDLRLDS CHSACKSCIC TLSIPAQCVC TDINDFCYKP CKSSHDDDSD N----- 120
Glycine microphylla CRCSDMRLNS CHSACKSCIC ALSYPAQCFC VDITDFCYEP CKPSEDDKEN ------ 111
Glycine soja CRCSDMRLNS CHSACKSCIC ALSYPAQCFC VDITDFCYEP CKPSQDDKEN Y----- 118
Phaseolus costaricensis CRCSDLRLNS CHSECKSCIC TLSIPAQCIC TDTNDFCYEP CKPSHDDDSG N----- 120
Phaseolus hintonii CRCSDLRLNS CHSECKSCIC TFSIPAQCVC TDINDFCYEP CKPSHDDDSD N----- 119
Phaseolus parvulus CRCSDLRLNS CHSACKSCIC TFSIPAQCLC TDINDLCYEP CKSSHDDDSD N----- 120
Phaseolus glabellus CHCSDLRLNS CHSACKSCIC TLSIPAQCVC TDIDDFCYEP CKSSHDDDSD NK---- 121
Phaseolus vulgaris CRCTDWRLNS CHSECKSCIC TFTIPAHCSC TDTNDFCYEP CESGHDDDSD N----- 120
Vigna marina CRCSDLRLNS CHSACKSCIC TLSIPAQCVC TDINDFCYKP CKSSHDDDSD N----- 112
Vigna trilobata CHCADIRLNS CHSACKSCMC TRSMPGKCRC LDTDNFCYKP CESRDKDDD- ------ 108
Vigna vexillata CQOCTDVRLNS CHSACKSCMC TRSMPGQCRC LDVADFCYKP CKSRDEDDE- ------ 108
Vigna mungo CHCADIRLNS CHSACKSCMC TRSRPGKCRC LDTDDFCYKP CKSMDEDDV- ------ 108
Vigna radiata var. sublob CHCADIRLNS CHSACKSCMC TRSRPGKCRC LDTDDFCYKP CKSMDEDDV- ------ 108

Fig. 3. Multiple sequence alignment of RsBBI1 with the reported BBIs. The trypsin and chymotrypsin reactive site loop residues are indicated in yellow and cyan colour and the
corresponding reactive site amino acids are labeled with “* and ‘##, respectively. The fourteen-cysteine residue backbone of RsBBI1 showed matching with the reported BBIs as
indicated by green colour. All the BBI sequences were downloaded from NCBI database. Accession numbers of the different Clustal W aligned BBIs are as follows: Cajanus cajan -
KYP42282.1; P. filiformis - CAL69281.1; P. microcarpus - CAL64060.1; P. zimapanensis - CAQ52360.1; P. lunatus - CAL51268.1; P. grayanus - CAQ52359.1; P. augusti - CAL51269.1;
P. coccineus - CAQ58092.1; P. oligospermus - CAL51270.1; G. microphylla - AA089510.1; G. soja - BAB86783.1; P. costaricensis - CAL69279.1; P. hintonii - CAQ52357.1; P. parvulus -
CAL69237.1; P. glabellus - CAL69238.1; P. vulgaris - CAQ34829.1; V. marina - ABD97867.1; V. trilobata - ABD91574.1; V. vexillata - ABD97866.1; V. mungo - AKC45532.1; V. radiata -
ABD91575.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

0f 9970.87 Da. Besides, the appearance of an additional peak with a
molecular mass of 9693.74 Da in MALDI-TOF analysis could be due
to cleavage of an arginine residue present at 87th position by
trypsin bound to Sepharose column during affinity chromatog-
raphy of rRsBBI1. As cleavages occur at the far end of C-terminus
and the 14 cysteine residues that stabilize the rRsBBI1 are present
within the 87 amino acids stretch, apparently, peptide with mass
9693.74 Da might exhibit inhibitory activity against both trypsin
and chymotrypsin along with 9970.87 Da polypeptide.

2.5. Biochemical characterization of rRsBBI1
The purified rRsBBI1 inhibited the activity of both trypsin and

chymotrypsin enzymes. However, the inhibitory activity of rRsBBI1
was more pronounced against trypsin as compared to

chymotrypsin. Trypsin lost ~75% of its activity when the molar ratio
of rRsBBI1 to trypsin was 0.5 and lost its activity completely as the
molar ratio increased to 1.0 (Fig. 7A). Conversely, chymotrypsin lost
85% of its activity when the molar ratio of rRsBBI1 to chymotrypsin
was 1.0 (Fig. 7A). Furthermore, chymotrypsin lost its activity
completely as the molar ratio increased to 2.0. However, a linear
extrapolation to obtain 100% inhibition indicated that rRsBBI1
binds to trypsin and chymotrypsin apparently at 1:0.75 and 1:1
molar ratio, respectively. Practically it is not possible for one
molecule of rRsBBI1 to bind with 0.75 molecules of trypsin; it is
assumed trypsin binds to rRsBBI1 at 1:1 molar ratio a la chymo-
trypsin (Fig. 7A). Enzyme kinetics analysis by Lineweaver-Burk plot
indicated rRsBBI1 inhibited both trypsin (Ki=358 + 11 nM) and
chymotrypsin (Ki = 446 + 9 nM) in a non-competitive mode (Fig. 7B
and C).



82 S.S. Mohanraj et al. / Phytochemistry 151 (2018) 78—90

W Phaseolus lunatus
A i‘—E Phaseolus augusti
Phaseolus oligospermus

—E Phaseolus parwulus
50 Vigna marina

Phaseolus glabellus
14
k3

Phaseolus grayanus

Phaseolus hintonii

Phaseolus microcarpus
Phaseolus zimapanensis
Phaseolus filiformis

Phaseolus coccineus polyanthus

Phaseolus costaricensis

Phaseolus wigaris

— Glycine microphylla

99 [ Glycine soja
Rhynchosia sublobata**
Cajanus cajan
Vigna wexillata
¥ p Vigna mungo C ¢
e Vina rlovata :8:3:3 VIS DHHAHS SSSDEPSESSKPCNEDOBR v 1o -0 EREVDVR 80
48 Vigna radiata var. sublobata 1BBI ] mmmmmmm——m — DESSKP o/°A°TKSN PPQ E R 37
,—Oryza sativa
El_f:fmays RsBBILG1 [HCTLSIPAT FTIpMem ¢ BN oy B8 119
e 1BBI 38 SALSYPAQ o oUpBWAN © BN (g3 --=n-= 70

P Hordeum wilgare

TJ_E Triticum aestivum

8 Setaria italica

Fig. 4. Phylogenetic analysis and molecular modeling of RsBBI1. (A) Phylogenetic analysis of deduced RsBBI1 with reported BBIs was performed in MEGA 6.0 software using the
Neighbor-Joining algorithm with a bootstrap of 1000. The BBIs from individual plants are indicated in the phylogenetic tree. The bootstrapping values were mentioned at the
branches to depict the grouping robustness. All the sequences were downloaded from NCBI. Accession Numbers for BBIs from P. filiformis; P. microcarpus; P. zimapanensis; P. lunatus;
C. cajan; P. grayanus; P. augusti; P. coccineus; P. oligospermus; G. microphylla; G. soja; P. costaricensis; P. hintonii; P. parvulus; P. glabellus; P. vulgaris; V. marina; V. trilobata; V. vexillata;
V. mungo; V. radiata were as indicated in Fig. 3; the accession numbers of other BBIs were as follows: Hordeum vulgare - BAK01561.1; Oryza sativa - CAB88209.1; Triticum aestivum -
ABX84379.1; Zea mays - NP_001150715.1; Setaria italica - XP_004986446.1; Allium cepa - BAB88746.1. The position of R. sublobata in the predicted evolutionary tree is marked with
asterisks “*’. (B) The predicted three-dimensional SWISS-MODEL of RsBBI1 protein from amino acids 44 to 113 was obtained by using 1BBI from soybean as the template. The
disulfide bonds, trypsin, and chymotrypsin reactive sites were visualized using PyMol software and represented as sticks. The N- and C-terminus ends were marked as N and C,
respectively. (C) Pairwise alignment of RsBBI1 and 1BBI sequences: Identical amino acids are shaded in the same color. The inhibitory domains of trypsin (TKSQPPQ) and
chymotrypsin (TLSIPAI) are shaded in yellow color. Arrows indicate the stretch of RsBBI1 protein sequence modeled according to the template BBI. Note: Few amino acids present in
RsBBI1 at both N and C-terminal were absent in 1BBI. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

The inhibitory activity of rRsBBI1 was stable during heat treat-
ment from 37 to 100 °C. The loss in TI and CI activities of rRsBBI1
was <10% even upon heating at 100 °C for 30 min (Fig. 8A). Simi-
larly, the inhibitory activity of rRsBBI1 against both trypsin and
chymotrypsin was stable at a wide range of pH from 2.0 to 12.0
(Fig. 8B). However, rRsBBI1 lost its TI and CI activities completely on
reduction with DTT at 1.0 and 10 mM concentrations, respectively
(Fig. 8C). Secondary structural analysis of rRsBBI1 at far-UV region
revealed it to be consisting of 29.3% B-sheets, 11.8% B-turns, 56.8%
random coils and 2.0% a-helices (Fig. 8D).

2.6. Inhibitory activity of rRsBBI1 on larval gut trypsin-like
proteases

The rRsBBI1 showed significant increase in specific activity
against trypsin (7.6-fold), chymotrypsin (25-fold) and AjGPs (17-
fold) except for HaGPs as compared to CPI (Fig. 9A). The specific
activities of rRsBBI1 against trypsin, chymotrypsin, AjGPs and
HaGPs were 656 + 16 TIU/mg protein, 523 + 20 CIU/mg protein,
14,285 + 500 AjGPI units/mg protein and 125 + 10 HaGPI units/mg
protein, respectively. The specific activity of rRsBBI1 against HaGPs
was <1% when compared with the specific activity against AjGPs

(Fig. 9A). These results corroborated well with the IC5g values ob-
tained for rRsBBI1 against AjGPs (IC59 of 70 + 2.0 ng) and HaGPs
(ICsp of 8.0+0.5pg), suggesting that rRsBBI1 has significant
inhibitory potential against AjGPs but not against HaGPs (Fig. 9B
and C).

2.7. Effect of rRsBBI1 in larval growth retardation and mortality

Feeding of rRsBBI1 coated castor leaves to second instar A. janata
larvae caused significant retardation in their growth as compared
to larvae fed on control leaves (Fig. 9D). At the end of 11th day of
feeding on leaves coated with rRsBBI1 at 2, 4 or 8 pg cm 2 leaf area,
the body weight of the larvae decreased significantly up to 84% of
its control weight (Fig. 9D). Along with the reduction in body
weight, some of the larvae showed mortality. Thus, the mortality
rate of A. janata larvae fed on rRsBBI1 increased from 33 + 5% (2 pg/
cm?) to 60 + 7% (8 ug/cm?) of control level in a dose-dependent
manner (Fig. 9D inset).

3. Discussion

R. sublobata, a wild relative of pigeon pea exhibited several
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Fig. 6. Intact mass analysis of rRsBBI1 by MALDI-TOF. The rRsBBI1 purified from
trypsin affinity column is resolved into two peaks with m/z 9693.749 Da and
9970.878 Da, respectively.

defense traits including PIs that are active against gut proteases of
H. armigera (Chougule et al., 2003; Mallikarjuna et al., 2011). The
CPI from R. sublobata inhibited the activity of AjGPs (85%) and
HaGPs (62%) to the maximum extent at concentrations (12 and
480 ug) that are much lower than any other cultivar (ICP 332 and
ICP 7182) or wild relative (C. volubilis) chosen in the present study
(Fig. 1C and D). The CPI from R. sublobata also showed high activity
against AjGPs, but low against HaGPs (Fig. 9A). Therefore, in the
present study, an attempt was made to clone, overexpress and
characterize the recombinant BBI from the immature seeds of
R. sublobata.

3.1. Molecular characterization of RsBBI1

The complete cDNA sequence of ‘RsBBI1' obtained by using RACE
procedure encoded a polypeptide of 119 residues with a molecular
mass of 9971.02 Da, fourteen cysteine residues and two inhibitory
sites, the typical characteristic features possessed by BBI molecules
(Figs. 2C and 3, Figs. 4C and 6; Qi et al., 2005). The predicted three-
dimensional structure of RsBBI1 also indicated it exists as a double-
headed inhibitor with two of its reactive site loops at opposite ends
to facilitate binding with its cognate proteases trypsin and
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(B) trypsin and (C) chymotrypsin by Lineweaver-Burk plot showing non-competitive
nature of inhibition along with Vmax, Km, and Ki values. The data shown are
mean + SE of at least three different independent experiments each with three to four
replicates.

chymotrypsin both independently and simultaneously (Fig. 4B;
Voss et al., 1996). The reactive site loops for trypsin and chymo-
trypsin inhibition possessed ‘TKSQPPQ’ and ‘TLSIPAI' at P2, P1, P1/,
P2/, P3/, P4’ and P5’ residues, respectively (Fig. 3). The existence of
‘Lys’ and ‘Leu’ in the trypsin and chymotrypsin inhibitory sites
ascertained this gene belonged to BBI family (Fig. 3; Laskowski Jr
and Kato, 1980). The occurrence of ‘KS’ and ‘LS’ residues at the
P1-P1’ positions of trypsin and chymotrypsin inhibitory sites along

with ‘Thr’ conserved at P2 position of both reactive sites is neces-
sitated to exhibit inhibitory activity and to facilitate efficient
binding of BBIs to its cognate enzymes (Fig. 3; Gariani et al., 1999
and Brauer et al., 2003). Further, the existence of ‘GIn’ at the P2’
position of the trypsin reactive site loop occurring rarely is
observed in rRsBBI1 in concurrence with two other BBIs from
IBB_VICAN of Vicia sativa subsp. nigra and IBB3_SOYBN of Glycine
max (Fig. 3). Conversely, the BBIs from C. cajan, Phaseolus, Glycine or
Vigna spp. possessed Ile, Arg or Asn at P2’ position (Fig. 3). Similarly,
the amino acid residues at P2’ and P5’ positions in the chymo-
trypsin reactive site loop of RsBBI1 varied in the BBIs of the above-
mentioned species. These variations may justify the placement of
R. sublobata in the quaternary gene pool of wild relatives of C. cajan
and phylogenetic tree between G. soja and C. cajan (Fig. 4A;
Mallikarjuna et al., 2011).

3.2. Biochemical characterization of rRsBBI1

The BBIs are known to be stable at temperatures as high as 90 °C
(Osman et al., 2002; Prasad et al., 2010b). Therefore, heat dena-
turation step (80°C, 30 min) was adapted during purification of
BBIs as reported for intrinsically disordered proteins to eliminate
the heat-sensitive digestive proteases from the cell lysate
(Fig. 5D—F; Livernois et al., 2009). Low molecular mass detected in
intact mass MALDI-TOF analysis also corroborated well with the
ExPASy translated sequence of rRsBBI1 (Figs. 2—6). The following
observations were made in the midst of trypsin and chymotrypsin
suggesting rRsBBI1 was folded appropriately into its native
conformation during purification process: (i) interaction with
proteases at 1:1 molar ratio; (ii) exhibition of non-competitive
mode of enzyme Kkinetics; (iii) appearance of trypsin or chymo-
trypsin inhibitory bands in gelatin SDS-PAGE; (iv) retention of TI
and CI activities at a wide range of temperature and pH and (v) loss
of TI and CI activity on reduction with DTT (Figs. 5E, 7-8). The
present study is also suggesting rRsBBI1 is functionally very stable
in terms of its TI and CI activities when heated up to 100°C or
exposure to acidic/alkaline pH (Fig. 8A and B). These results were
consistent with earlier reports of BBIs purified from the seeds of
Dioclea glabra (Bueno et al., 1999), G. soja (Deshimaru et al., 2002),
L. albus (Scarafoni et al., 2008), Cratylia mollis (Paiva et al., 2006),
P. coccineus (Pereira et al.,, 2007) and D. biflorus (Singh and Rao,
2002).

BBIs are known to possess seven disulfide bridges providing
high stability against temperature and pH (Prasad et al., 2010a; b;
Swathi et al.,, 2014). The X-ray structure of BBI-A from soybean
indicated it possesses five disulfide bridges on the surface and two
disulfide bridges buried in the core (He et al., 2017). BBIs also show
self-aggregation in solution. However, such aggregates affecting
their interaction with cognate proteases are not observed in the
present study may be due to the usage of dilute rRsBBI1 solutions
(Brand et al., 2017). The incubation of rRsBBI1 with DTT resulted in
a remarkable loss in its TI and CI activities. This could be due to
destabilization of the reactive site scaffold of rRsBBI1 on reduction
with DTT, a characteristic feature of BBIs (Qi et al., 2005).
Conversely, the CI activity of rRsBBI1 is more resistant to DTT as
compared to BBIs from cultivars of C. cajan (Fig. 8C; Prasad et al.,
2010b). For example, the BBIs from C. cajan lost 50% of its CI ac-
tivity at ~0.1 mM DTT concentration while RsBBI1 lost identical
activity after incubation with 1.0 mM DTT concentration. Thus,
rRsBBI1 from R. sublobata is structurally more stable over BBIs from
C. cajan cultivar. Secondary structural elements of rRsBBI1 observed
in far-UV CD spectra showed similarity with the reported BBIs in
possessing a high percentage of  sheets and random coils (Voss
et al., 1996). The horse gram BBI followed a ‘two-state’ mode of
unfolding in presence of DTT indicating the hyper-reactive nature
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of disulfide bonds (Singh and Rao, 2002). Existence of high ellip-
ticity at 201 nm also confirms the presence of disulfide bridges in
rRsBBI1 (Kumar and Gowda, 2013). CD estimated secondary
structural elements of rRsBBI1 also showed correlation with the
modeled 3D structure of RsBBI1 (Figs. 4B and 8D).

Summarising the results from the present study: (i) specificity
towards trypsin/chymotrypsin enzymes; (ii) stability against pH
and temperature and (iii) presence of a high percentage of disul-
phide bridges, suggest that rRsBBI1 could be exploited for insecti-
cidal, clinical and therapeutic applications (Clemente and Arques,
2014; Farinaz and Abdolmohamad, 2013; Souza Lda et al., 2014).
However, in the present study, experiments were limited to testing
the insecticidal potential of rRsBBI1 using in vitro and in vivo
studies.

3.3. Insecticidal potential of rRsBBI1

rRsBBI1 exhibited a significant variation (114-fold) in its ICsq
against AjGPs and HaGPs. This could be due to the susceptibility of
AjGPs towards the non-host rRsBBI1 and the presence of relatively
less rRsBBI1 susceptible HaGPs in the larval guts of A. janata and
H. armigera, respectively. Moreover, it is well known that
H. armigera possess multiple trypsin enzymes in its gut environ-
ment along with other proteases such as chymotrypsin and elas-
tase. This may be the cause for the lower affinity of rRsBBI1 towards
HaGPs and thereby lower protease inhibitory activity of rRsBBI1
against them (Bown et al., 1997; Chougule et al., 2005; Kuwar et al.,
2015; Wu et al., 1997). Studies of Swathi et al. (2016) indicated
Kunitz/Miraculin like PIs identified in C. platycarpus, another wild
relative of pigeon pea effectively inhibited HaGPs. Similarly, several
other serine PIs such as squash type inhibitor from bitter gourd

(Telang et al., 2009), PIN-II type inhibitors from Capsicum annum
and many Kunitz inhibitors (Jamal et al., 2013) effectively inhibit
the gut proteases of H. armigera. Despite the existence of report on
G. max BBI to induce mortality in H. armigera, although at a higher
concentration range, the biocidal effect of rRsBBI1 on H. armigera
could not be examined in the present study due to its limited
inhibitory effect on the activity of HaGPs as compared to AjGPs
(Fig. 9B and C; Johnston et al., 1993). Higher specific activity of
R. sublobata CPI on HaGPs as compared to rRsBBI1 suggested the
existence of PIs other than BBIs in the seed proteome of
R. sublobata. The following results from the present study: (i) dif-
ferential residual protease activity of AjGPs and HaGPs observed in
presence of CPI from R. sublobata (Fig. 1C and D); (ii) higher specific
activity of CPI as compared to rRsBBI1 against HaGPs (Fig. 9A), and
(iii) higher ICsg values of rRsBBI against HaGPs than AjGPs (Fig. 9B
and C) together with earlier literature warrants to further explore
the genome of R. sublobata so as to identify new novel seed PIs
active against H. armigera.

The specific activity of the non-host rRsBBI1 against AjGPs
(14,285 AjGPI units/mg protein) was significantly higher than BBIs
from C. cajan by approximately 2- fold (Swathi et al., 2014). The
higher activity of rRsBBI1 over C. cajan BBIs against AjGPs could be
attributed to the presence of ‘Gln’ at P2’ position of trypsin inhib-
itory loop in rRsBBI1 (Fig. 3) and the presence of susceptible
trypsin-like proteases in the midguts of A. janata. But, the observed
IC50 (70 + 2 ng) of rRsBBI1 against AjGPs did not vary significantly
from the IC5¢ (78—100 ng) of BBIs from cultivar varieties of C. cajan
(Fig. 9C; Prasad et al., 2010b; Swathi et al., 2014). However, we
suggest that rRsBBI1 is more efficient than C. cajan BBI in man-
agement of A. janata since the BBI from C. cajan is known to exist as
several isoinhibitors, and they might all contribute collectively to
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the observed insecticidal activity in A. janata (Fig. 9C and D; Prasad
et al,, 2010b; Swathi et al., 2014). Conversely, the studies on in vivo
feeding of rRsBBI1 to the second instar larvae of A. janata indicated
rRsBBI1 ‘as an independent BBI isoform’ is able to act as a potent
growth retarding agent (Fig. 9D). In line with this study, transgenic
tobacco plants expressing cowpea trypsin inhibitor and rice plants
expressing potato type 2 (PIN2) inhibitor exhibited resistance
against H. virensis and Sesamia inferens (Duan et al., 1996; Hilder
et al., 1987). But, Manduca sexta gut proteases were effectively
inhibited by PIN2 rather than by PIN1 expressing tobacco plants
(Johnson et al., 1989). In contrast, on feeding tobacco plants
expressing giant taro PI to H. armigera, the insect survived by
overexpressing alternate proteases such as chymotrypsin and
elastase (Wu et al., 1997). Moreover, insects such as Heliothis zea,
H. armigera, and Spodoptera exigua were able to overcome the effect
of PIs by producing alternate proteases or overproducing sensitive
proteases (Jongsma and Bolter, 1997; Wu et al., 1997). Altogether,
these studies indicated insects alter their gut protease profile ac-
cording to the type of inhibitors fed to them. In this context, tar-
geting of multiple gut proteases and Pl insensitive proteases related
to a particular insect were suggested as a potential strategy to
control the pests individually (Jongsma and Bolter, 1997). Pyr-
amiding of PIs active against both sensitive and insensitive pro-
teases induced high growth reduction and mortality in transgenic
cotton expressing potato type I and II Pl against H. armgiera (Dunse
et al., 2010), and transgenic tobacco expressing sporamin, cystatin
and chitinases against S. litura as well as S. exigua (Chen et al., 2014).

Therefore, identifying PIs from non-host plants effective against a
particular insect might be an added feature for such type of insect
control strategy. Thus, RsBBI1 which effectively inhibited the ac-
tivity of gut proteases and induced growth retardation and mor-
tality in A. janata would be a potential candidate gene for the
development of transgenic plants resistant to A. janata using pyr-
imading technology.

4. Experimental

R. sublobata seeds (Accession No. 15868) were obtained from the
International Crop Research Institute for Semi-Arid Tropics (ICRI-
SAT), Hyderabad, India and cultured in a greenhouse for seed
collection at University of Hyderabad, Hyderabad, India. H. armigera
larvae were procured from National Bureau of Agricultural Insect
Resources (NBAIR), Bengaluru, India. The larvae of A. janata were
collected from the fields of the University of Hyderabad, Hyder-
abad, India. Agarose, chloroform, isoamyl alcohol, isopropanol,
ethidium bromide, N-a-benzoyl-pL-arginine-p-nitroanilide
(BAPNA), N-glutaryl-L-phenylalanine-p-nitroanilide (GLUPHEPA)
and absolute ethanol were procured from Sigma-Aldrich, USA.
CNBr activated Sepharose and dithiothreitol (DTT) were purchased
from GE Healthcare Biosciences Corp., USA. Pfu polymerase, Taq
polymerase and RACE kits were obtained from Thermo Fischer
Scientific, India. Gel elution and plasmid isolation kits were pro-
cured from Qiagen, India. All other chemicals were procured from
Sisco Research Laboratories, Mumbai, India.
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4.1. Preparation of crude PI extract

The CPI extract from the mature seeds of two different cultivars
(ICP 332 and ICP 7182) and wild relatives (C. volubilis — ICP 15774
and R. sublobata — ICP 15868) was prepared as described in Swathi
et al. (2014). The seeds were ground to a fine powder, depigmented
and defatted by washing thrice with acetone and hexane respec-
tively. The filtrate was air dried and extracted with 50 mM Tris-HCl,
pH 8.0 containing 1% PVP under a mild stirring condition at 4°C
overnight. The solution was centrifuged twice at 10,000g for
20 minat 4°C and the supernatant obtained was used as a CPI
extract.

4.2. RNA isolation

RNA was isolated from the immature seeds of R. sublobata by
using the modified protocol of Matilla et al. (1980). The RNA lysis
buffer (1 mL) containing 100 mM Glycine-NaOH at pH 9.0, 40 mM
EDTA, 100 mM Nacl, 2% SDS and 0.05% Bentonite was added to
finely ground seed powder (100 mg) under liquid N, and shaken
vigorously before incubating at 42 °C for 20 min. Subsequently, RNA
was isolated from the sample by treating with phenol/chloroform
and precipitation by 12 M LiCl. The RNA obtained was air dried,
dissolved in RNase/DNase-free water and quantified using Nano-
Drop. The integrity of RNA was visualized in the formaldehyde-
agarose gel using MOPS buffer.

4.3. Partial gene amplification of RsBBI1

The complementary DNA (cDNA) was synthesised from the total
RNA using an oligo-dT primer by following the manufacturer's in-
structions (Verso, cDNA synthesis kit). The forward ‘RsBBI1-F and
reverse ‘RsBBI1-R’ primers were designed using Oligo Analyzer 3.1
based on the soybean BBI isoinhibitor D-II sequence
(NCBI:NM_001249286.1) so as to amplify the BBI gene sequence
from R. sublobata (Supplementary Table 1). The partial RsBBI1 cDNA
fragment was amplified using the following program: 90 °C - 2 min
of initial denaturation time, followed by 35 cycles of amplification
(denaturation at 90°C for 30s, annealing at 55°C for 30s and
extension at 72 °C for 70 s). The PCR product of ~250 bp separated
on an agarose gel was extracted (Qiagen, gel extraction kit) and
subjected to DNA sequencing using ‘RsBBI1-F primer (Sandor
proteomics, Hyderabad). The obtained sequence was analyzed us-
ing BLASTn.

4.4. 5 and 3' RACE for amplifying full-length transcript of RsBBI1

The complete transcript sequence of RsBBI1 was obtained by 5’-
and 3’-RACE experiments. The primary and nested primers for
3’ RACE (Race-RsBBI1 3’R; Race-RsBBI1 3'NR) and 5’ RACE (Race-
RsBBI1 5'F and Race-RsBBI1 5/NF) were designed (Supplementary
Table 1) based on the internal sequence of RsBBI1 obtained by RT-
PCR and the experiment was conducted as per manufacturer's in-
structions (GeneRacer kit, Invitrogen). The 5’ and 3’ ends of RsBBI1
were PCR amplified from 5’ and 3’ RACE cDNA using gene-specific
primers in combination with the kit-supplied primers. The nested
PCR was performed with 1:100 dilution of the primary PCR prod-
uct. The above products were amplified using proofreading Pfu
polymerase (Phusion High-Fidelity DNA polymerase, Invitrogen,
USA). The PCR program was same as mentioned above, with an
additional initial denaturation step (5minat 90°C) required to
activate the Pfu enzyme. At the end of the reaction, 3’ ATP over-
hangs were added using Taq polymerase after incubation at 72 °C
for 10 min. The amplified products were visualized on 1.5% agarose
gel, and the gene-specific amplification was preliminarily verified

by monitoring the difference in the sizes of primary and nested PCR
products. The amplified products were gel eluted and ligated into
pTZ57R|T vector (Thermo Fischer Scientificc Mumbai, India) and
transformed into E. coli DH5a. The positive colonies were distin-
guished by blue/white colony screening followed by colony PCR.
Plasmids isolated from the positive colonies were subsequently
subjected to DNA sequencing using vector primers. The full-length
cDNA sequence of the RsBBI1 transcript was deduced from the
contig sequence constructed by the amplified 5 and 3’ RACE
product sequences.

4.5. Three-dimensional (3D) structure prediction

The complete gene sequence of RsBBI1 was submitted to EXPASy
Translate tool (http://web.expasy.org/translate/) and obtained ORF.
The derived protein sequence was submitted to TargetP 1.1 Server
online (http://www.cbs.dtu.dk/services/TargetP/) for prediction of
the signal peptide. The predicted RsBBI1 protein sequence was
submitted to SWISS-MODEL (http://swissmodel.expasy.org/
interactive) for automatic modeling of the three-dimensional pro-
tein structure. The PDB file generated by SWISS-MODELL was
visualized in PyMOL software for secondary structures, disulphide
bridges and inhibitory sites.

4.6. Phylogenetic analysis

BBI protein sequences related to different plant species were
downloaded from NCBI (www.ncbi.nlm.nih.gov). The downloaded
BBI protein sequences were ClustalW aligned with the deduced
protein sequence of RsBBI1, and a phylogenetic tree was con-
structed by the Neighbor-Joining method with a bootstrap of 1000
using Mega 6.0 software.

4.7. pET23a-RsBBI1 construct preparation

A cDNA construct encoding 89 amino acids stretch (Fig. 2C, 31-
119 amino acids) was cloned into an expression vector, pET23a, as
described below. The cDNA fragment was amplified using forward
and reverse primers, RsBBI1-Ndel-F and RsBBI1-Xhol-R
(Supplementary Table 1), and Pfu polymerase and subjected to PCR
amplification as mentioned in section 4.4. The amplified product
was gel purified, digested with Xhol followed by Ndel enzymes and
directionally cloned into pET23a plasmid. The recombinant plasmid
PET23a-RsBBI1 was transformed into E. coli DH5a and selected
against ampicillin by plating on Luria broth containing 100 pg/mL
ampicillin (LB-Amp) plates. The positive colonies were selected
based on colony PCR and their plasmids were subjected to DNA
sequencing.

4.8. Overexpression and purification of rRsBBI1

The pET23a-RsBBI1 plasmid was transformed into E. coli SHuffle
T7 express competent cells (NEB, UK) by heat shock method. These
host cells have a chromosomal copy of constitutively-expressed
disulphide bond isomerase (DsbC), a chaperone assisting in
proper folding of the cytoplasmic proteins (de Marco, 2009). Single
colony transformants were cultured in LB-Amp broth and incu-
bated at 37 °C. The overnight grown culture was inoculated into 1 L
of LB-Amp broth on the following day and incubated at 37 °C until
the culture reaches ~1.0 ODggg units. Later, the culture was induced
using 0.4 mM isopropyl-B-D-thiogalactoside (IPTG) at 30 °C for 8 h
to express the rRsBBI1. The cell pellet obtained was suspended in
50 mM Tris-HCl (pH 8.0) containing 500 mM NaCl and sonicated.
The lysate was heated at 80 °C for 30 min and chilled on ice. The
rRsBBI1 was purified from the supernatant collected after
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centrifugation at 10,000 g using trypsin coupled CNBr-Sepharose
column in fast protein liquid chromatography (FPLC) AKTAprime
plus (1 mL Flow rate at 25°C and 1 Bar pressure). The rRsBBI1
eluted with 0.01 N HCl was neutralized with 50 mM Tris- HCI (pH
8.0), concentrated and stored at —20 °C until further use. The pu-
rification profile was represented in 15% SDS-PAGE as per Laemmli
(1970) and in-gel trypsin inhibitor activity of rRsBBI1 was visual-
ized as described by Felicioli et al. (1997).

4.9. Rearing of larvae and extraction of gut enzymes

The larvae of H. armigera and A. janata were reared and main-
tained at 26 + 1°C with a light-dark photoperiod of 14:10 h and
relative humidity of 65 + 5% in insect culture room. The A. janata
larvae were fed on castor leaves. Conversely, H. armigera larvae
were fed on an artificial diet as described in Gupta et al. (2000). The
fifth instar larvae were narcotised on ice for 15 min and the midgut
content was extracted into two volumes of 50 mM Glycine-NaOH
(pH 10.5) in case of H. armigera or 50 mM Tris-HCl containing
20mM CaCl, (pH 8.2) for A. janata. The suspension of midgut
content was centrifuged at 10,000 g for 15 min at 4 °C. The resulting
supernatant enriched with AjGPs or HaGPs was stored as small
aliquots at —20 °C until use.

4.10. Protease and protease inhibitor assays

The assay for trypsin, chymotrypsin, AjGPs or HaGPs was per-
formed as described in Prasad et al. (2010b) and Swathi et al. (2014).
The protease activity was determined by monitoring the rate of
formation of p-nitroanilide from a chromogenic substrate BAPNA/
GLUPHEPA (1 mM) at 37°C after 45 min. BAPNA was used as a
substrate for trypsin, HaGPs and AjGPs while GLUPHEPA was used
as a substrate for chymotrypsin. The assay buffers contained 50 mM
Tris-HCl and 20 mM CacCl; at either pH 8.2 for trypsin and AjGPs or
pH 7.8 for chymotrypsin. Conversely, the assay buffer for HaGPs
contained 50 mM Glycine-NaOH at pH 10.5. The reaction was
terminated with 30% acetic acid (v/v) and the absorbance at 410 nm
was recorded in UV—visible spectrophotometer (UV-1700, Shi-
madzu, Japan). The molar extinction coefficient (M~! cm™!) for p-
nitroanilide at 410 nm is equivalent to 8800. One unit of trypsin,
chymotrypsin, AjGP or HaGP is defined as the amount of enzyme or
gut extract which increases the absorbance of reaction medium by
1.0 0.D.

The inhibitory activity of rRsBBI1 was assessed after incubating
with respective proteases for 15 minat 37 °C. One unit of trypsin
inhibitor (TI), chymotrypsin inhibitor (CI), A. janata gut trypsin-like
protease inhibitor (AjGPI) or H. armigera gut trypsin-like protease
inhibitor (HaGPI) was defined as the amount of rRsBBI1 required to
inhibit 50% hydrolysis of BAPNA or GLUPHEPA by relevant proteases
under the optimal assay conditions.

4.11. Leaf coating assay

It was performed using 2nd instar larvae of A. janata. The larvae
were allowed to feed on castor leaves coated with rRsBBI1 at 2, 4
and 8 ug per cm? as described in Prasad et al. (2010a). Control leaves
were coated with 50 mM Tris-HCI (pH 8.0). The feed was changed in
the morning and evening, and the weight of each larva was
monitored on alternate days. Approximately 15 larvae were used
for each treatment and the data shown is mean +S.E. of three
biological sets.

4.12. Inhibition constant (Ki) determination and titration studies

The inhibition constant (Ki) of rRsBBI1 against both trypsin and

chymotrypsin was determined after pre-incubation with respective
enzymes (1 pM) at increasing concentrations for 15 minat 37 °C.
This was followed by incubation with corresponding substrates at
different concentrations for 45 min at 37 °C. BAPNA is used at 0.25,
0.375, 0.5, 0.625 and 0.75 mM while GLUPHEPA is used at 0.125,
0.25,0.375, 0.5, 0.625 and 0.75 mM, respectively. The Ki values were
determined using Sigma Plot 12.5 software (SystatSoftware Inc. San
Jose, California). The residual trypsin/chymotrypsin activities at
different molar ratios (0.05—2.0) of rRsBBI1 to trypsin/chymo-
trypsin were determined by titrating different concentrations of
rRsBBI1 with a fixed concentration (1 pM) of trypsin or chymo-
trypsin, respectively (Prasad et al., 2010b).

4.13. Stability studies

The stability of rRsBBI1 to changes in temperature, pH or di-
sulfide bridges was assessed as residual trypsin inhibitory (TI) or
chymotrypsin inhibitory (CI) activity (Prasad et al. (2010b). To study
the effect of temperature, rRsBBI1 was incubated for 30 min at
different temperatures (37, 40, 50, 60, 70, 80, 90, 100 °C) using a
thermostat controlled water bath (Julabo F10). The effect of pH
from 2.0 to 12.0 was determined by incubating rRsBBI1 at 37 °C for
1 h using the following buffers at 50 mM concentration: Glycine-
HCI (pH 2-3), sodium acetate-acetic acid (pH 4-5), sodium phos-
phate (pH 6.0), Tris-HClI (pH 7-9) and Glycine-NaOH (pH 10-12).
Furthermore, rRsBBI1 was incubated for 45 min with different
concentrations of DTT (0.05—10.0 mM) in 25 mM NH4HCOs3 at 56 °C.
This was followed by incubation for 1 h in the dark with iodoace-
tamide at twice the amount of corresponding DTT concentration to
terminate the reaction.

4.14. Circular dichroism (CD)

The changes in ellipticity were measured at far-UV region
(190—260 nm) using a 1 mm path length cuvette at a scan speed of
50 nm/min in a J-1500 spectropolarimeter (Jasco, Tokyo, Japan). A
minimum of three scans were acquired at 25 °C using 0.05 mg/mL
of rRsBBI1 in 5 mM Tris-HCl (pH 8.0) containing 5 mM NaCl. Sec-
ondary structural elements were estimated using SpectraManager
2.0 software after subtracting the buffer spectra from rRsBBI1
spectra.

4.15. Statistical analysis

All the in vitro experiments were carried out at least three times,
each with three replications and the mean +SE was reported.
Minimum three in vivo leaf coating assays were performed and the
statistical differences were determined by one-way ANOVA fol-
lowed by Tukey test at a significance level of P < 0.05 using Sigma-
Plot, version 12.5, software (San Jose, CA, USA).

5. Conclusions and future prospective

The present study revealed full-length cDNA sequence of a novel
BBI gene from the immature seeds of a wild legume R. sublobata.
The rRsBBI1 from R. sublobata differed from its cultivar C. cajan BBI
at both trypsin and chymotrypsin reactive site loops. The mature
sequence (from 31 to 119 amino acids) of RsBBI1 is overexpressed in
E. coli and purified by passing the protein lysate heated at 80°C
through trypsin affinity column. The TI and CI activities of rRsBBI1
are stable against a wide range of temperatures and pH. But these
activities were lost on the reduction of rRsBBI1 with DTT. Also, the
rRsBBI1 showed a significant in vitro inhibition potential against the
gut proteases of A. janata but not H. armigera. Our results also
contributed towards an understanding of the biochemical
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properties of a Bowman-Birk isoinhibitor from R. sublobata, a wild
relative of pigeon pea and its effect on larval growth retardation
and mortality. Further exploration of related BBI isoinhibitors as
well as other PI genes from the genome of R. sublobata would pave
the path to examine and expand the insecticidal potential of this
wild legume on other economically important lepidopteran insect
pests, including H. armigera and their application in transgenic
technology.
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