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Abstract—Indoor Localization and Tracking have become an 
attractive research topic because of the wide range of potential 
applications. These applications are highly demanding in terms 
of estimation accuracy and rise a challenge due to the complexity 
of the scenarios modeled. Approaches for these topics are mainly 
based on either deterministic or probabilistic methods such as 
Kalman or Particles Filter. These techniques are improved by 
fusing information from different sources such as wireless or 
optical sensors. In this paper, a novel MUlti-sensor Fusion 
using Adaptive Fingerprint (MUFAF) Algorithm is presented 
and compared with several multi-sensor indoor localization and 
tracking methods. MUFAF is mainly divided in four phases: first, 
a Target Position Estimation (TPE) process is performed by every 
sensor; second, a Target Tracking Process (TTP) stage; third, a 
Multi-Sensor fusion (MMF) combines the sensor information and 
finally, an Adaptive Fingerprint Update (AFU) is applied. For 
TPE, a complete environment characterization in combination 
with a Kernel Density Estimation (KDE) technique are employed 
to obtain object position. A Modified Kalman Filter (MKF) 
is applied to TPE output in order to smooth target routes 
and avoid outliers effect. Moreover, two fusion methods are 
described in this work: Track-To-Track Fusion (TTTF) and 
Kalman Sensor Group Fusion (KSGF). Finally, AFU will endow 
the algorithm with responsiveness to environment changes by 
using Kriging interpolation to update the scenario fingerprint. 
MUFAF is implemented and compared in a testbed showing that 
it provides a significant improvement in estimation accuracy and 
long-term adaptivity to condition changes. 

Index Terms—Wireless, Receive Signal Strength Indicator 
(RSSI), Indoor Tracking, Kernel Density Estimation, Kalman 
filter, Multi-Sensor Fusion. 

I. INTRODUCTION 

Indoor positioning and tracking have attracted an extensive 
research effort because of their usefulness for a broad range of 
applications such as audience pattern generation [1], costumer 
analysis in retail [2], surveillance [3], business related activ­
ities [4], healthcare behavioral monitoring [5] among others 
[6], [7]. 

The aim is mainly to extract location and routes from 
indoor targets to provide applications which make use of both 
estimated values. One approach is the use of cameras [3], [8], 
but cost, occlusions, poor/inadequate lighting conditions or 
privacy issues limit their applicability in several scenarios. In 
this paper we will focus on a very common approach which is 
the use of a sensors deployment to detect and track the objects, 
however the precision in the location and tracking is key to 
the applications using such data. 

Recent research works face this problem by implementing 
wireless sensors in combination with processing algorithms 
that combine data gathered from multiple nodes [2], [6], [7]. 

Within the methods to estimate indoor position, most pop­
ular are Time-of-Arrival (ToA) [9], Time Difference of Ar­
rival (TDoA) [10], Angle-of-Arrival (AoA) [11] and Received 
Signal Strength Indicator (RSSI) measurements [12], being 
the techniques more often employed ToA and RSSI. On 
the one hand, ToA techniques use timestamps lags from a 
sent/received packet. These methods allow high precision in 
the final estimation with relative low background process­
ing. However, hardware cost limitations in addition to strict 
synchronization requirements increase the system complexity 
making this approach hard to implement. On the other hand, 
RSSI values can be measured by a large number of wireless 
devices but RSSI modeling is generally tedious due to the 
harsh propagation conditions and processing techniques to 
achieve a good accuracy [18]. 

Because of the high potentiality of indoor tracking appli­
cations, low cost and the wide range of devices that can be 
used, the technical approach presented in this work relies on 
RSSI-based estimation. 

RSSI position estimation works have been presented in the 
literature for indoor tracking [13], [14], [15], [16], employing 
theoretical propagation models to estimate the distance and/or 
in combination with deterministic methods for tracking [14]. 
However, these propagation models neglect the obstacles, 
which yields to a high error rate in estimations. 

To correct and improve such problem with obstacles, a 
very extended approach is based on the employment of 
Fingerprinting technique which characterizes the scenario by 
splitting into cells and performing spatial sampling [13], [14] 
with the aim of modeling the signal propagation in the grid. 
This technique can be applied for both deterministic and 
probabilistic methods. Deterministic methods depend heavily 
on the resolution of the fingerprint cells: the shorter the 
number of cells is, the lower the estimation accuracy is. 
Probabilistic methods consider a few sensors introducing a 
high mathematical treatment to fuse the information gathered 
[15], [16] and in this way result get improved. 

Additionally, recent works incorporate an adaptive update 
stage to improve the algorithmic accuracy [17], [19] which is 
a growing research topic as it allows to adjust fingerprint-based 
technology to changes in environment conditions. 

Therefore, following this line to improve the accuracy and 
motivated by the heavy estimation requirements in terms 
of precision for indoor tracking, and considering the large 
availability of commercial devices (e.g. smartphones) with 
several sensors (wireless communication standards) in this 
work a MUlti- Sensor Fusion based on Adaptive Fingerprint 
(MUFAF) Algorithm is presented to perform the object track-



ing (in this paper we used IEEE 802.15.1, IEEE 802.15.4 and 
IEEE 802.11) based on RSSI measurements. 

To achieve the presented aims, that in the paper are com­
pared to other approaches, MUFAF works as follows. MUFAF 
starts by performing a statistical position estimation called 
Target Position Estimation (TPE) in each of the available 
sensors (measuring in the different wireless interfaces). A 
complete environment characterization in combination with a 
Kernel Density Estimation (KDE) technique are employed to 
obtain object position, and a Modified Kalman Filter (MKF) 
is applied to TPE output in order to smooth target routes and 
avoid outliers effect. 

Once data is captured, a Target Tracking Process (TTP) is 
done to obtain the object routes from individual sensors. Sub­
sequently, the fusion of the sensors information is processed 
by a Multi-Sensor fusion (MMF) process which combines 
the sensor data using Track-To-Track Fusion (TTTF) and/or 
Kalman Sensor Group Fusion (KSGF), which are described 
and compared in the paper. 

Last step is to provide an Adaptive Fingerprint Update 
(AFU) to cope with the environment changes. AFU uses 
a novel adaptive fingerprint update technique to adjust the 
algorithm according to scenario variations based on Kriging 
interpolation. 

The remainder of this paper is organized as follows: In next 
section II, the problem statement, notation and assumptions are 
addressed. Ill, Target Position Estimation (TPE) is detailed. 
Section IV describes the Target Tracking Procedure (TTP). In 
section V, the comparison of fusion pattern architectures is 
defined. In section VI adaptive fingerprinting technique using 
Kriging is presented. Moreover, in section VII the implementa­
tion details and results of the algorithms are illustrated. Finally, 
conclusions and future work are drawn in section VIII. 

II. PROBLEM STATEMENT 

Complex indoor environments have been considered, where 
harsh signal propagation conditions present a challenge for 
appropriate characterization. For this aiming, it is assumed an 
indoor scenario with a set v = {vit\ \ i = 1 , . . . , / ; A = 
1 , . . . , A} of Access Points (AP) located at Cartesian coordi­
nates p¿ = (xjjj/j) G R2. Furthermore, let A be the number 
of sensors that each node is equipped with. In this work, 
four sensors from three wireless technologies are considered: 
IEEE802.11.g/WI-FI [53], IEEE802.15.1/Bluetooth v4.0 [51], 
IEEE802.15.4/XBee and IEEE802.15.4/CC2420 [52]. Net­
work nodes are able to obtain the Received Signal Strength 
Indicator, denoted by RSS, from the monitored target. Con­
sequently, RSSitx describes the RSSI measurements gathered 
by node i using technology A. 

The main problems addressed in this work are three: (a) 
the accurate localization estimation of the target by means 
of a combination of available RSSI measurements sensed by 
the nodes; (6) tracking of the detected object in an indoor 
environment and (c) the improvement in trajectories accuracy 
by means of multi-sensor fusion of the different technologies 
considered. To tackle these challenges, several considerations 
are taken: 
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Fingerprint and Target Position Estima­
tion (TPE): 
a wireless sensor technology, 
set of nodes in the network. 
Estimated position for a particular technol­
ogy. 
general definition of a node. 
Set of RSSI measurements gathered by a 
node using a particular technology, 
set of fingerprint cells 
window time for fingerprinting in a cell. 
Kernel Function and bandwidth. 
Euclidean distance from p i to p2. 
Fingerprint Matrix. 
Target tracking Process (TTP): 
Time step for MUFAF iteration, 
system state for Kalman Filter. 
Kalman Transition Matrix. 
System input (Random Walk Model RWM). 
Kalman Control Matrix (RWM). 
Kalman Gain Matrix. 
Measurements Prediction. 
Error covariance using RWM. 
Error covariance matrix from Observations. 
Noise Process. 
TPP Input: estimated position in TPE. 
Observation. 
Cartesian coordinates in axis x and y. 
Covariance Matrix from Kalman Process. 
Multi-Sensor Fusion: 
A route from a target tracked. 
Number of steps that compose a route. 
Order of P Matrix. 
Covariance Matrix from Kalman process in 
a time k for a technology A. 
position estimated after fusion stage. Addi­
tionally, xm, ym are the spatial coordinates 
employed as input to the alpha-beta filter, 
control parameters of Alpha-Beta filter. 
Adaptive Fingerprint Update (AFU) 
Set of distances in empirical 
Semivariogram. 
Empirical Semivariogram. 
Theoretical Semivariogram. 
Fitting parameters in 7(-). 
Width and Depth of a room, 
weights in Kriging estimation. 
Semivariogram Matrix for prediction. 
Lagrange Multiplier, 
vector containing ¥ and C. 
Similarity measure to estimated location. 
Number of neighbors chosen for AFU. 
Decision Threshold for AFU. 

RSS is assumed to be an independent and identically 
distributed (i.i.d.) Random Variable. 
Every node vit\ is able to gather a set of RSS measure­
ments from the aforementioned technologies A. Notice 
that it is possible to obtain RSSiX —> 0 
Additionally, it is assumed that R S S / A is a vector 
containing synchronized measurements from all nodes I 
for a particular technology A. 
A window-time, denoted by k, is considered. Data gath­
ered in this period will be mathematically treated as 
synchronized. For experiments performed in this paper, 
k = 1 sec. There are several factors that can affect this 
window-time. Firstly, the frequency sampling of the de-



vices considered in this work is high which allows to have 
a representative data-set for position estimation. It implies 
that the window-time can be reduced. However, outliers 
can decrease the estimation quality as a consequence 
of overestimation. In concrete, IEEE802.15.4Xbee is 
able to forward up to 30 packets per second (pps); 
IEEE802.11.g-Wi-FI frequency sampling is above 60 pps 
and IEEE802.15.1 Bluetooth is up to 20 pps. Secondly, 
the velocity of persons moving in the scene is a key 
parameter with a wide range of values. When a person 
is running in the scene, a shorter window-time can be 
appropriated for the position estimation. Nonetheless, 
the aforementioned problem can arise. Moreover, some 
approaches quantify an average of a normal person walk­
ing to be around 130 cms /second [29], [30]. In tests 
performed, 1 Second time window provides an optimal 
trade-off. 

In order to maintain general conventions on the techniques 
presented, an overview of the notation employed in this work 
is detailed in table I. 

A. Main contributions 

The key contribution of this work is the proposal of a 
complete system for indoor localization and tracking that 
overcomes the difficult conditions of the scenarios in terms 
of propagation interferences. Moreover, MUFAF is scalable 
and modular. Experiments performed have shown that the al­
gorithms described are able to track several objects simultane­
ously. Furthermore, MUFAF outperforms existing techniques 
therefore it can be considered as an adaptive system fusing 
multiple data sources. The main technical contributions of this 
paper are: 

• Several multi-sensor architecture patterns for tracking 
systems are compared. Some of the most precise methods 
for indoor tracking are described and assessed in this 
work. As a result, MUFAF Algorithm for indoor localiza­
tion using multi-sensor fusion from various technologies. 

. An Adaptive Fingerprint Update (AFU) procedure is 
proposed to ensure that MUFAF will change according to 
the varying scenario conditions. This algorithm is based 
on Kriging interpolation that is a statistical technique 
that does not depend on the field mean. This feature 
guarantees AFU stage to be unbiased. 

• A study on indoor localization and tracking is provided. 
As a result, a complete open dataset is presented. This 
dataset contains all required fingerprinting measurements 
for the technologies considered. Additionally, it also 
comprises the route measurements to allow scientific 
community to test and compare their algorithms with the 
ones presented in this work. 

III. POSITION ESTIMATION 

In this section, the algorithm to obtain the object position 
in an indoor environment is described. This process com­
prises two steps: (a) Fingerprinting and (6) Kernel Density 
Estimation (KDE). The former is a method for scenario 
characterization while the latter is a statistical technique for 

Algorithm 1 MUFAF: Fingerprint Stage 
Inputs: v —> set of Access Points // c —y set of fingerprint 
cells. // R S S i A : RSSI measured by Access Point i by 
technology A. // T is the predefined fingerprinting period 
and t is a timer. 
Outputs: F —> Fingerprint Matrix. 

i: procedure FINGERPRINT TRAINING 
2: for all nodes in v do 
3: for each cell / in c do 
4: pi = (xi,yi) 

5: for all technologies A do 
6: while t — T > 0 do 
7: F(ph\,B.SS)<-RSSitX 

8: end while 
9: end for 

10: end for 
11: end for 
12: end procedure 

position estimation applied to sensor RSSI measurements. 
KDE employs the Fingerprinting data to estimate the target 
location. 

A. Fingerprinting 

Large variance of measurements gathered is one of the most 
critical problems associated to RSSI estimation, specially for 
indoor environments, even in case of static objects [20]. An 
example of this variance is shown in figure 1 where a large 
amount of RSSI measurements are taken from a static object 
equipped with several sensors. A common approach to deal 
with this issue is by applying Fingerprinting Technique [21], 
[22], [23]. This technique allows to obtain a proper scenario 
calibration by splitting it into a set of cells c = {p;| / = 
1,. . . ,L} with geometrical center at p; = (x¡,y¡) e R2 

respectively. The larger the number of cells L is, the higher 
the spatial resolution is. Afterward, measures are taken from 
each node Vi with the target object located at the center of 
every cell p¡ for a predefined time interval T. The longer the 
calibration time is, the better the cell characterization is. The 
entire Fingerprint process is detailed in algorithm 1. 

As a result of this procedure, a distribution of the RSSI is 
captured in every cell for every technology A by every node 
Vi. For this purpose, the multi-dimensional F matrix has been 
defined to contain the fingerprinting distributions. Therefore, 
F(p;, A, RSS) represents the set of fingerprint measurements 
gathered at cells position p; e R2 by sensor technology A by 
nodes v^ G v. Moreover, F matrix is the input of the TPE 
process described in next subsection. As an example, in figure 
2 are shown the fingerprint cells location for the experiments 
room presented in this work (left) and some examples of RSSI 
fingerprinting distributions (right). 

B. Target Position Estimation (TPE) 

There exist several works in the literature for position 
estimation based on Fingerprint statistics [39], [41], [42], 
[43]. Most of these works apply deterministic techniques 
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Fig. 1. RSSI behavior and variance along distance for different wireless sensors. IEEE802.11.g WiFi variation is lesser than other technologies due to the 
short-term attenuation for considered distances. Conversely, IEEE802.15.4 (XBee) example is easy to fit into a valid model due to its decreasing behavior. 

to characterize the RSSI distribution for each cell. In [39], 
the K-Nearest Neighbors (KNN) technique is employed to 
triangulate the target position adopting euclidean distance as 
metric. In [41], a comparison of various metrics is carried out 
in an indoor building giving as result that Mahalanobis dis­
tance outperforms Manhattan and Euclidean-Distance results. 
Furthermore, in [42] a weighted K-Nearest Neighbor approach 
is presented. Moreover, in [43] it is proposed a complete 
overview of several deterministic methods that include all the 
aforementioned metrics. However, taking into consideration 
a large set of measures collected for every cell in Finger­
print stage, a deterministic approach can neglect the wide 
distribution of measurements per cell, therefore a probabilistic 
approach can be considered for the estimation. 

Kernel Density Estimation (KDE) is a non-parametric tech­
nique employed to obtain the Probability Density Function 
(PDF from now on) of a random variable with independent and 
identically distributed samples [24], [25]. KDE estimates the 
likelihood that Fingerprinting distributions match the measures 
in the region of a Kernel function. Therefore, the distance is 
fitted with Kernel functions, denoted by K{-) and the PDF in 
our problem can be calculated by the following function: 

p(RSS i iA|P¡) = 
1 —̂>, / RSSi 

Ñh^^K{ 
F(p¡,A,RSS^ 

(1) 

where N is the set of samples in every fingerprinting cell 
center p; by the node «¿. Furthermore, ft is a smoothing 
parameter also known as kernel bandwidth. RSSit\ is the 
node measurement. In addition, F(p¡, A, RSSJJ is the set of 

RSSI values gathered by node vi at fingerprint cell p¡ with 
the corresponding technology A. 

The goal pursued is to estimate a non-parametric function 
that fits the RSSI values distribution better than known (para­
metric) distributions. Due to the nature of the data modeled, a 
modified version of KDE known as Nadaraya-Watson Kernel 
regression is used [26]. This method is applied because of 
its appropriateness when there is no prior knowledge of the 
relationship between the variables under study since these 
estimators are only based on either smoothing or regression 
functions. 

There are other non-parametric options that could have 
been employed such as the Priestley-Chao and Gasser-Mller 
smoother or the K-th Nearest-Neighbor (K-NN) weights [40]. 
However, Priestly-Chao and Gasser-Mller strict boundary bias 
problems make Nadaraya-Watson method the most suitable 
estimator for RSSI-based applications. In fact, it has been 
demonstrated that Nadaraya-Watson variance is up to a 50% 
lesser than the other methods [40]. However, K-NN smoothing 
can attain similar results to the ones obtained by using kernel 
estimation when an appropriate bandwidth h parameter is 
adjusted. 

According to this method, the joint probability function can 
be estimated as: 

p(p,RSSj,A) = 

\t ¿tí(WMJ K d(p,Pi 
(2) 

K 
RSSj ,A-E[F(p¡ ,A,RSS) 

hN 
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Fig. 2. (Left) Fingerprint cells distribution used in this work (Right). RSSI Histogram examples for each sensor in a particular cell. It can be observed that 
IEEE802.il.g WiFi arises narrow range of RSSI values for the cell considered whereas IEEE802.15.1 Bluetooth histogram probability distribution is wide 
spread. 

where d(p,p¡) represents the distance from every finger­
printing cell center to the estimated point and hx, hN are 
the bandwidth parameters respectively. Finally, the expectation 
E[F(p;, A, RSS)] yields to a vector containing the RSS mean 
for every node. 

Applying the Minimum Mean Square Error (MMSE) crite­
ria over the conditional density probability obtained by Bayes 
theorem: 

z = PMMSE = £(p|RSSj,A) = / p p(p|RSSj,A) dx (3) 

it is obtained that: 

i=i 

(4) 

where p; are the fingerprint cells center. Superscript is used 
to indicate that the positions estimated were obtained by using 
a particular technology. The target position p is calculated as 
the weighted sum of the estimations for every cell using the 
Kernel function. The weights w are determined by: 

K 

wi = 

RSSj,a-E[F(p¡,A,RSS)] 

R S S / j A - E [ F ( P j , A , R S S ) ] 
(5) 

lN 

The numerator contains the current Kernel for cell / G c 
and the denominator collects the sum of all Kernel values 
for every cell. The Nadaraya-Watson Kernel regression is the 
MMSE estimator of p . The TPE output is the estimated value 
z = p which is assumed to be static in k. 

The parameter selection for the algorithm to fit the PDFs in 
equation (5) is carried out using the exponential kernel (6). 

K(x) = —exp (-IWI) (6) 

where ||x|| represents the euclidean distance. There are 
several kernels in the literature but the computation complexity 
is higher. In our work, the last section VII presented that 
exponential kernel improve the estimation accuracy than using 
others most common kernels like the Gaussian kernel reducing 
the algorithm time. 

Furthermore, the bandwidth selection is based on [48] where 
a study of different method are carry out to obtain this 
parameter. Based on the tables presented is this work the 
parameter is setting equal to hN = 0.8. 

IV. TARGET TRACKING PROCESS (TTP) 

Tracking stage is intended to minimize the effect of noise 
in p by filtering outliers giving as a result the peaks-free 
object route. In order to maintain notation in a simple manner, 
superscript used in equation (4) has been removed since the 
tracking system is described for a single technology. Several 
methods have been proposed for this purpose, however in 
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Fig. 3. Architecture patterns for sensor fusion, (left). Track-to-track Fusion: Separate processing stages for each sensor to achieve high-level inferences that 
are subsequently fused, (right) Kalman Semor Group Fusion: direct sensor data combination. 
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Fig. 4. Kalman Filter Algorithm steps for prediction and estimation. 

where A matrix relates the k state with the k +1 time state. 
Furthermore, B is the control input associated to uk, which 
is the system input. Furthermore, P matrix is the a posteriori 
error covariance matrix from Kalman process that collects the 
deviation in the estimations and Q is the covariance matrix of 
the process noise. 

Moreover, Measurement update (correction) stage in figure 
4 is described as follows: 

(1): The matrix G, called Kalman Gain or blend factor, 
adjusts the trade-off between the estimation and the error 
measurement. 

(2): Equation to calculate the posterior state xfc+i as a linear 
combination of the a prior xk estimator and the weighted 
difference between current observations zfc and a measurement 
prediction H. 

(3): Update the error covariance based on the Kalman 
Gain. Moreover, the observation z e R2 contains the spatial 
coordinates of the position : 

this work the well-known Kalman Filter (KF) [27], [28] is 
employed. This filter provides a recursive solution based on 
Least Squares Method. 

KF assumes the system to be described by a linear stochastic 
model, where the error associated to the system as well as the 
additional information incorporated are presented as normal 
distribution variables with zero mean and variance a2. 

A complete illustration of Kalman Filter is drawn in figure 
(4). This filter performs the Best Linear Unbiased Estima­
tor (B.L.U.E) of a system state using information from the 
previous estimations. KF consists of two stages: (a) time 
update (left) and (6) measurement update (right) are related. 
The former is in charge of projecting future estimators of the 
current state and error covariance. The latter will predict new 
state estimations. 

One of the most interesting KF features is the ability to 
predict the state of a system, even if the nature of the system 
modeled is unknown. 

The Time Update (prediction) estimates the state x accord­
ing to the following equation: 

Zfc Hxfc Vk (8) 

Xfc + l AfcXfc + B f c w fcWfc (7) 

Finally, matrix H relates the state with the measure zfc where 
zfc is the TPE output and r¡ ~ A/"(0, a) the measurement noise 
respectively. 

In this paper, a Modified version of the Kalman Filter 
(MKF) [31] is applied. The reason to use MKF is that the 
model considered in this system is linear. Consequently, a 
linear version of KF taking into consideration velocity and 
acceleration parameters represents a good trade-off between 
complexity (i.e Extended Kalman Filter) and performance 
(velocity and acceleration improve the estimation results). In 
addition, Extended Kalman Filter does not provide the optimal 
solution in case of wrong initial state inputs, which is highly 
probable in the scenarios considered in this work [44]. 

Therefore, MKF algorithm considers the speed axis vx 

and vy variables for the state x in addition to the position 
vector p —> (x, y) of the tracked target. These variables in 
combination with the use of a more realistic movement model 
known as Random Walk Model [49] represent an advantage 
in terms of estimation accuracy. 



Therefore, the system can be expressed as follows: 

Afc = 

1 
0 
0 
0 

0 
1 
0 
0 

dt 
0 
1 
0 

0 
dt 
0 
1 

(9) 

where the states xfc are composed by axis positions and 
speed: 

xfc = [x,y,vx,vy]' (10) 

Additionally, H remains as the general Kalman formulation 
whereas Bfc will be modified as follows: 

H 
1 0 0 0 
0 1 0 0 , B k — 

Ut1' 
¡dt2 

dt 
dt 

(11) 

Main modifications presenting the movement information 
and are included in different matrices of the process, where 
Mfc = a\ is the acceleration parameter. This parameter is set 
to 0.1 based on the normal people velocity when they are 
walking. Moreover, R matrix contains the error variance of 
TPE estimation: 

R 
0 

(12) 

where ax, ay represent the error deviation in TPE estimation 
in x and y respectively and are settled to the TPE mean error 
for each technology used. The values of R were obtained by 
performing several independent experiments for each of the 
technologies considered in this work. Note that consequently, 
the Kalman Filter has its own R Estimation Error Covariance 
Matrix corresponding to IEEE802.15.1, IEEE802.15.4 and 
IEEE802.11g standards respectively. 

Finally, according to the Random Walk Model, the covari­
ance matrix Q: 

Q 

\dtA 

0 
¡dt3 

0 

0 
{dt* 

0 
¡dt3 

¡dt3 

0 
dt2 

0 

0 
¡dt3 

0 
dt1 _ 

(13) 

where aq parameter must be fixed. For people acceleration in 
a normal walking behavior, it is equal to 1. This value has 
been chosen according to the behavior estimation proposed in 
[29], [30]. 

Finally, for the sake of simplicity, it is assumed that the 
outputs of the KF are denoted using the same notation than 
previous sections. Therefore, the outputs are pfc = xk,yk for 
estimated positions and Pfc for error covariance. 

V. MULTI-SENSOR PROCESSING ARCHITECTURES 

In this paper, mainly two multi-sensor schemes are con­
sidered: (1) Track-To-Track Fusion (TTTF) and (2) Kalman 
Sensor Group Fusion Architecture (KSGF). Both architecture 
patterns are shown in figure 3. In the former, processing stages 
(TPE and TTP) are performed separately for each sensor to 
achieve high-level inferences (routes) that are subsequently 

fused. Nonetheless, in the latter scheme the sensor measure­
ments are combined in the TTP stage. Both schemes are 
described and compared in next subsections and results are 
presented in section VII. 

A. Track-To-Track Fusion Architecture TTTF 

This architecture pattern relies on fusing the routes obtained 
by each technology A separately. The proposed algorithm 
applies the Maximum Likelihood Estimator (MLE) to the 
probability density function of the available routes [32]. For 
this purpose, ÍR is defined to be the set of routes. Additionally, 
it is assumed that every route is composed by w number 
of steps ÍRX = { p i , . . . , p r o } . Notice that the algorithm is 
able to fuse information even if there is not measurements 
from all technologies available in the time window considered. 
Therefore, the probability density function can be described as 
follows: 

P(«A) = n n , 
fc=lA=W(2^|PA,fc| 

= - j ( P f c - P f c ) ' P A , f c ( P f c - P f c ) (14) 

where V\^k and Pfc are the outputs from TTP described in 
section IV. Note that p describes the position estimated from 
previous stages (TPE and TTP), whereas p denotes the final 
output of the Fusion stage. Moreover, D is the range of P , 
which denotes the number of sensors available in a particular 
window-time in the network. From equation (14), it has been 
demonstrated [45] that MLE can be obtained by minimizing 
the result of p and setting the gradient equal to 0. As a result, 
the state estimation for every location is calculated as follows: 

Pfc 7 ,PA.fc 
A = l 

- 1 A 

A = l 
A,fci (15) 

Note that, both the estimation pfc and E(pfc) = pfc are 
unbiased. Finally, the covariance of the estimate, denoted as 
£, is given by: 

E P 
A = l 

- 1 
A,fc (16) 

It can be shown that this result is the Kalman Filter update 
equation applied to each local route in each partition. Further 
details can be found in [45]. 

B. Kalman Sensor Group Fusion Arquitecture KSGF 

The second architecture presented is the Kalman Sensor 
Group Fusion (KSGF) which exploits the Kalman filter prop­
erties for multi-sensor data fusion [33]. KSGF method directly 
incorporates the position estimations of each sensor in a 
single Kalman Filter. However, the system must be properly 
conditioned to obtain an accurate route estimation. 

General KF system equations were described in section IV. 
However, some modifications must be introduced in the filter 
to support multi-sensor functionalities. In concrete, update 
matrix H, described in equation (11), must be adapted to 
incorporate the sensor inputs: 



H 

1 0 0 0 
0 1 0 0 
1 0 0 0 
0 1 0 0 

1 0 0 0 
0 1 0 0 

(17) 

Algorithm 2 MUFAF: TPE, TTP, TTTF Stages 
l: procedure TPE: 

Inputs: R S S / A —> synchronized RSSI measurements for 
a window time k. // F —> Fingerprint Matrix. 

2: for each A do 
RSS / I A -E[F(p J • ,A,RSS)] , 

3: tt>. = 5> l-N 

K 
Wl 

RSS I |A-E[F(p¡,A,RSS)] 

L 

i=i 

w. 

(4) 

end for 
end procedure 
procedure TTP: 
Inputs: pA —> estimated positions for every technology A 

for each A do 
x^+1, Pfc+1 —> Kalman Time Update Fig 4 
Xfc, Pfc —> Kalman Measurement Update Fig 4 
PA ^ x f c 

Px,k <- Pfc 
end for 

end procedure 
procedure TTTF: 
Inputs: pA —> Estimated position from TTP for every 
technology. // P\,k Error Covariance Matrix from Kalman 
Process. 

17: 

18: 

19: 

20 

21 

22 

23 

24 

for each *K do 

end for 
A = l 

-1 A 

(15) 
A = l 

a — ¡3 filter: 
Calculate predictions for position: (20) 
Compute prediction error: (21) 
Estimate the position: (22) 
Estimate the velocity: (23) 

end procedure 
Outputs: pfc —> filtered position after fusion stage. 

Furthermore, R matrix must include sensor error covari­
ance measurements. These values are appended to the main 
diagonal: 

R 

r^ 

0 
0 
0 

0 
0 

0 

< 
0 
0 

0 
0 

0 
0 

-I 
0 

0 
0 

0 
0 
0 

< 

0 
0 

0 
0 
0 
0 

0 
0 

0 
0 
0 
0 

0 
0 

0 
0 
0 
0 

0 

0 

0 
0 
0 
0 

0 

°l 

(18) 

where a parameters are the same that have been used in the 
TTP process for each independent technology. 

Finally, the observations vector z is now extended to collect 
the x and y coordinates estimated from each sensor: 

= [• xi, 2/1, X2, j / 2 , XA, y A] (19) 

Taking into consideration the aforementioned modifications, 
the KF can be performed as described in TTP. As a result, the 
fused route will be provided by the KSGF. Both architecture 
patterns can be employed for multi-sensor data fusion. The 
computational complexity of the architectures proposed has 
been addressed [34] and detailed in section VII. In this work, 
both patterns are compared in terms of execution time. KSGF 
computing time grows exponentially as the number of sensors 
increases. 

C. Alpha-Beta Filter for noise reduction 

Fusion stage improves the quality of the estimated route 
in general terms as it takes the information from all sensor 
technologies. However, due to the high values in covariance 
matrices employed for Multi-Sensor fusion stage, some out­
liers can arise or propagate. Additionally, as the Multi-Sensor 
Fusion can calculate routes with partial information (even a 
single technology with a high error rate), the outliers can 
appear or introduce noise in future estimations. These outliers 
corrupt the normal target path which can yield to inappropriate 
routes modeling or wrong patterns generation among others. 

In order to minimize the noise and outliers effect that can 
arise as result of multi-sensor stage, an additional filtering 
stage is applied. There exist several proposals for routes 
smoothing, however in this paper, the well known Alpha-Beta 
filter [35], [36] is used. The reasons to employ the Alpha-Beta 
filter are the lower complexity, the lesser computational cost 
and that system model details are not required. Furthermore, 
taking into consideration that the effect of outliers is much 
lesser in the presence of low noisy estimations, it has been 
shown that the alpha-beta filter estimations performance is 
similar to Kalman Filters [47]. 

Similarly to equation (9), initial states of spatial coordinates 
and axis speeds are considered. From Fusion stage, the nota­
tion for estimated positions is p = (xm,ym). This position 
is the input of the Alpha-Beta filter. Therefore, the position 
prediction can be obtained as follows: 

Xk+i = Xk + vXkdt ; yk+1 =yk + vVkd,t (20) 

Additionally, error measurements can be calculated from 
predicted states by the subtraction of the fusion algorithm 
Xm-, iim from the predicted position: 



Algorithm 3 MUFAF: Adaptive Fingerprinting Update (AFU) 

•^m *£fc+l j ^ y Vn Vk+1 (21) 

The final position and velocity for next algorithm iterations 
are obtained as follows: 

ik = Xk+i + aex ; yk = yk+1 + aey 

P P vxk — vxk + A ,ex , vyk — vyk + A , e 

At At 

(22) 

(23) 

where a and ¡3 are the filter control parameters. In order to 
guarantee filter stability and convergence, these values must 
fulfill the following conditions: 

0 < a < 1; 0 < / 3 < 2 ; 0 < 4 - 2a - /3 (24) 

Additionally, there is a direct relation between alpha-beta 
control parameters: 

/? = (25) 
2-a 

The a value is commonly settled to small values (< 0.3) 
in order to attain a high smoothing filtering able to minimize 
the outliers impact in the final estimated path. 

— Theoretical Spherical Semi-Variogram 
o o Experimental Semi-Variogram Data Points 

I Nugget 
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Fig. 5. Main Semivariogram Patterns: Nugget effect: uncertainty due to lack 
of very close samples. Range: larger distances than Range are uncorrelated. 
Sill: maximum similarity value. 

The entire procedure for MUFAF Multi-Sensor Fusion is 
described in algorithm 2. In this pseudo-code the sequences 
to perform the TPE, TTP and TTTF stages are shown for an 
iteration. 

VI. ADAPTIVE FINGERPRINTING UPDATE 

In this section, the Adaptive Fingerprint Update (AFU) 
stage is described. Wireless channel propagation is a very 
tough behavior to be mathematically modeled. Even the prob­
abilistic methods lack of an accurate characterization due to 
several factors such as obstacles, reflection and multipath. 
Additionally, these undesired events are time-varying which 
makes it even harder to deal with. As described in section 
III, Fingerprinting technique face this problem by building 
a dataset to compare the correlation degree in indoor areas 
with statistical functions. However, this dataset must change if 
the propagation conditions vary. Time analysis can be applied 
to make predictions on the evolution of this channel [21]. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
12 

13 

14 

15 

16 

Inputs: p —y. Position estimated after fusion stage. // F —>• 
fingerprint Matrix. // R S S / A —> RSSI measurements 
gathered for every node and technology. 
procedure AFU: 

for each A do 
for each point i,j in c do 

Calculate 7«p¿ ,P j ) ) ; (28) 
end for 
Fit into theoretical model T~() 
Create T Matrix 
Create b, b M + i <— 1 
Solve SLE w <- r xb ; (33) 

M 

Obtain RSS P = ^ W í E [ F ( P í , A, RSS)] ; (32) 
i=i 

if ||RSSp - RSS / j A | | < ¡j, then 
Update: F(p,, A, RSS) <- RSSP 

end if 
end for 

end procedure 

However, an interesting approach is reached by adaptively 
update the fingerprinting dataset based on the quality of the 
information gathered. Consequently, a proposal for AFU is 
presented in this work. This algorithm endows the entire 
MUFAF framework with responsiveness to indoor condition 
changes. 

AFU can be described as follows: the input of the system 
is the RSSI values from the target tracked and the outputs 
from TPE, TTP and Fusion stages are the estimated positions 
of the mentioned target. AFU aim is to verify the similarity 
degree of the RSSI gathered with the value estimated at this 
location using the Fingerprint dataset. There exist a wide range 
of classical estimators in the literature. However, an interesting 
approach is given by the use an interpolation technique called 
Kriging [36], [37]. 

This technique was initially employed for geospatial anal­
ysis, however the method has been successfully applied to 
several sciences. The main goal of Kriging is to estimate the 
field behavior at unknown locations based on the available 
measurements. 

In general terms, Kriging is a Best Linear Unbiased Estima­
tor (B.L.U.E) which aims to minimize the mean square error. 
As aforementioned, if z denotes the observation: 

minimize [z(p) — z(p)] (26) 

The main feature (and differential) of Kriging interpolation 
is that guarantees to be unbiased even if stationary of field is 
not known. This can be expressed as: 

E [ z ( p ) - z ( p ) ] = 0 (27) 

Statement (27) represents the main advantage over tradi­
tional methods based on covariance. This condition is satisfied 
due to the use of a statistical tool called semivariance. Its 



general estimator is given by the Experimental Variogram, 
denoted by 7(-): 

l{h) = 
1 

N(h) 

2N{h) 
^ ( z ( P i ) - z ( P j ) ) 2 (28) 

» , j = i 

where N(h) represents the number of RSSI measurements 
gathered at a predefined distance h. 

The Semivariance is employed to exploit the spatial similar­
ity without dependency of the field mean. Additionally, square 
difference (28) endows the estimator with robustness to field 
outliers. 

Specifically, in MUFAF all fingerprint cells c are employed 
to build the Semivariogram: 

7A(h) 
2||c( 

—y ^2(RSSPtx - RSSPj (29) 
c(h) 

Vi,j G c A d(xi,Xj) G h. This process is performed 
VWJ G v. In the case of square/rectangular grids as the ones 
considered in figure 2, the lags distribution can be expressed 
as: 

d(xi,yj) 
d\ 

~Vi -Vi (30) 

where X¿,J/J G c are the spatial coordinates of the cells 
center. Furthermore, let assume that W and D are the indoor 
width and depth expressed in centimeters respectively. Addi­
tionally, L = nx m is the total number of cells and n and m are 
the number of cells per side (width and depth). Finally, d\, d2 

denote the distance from the center of a cell to the center of a 
neighbor cell in every axis. Consequently, it has been shown 
[46] that if the number of intervals within lags in h satisfies 

to be lesser than \ ," , , „ „ ^ then it will exist at least a 
y log(VW2 + D2) 

Semivariance measurement in every h interval. 

Fig. 6. Average error comparison of route estimation for every technology 
(no fusion applied) using Fingerprinting technique, Kernel Density Estimation 
and Kalman Filter. 

Once the Experimental Semivariogram is calculated, a fit­
ting into a general theoretical model, denoted by T"() is 
required to infer spatial data for distances not considered in 

7(0-

There exist several theoretical models for the Semivari­
ogram such as Linear, Spherical, Gaussian and Exponential 
[38]. Gaussian model is appropriated for processes with small 
short-term variations of similarity whereas Spherical or Ex­
ponential are the most suitable options for applications where 
considerable variations arise in short-distance. Due to the high 
variance in measurements distribution presented in section II, 
in this paper, Spherical Semivariogram theoretical model is 
employed: 

7 0 ) =ng + Rg 
:ih 
2Si 2Si3 (31) 

where ng is called the nugget effect. This parameter con­
siders the uncertainty of the Semivariogram estimation when 
the separation between points tends to 0. Rg is the Range, 
that is the maximum distance taken into consideration for 
two samples. Finally, the Sill (Si) is the maximum variance 
(dissimilarity) between two samples. These parameters are 
drawn in figure 5. 

As aforementioned, Kriging provides the (B.L.U.E). There­
fore, the field value RSS P can be described as a weighted 
sum of the available node measurements: 

M 

RSSp = ^ W í E [ F ( P í , A , R S S ) ] (32) 
i=i 

where w = {wi, . . . , wM} are the weights which sum must 
fulfill J2V = 1 to guarantee unbiasedness. Furthermore, the 
weights are obtained by solving the following System of 
Linear Equations (SLE): 

where: 

Ts 

7«P¿,P¿))> i,j = l,...,M 
1, i = M+l,j = l, 

j = M+l,i = l, 
0, i,j = M+l 

(33) 

M; 
M 

i s a n M + l x M + 1 Matrix capturing the spatial similarity 
among the available nodes in the fingerprint cell distribution. 
Additionally: 

s = [w, £] 

s vector contains the weights w and the M + 1 value is the 
Lagrange Multiplier C that ensures the unbiased nature of the 
estimator and 

b = [7 (d (p ,p i ) ) , 7 (d (p ,p 2 ) ) , . . . , 7«P ,PM)) , l ] ' 

b vector contains set of theoretical semivariances from the 
nodes to the estimated point p. 

Finally, by solving the aforementioned System of Lin­
ear Equations SLE (33), the RSSI estimation is obtained. 
However, to determine the fingerprint update, the following 
decision rule has been implemented: 

| R S S A - R S S /,A < M (34) 
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Fig. 7. (Xe/i) Average error using both fusion architectures in path estimation for an experiment for a particular experiment with 90 steps per route. (Center) 
Path estimation by using Track-To-Track Fusion Architecture and (Right) Path estimation by using Kalman Sensor Group Fusion Architecture where real 
person route is denoted by green dotted line and MUFAF Route reconstruction is represented by red dotted line. 

where ¡i is an empirical threshold which value must be 
iteratively calculated. The process consists on: (a) perform 
a significant number of randomly generated routes (i.e for 
the experiments carried out 1000 routes were generated). 
(6) For these routes, the decision threshold must be initially 
adjusted to a low value (i.e ¡i = 10_1) which implies a low 
update rate as most of the measurements will be neglected 
in the fingerprint dataset. (c) Calculate the mean error of the 
routes with this threshold, (d) Iteratively increase the ¡i value 
until a large number (i.e the high boundary in experiments 
presented in this work was settled to 5) which means that 
all measurements will be accepted to update the fingerprint 
dataset and repeat the mean error calculation, (e) Find the ¡i 
value that minimizes the mean error function. 

The general outline for Kriging implementation is described 
in algorithm 3. In this algorithm, the sequential steps to obtain 
the RSSI estimation and to compare it with data gathered 
(RSSI from sensors) in order to make a decision on the 
Fingerprint update stage. 

In addition to the theoretical model choice for the Semivar-
iogram, there are some parameters that can affect the proper 
functionality of the Kriging interpolation. A critical parame­
ter is the decision threshold ¡i. The process aforementioned 
needs to be perform with no prior knowledge of the network 
behavior. However, the better the process is carried out the 
higher the precision and responsiveness of MUFAF algorithm 
will be. Moreover, the number of lags (h) is relevant to attain 
an appropriate fitting. Furthermore, the number of neighbors 
is important to reach the best trade-off between complexity 
and accuracy. In next section, experiments executed as well as 
the results obtained will allow a better understanding of the 
process described in this section as well as the improvement 
of the results compared with classical estimation techniques. 

VII. EXPERIMENTAL RESULTS 

A. Experiment Setup 

In this section, the experiments performed to assess MUFAF 
and the results obtained in comparison with existing methods 
are detailed. In the simulations, the laboratory scenario drawn 

Error Track-to-Track Fusion 

Error Kalman Sensor Group Fusion 

150 
Number of steps permute 

Fig. 8. Estimation error comparison for both architectures for several 
estimation periods. This experiment was performed using 1000 routes. KSGF 
error is lesser than TTTF in long term evolution. 

in figure 2 is considered. This room represents a typical in­
door environment with human activity, people flow controlled 
and harsh propagation conditions due to multipath fading, 
obstacles due to furnitures and wireless interferences due to 
electronic devices, further details can be found in [18]. 

Additionally, as described in section II, four v = v\,..., -y4 

nodes are deployed at the lab corners. Furthermore, every node 
is equipped with four sensors A = 4: IEEE802.15.1 (Blue­
tooth), IEEE802.11.g (WiFi), and two IEEE802.15.4 receivers 
(XBee and CC2420). Firstly, TPE and TPP performance are 
assessed by comparing MUFAF to other methods that employ 
fingerprint technique. Afterward, both pattern architectures are 
compared to observe their accuracy expressed in centimeters. 
Subsequently, experiments of Kriging interpolation are con­
trasted with covariance-based methods. Moreover, a complete 
framework experiment is carried out for multi-person tracking. 
Several aspects such as the number of steps per route, the 
number of neighbors available and the time-evolution of AFU 
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Fig. 9. Top graphics represent the initial histogram representation for a cell of 50 measurements whereas bottom shows the evolution of Histograms in 1000 
simulations provided by AFU. (Left) Evolution of Histogram for AFU in IEEE802.15.1 Bluetooth. (Center). Evolution of Histogram for AFU in IEEE802.11.g 
WiFi. (Right) Evolution of Histogram for AFU in 802.15.4. 

TABLE II 
AVERAGE ERROR COMPARISON OF MUFAF WITH SEVERAL METHODS 

EXPRESSED IN CENTIMETERS. 

Euclidean 
Distance 

[41] 

Mahalanobis 
Distance 

[41] 

K-NN [42] 

Gaussian 
Kernel [39] 

MUFAF 
Exponential 

Kernel 

IEEE 
802.15.4 
(XBee) 

110.71 

108.33 

105.87 

67.27 

63.05 

IEEE 
802.15.4 
(CC2420) 

150.367 

140.05 

139.58 

61.92 

59.49 

IEEE 
802.1 l.g 

WiFi 

122.72 

112.12 

157.42 

63.30 

79.73 

IEEE 
802.15.1 
Bluetooth 

150.57 

142.58 

161.29 

170.34 

137.15 

were assessed in the results presented. 

B. Computational Cost 

The entire process for MUFAF implementation can be stated 
as: 

• Create Fingerprint dataset. 
• Performing TPE. 
• Performing TPP 
• Multi-Sensor Fusion. 
• Alpha-Beta Filter. 
• Performing AFU. 
Taking into account Fingerprinting stage, for every technol­

ogy (A) considered, the F matrix must be created. Further­
more, Kernel Density Estimation computational complexity 

has been proven to be 0{NL) [54]. Therefore, the cost of 
executing Fingerprinting and TPE is given by costTpE = 
A[0(L) + 0(LN)}. 

Moreover, depending on the architecture pattern choice, the 
order of the aforementioned MUFAF tasks can change as 
well as the associated computational cost. In case of TTTF, 
the computational complexity of solving the separate Kalman 
Filter for every technology is A[C(x2) + 0(p2)] where x 
and p lengths are 4 and 2 respectively. In case of KFSG, the 
cost can be expressed as C((Ax)2). Additionally, a — ¡3 filter 
perform few linear operations: C(x). Finally, AFU involves 
the solution of a System of Linear Equations of size M + 1. 
Consequently, AFU computational complexity is C((M+1)2) . 

C. Experiment Results 

The first experiment was run to assess TPE stage. It 
was executed for a total of 1000 different routes across the 
room such as the drawn in figure 2. Initially, every route 
mA = {x i , . . . ,x ro=9o} was composed of 90 steps. A fin­
gerprint dataset has been created with the cells distribution 
shown in the scenario figure 2. Measurements were carried 
out with the available sensors reading simultaneously for a 
period T = 5 minutes per cell. The number of samples 
vary according to the technology and distance to the network 
nodes as previously described in section II. Specifically, for 
the experiments performed, 28 cells were figured therefore 
the fingerprint process lasted 28 x 5 = 140 minutes. 

The average error for every method is detailed in table 
II. MUFAF results are significantly better than deterministic 
methods. In addition, MUFAF results are better than Gaussian 
Kernel methods except for IEEE802.11.g WiFi sensors. This 
is probably due to two aspects: (a) distances considered are 
not long enough to appreciate IEEE 802.1 l.g WiFi signal 
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Fig. 10. (Left). Error evolution for Covariance based method in every fusion. (Right). Error evolution for Position Estimation using AFU with a threshold 
LI = 1.5. 

attenuation and (6) the histogram distributions are similar to 
Gaussian functions. 

Furthermore, results obtained for the aforementioned sensor 
technologies are shown in figure 6. In this figure, it can 
be observed that IEEE802.15.1 Bluetooth technology errors 
in estimation are larger than the other technologies. The 
reasons for this result can be the low power transmission 
of IEEE802.15.1 Bluetooth devices and interferences. Con­
versely, 802.15.4 based technologies perform with a mean 
error under 70 cm. 

Moreover, the architecture patterns described in section V 
were also analyzed. In figure 7, a particular experiment is 
provided showing the error between the real path and the 
estimations obtained using the proposed architectures. In the 
left side, the error variance is large in the initial steps, but it 
can be observed how this variance is reduced along time due 
to convergence of P matrix in KF. 

Conversely to expected results, TTTF outperforms KSGF. 
This can be due to the fact that TTTF employs as much 
Kalman Filters as technologies (A) available. Therefore, the 
dimension (range of matrices in KF) is lower than the single 
one of KSGF. Nonetheless, for a longer assessment period the 
accuracy of estimations is not significantly enhanced. This is 
shown in figure 8, where it can be appreciated that the initial 
TTTF error is lesser than KSGF, but after some steps in the 
iteration (> 100 steps) it is stabilized. On the other hand, 
KSGF error is lesser in the long term however, both patterns 
converge to an error around 45cm. 

Similarly, Adaptive Fingerprinting Update (AFU) was eval­
uated. The first experiment consisted in comparing Kriging 
interpolation with Covariance based methods. In the subse­
quent experiments, the number of steps for each route is 90. 
The results are shown in figure 10. In the left side of the figure, 
MUFAF is tested by using the inverse covariance method 
[50] whereas the right side of the figure illustrates MUFAF 
using Kriging interpolation. It can be observed that the method 
proposed in this paper converges faster to a minimum error 
value. On the one hand, blue line shows the fitting model that 

1.5 2.0 
Threshold 

Fig. 11. Empirical threshold for decision rule in AFU. This parameter was 
obtained by performing iterative simulations for 1000 routes with multiple LI 
values in the range (0,3.5). 

minimizes the minimum square error (MSE) of estimations for 
TTTF. On the other hand, red dotted line describes the model 
that minimizes MSE for KSGF. Results show that MUFAF 
mitigates the impact of changing conditions. Additionally, 
the accuracy after some hundred steps is at least between 
10 — 15 cm better. 

In order to evaluate the evolution of the distribution, an 
experiment consisting in an initial Fingerprinting containing 
only 50 measurements per cell and technology is performed. 
Firstly, in figure 9 the evolution of histograms through AFU 
is illustrated. In top figures, the initial samples distribution is 
shown while in bottom figures the evolution of distribution 
after 1000 samples is displayed. 

However, one of the most relevant aspects for AFU is the 
threshold definition. An experiment has been carried out to 
obtain the performance of AFU applying several values to ¡i. 
The results are depicted in figure 11, where the average error 
for 1000 routes with fixed ¡i values show that the optimal value 
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Fig. 12. Mean error expressed in centimeters for Kriging algorithm varying 
the number of neighbors chosen for interpolation in 1000 routes. 

TABLE III 
EVOLUTION OF AVERAGE ERROR (cms) OF MUFAF FOR SIMULTANEOUS 

MULTI-PERSON TRACKING. 

^ ^ Number 
^ ^ of Routes 

People ^ ^ 
Tracked ^ ^ 

1 
2 

3 
4 

5 

50 

105.56 
100.96 

102.62 
105.64 

109.35 

100 

100.35 
99.01 

95.03 
100.47 

99.39 

200 

91.09 
72.48 

68.10 
78.66 

86.59 

300 

73.01 
58.76 

57.85 
66.28 

77.33 

400 

59.67 
52.87 

55.12 
62.02 

73.60 

is 1.3 < / x < 1.8. 
Furthermore, AFU influential parameters were analyzed. As 

stated in previous section VI, the size of the neighbors in 
Kriging estimation can affect the performance. Therefore a 
test to show the evolution of M was carried out for both 
architectures. The results are depicted in figure 12 where the 
range from M = {4, 8} yields to the lower error. For large 
number of cells, the interpolation relevant are not attained. 
This can be due to the low similarity of the nodes located far 
away from the estimated point. 

Finally, an experiment with several persons randomly walk­
ing across the room was performed. Every person held in their 
hands a device equipped with the technologies mentioned in 
this work. The fingerprint dataset was initially composed of 
50 samples per cell. The results of this test are drawn in table 
III. Surprisingly, for a single person, the estimation accuracy 
is lower than multi-person cases. This is mainly due to the 
faster fingerprint update when the measurements gathered is 
doubled. However, results for 3 and 4 persons walking simul­
taneously is similar. The decision threshold ¡i allows update 
the fingerprinting dataset only for high correlated estimations. 
Additionally, the unexpected multipath, reflection and related 
events make the variance of fingerprinting dataset to increase 
according to the number of active users. 

The entire dataset containing fingerprinting measurements 

for every technology, as well as example routes are totally 
available for testing purposes and comparison with the algo­
rithms described here. This information can be download from 
http://www.gatv. ssr. upm. es/^ghp/ 

VIII. CONCLUSIONS AND FUTURE WORK 

In this paper, a complete framework for accurate indoor 
tracking has been described. MUFAF is composed by several 
algorithms that allow to adaptively track an object in an 
indoor scenario. Furthermore, MUFAF takes advantage of the 
multiple information sources by means of a fusion strategy. 
Finally, AFU guarantees the most updated information in the 
fingerprint data. As an evidence of results obtained, it can be 
concluded that the fingerprint technique in combination with 
probabilistic techniques such as Kernels outperform the results 
obtained by employing deterministic techniques. 

Moreover, in the view of results obtained, it can be con­
cluded that the Track-to-Track Fusion strategy outperforms 
Kalman Sensor Group Fusion for short estimation periods. 
However, for mid-term applications KSGF can be the most 
appropriate choice. Up to the best of our knowledge, Kriging 
interpolation has not been ever used for Adaptive Fusion Up­
date and in this work has been demonstrated that this technique 
can be successfully employed. The potential application of this 
technique for statistical estimation such as the KDE has been 
proven. 

As next steps in this Framework development, it is important 
to highlight the need of improving the process to estimate 
the fj, parameter, or even to develop techniques that allow 
to endow it with adaptability to the environment conditions. 
Furthermore, the employment of advance filtering techniques 
such as Particle Filters can help to increase the efficiency and 
precision of estimations performed. Finally, in general terms, 
technologies employed in this work can be fused to improve 
the accuracy of estimations. 

As future work, this algorithm can be used in combination 
with computer vision techniques to unequivocally identify 
people in an indoor environment. Person identification for 
trackers in Computer Vision is a major issue that can be faced 
by fusing images information with data gathered from the tech­
nologies presented in this work. Additionally, the inclusion of 
inertial sensor can significantly improve the estimations using 
absolute orientation values. Moreover, AFU can be analyzed 
by applying Kriging variants such as Universal Kriging that 
can be applied to non-stationary fields. 
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