
Vol.:(0123456789)1 3

Genetica (2017) 145:525–539 
DOI 10.1007/s10709-017-9981-y

REVIEW

Genomic-based-breeding tools for tropical maize improvement

Thammineni Chakradhar1 · Vemuri Hindu2 · Palakolanu Sudhakar Reddy3 

Received: 23 February 2017 / Accepted: 14 August 2017 / Published online: 5 September 2017 
© Springer International Publishing AG 2017

mapping and backcross nested association mapping could 
certainly address the genetic issues in maize improvement 
programs in developing countries. Huge diversity in tropical 
maize and its inherent capacity for doubled haploid technol-
ogy offers advantage to apply the next generation genomic 
tools for accelerating production in marginal environments 
of tropical and subtropical world. Precision in phenotyping 
is the key for success of any molecular-breeding approach. 
This article reviews genomic technologies and their applica-
tion to improve agronomic traits in tropical maize breeding 
has been reviewed in detail.
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Introduction

Maize (Zea mays L.) is a versatile C4 crop grown over 
a range of agro climatic zones and considered as queen 
of cereals with high production levels under a variety of 
environmental conditions. Importantly, maize is the major 
source of nutritional security among resource poor com-
munities of tropical and sub-tropical regions. The steady 
growth in income and livelihood of Asia’s population 
has shifted their food preference to high protein foods 
such as meat and eggs which is translating into increased 
demand of maize for feed and expected to double by 2050 
in Africa and Asia (Babu et al. 2014). To cope with this 
future demand, farmers in the tropics have to boost maize 
production and productivity. However, an array of fac-
tors such as unpredicted rainfall due to climate change 
and different types of biotic and abiotic stresses severely 
constrained maize production and productivity in tropics. 

Abstract  Maize has traditionally been the main staple diet 
in the Southern Asia and Sub-Saharan Africa and widely 
grown by millions of resource poor small scale farmers. 
Approximately, 35.4 million hectares are sown to tropical 
maize, constituting around 59% of the developing worlds. 
Tropical maize encounters tremendous challenges besides 
poor agro-climatic situations with average yields recorded 
<3 tones/hectare that is far less than the average of devel-
oped countries. On the contrary to poor yields, the demand 
for maize as food, feed, and fuel is continuously increas-
ing in these regions. Heterosis breeding introduced in early 
90 s improved maize yields significantly, but genetic gains 
is still a mirage, particularly for crop growing under mar-
ginal environments. Application of molecular markers has 
accelerated the pace of maize breeding to some extent. The 
availability of array of sequencing and genotyping tech-
nologies offers unrivalled service to improve precision in 
maize-breeding programs through modern approaches such 
as genomic selection, genome-wide association studies, bulk 
segregant analysis-based sequencing approaches, etc. Supe-
rior alleles underlying complex traits can easily be identi-
fied and introgressed efficiently using these sequence-based 
approaches. Integration of genomic tools and techniques 
with advanced genetic resources such as nested association 
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The total area under maize cultivation in tropical coun-
tries is 100 million hectares with 73% share of worlds 
maize growing area that accounts for an average yield of 
2 tones/hectare (t/ha) against 9 t/ha in temperate zones 
(Prasanna et al. 2014). Several African countries are still 
below 1 t/ha of average maize yields (Prasanna 2012a, b). 
The total area under maize cultivation in different tropi-
cal geographies verses production over years is shown in 
Fig. 1. The huge differences in yield of tropical maize 
could be attributed to recurrent drought in sub-Saharan 
Africa, excess rain fall and flooding in South and South-
east Asia compounded with evolving pathogens and insect 
pests due to global climate changes (Cairns et al. 2012). 
Water logging and drought are major abiotic stress con-
straints that cause significant crop damage particularly in 
South and Southeast Asia, where 80% maize cultivation is 
still rainfed (IFAD 2002; Osman et al. 2013). Apart from 
this, tropical maize land races harbour rare and impor-
tant alleles of biotic stress resistance that are not yet fully 
discovered (Dao et al. 2014; Sood et al. 2014). To benefit 
these resources, breeders must be able to extract unique 
favourable alleles and transfer them into cultivated back 
grounds. Nevertheless, scientists are trying to address 
issues through classical-breeding approaches, but time 
constraints especially the quantitative nature of most of 
the yield effecting traits and local adaptation problems 
turned to be serious challenges. The advancements in crop 
genetics and genomics offer genotyping technologies such 
as high-throughput sequencing includes the next genera-
tion sequencing (NGS) that has improved understanding of 
genome-wide distribution of allele effects across the wide 
genetic variation (Perz-de-Castro et al. 2012; Wallace et al. 
2014; Thomson 2014). The modern genomic approaches 
that are discussed in the present review include molecu-
lar genetic diversity, genome-wide association studies 

(GWAS), genomic selection (GS), joint multiple popula-
tion analysis, and other relevant techniques.

The invention of sequence-based genomic technologies 
together with modern genetic resources has revolutionized 
maize breeding in the recent past. The developed technolo-
gies offer new breeding tools to improve genetic gains and 
hope to rapidly deliver stress resistant and nutritionally supe-
rior breeding material in developing countries particularly 
in Sub-Saharan Africa (SSA) and South Asia regions. In 
this context, the present review is discussed on the recent 
progress in genomics of tropical maize breeding in the light 
of modern technologies and their potential significance. We 
have attempted to synthesise the genomic research in tropical 
maize and discussed their implications in marker-assisted-
breeding (MAB) programs. We have also discussed the 
challenges in modern genomics that may form substrate for 
research and development in tropical maize improvement.

Shift from classical to modern breeding

Maize has the longest history of breeding for yield and 
other agronomic traits under stress environments through 
the traditional breeding methods (Duvick 1977; Duvick 
et al. 2004). Hybrid breeding, particularly the knowledge 
and experience of double cross hybrids introduced in the 
early 1960s, has been widely adopted to improve tropi-
cal maize production and productivity (Fraley 2009). Two 
major technologies of the 20th century that have made 
positive impact on maize productivity and breeding effi-
ciency are molecular breeding and doubled haploid (DH) 
technologies. The continuous challenges that maize crop 
is undergoing due to dynamic global climate changes 
and the thirst of science has led to the development of 
an interdisciplinary science called molecular plant breed-
ing that is revolutionizing crop improvement in the 21st 

Fig. 1   Area of cultivation 
verses production in maize 
under various tropical ecolo-
gies. Mha Metric Hectare, Mt 
Metric ton, SA South Asia, LA 
Latin America, SSA Sub-Saha-
ran Africa
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century. This integrates the conventional plant breeding 
with advances in biotechnology and genomic research 
through marker-assisted breeding that has direct impact 
on maize improvement in Asia and Africa (Prasanna 
et al. 2010; Semagn et al. 2014). Simple sequence repeats 
(SSR)-based genetic marker technology developed in the 
last 2 decades has metamorphosed tropical maize research 
in better understanding of heterotic pattern, trait associa-
tion studies, recurrent, and back ground selection through 
marker-assisted back cross breeding (MABB) and also in 
early selection of complex traits (Prasanna and Hoising-
ton 2003; Benchimol et al. 2005; Shehata et al. 2009). 
Earlier studies using SSR markers by Sibov et al. (2003) 
at International Maize and Wheat Improvement Center 
(CIMMYT) revealed less genetic purity and high hete-
rozygosity in inbreds derived from tropical germplasm. 
SSR markers for many complex traits such as drought 
have been developed in maize, validated, and successfully 
deployed to practical breeding programs. In a product line 
development program, low-phytate locus (Ipa2) has been 
successfully transferred into an elite tropical inbred UMI 
395 through MABB using a co-dominant SSR (umc2230) 
marker (Tamilkumar et al. 2014). The second generation 
genomic technologies discovered after 2000 has shifted 
crop genomic research from marker-assisted breeding to 
marker-based breeding. Translation of genomics results 
of maize into product line development has begun dur-
ing this period. The maize HapMaps developed through 
international collaborations using diverse inbred lines have 
discovered millions of single nucleotide polymorphism 

(SNPs) that can be used to advance mapping power and 
also to identify rare alleles that help in marker trait asso-
ciations (Chia et al. 2012; Gore et al. 2009).

Parallel to the developments of NGS technologies, 
research in genetics has discovered novel genetic resources 
that can utilise the benefits of genomics to gain the maxi-
mum genetic gains. Multi-parental crossing designs devel-
oped in maize combines the alleles across the locations and 
also increases the diversity and resolution of quantitative 
trait loci (QTL) mapping studies (Giraud et al. 2014). One 
such population developed in maize is Nested Association 
Mapping (NAM) population by crossing 25 diverse inbred 
lines with common parent (McMullen et al. 2009) that com-
bines the advantages of both linkage mapping and associa-
tion mapping. Possible role of various genomic approaches 
utilising these improved genetic resources in accelerating 
tropical maize breeding has been discussed below. An over-
view of the NGS-derived-breeding strategies and genetic 
resources in enhancing maize genetic gains is depicted in 
Fig. 2.

Sequencing chemistries and genotyping 
technologies

The recent revolutions in sequencing and genotyping tech-
nologies offer exciting tools that help in increasing the 
genetic gains of tropical maize. Since the reference genome 
sequences (Schnable et al. 2009; Vielle-calzada et al. 2009) 
are available from public database (maizesequence.org and 

Fig. 2   Schematic representa-
tion of genomic-assisted breed-
ing for tropical maize improve-
ment. Sequence-based genomic 
tools when clubbed with genetic 
resources and phonemic pipe-
lines play an important role in 
genome-wide genetic marker 
discovery which in turn are very 
useful in designing strategies 
that improve genetic gain in 
tropical maize. NAM nested 
association mapping, BCNAM 
back cross nested association 
mapping, RILS recombinant 
inbred lines, NILS near-iso-
genic lines, GBS genotype by 
sequencing, RAD seq restriction 
site-associated DNA sequenc-
ing, DDRAD seq double digest 
RAD sequencing, WGRS whole 
genome resequencing, GWAS 
genome-wide association study
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maize GDB), the whole genome resequencing approaches 
of important lines or bulk segregant analysis (BSA) help 
in extensive discovery of SNP pools for different heterotic 
groups and also help to identify rare alleles of agronomic 
importance. However, most of genomic applications includ-
ing GWAS and GS would require reduced representation 
sequence data that generates ample number of SNPs which 
serves the purpose. Genotyping by Sequencing (GBS) is one 
such low cost “skim” sequencing technology widely adopted 
in crop improvement particularly in maize owing to its ver-
satility of multiplexing the samples, imputation of missing 
data and low cost (Yang et al. 2010; Elshire et al. 2011; 
Wen et al. 2012). Improved versions, i.e., double digest 
Restriction site-Associated DNA sequencing (ddRAD) of 
GBS using different restriction enzymes, could be the choice 
of interest for applications that may require deep coverage 
(Paterson et al. 2012). Targeted Amplicon Sequencing (TAS) 
or targeted enriched sequencing (TER) is another power-
ful method for detecting rare alleles/SNPs and helps in fine 
mapping of recombination break points that furtherance trait 
introgression breeding (Bybee et al. 2011). Using targeted 
amplicon sequencing, a major QTL for Aluminium (‘Al’) 
tolerance was fine mapped on chr10 in tropical maize line 
and maker identified based on this QTL has been employed 
in selection of the allele in transgenic lines (Ducrocq et al. 
2009). The final goal of any NGS-based project is to iden-
tify polymorphism (SNPs) with significant role to identify 
phenotype. Designing high-throughput breeder friendly 
marker assays to detect such SNPs is essential to reach ben-
efits of NGS technologies to farmers. Recent development 
of high-throughput sequencing technologies collectively 
known as NGS technologies becomes the main pillar for 
genomic-assisted breeding. Besides, few automated, high 
capacity PCR-based technologies that are in practice in 
maize research are discussed. Kompetetive Allele Specific 
PCR (KASPar) is an endpoint, fluorescent, cost-effective 
assay that detects SNP and Indel in more flexible manner 
(http://www.lgcgenomics.com). KASPar assays are available 
in 96, 384, and 1536 well plate formats that make process-
ing of multiple samples feasible. Many significant SNPs 
were successfully converted into KASPar assays and have 
been implemented in routine at CIMMYT maize-breeding 
programs (Semagn et al. 2014; Kassa et al. 2015). Douglus 
scientific has proposed an improved and efficient method of 
KASP, namely, Array Tape Platform and successfully dem-
onstrated in field corn (http://www.douglasscientific.com).

Role of genomics in tropical maize improvement

Marker-assisted breeding (MAB) based on the traditional 
linkage mapping is becoming faint owing to the limita-
tions in finding additive or minor QTLs of major effect. 

NGS-based methodologies have solved the above prob-
lem and are effectively used in maize breeding to enhance 
genetic gains. As species of tropical origin, huge genomic 
diversity with rare alleles is present in tropical germplasm. 
To exploit these superior traits, scientists are focusing on 
temperate introgressed tropicalized maize as possible source 
of variation and to overcome biotic stress. However, most 
of the genomics data and information tools were generated 
based on temperate germplasm. As maize is a species that 
has huge genetic diversity between the sister lines, genomic 
data generated based on temperate genetic architecture of 
maize may not be applicable for tropical material.

Genetic diversity and allele mining

Maize is versatile crop with complex genome structure 
having 80% repetitive and 32% paralogous sequences with 
numerous transposons (Blanc and Wolfe 2004). It is pre-
dicted that the extent of nucleotide diversity between any 
two maize lines is higher than the genetic distance between 
a chimpanzee and human (Buckler and Stevens 2005). Prob-
ably, this led to adaptation of maize to various ecological 
conditions and environments across the globe. Understand-
ing such huge diversity measured by genomic methodologies 
is most essential for systematic arrangement of germplasm 
to heterotic grouping that leads for development of potential 
hybrids. Correlating molecular genetic diversity and heter-
osis (hybrid performance) will help to understand general 
combining ability. It is described that tropical germplasm 
exhibits higher genetic diversity as compared to temperate 
germplasm, with respect to stiff and non-stiff stalk synthetics 
(Hainey et al. 2015). However, comparatively less work was 
done on genetic diversity of tropical germplasm. Previous 
genetic diversity studies of maize were predominantly based 
on SSRs or sequence-tagged microsatellite markers (STMS) 
(Dubreuil et al. 2006; Sharma et al. 2010; Warburton et al. 
2002). Because of their low throughput nature, less prob-
ability to detect variation among closely related material, 
and poor repeatability, usage of SSR-based markers has been 
ruled out. However, the ease of conducting experiment and 
co-dominant nature has made them valuable tool for quite 
long period. This is well supported by genetic variability 
study among diverse tropical sweet corn inbred lines using 
microsatellite markers (Kashiani et al. 2012) and molecu-
lar diversity studies among 48 land races of tropical origin 
(Wasala and Prasanna 2012a, b). In both the experiments, 
the observed polymorphic information content (PIC) was 
0.60.

High-density SNP markers developed through chip-based 
fixed array platforms (affymetrix, MaizeSNP 50K) or meth-
ods such as GBS helps in understanding the diversity of 
given material at individual loci. This helps in construc-
tion of phylogenic trees with high resolution and better 

http://www.lgcgenomics.com
http://www.douglasscientific.com
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visualisation of the heterotic groups. Such high-resolution 
genetic diversity maps help to predict heterosis through 
analysis of correlation between genetic distance and hybrid 
performance (Guo and Cooper 2015; Prasanna 2012a, b; 
Yan et al. 2010b). Diversity patterns in 375 global maize 
accessions using 50K Illumina array chip revealed key 
genomic regions responsible for tropical adaptation that can 
be exploited for favourable QTLs (Bouchet et al. 2013). Het-
erotic pattern was revealed in core set of 96 African acces-
sions using sequence-based technology (Richard et al. 2016). 
Unterseer et al. 2014 have developed 600 k SNP chip-Affy-
metrix Axion Maize Genotyping array that is found more 
useful in diversity studies of temperate lines than tropical 
material. Re-sequencing of wild and early domestication 
varieties helps to identify genomic regions that have under-
gone selection pressure and harbour useful alleles for stress 
tolerance.

Identifying the functional polymorphism of alleles within 
core subsets of original germplasm through allele mining is 
crucial to improve agronomically important traits. Large-
scale resequencing works in maize will help to identify 
specific haplotypes that relates to allelic diversity of use-
ful traits as explained by Xu et al. (2009). Identifying the 
naturally occurring allelic variations that are functionally 
different from wild type and those that influence the target 
traits is really challenging. In silico methods to identify such 
relations between the SNPs and traits need to be improved. 
Large-scale genotyping of broad set of DH lines derived 
from various land races of tropics would give deep insight 
into the molecular diversity of landraces that would allow 
mining of new alleles when combined with precise pheno-
typing. Furthermore, diversity study of individual genes 
throw light on domestication of early germplasm. Two main 
approaches exist for allele mining: (1) ecotype target induced 
local lesions in genomes (Eco-TILLING) and (2) sequence-
based methods. Utilising sequence-based approach, allelic 
diversity in β-carotene gene in diverse tropical yellow maize 
lines was dissected along with functional validation. This 
allelic variation formed basis for maize-breeding program 
to improve carotenoid levels (Azmach et al. 2013). Genome-
wide comparative analysis of defensin gene in Turkish maize 
varieties indicates 334 bp conserved region corresponding 
to active functional domain that explains adoptive role in 
embryo germination (Tombuloglu et al. 2015). In general, 
resequencing is the preferred approach in maize as com-
pared to TILLING strategy to identify minor allelic varia-
tions within the groups (Sood et al. 2014).

Genome‑wide association studies

Two of the most popular approaches for dissecting the 
genetic architecture of complex traits are linkage analysis 
and association study. Linkage analysis is the traditional 

method used to sketchily detect the co-segregation of a 
small genomic region (QTL) governing a trait of interest 
in families or pedigrees of known ancestry using RFLPs 
and SSRs. Using linkage mapping, hundreds of marker-trait 
associations were proved in tropical maize research (Sabadin 
et al. 2008; Ajmore-Marson et al. 2001; Semagn et al. 2010), 
but very few could be successfully transferred to commer-
cial breeding programs. The reason could be that the QTLs 
detected in bi-parental population using interval mapping 
are relevant only for those breeding programs, which involve 
parents to detect the QTL. Low heritability and high interfer-
ence of genotype-by-environment (GxE) are other potential 
demerits of linkage-based bi-parental mapping studies which 
restrict fine mapping of traits. On the contrary, association 
study is a precision and high-resolution method for mapping 
the casual genes (or loci) underlying complex traits based on 
Linkage Disequilibrium (LD) in population(s).

Association study broadly falls into two classes: ‘can-
didate-gene studies’ and ‘whole genome studies’. The 
‘candidate-gene’-based association study is hypothesis-
based analysis. The ‘candidate genes’ are selected for 
association mapping, either by their location in a genomic 
region that has been roughly identified via linkage analysis. 
Alternatively, whole-genome association study, also called 
genome-wide association study (GWAS), is an approach 
for establishing marker-trait associations and most impor-
tant of this include use of natural genetic resources, i.e., 
germplasm lines instead of segregating mapping population 
that saves time and occurrence of historical recombinations 
(selections) that allows multiple alleles per locus, making 
increased map resolution. GWAS is a powerful NGS tool, 
used to dissect complex traits that have been considered as 
the ‘unpolished diamonds’ for geneticists.

GWAS is increasingly becoming standard tool for rap-
idly uncovering marker-trait associations in crops such as 
maize, where generation of high density markers is feasi-
ble and affordable. The popular software used for GWAS 
is described in Table 1. Numerous statistical methods have 
been employed, to correct population structure and to min-
imize spurious associations and this is well discussed by 
Gupta et al. (2014). In an experiment, Yang et al. (2014) 
have proposed novel statistical approach called A–D (Ander-
son–Darling) test that has more power to detect rare alleles 
which normally could not be identified applying linear 
models such as general linear model (GLM) and mixed 
linear model (MLM). The current mixed models perform 
single locus test associations that ignore population-based 
bias, which may lead to wrong trait associations. To better 
explain GWAS in quantitative traits, Segura et al. (2012) 
have proposed multi-locus mixed models (MLMM) to 
reduce statistical confoundings in structured populations. 
The popularity of the mixed-model approach has made it an 
almost routine GWAS tool in plant studies in the era of big 
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data. MLMM has been successfully used in maize data set 
to correct population structure and to identify loci associ-
ated with provitamin A levels (Owens et al. 2014). Van Ing-
helandt et al. (2012) have successfully dissected polygenic 

traits such as flowering time (FT) and northern corn leaf 
blight (NCLB) resistance using population-based association 
mapping study and identified significant SNPs using single 
marker analysis. He also discussed the optimum number of 

Table 1   Important software packages available for GWAS studies

Software Features References

MERLIN Parametric and non-parametric linkage analysis, association 
analysis for quantitative traits, ibd and kinship estimation, 
haplotyping, error detection, and simulation

http://csg.sph.umich.edu/abecasis/merlin/download/

EIGENSOFT Detects and corrects for population stratification in genome-
wide association studies using principal components 
analysis

http://genetics.med.harvard.edu/reich/Reich_Lab/Software.html

SNAP Web server for finding and annotating proxy SNPs based on 
linkage disequilibrium, genomic location, and coverage by 
commercial genotyping arrays

http://www.broadinstitute.org/mpg/snap/

SHEsis A powerful web-based platform for analyses of linkage dis-
equilibrium, haplotype construction, and genetic association 
at polymorphism loci

http://analysis.bio-x.cn/SHEsisMain.htm

PLINK Free, open-source whole genome association analysis toolset, 
designed to perform a range of basic, large-scale analyses in 
a computationally efficient manner

http://pngu.mgh.harvard.edu/~purcell/plink/

QTDT Interface to perform family-based analyses for quantitative 
and discrete traits

http://csg.sph.umich.edu//abecasis/QTDT/

UNPHASED Versatile application for performing genetic association 
analysis

https://sites.google.com/site/fdudbridge/software/unphased-3-1

THESIAS Testing Haplotype Effects In Association Studies http://ecgene.net/genecanvas/downloads.php?cat_id=1
STRAT This is a structured association method, for use in association 

mapping, enabling valid case-control studies even in the 
presence of population structure

http://pritch.bsd.uchicago.edu/software/STRAT.html

SNPP A dynamic general database management system to manage 
high-throughput SNP genotyping data. It provides several 
functions, including data importing with comparison, Men-
delian inheritance check within pedigrees, data compiling 
and exporting. Furthermore, SNPP may generate files for 
repeat genotyping and transform them into files that can be 
executed by a liquid handling system

http://orclinux.creighton.edu/snpp/

GHOST GHOST is a software package for family-based genome wide 
association (GWA) analysis, with the ability to infer missing 
genotypes using the Elston–Stewart algorithm

http://www.sph.umich.edu/csg/chen/ghost/

Gwas central A central database of summary-level genetic association 
findings

http://www.gwascentral.org/

SPAGeDi Characterize the spatial genetic structure of mapped individu-
als

http://ebe.ulb.ac.be/ebe/SPAGeDi.html

mStruct Detection of population structure from multi-locus genotype 
data

http://www.Xray.cz/mstruct/

BAPS 5.0 Bayesian Analysis of Population Structure http://www.helsinki.fi/bsg/software/BAPS/
SVS Powerful Genotype Association Testing and Statistics, Link-

age Disequilibrium and Haplotype Analysis, Regression 
Analysis, Mixed Linear Model Analysis

http://www.goldenhelix.com/SNP_Variation/

TASSEL Software package to evaluate traits associations, evolutionary 
patterns, and linkage disequilibrium

http://www.maizegenetics.net/#!tassel/c17q9

GAPIT R package that performs Genome Wide Association Study 
(GWAS) and genome prediction

http://www.maizegenetics.net/#!gapit/cmkv

JMP Genomics Calculates population structure and marker-based kinship http://www.jmp.com/software/genomics/
KING Makes use of high-throughput SNP data typically seen in a 

genome-wide association study (GWAS)
http://people.virginia.edu/~wc9c/KING/

http://csg.sph.umich.edu/abecasis/merlin/download/
http://genetics.med.harvard.edu/reich/Reich_Lab/Software.html
http://www.broadinstitute.org/mpg/snap/
http://analysis.bio-x.cn/SHEsisMain.htm
http://pngu.mgh.harvard.edu/~purcell/plink/
http://csg.sph.umich.edu//abecasis/QTDT/
https://sites.google.com/site/fdudbridge/software/unphased-3-1
http://ecgene.net/genecanvas/downloads.php?cat_id=1
http://pritch.bsd.uchicago.edu/software/STRAT.html
http://orclinux.creighton.edu/snpp/
http://www.sph.umich.edu/csg/chen/ghost/
http://www.gwascentral.org/
http://ebe.ulb.ac.be/ebe/SPAGeDi.html
http://www.Xray.cz/mstruct/
http://www.helsinki.fi/bsg/software/BAPS/
http://www.goldenhelix.com/SNP_Variation/
http://www.maizegenetics.net/#!tassel/c17q9
http://www.maizegenetics.net/#!gapit/cmkv
http://www.jmp.com/software/genomics/
http://people.virginia.edu/~wc9c/KING/
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SNPs required to explain significant phenotypic variance 
in different heterotic pools based on the LD decay. Vinayan 
et al. (2013) identified candidate genomic regions for fod-
der quality in test cross progenies of tropical origin using 
data sets of both GBS and 55K infinium chip, rendering 
GBS as the preferred technology to explain phenotypic vari-
ance of complex traits. In another example using subtropical 
maize lines, Tirunavukkarasu et al. (2014) have identified 
61 significant SNPs associated with various traits related 
to drought using Maize SNP50 bead chip (Illumina, USA) 
developed by Nepolean et al. (2013) in a panel of 250 elite 
sub-tropical maize inbreds. They also proved that abscisic 
acid (ABA)-dependent signalling pathway plays major role 
in abiotic stress tolerance such as drought. Zaidi et al. (2015) 
identified consensus genomic regions associated with water-
logging in two independent association panels consisting of 
tropical germplasm (DTMA and CAAM) following GWAS 
approach. Root traits are considered to play crucial role in 
drought stress mitigation in crop plants. Zaidi et al. (2016) 
have identified 18 SNPs that are significantly associated with 
more than one trait related to root structure and function 
in Asia association mapping (CAAM) panel, comprising of 
396 diverse tropical maize germplasm. Additional 375 SNPs 
were discovered for grain yield and shoot biomass under 
drought stress. Recently, Nair et al. (2015) fine-mapped 
major QTL for maize streak virus (Msv1) in an associa-
tion panel consisting of tropical and sub-tropical material 
using GWAS and found specific haplotypes which are then 
converted into high throughput marker assays to use in rou-
tine breeding programs. This study is a typical example 
for Genomics-Based-Breeding (GBB) strategy. In another 
interesting study, 45 SNPs and 15 haplotypes closely asso-
ciated with Fusarium ear rot (FER) disease resistance were 
discovered in a set of 818 tropical maize inbred lines using 
50K maizebead chip method performed in Illumina Infinium 
SNP genotyping platform (Chen et al. 2016). The GWAS 
results were validated through linkage mapping study in 
four bi-parental populations and identified four QTLs linked 
with disease resistance along with other agronomic traits. 
This study stood as best example, where the complementary 
strengths of both linkage and association mapping exploited 
for trait improvement. In spite of its advantage over link-
age-based analysis in discovering marker-trait associations, 
association mapping (GWAS) has certain limitations such 
as population structure, less chance to identify rare genetic 
variants. Use of family-based association or Joint Linkage 
Association Mapping has been recently proposed that could 
solve these problems to some extent.

QTL seq

QTLseq is a novel outcome of modern plant genomics, 
where in QTLs of complex, traits can easily be detected 

using whole genome re-sequencing approach bypassing the 
traditional LD-based detection methods. The phenotypic 
variation caused by numerous small-effect alleles are dif-
ficult to detect in GWAS. Most of the complex traits such as 
disease resistance, yield, and abiotic tolerance are governed 
by small and additive QTLs. Identifying and tagging such 
genomic regions with marker are a challenge to molecu-
lar breeders. The availability of high-throughput, low-cost 
sequencing technologies gave thought to whole genome 
resequencing of bulk segregants of extreme phenotype to 
identify rare alleles associated with complex traits (Abe et al. 
2012; Swinnen et al. 2012; Parts et al. 2011). This novel 
NGS technology called QTL-seq was first used to identify 
QTL associated with blast resistance in rice (Takagi et al. 
2013). This technology is gaining significance and can be 
best choice to dissect and associate complex traits in maize. 
The authors are working on identifying TLB resistance in 
maize using QTL-seq approach.

Genomic selection

The major success with high-throughput genotyping data is 
its ability to predict phenotype in large populations that has 
enormous impact on plant breeding. This method of predict-
ing or estimating genomic values of individual lines based 
on genotyping data without phenotyping is called genomic 
selection (GS) which is first proposed in animal breeding 
(Meuwissen et al. 2001) and first suggested by Bearnardo 
and Yu (2007) in plant breeding. For predicting breeding 
values and to make selections, plant breeders have incorpo-
rated pedigree information into linear mixed models more 
recently (Crossa et al. 2010). However, application of such 
models is not effective because of non-inclusiveness of Men-
delian pattern of segregation. In practice, GS involves data 
from two kinds of populations. A trained data set obtained 
by thorough genotyping and phenotyping of a reference 
population is used to predict the phenotype of testing or 
prediction population which contains only genotyping data. 
Various statistical methods (GBLUP, Bayes C, and Bayes 
C-Pi) are employed to estimate the marker effects of testing 
or validation set. These data of the prediction model are 
used to estimate breeding values (GEBVs) for unphenotyped 
candidates. Unlike marker-assisted selection or association 
mapping studies, GEBVs are based on cumulative effect of 
all markers related to both minor and major alleles (Hayes 
and Goddard 2010). Thus, the estimated GEBV may capture 
more of the genetic variation for the particular trait/traits 
under selection.

Designing of training population is crucial for calculat-
ing the accuracy of prediction models that further could be 
affected by many factors, including population structure 
and composition (Jannik et al. 2010; Lorenz et al. 2011; 
Crossa et al. 2013). GS is widely adopted in maize breeding 
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to predict the best untested lines and selection for un-phe-
notyped traits and to shorten breeding cycle to minimum 
period of time. While GS is still at low pace in tropical 
maize improvement program, studies on temperate maize 
could predict hybrid performance based on genotyping data 
of parental lines (Massman et al. 2013; Technow et al. 2014). 
Zhang et al. (2014) have validated prediction accuracy of 
several agronomic traits for selection of best untested lines 
derived from 19 tropical bi-parental maize population using 
low-density GBS as well as fixed number of SNP markers 
(~200). They found that low-density markers outperformed 
in predicting simple traits such as anthesis date and plant 
height, whereas more complex traits such as grain yield, 
drought require more SNPs to determine the prediction accu-
racy. It is complemented by the results obtained by Crossa 
et al. (2010), where in good prediction values achieved with 
1152 SNP markers for host plant resistance of TLB and 
GLS. It is also observed that prediction accuracy of some 
traits is consistently low across target environments (Zhang 
et al. 2014). In similar study using tropical parental mate-
rial, Zhang et al. (2015) found that increasing F2 population 
from 30 to 90 made to shift prediction accuracy from 0.40 
to 0.58 for grain yield under optimal conditions. They also 
established that increasing population size of training set and 
number of markers had a positive impact on prediction accu-
racy of untested lines. Prediction accuracy or factors affect-
ing accuracy of GEBVs of individual lines largely depend 
on population structure (Desta and Ortiz 2014). Many pre-
diction models are in practice for GS in maize, targeting 
maximum genetic gains which are influenced by many fac-
tors such as sample size, relatedness, marker density, gene 
effects, heritability, and genetic architecture. Crossa et al. 
(2010) adopted an improved version of linear models such as 
Bayesian LASSO for GS and validated it on tropical maize 
data set obtained from various environments with effective 
predictive ability for agronomic traits of importance. In 
another independent study, Gonzalez-Camacho et al. (2012) 
did comparative study of various models for prediction accu-
racy of several trait-environmental combinations and found 
that nonlinear regression models such as reproducing kernel 
Hilbert spaces (RKHS) and radial basis function neural net-
works (RBNN) are best suitable ones over Bayesian LASSO 
model for GS in maize. However, Zhang et al. (2014) used 
an extension of the genomic best linear unbiased predictor 
(GBLUP) that can incorporate G × E interactions to calcu-
late GEBVs for different quantitative traits. Many breeding 
experiments based on GS are in progress at CIMMYT global 
breeding programs targeted for tropical world. Mendes and 
de Souza (2016) have successfully applied GS to predict 
progenies derived from 250 single crosses of tropical maize, 
evaluated in 13 environments. Comparison of GS with phe-
notypic selection in this experiment revealed that prediction 
accuracies are significantly higher with multi-location data 

than single location data. These results emphasise the need 
of evaluating the training set at multiple locations.

GS is extensively used by multinational seed companies 
in their breeding programs to select inbred lines for various 
agronomically important traits and even to predict heterosis. 
Applying GS, drought tolerant maize hybrids (AQUAmax®) 
with improved genetic gains were released in US corn belt 
by Dupont Pioneer (Cooper et al. 2014). Field evaluations 
revealed that all AQUAmax hybrids performing better than 
other competitors under water limited conditions without 
yield penalty (Gaffney et al. 2015). Using GS, pre-breeding 
material harbouring polygenic favourable alleles generated 
from 4000+ land races of tropical origin (Gorjanc et al. 
2016).

Phenomics

Much has been discussed about the opportunities to use 
sequence-based markers in plant breeding, but the suc-
cess of any genomic-assisted-breeding program, particu-
larly those targeting stress environments such as drought, 
depends largely on the precision of its phenotyping data 
(Cooper et al. 2014). Hence, plant phenomics plays a cru-
cial role in molecular plant breeding. In maize, there have 
been several reports of QTLs associated with specific phe-
notype observed under drought stress in diverse mapping 
populations (Veldboom and Lee 1996; Ribaut et al. 1996, 
1997; Frova et al. 1999; Tuberosa et al. 2002), but their reli-
ance to stability across environments is less due to QTL × E 
interaction (Messmer et al. 2009). Many publications have 
emphasized the importance of precise phenotyping, but there 
is little or no discussion of how to achieve such phenotyp-
ing at the scale necessary to support a breeding program. 
In the last decade, integration of new phenotyping and 
genomics technologies has enabled successful evaluation 
of new breeding approaches intended to accelerate the rate 
of genetic improvement mainly for drought-tolerant maize 
hybrids for drought-prone environments. Key phenotyping 
technologies that have been implemented in advanced organ-
izations/industries include: managed drought environments, 
experimental designs and spatial analysis using mixed model 
methodology, sensor technologies to measure soil water 
status during the crop growth and development cycle that 
enable characterization and modeling of the soil–plant water 
balance within experiments, and high-throughput measure-
ment of growth and development traits to enable modeling of 
genotype performance (Tuberosa 2012; Tuberosa and Salvi 
2006; Messina et al. 2011). In addition, advances in reflec-
tance spectroscopy, thermal imaging, and remote-sensing 
technologies have revolutionized crop phenotyping methods 
including maize and paved the way for the development of 
high-throughput phenotyping platforms (HTPP) in many 
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agriculture-based profitable and non-profitable organiza-
tions such as CSIRO, ICRISAT, and DuPont (Vadez et al. 
2015). Using remote sense-based HTPP, parameters related 
to quality and yield levels were measured in 300 test crosses 
of maize trials (Weber et al. 2012) that explained 40% of 
field variance in grain yield. Recently, the university of Bar-
celona (Spain) and CIMMYT collaboratively developed an 
aerial phenotyping platform called “skywalker”, fitted with 
high spectral reflectance and thermal imagery cameras that 
can record phenomics data of canopy and leaf temperatures, 
biomass, senescence, and leaf gas exchange parameters of 
hundreds of fields in single take. The methods to character-
ize root variability were too slow to be incorporated in the 
breeding cycle. Therefore, root phenomics is getting increas-
ingly important as major QTLs discovered in root genome 
showed their impact on grain yield (Atkinson et al. 2015), 
and hence, measuring root dynamics plays a vital role in 
establishing marker trait associations and yield predictions. 
Plant phenomics facility at ICRISAT has developed a lysi-
metric system to measure water uptake in large scale using 
1.2–2 m length with 20 cm diameter cylinders which can 
be best used to study root traits in maize. In recent years, 
demand-driven maize production has expanded maize cul-
tivation into marginal lands which have the potential to gen-
erate a greater number of drought-prone maize production 
environments that can lead to yield instability at local and 
national levels in near future (Edmeades et al. 1999; IPCC 
2007; Hillel and Rosenzweig 2005). Therefore, knowledge-
based approach of phenomics for improving maize yield 
for drought prone condition which has predicted to occur 
with greater frequency in the future and to develop more 
focused field screening techniques that increase rate of gain 
for yield stability under conditions of variable and unpredict-
able water stress, will be beneficial.

Challenges and future perspective

Choice of genotyping platform

The availability of different genotyping methods and con-
tinuous evolving technologies in sequencing chemistries has 
put challenge on molecular breeder as which method is best 
suitable for their breeding program. Cost of genotyping is 
the major determining factor for adopting appropriate geno-
typing technologies in plant breeding. GBS is routinely used 
sequencing approach for low coverage molecular-breeding 
applications owing to its versatility of multiplexing the 
samples, imputation of missing data at low cost (Yang et al. 
2010; Elshire et al. 2011; Wen et al. 2012). Missing data and 
low coverage are two potent shortcomings of GBS limiting 
its wide adaptability. Chip-based fixed SNP detection meth-
ods are considered as alternative genotyping technologies 

for GBS. Initial SNP chip was developed by Illumina on 
affymetirx platform with 1536 SNPs from temperate mate-
rial that has found limited application (Yan et al. 2010a, 
b). Later improved versions with millions of SNPs were 
developed, among which Illumina® MaizeSNP50K Bead 
chip is most popular and used in large number of genotyp-
ing studies. MaizeSNP600K chip with increased number of 
SNPs, with improved fixation index (FST) was developed 
on Affymetrix® Axiom® platform (Unterseer et al. 2014). 
Recently, Xu et al. (2017) have developed 55K Maize SNP 
chip that has equal representation of SNPs derived from 
tropical germplasm that may be useful for genetic diversity 
studies, QTL detection studies in tropical maize populations. 
However, if the purpose is to have deep sequencing data 
more efficient methods such as RAD/ddRAD could be the 
choice of approach (Peterson et al. 2012). The depth and 
coverage are more in these sequencing technologies com-
pared to GBS. On other hand, chip-based fixed array meth-
ods such as Fluidigms Dynamic Array, Douglas Scientific 
Array Tape, and KASP are available for routine trait specific 
SNP detection in larger populations. Molecular breeders at 
present have variety of such genotyping methods at their 
disposal which are collectively known as next-generation 
sequencing-based genotyping (NGG) technologies. Prior in 
selecting suitable NGG, knowledge of population structure, 
linkage disequilibrium (LD) of targeted region, cost, flex-
ibility of technology, number of samples, ease of multiplex-
ing, etc. are to be considered. Kompetitive allele-specific 
PCR (KASPar) technique has gained popularity for lower 
cost single plex genotyping in maize (Semagn et al. 2014; 
Dao et al. 2014). More advanced flexible, high-throughput 
SNP genotyping systems have come up with much reduced 
reaction volume than KASPar (5 µL) to minimize cost effect 
that include Array Tape (800 nL–1.6 µL) introduced by 
Douglas Scientific and the openArray system (3072 reac-
tions/33 nL @70,000 data points) from Life Technologies 
and Dynamic Arrays from Fluidigm. Apparently, maize has 
more diffuse genetic architecture compared to other cereal 
crops, displaying large number of small genes effects with 
major phenotype (Buckler et al. 2009; Tian et al. 2011; Cook 
et al. 2012), allelic variation within genes (Yan et al. 2010a; 
Poland et al. 2011) and segregation distortion (McMullen 
et al. 2009). Hence, keeping in view of these facts of maize 
genome, particularly high diversity nature of tropical maize, 
one can select the right genotyping platform suitable for 
their application.

Decision support tools

Continuous update on sequencing technologies, producing 
quality reads which minimize the errors has shifted the real 
challenges like how to tackle the flooding sequence data 
coming from sequencing programs. This requires more 
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sophisticated algorithms and software. Since reference 
genome for maize is available, assembly of generated short 
reads could not be critical, and hence, focus should be given 
to improve mapping softwares that run faster. Time is critical 
in alignment technologies, because one would like to know 
the quality of data before running next sample. Commonly 
used mapping tools are Bowtie, BWA, and TopHat. Bow-
tie is most popular open source tool that works well with 
sequence <3% difference from reference genome. However, 
Bowtie works better with ‘gapped alignment’ (Indels) than 
other tools such as BWA and ELND. These tools provide 
mapping quality scores for each alignment read. Besides 
that, SOAP 2 is another promising alignment tool of choice 
that functions more efficiently (http://soap.genomics.org.cn) 
for mapping. Recently, Xu et al. (2014) demonstrated that 
ANNOVAR tools are best for filtering SNPs significantly 
associated with heritable phenotype. After alignment, SNPs 
can be detected using SAM tools or GigaBayes. Another 
major challenge is filling the gaps of missing data obtained 
in skim seq technologies such as GBS-making missing data 
more sensible. Imputation is thus critical for effectively 
using the output of low-coverage and very few bioinformatic 
tools are available to perform accurate genotype imputation 
on these cases (Swarts et al. 2014).

Doubled haploid technology

The second major innovation after identifying ‘heterosis’ 
breeding in maize is doubled haploid technology (DH) 
through in vivo haploid induction that has been largely 
adopted by commercial breeding programs (>80%) (Masuka 
et al. 2017). The technology has been heavily apprised for 
reducing the breeding cycle to generate parental lines there 
by increasing selection gains (Geiger and Gordillo 2009; 
Prasanna 2012a, b; Battistelli et al. 2013; Dwivedi et al. 
2015). An anthocyanin-based phenotypic marker imparted 
by dominant allele “R1-nj” is key to identify the resultant 
haploid kernels from the cross between source germplasm 
(F1/F2) and inducer lines. However, few tropical source 
material showed poor or no expression of this colour phe-
notype due to presence of dominant anthocyanin inhibitor 
allele (C1-I) that made difficult in differentiating haploid 
kernels. Chaikam et al. (2015) have identified molecular 
marker to screen and validate the source germplasm before 
making them involved in DH program. DNA extraction from 
endosperm of haploid kernels (Halilu et al. 2013) allows 
germination of seed thus improves haploid detection through 
MAS and saving precious material.

The current induction rate of haploids is less than 10% 
in tropical source germplasm, which need to be enhanced 
(Prigge et al. 2012a, b). The main reason for less success rate 
of haploid induction could be attributed to adaptability of 
haploid inducers used in DH program that are of temperate 

origin. CIMMYT had taken initiative to solve this challenge 
by developing tropically adapted inducer lines (TAILS) in 
collaboration with the university of Hohenheim (Prigge et al. 
2011). Efforts were being made to further improve haploid 
induction rate by attempting crosses between TAILS (Khak-
wani et al. 2015). A major QTL “qhir11” has been identified 
on chromosome1 (Dong et al. 2013) which could be the 
potential candidate for introgression into elite backgrounds 
to further improve the genetic gains of inducer lines. How-
ever, usage of single inducer (UH400) and substantial dif-
ference of Logarithm of ODDs (LOD) among population 
limits the application of qhir11 in improving inducer line 
selection. The recent genomic methodologies may help in 
identifying the haploid induction regions in the genome of 
inducer lines. Introgression of these regions into elite back-
grounds using marker-assisted selections will improve the 
success rate of DH. Hu et al. (2016) have applied GWAS in 
53 haploid inducer lines and identified a specific haplotype 
allele common to all inducers. Using resequence data and 
a novel approach called conditional haplotype extension 
(CHE), the authors further identified three candidate genes 
underlying the QTLs that are crucial for haploid induction 
efficiency. This helps to develop tropicalized inducer lines 
with maximum genetic gain. In a recent study, proof of con-
cept has been established on developing haploid inducer 
lines in maize using centromere-mediated genome elimina-
tion method (Kelliler et al. 2016). An extensive discussion 
about this technology and its application in plant breeding 
has been reviewed recently (Britt and Kuppu 2016).

Way forward

Application of genomic tools for maize improvement has 
increased tremendously in recent years. Utilising these 
opportunities, significant development in enhancing genetic 
gains has happened in temperate maize through systematic 
understanding of the genetic diversity of germplasm, iden-
tification of candidate genomic regions by high resolution 
maps, and also identification of recombination break points 
that help in better introgression of useful alleles. Prediction 
of untested lines for better and shortening breeding cycle 
could also be possible with advancements in NGS technolo-
gies and informatics. It is high time to translate these dis-
coveries into tangible products to accelerate tropical maize-
breeding programs. There has been a gap, however, between 
the discovery of useful genes and QTLs and their deploy-
ment in breeding programs. Only few demonstrated exam-
ples of marker-assisted selection (MAS) products exist in 
the farmers’ fields of developing world, having a significant 
impact (Ho et al. 2002; Babu et al. 2005). ‘Vivek QPM9’ is 
the first MAS product with improved quality protein, rec-
ommended for farmer adoption in India (Gupta et al. 2009). 

http://soap.genomics.org.cn
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However, this is about to change, with the availability of 
high-throughput genotyping and sequencing technologies, 
the field of molecular breeding is now poised towards prod-
uct line development for accelerating the crop improve-
ment in maize. However, improved cultivars with improved 
genetic gains alone may not change the livelihood of several 
million smallholder farmers worldwide. It should be comple-
mented with sustainable crop and natural resource manage-
ment practices, effective policies for successful implementa-
tion of research technologies and market strategies.
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