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In the last years, studies on the vulnerability of public transport networks attract a growing attention
because of the repercussions that incidents can have on the day-to-day functioning of a city. The aim
of this paper is to develop a methodology for measuring public transport network vulnerability taking
the Madrid Metro system as an example. The consequences of a disruptions of riding times or the number
of missed trips are analysed for each of the network links with a full scan approach implemented in GIS
(Geographic Information Systems). Using real trips distribution, each link in the network is measured for
criticality, from which the vulnerability of lines and stations can be calculated. The proposed methodol-
ogy also makes it possible to analyse the role of circular lines in network vulnerability and to obtain a
worst-case scenario for the successive disruption of links by simulating a targeted attack on the network.
Results show the presence of critical links in the southern part of the network, where line density is low
and ridership high. They also highlight the importance of the circular line as an element of network
robustness.

1. Introduction

Public transport networks are essential for mobility in urban
areas. According to the International Association of Public Trans-
port (UITP), in 2008 around 60 billion trips were made on public
transport in the cities of the 27 member states of the European
Union. In order to guarantee the efficient running of these net-
works, transport planners need to know their level of vulnerability
to possible incidents and identify those parts of the networks
where incidents will have the greatest impact on passengers.

Any type of incident occurring on a public transport network
will affect the day-to-day functioning of the city itself. The effects
are particularly felt when rail travel is involved because of the
amount of passengers who use this means of transport and its
greater vulnerability. Train breakdowns, electrical failures and
engineering work may lead to temporary line closure, either in
one or both directions, and incidents such as suicides, demonstra-
tions or strikes may also affect the frequency of the service. More
dramatic events like terrorist attacks, such as those that took place
in London and Madrid, have particularly far-reaching and long-
lasting effects on the network. The terrorist attack on London’s
subway and bus system produced a tremendous disruption in

the lives of London residents. Several months after the subway at-
tack, weekend ridership was still down by 30% and between 5% to
15% on weekdays (Chen et al., 2007).

It is in this context that network vulnerability studies are
becoming increasingly important. Vulnerability is related to the
capacity to continue operating following disruption, in other
words, the degree of susceptibility of a network to certain incidents
that may lead to reduced service or accessibility levels (Berdica,
2002). These incidents will have a greater impact on some links
of the networks than on others. A network node is vulnerable if
loss (or substantial degradation) of a small number of links signif-
icantly diminishes the accessibility of the node, as measured by a
standard index of accessibility (Taylor et al., 2006).

It is therefore necessary to know the criticality as well as the
vulnerability. The critical elements of a network (links or nodes)
are those that most affect its vulnerability: the more critical the
element, the greater the effects of its loss on the system (Taylor
et al., 2006; Jenelius et al., 2006). The criticality level of an element
depends on the role it plays in the network structure and the flows
within it. It is essential to be aware of the weak points and alterna-
tive routes in the network in order to mitigate vulnerability (Chen
et al., 2007) or, if need be, give priority to some links over others for
rebuilding after a catastrophic event (Sohn, 2006; Bono and
Gutiérrez, 2011).

The metropolitan area of Madrid is a good example of the
importance of public transport networks for mobility. Of the
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different modes of public transport in Madrid, the Metro has the
greatest ridership. In 2010 it carried 630 million passengers out
of a total of 1488 million who used public transport. Other modes
of transport followed: urban buses (469 million passengers), inter-
urban buses (189 million), the local train service (181 million) and
the light railway (17 million).

The aim of this study is to measure criticality and vulnerability
in a public transport network. To do this, the consequences of
disruption in each link of the network are analysed in order to
determine their impact on riding times or the unsatisfied travel de-
mand. Unlike most studies on the vulnerability of public transport
networks, which work with graph theory indicators, this study
analyses increases in riding times caused by having to resort to
alternatives to the optimum route, using actual network flow
distribution. The worst scenarios for a successive disruption of
links are also obtained by simulating a coordinated attack on the
network, such as a possible terrorist attack or sabotage during a
strike, and the repercussions on flow distributions deriving from
such scenarios are shown. The case study used is the subway net-
work in the city of Madrid (Madrid Metro), and GIS has been
applied.

After this introduction (Section 1) the paper is organized as fol-
lows. Section 2 reviews the literature on transport network vulner-
ability analyses in general and in public transport in particular.
Section 3 presents the methodology applied to analyse the Madrid
Metro system. The characteristics of the network and data used are
described in Section 4 and the results of the analysis are shown in
Section 5. Section 6 consists of a discussion of the results and the
final conclusions.

2. Background

Recent literature reflects a growing interest in network vulner-
ability studies. Contributions to the study of the vulnerability are
produced in many different disciplines and have been applied in
numerous fields (see, for example: Myung and Kim, 2004; Mati-
sziw et al., 2012; Alderson et al., 2013). Transport literature has
also incorporated vulnerability aspect in its studies. Especially after
the terrorist attacks on New York, Madrid and London and natural
disasters, such as earthquakes or hurricanes like Katrina and Rita,
that affected transport networks over the last few years. Some re-
views on this work describe attempts being made to establish the-
oretical, conceptual and methodological bases for studying
transport network vulnerability. For example, in her review of
the literature on road network vulnerability, Berdica (2002) puts
particular emphasis on defining the concepts to use, discussing
previous studies and exploring the way forward for future lines
of study. Jen (2005) published a book on the design of robust net-
works. Robustness is understood to be the capacity of the network
to absorb the impact of disturbances in its links and nodes while
maintaining operability in conditions similar to those found in a
normal situation. Murray and Grubesic (ed., 2007) examine the
vulnerability of networks from different perspectives (geographi-
cal, economic and social). Other recent reviews focus on concepts
such as resilience, defined as the capacity of networks to recover
from a possible incident (Reggiani, 2013).

By and large, studies on transport network vulnerability can be
differentiated according to whether they deal with road networks
(the most frequent) or public transport (less usual). Two main indi-
cator types are used for analysis. In studies related to the physical
sciences or mathematics, graph theory and complex network indi-
cators are applied, while vulnerability is usually measured from
accessibility or serviceability indicators in studies concerned with
transport and territory. Apart from the type of network considered
or the indicators used, network vulnerability studies can be

differentiated according to the approach adopted. Murray et al.
(2008) proposed a basic typology of network vulnerability ap-
proaches, namely: scenario specific, strategy specific, simulation,
and mathematical modelling. Scenario-specific approaches evaluate
the potential ramifications of a specific disruption scenario or
small set of scenarios. Strategy-specific approaches address ques-
tions such as: how vulnerable is a network to a structured or coor-
dinated loss of facilities? In simulation-based approaches, the goal
is to evaluate a suitable number of scenarios to obtain an effective
characterization of the range of possible impacts. Finally, mathe-
matical modelling approaches seek to identify those scenarios with
the potential to most affect network operation with respect to the
loss or hardening of facilities.

2.1. Transport network vulnerability assessment

Although public transport networks are more sensitive when it
comes to vulnerability, until a few years ago most research was
carried out on road networks, particularly when done from a geo-
graphical perspective or for transport planning purposes (see, for
example: Berdica, 2002; Berdica and Mattsson, 2007; Chen et al.,
2012; Erath et al., 2008; Jenelius, 2009, 2010; Jenelius et al.,
2006; Jenelius and Mattsson, 2012; Taylor et al., 2006; Taylor
and Susilawati, 2012). In these cases, a frequently used indicator
was accessibility. In the meantime, with respect to public transport
networks, the majority of authors applied graph theory indicators
within the framework of more recent complex network theory.
These indicators were already used in early studies on network
vulnerability to measure the increase in topological distance
resulting from disruption in certain links (Garrison, 1960) and to
identify the most critical links of a network (Ratliff et al., 1975).
However, the development of ever more efficient computer appli-
cations has led to a substantial increase in this type of study. Sev-
eral examples exist for subway networks. Criado et al. (2007),
Derrible and Kennedy (2010) study the form and structure of dif-
ferent subway networks, analysing as many as 66 and 33 networks
respectively. Angeloudis and Fisk (2006) measure robustness in the
face of possible random attacks in the 20 most important subway
systems in the world. These indices have also been applied to more
recent studies in which subway networks are considered not as a
closed system but as a sub-network interacting with others, in a
complex public transport system (Zhang and Peeta, 2011; von Fer-
ber et al., 2012). Among these studies is the analysis by Mouronte
and Benito (2012), who study the Madrid Metro and urban bus net-
work, applying some of the most commonly used graph indicators
(shortest distance between nodes, betweenness, detection of clusters
and robustness). Also in the last few years, there have been some
attempts to approach this type of analysis from a more geograph-
ical perspective. Bono and Gutiérrez (2011) have integrated con-
cepts and network theory indicators to measure vulnerability
and GIS tools for visualising and analysing results.

Some recent studies have tried to incorporate complementary
information into graph theory indicators (see, for example, Mishra
et al., 2012 or Matisziw et al., 2012). However, in most of them net-
work structure analysis still prevails and they lack a more compre-
hensive analysis on the operation of public transport systems that
brings together data on trips distribution, network capacity and
the cost of travel (Matisziw et al., 2009). Nevertheless, this type
of information should be included in order to know the vulnerabil-
ity of a transport network. The introduction of a double perspective
into vulnerability analysis has been advocated: that of network
supply and demand (Berdica and Mattsson, 2007; Chen et al.,
2007; Jenelius, 2009; Jenelius et al., 2011; Reggiani, 2013). The
quickest way of doing this is to use accessibility indicators to ana-
lyse the impacts of incidents in terms of market potential or gener-
alised transport costs, or serviceability indicators like average trip



Author's personal copy

times. Cats and Jenelius (2012) make one of a few contributions of
vulnerability public transport networks in this regard.

2.2. Approaches adopted

Studies on vulnerability have used different approaches to mea-
sure accessibility and serviceability. Accessibility has frequently
been used to assess specific scenarios, particularly for road net-
works. The effects of disruption on one or more elements of the
network in either real or hypothetical situations are simulated.
This type of study enables a detailed analysis of each of the pro-
posed scenarios to be carried out to assess impacts that are both
direct (operation of the network) and indirect (economic conse-
quences). Suárez et al. (2005) used a four-step travel models to
analyse the impacts of possible flooding of the transport system
in the Boston metropolitan area. Sohn (2006) applied accessibility
indicators to assess how the Maryland network would respond to
flood risk. Chang (2003) studied how accessibility gradually im-
proved after the Kobe earthquake as sections of the rail network
were re-established.1 Berdica and Mattsson (2007) assessed the im-
pact of the closure of different bridges in Stockholm. Taylor et al.
(2006) analysed the effects of the elimination of various sections
of the Australian road network in terms of generalised cost increases
and the loss of potential accessibility. Knoop et al. (2008), Erath et al.
(2008) simulated the impacts of closing sections of the road net-
works in Rotterdam and Switzerland, respectively. Fang et al.
(2012) used data on journeys made by up to 12,000 taxis to analyse
the vulnerability of a series of bridges in the city of Wuhan, China,
working with a trip assignment model and incorporating spatio-
temporal prisms. Other studies analyse the economic impacts of
the closure of certain transport axes, especially in transport corridors
that form a backbone for important commercial relations. Such an
example is the study by Masiero and Maggi (2012), who assess the
cost, both in direct terms (generalised transport cost) and indirect
terms, of the two-week closure of the north–south St. Gotthard road
corridor, one of the most crucial infrastructure in Europe.

Along with specific scenario assessment, a second approach
seeks to identify the most critical elements in a network, or the
most vulnerable in the worst scenarios. This is done by using a full
scan approach to analyze the role played by each element in the
network operation. Jenelius and Mattsson (2005) have carried
out a systematic study of how disrupted links affect a network
by analysing a separate scenario for every link in the network. In
another study on the road network in northern Sweden, they cal-
culate indices that measure the importance of each link in the net-
work and for exposure to vulnerability for each municipality in the
region (Jenelius et al., 2006). They use a transport model with
which they assign the total number of vehicles to each link in
the network and then calculate increments in the generalised trip
cost when each of these links is closed. Matisziw et al. (2009) iden-
tify more critical scenarios using combinations of the loss of sev-
eral links in the Ohio road network. Scott et al. (2006) propose a
robustness index to identify critical links and assess network oper-
ation, which they test on three hypothetical road networks. This
index is used to measure changes in trip times associated with
the reordering of all the traffic when one of the links becomes
unusable. On a regional scale, Taylor and Susilawati (2012) set
out to identify the most critical locations in a situation of degrada-
tion on a road network in south east Australia, using a remoteness
indicator (the opposite of accessibility) to assess all the localities in
the region. Another element of network vulnerability is increased
congestion. Watling and Balijepalli (2012) measure the vulnerabil-

ity of each link of the network to the effects of growth in demand.
Chen et al. (2012) use a transport model to highlight vulnerability
in congestion scenarios, but in this case the effects of each link are
analysed in what they call its ‘‘impact area’’, which makes the ana-
lytical process quicker.

A third approach in transport network vulnerability studies is
the strategy-specific assessment, the simulation of targeted at-
tacks. As yet, there has been little work along these lines and the
few studies that have been done use methodologies applied to
other types of network not specific to transport (mostly informa-
tion technology). Such scenarios are based on a sequence of losses
of network elements, for example, those caused by a terrorist at-
tack. The question posed is: how vulnerable is a network to a struc-
tured or coordinated loss of facilities? An initial approach was to
rank links in order of importance (criticality), based on a topologi-
cal criterion, and then eliminate them one by one in the same or-
der, analysing the effects at each stage (Albert et al., 2000). In
more recent studies, either the importance of a link is recalculated
at each stage, or links and nodes are simply eliminated at random
(Albert et al., 2004; Holme et al., 2002). Optimisation techniques
and games theory have also been used in transport network stud-
ies to identify the worst scenarios and formulate a response (see,
for example, Bell, 2000; Bell et al., 2008; Criado et al., 2004; Lou
and Zhang, 2011). Alderson et al. (2013) show how to evaluate
the criticality of sets of components, how to assess the worst-case
set of components that might be lost to a given number of simul-
taneous hostile attacks (or engineering failures, or losses to Mother
Nature), and how to allocate limited defensive resources to mini-
mize the maximum damage from a subsequent attack. Johansson
et al. (2007) study the different consequences between random
and structural removal of nodes or links in an electric distribution
network.

In this paper, serviceability is used to measure the criticality of
each link of a public transport network and, with this information,
analyse vulnerability at station level. This study incorporates the
double perspective of network and demand, using data from real
travel patterns. The three types of approach commonly used in vul-
nerability studies are coordinated through a simple serviceability
indicator (weighted average time). A full network scan approach
is used to assess the impacts of disruption in each link of the net-
work. In order to appraise how significant a specific type of line is
to network morphology, a scenario without a circular line is ana-
lysed. The final analysis examines the worst case scenarios result-
ing from a sequence of link disruptions.

3. Methodology

3.1. Trip assignment to each network link

The number of trips is obtained for each link of the network in
order to incorporate the demand perspective into vulnerability
analysis. Disruption to links used by a larger number of trips will
evidently have a much greater impact on network operation. In
fact, the importance of a link between two stations is represented
not only by its location in the network and the availability of good
alternatives, but also by the number of passengers it handles (Chen
et al., 2007; Jenelius, 2009).

The number of trips of each link is calculated from the O–D trip
matrix. First, the optimum routes between each pair of stations are
obtained in terms of travel time. These routes are combined with
the total number of trips between stations. An all-or-nothing ap-
proach is used as it is understood that all passengers would choose
the shortest travel time route between their station of origin and
their destination. Subsequently, the sum of the number of trips

1 The optimization approach for network restoration during disaster recovery has
been studied in other fields, for example, by Matisziw et al., 2010 or Nurre and
Sharkey, 2010.
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on all optimum routes passing through each link in the network is
calculated to obtain the total number of trips along each link.

3.2. Calculation of criticality and vulnerability

3.2.1. Criticality
The methodology used to estimate the criticality level of each

link is based on assessing the variation in serviceability. The
importance of a link for the network to function properly will be-
come apparent if, when it fails to be operative, it has a significant
effect on the overall performance of the system (Jenelius, 2009).
It was assumed that when a link is disrupted travel time remain
constant for all other non-disrupted links. Increased or decreased
congestion has no effects on the travel time of the non-disrupted
links.

Link closure can have two types of consequences. In cases
where there is no trip alternative (i.e. the network is subdivided
into two parts), criticality can be measured in relation to the total
number of trips unable to reach the destination station (unsatisfied
demand). When an alternative is available (i.e. that do not subdi-
vide the network into two parts), disruption of the link leads to
an increase in user travel time because of the need to use routes
that are not optimal.

In the second case, the criticality can be measured by analysing
impacts on travel times. The weighted average travel time is used
as a serviceability indicator. It was calculated as follows:

Ti ¼
P

jTijFij

Fi
ð1Þ

where Ti is the average travel time for the station i, Tij is the travel
time according to the fastest route from station i to station j, Fij is
the number of trips with origin in station i and destination in sta-
tion j, and Fi ¼

P
jFij is the total number of trips generated from sta-

tion i.
The average overall travel time in the original scenario (T0)

were like:

T0 ¼
P

i

P
jTijFij

P
i

P
jFij

¼
P

iFiTiP
iFi

ð2Þ

And the impact of disruption in each link (Ta) was assessed
through the average times without each link, using:

Ta ¼
P

i

P
jTijFija

P
i

P
jFij

¼
P

jFiTia
P

iFi
ð3Þ

where Tija is the travel time from station i to station j according to
the fastest detour when link a is disrupted.

Finally, average overall travel time without the link a were com-
pared with average overall travel time in the original scenario,
using the equation:

Ia ¼ Ta � T0 ð4Þ

where Ia is the time lost by closure of link a. The process is repeated
for each link. Results at link level are mapped. The importance (crit-
icality) for those links with trip alternative (i.e. that do not subdi-
vide the network into two parts) was obtained from this analysis.

3.2.2. Station exposure
Vulnerability was measured at the station level (station expo-

sure). In stations affected by link disruptions without trip alterna-
tive, the station exposure was calculated as the number of links
needed until a station with two or more trip alternatives is found.

Furthermore, in all stations, station exposure was calculated as
the average time loss due to interruption for all links with trip
alternative. Let A be the set of all links in the network. Aw # A is

the subset of all links with route alternatives when disrupted.
Exposure is calculated using:

Vi ¼
P

a2Aw
ðTia � TiÞ
Nw

ð5Þ

where Vi is the exposure in station i, and Nw is the number of links
in Aw. An interpretation of station exposure is the expected average
travel time increase for trips with origin in station i when a ran-
domly chosen link in the set Aw is disrupted.

The average time loss of interruption for links with trip alterna-
tive was also analysed according to lines and types of line.

3.2.3. Sequence of critical disruptions
The more critical scenarios were identified in a sequence of link

disruptions, applying the methodology used by Matisziw et al.
(2009). These scenarios were obtained for those links with trip
alternative. First, the link that has the greatest impact on times is
identified. Then, losses caused by disruption of the rest of the links
are recalculated, but now in a network in which the previous link
has been eliminated. This process is repeated until the desired
numbers of critical scenarios are identified (with one disruption,
two disruptions, and so on). In this paper, the combinations with
two, three, four and five most critical links have been identified.
The impact of the most critical scenario has been compared with
the average overall travel time for 10 random combinations of five
disrupted links.

3.2.4. Changes in trips distribution
Finally, trip distribution is recalculated for three scenarios:

without the most critical link, without the most critical sequence
of five link disruptions and without five random links. This enables
the identification of links absorbing trips that have been diverted
because of disruption in different scenarios.

4. Case study: Madrid Metro Network

4.1. Data

The following cartographical and statistical information was
used to analyse network vulnerability in the Madrid Metro system.

– The Madrid Metro Network, showing stations and links for
the year 2007. For each link of the network, length and
journey time are included. Sixty passageways are also
incorporated to enable the simulation of transfers at sta-
tions with more than one line, with a time penalty for each
transfer.

– OD trip matrix between stations in October 2007 (Madrid
Regional Transport Consortium). This gives the total num-
ber of trips made between each pair of stations during a
normal weekday. From this information, network flows dis-
tribution can be obtained. It is also used to calculate aver-
age times of the relations each station has with the rest
of the stations, although these are weighted by the number
of trips between each one.

Information has been treated and network analyses computed
in ArcGIS-ArcINFO 10.

4.2. General characteristics of Madrid Metro Network

In 2007 Madrid Metro consisted of 12 lines and 239 stations,
with 268 links connecting the different stations. An essential ele-
ment for reducing network vulnerability is the convergence of sev-
eral lines at the same station. The Madrid Metro has 27 stations
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connecting 2 lines, 10 stations connecting 3 lines and 1 station con-
necting 4 lines. The network structure is complex and well devel-
oped, as is to be expected in one of the longest and most
concentrated systems in the world. Of the 12 lines making up
the network, 5 are radial (Lines 1, 2, 3, 5 and 10), converging at
the centre of the system, 3 are transversal (Lines 4, 7 and 9) and
do not pass through the centre, one is circular (Line 6), two are
peripheral (Lines 8 and 11) and one is suburban (Line 12)
(Fig. 1). Topological measures show the complexity of the Madrid
Metro system in comparison with other Metro networks (see, for
example, Criado et al., 2007; Derrible and Kennedy, 2010). Topo-

logical data are similar to famous metros system like London, Mos-
cow, Mexico or Tokyo (Table 1).

On a normal day in October 2007 almost 2,500,000 trips were
made on the Madrid Metro. Line 10 and the circular Line 6 were
those that channelled most trips, with 367,000 and 353,000 trips
respectively, followed by other radial lines like Lines 1, 3 and 5
(Table 2 and Fig. 2). Lines 6 and 10 are also the lines that have
the greatest average number of trips per link. The maximum
number of trips is found on Line 10, with links in the city centre
supporting more than 250,000 trips. Peripheral and transversal
lines carry a much smaller number of passengers.

Fig. 1. Madrid Metro Network.

Table 1
Basic topological indicators in different Metro networks.

Average distancea (km) Network diametera (km) Average degreea Complexityb Degree of connectivityb

Madrid 12.33 41 2.35 1.78 0.62
London 15.54 38 2.05 1.87 0.64
Moscow 12.32 37 2.11 1.60 0.56
Mexico 10.94 29 2.22 1.34 0.47
Tokyo 10.09 32 2.41 1.95 0.67

a Data obtained from: Criado et al., 2007.
b Data obtained from: Derrible and Kennedy, 2010.
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5. Results

5.1. Links without travel alternatives: unsatisfied demand

Fig. 3 shows the number of trips that could not be undertaken
for those links with no alternative trip options. These are links
connecting areas on the outskirts of the city with the rest of

the network. The most critical links affect the connection of long
lines (leaving many links disconnected) that serve the densely
populated residential areas to the south of the city: on Line 1
(116,000 missed trips), Line 9 (104,000) and Line 10 (100,000)
(Table 3). In the case of links on Line 10, disruption leaves the
suburban Line 12 with no connection to the rest of the network.
In other cases, disruption has important consequences for certain

Table 2
Total trips distribution, by links and lines (trips during a normal weekday).

Line N� of links Total trips in the line Maximum Minimum Mean Standard deviation

All the network 268 2,446,665 261,821 2,267 58,756 53,368
1 32 272,955 186,080 2,267 86,875 56,022
2 15 57,414 37,525 10,790 19,889 8,548
3 17 203,377 130,135 16,576 73,242 33,822
4 22 120,320 79,611 12,671 40,709 18,343
5 31 197,486 131,923 8,528 65,563 33,808
6 28 353,394 213,262 88,673 140,131 41,690
7 28 137,023 94,806 2,759 42,217 27,936
8 7 162,657 105,331 11,777 57,326 32,329
9 25 147,378 104,170 10,355 43,207 23,972

10 30 367,062 261,821 4,209 105,240 88,563
11 5 33,402 21,105 4,134 12,296 5,868

12 (MetroSur) 28 73,619 43,720 18,769 29,899 6,658

Fig. 2. Number of trips during a normal weekday by each link in the network.
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elements of the city. For example, disruptions to links of Line 8
leave the Airport and the Exhibition Centre without service.
Fig. 3 shows the importance of the circular lines for network
robustness (Derrible and Kennedy, 2010). Circular Line 6 provides
an alternative route on five of the twelve lines that enter the city
centre.

The degree of exposure at station level was calculated according
to the number of links between the station and the closest link that
provides an alternative for continuing the trip. The most vulnerable

stations are the terminals of lines that have successions of uncon-
nected links (Fig. 3).

5.2. Links with travel alternative: time loss

The average of the weighted average travel times in the normal
situation is 30.47 min (Eq. (2)). Time loss resulting from the disrup-
tion of one of the links averages 0.5 min, meaning 1.7% in global
time. However, some links have a high criticality level. The link
where most time is lost (2.2 min) shows a 7.2% loss in global travel
times (Table 4). The most critical links are located on Lines 10 and
6 (Table 5). High values also appear on some links of Lines 1 and 12
(losses above 4%). Logically, the most vulnerable lines are those

Fig. 3. Number of trips during a normal weekday by links without travel alternatives.

Table 3
Number of links without travel alternatives and trips during a normal weekday in
these links, by line.

Line Number of links Minimum Maximum Mean SD

1 12 2,267 115,888 46,271 36,798
2 1 15,501 15,501 15,501 0
3 7 16,576 72,801 46,753 21,204
5 6 8,528 76,282 35,337 25,529
7 19 2,759 77,769 30,450 23,230
8 4 11,777 53,160 31,859 17,713
9 15 10,355 104,170 47,139 30,078

10 13 + (28 from line 12) 4,209 100,145 39,142 35,019
11 5 4,134 21,105 12,297 6,562

Table 4
Weighted average travel times (minutes) for disruption of each link of the network.*

Minimum Maximum Mean Standard Deviation

Time averages 30.12 32.66 30.47 0.39
Losses 0.01 2.19 0.51 0.39
Percentage losses (%) 0.05 7.20 1.67 1.30

* Only disruptions of links with travel alternatives are included.
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that carry a high number of trips but also those affected by signif-
icant detours.

Fig. 4 shows the distribution of percentage losses in weighted
average travel times for disruption in each link of the network
(criticality). The criticality of a link depends on its position in the
network and on the total number of trips channelled through it.
The most critical links are located in areas of connection between
the outlying residential zones and the city centre. These links sup-

port a considerable amount of trips and disruption implies signifi-
cant detours.

Time losses are between 6.7% and 7.2% in zone 1. These links
connect the large suburban municipalities served by Line 12 and
the densely populated areas to the south west of Madrid with
the city centre. Around 160,000 trips a day pass through these links
(Fig. 1). In cases of disruption, these trips have to be diverted an ex-
tra journey of at least 15 stations. The next most critical situation

Table 5
Increases in weighted average travel times,* by lines.

Line N� of links Total losses (minutes) Percentage losses

Minimum Maximum Mean SD Minimum Maximum Mean SD

1 20 0.1 1.5 0.7 0.4 0.31 4.80 2.41 1.34
2 14 0.1 0.3 0.2 0.1 0.13 1.12 0.50 0.32
3 10 0.1 0.7 0.4 0.2 0.05 2.27 1.28 0.81
4 22 0.1 0.7 0.2 0.2 0.18 2.39 0.73 0.53
5 25 0.2 0.9 0.4 0.2 0.66 2.98 1.32 0.52
6 28 0.4 1.7 0.8 0.4 1.20 5.48 2.59 1.20
7 9 0.1 0.5 0.3 0.1 0.37 1.59 0.89 0.43
8 3 0.6 0.7 0.7 0.0 2.09 2.41 2.27 0.16
9 10 0.1 0.2 0.2 0.0 0.46 0.71 0.58 0.09

10 17 0.2 2.2 0.9 0.7 0.50 7.17 2.81 2.18
12 28 0.4 1.3 0.8 0.2 1.41 4.27 2.58 0.80

* Only disruptions of links with travel alternatives are included.

Fig. 4. Impact of the disruption of each link on global weighted average travel times (percentage change).
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involves two links of Line 6 (Zone 2), with impacts above 5% in glo-
bal time. Disruption to these links affects some 190,000 trips be-
tween the south of the city and the east, making it necessary to
travel into the city centre (Sol station) in order to travel out again
to the east. Two other critical zones, with losses of over 4%, are
found in the city centre on Line 1 (Zone 3) and on the outskirts
of the city, the links connecting the suburban circular Line 12 with
Line 10, which gives access to the rest of the network (Zone 4).

Given the importance of circular lines for network robustness
(Derrible and Kennedy, 2010), the role of the circular Line 6 in
the Madrid Metro was analysed. Average travel times were com-
pared for two scenarios: with and without circular Line 6. This
with/without analysis was also carried out for some of the major
radial lines in order to compare the effects with those of removing
the circular line.

In Madrid Metro Network, circular lines are the most critical
ones (Table 6), with average losses in their links of 2.6%. In con-
trast, radial and transversal lines are much less vulnerable. At the
same time, Line 6 plays a crucial role in network robustness as it
provides travel alternatives on numerous occasions. In order to
show its importance, travel times were been calculated using dif-
ferent scenarios: with and without Line 6, and with and without
three of the most important radial lines in the network. The data
show improved travel times produced by these lines compared
with the rest of the stations making up the network (Table 7). Line
6 gives improved travel times of 4.6% for the rest of the lines, a

much higher value than radial lines such as Lines 1 and 5. Only Line
10, which integrates a large part of the north–south relations in the
city centre, produces similar improvements. Line 6 also reduces
differences in station accessibility by improving the situation of
stations where accessibility is poor (those on the periphery), as
shown by changes in the coefficient of variation.

Table 8 shows average travel times at station level (Eq. (5)), dur-
ing both normal operation and in a situation of disruption in each
link of the network. Average station loss is 0.6 min, with a maxi-
mum of almost 2 min. This means average percentage losses of al-
most 2%, with a maximum of 7%. The most exposed stations are
generally in the south of the city (Fig. 5). Suburban Line 12 is par-
ticularly exposed, with losses of over 5% in all its stations. Stations
in the north and centre of the city are less exposed and are able to
maintain service and accessibility at levels approaching the origi-
nal ones. The morphology and density of the network is a key fac-
tor as greater density in these areas makes travel easier and
provides alternative routes.

5.3. The most critical disruption sequences: simulating a targeted
attack

Fig. 6 shows the worst case scenarios arising from a sequence of
disruptions to links of the Madrid Metro system. The link that pro-
duces the worst scenario in the case of disruption is between Lago
and Príncipe Pío stations (Line 10). If a second disruption occurs,

Table 6
Losses in weighted average travel times,* by types of line.

Type of line Lines Absolute difference in minutes (average for all links on the line) Percentage (%)

Radial 1, 2, 3, 5 and 10 0.51 1.67
Transversal 4, 7, 9 0.22 0.73
Circular 6 0.79 2.59
Orbital 8, 11 0.37 1.22
Suburban Circular 12 0.79 2.58

* Only disruptions of links with travel alternatives are included.

Table 7
Data on weighted average travel times of stations with and without some of the major lines of the network.

Line Statistic Scenario with this line* (Minutes) Scenario without this line (Minutes) Difference (Minutes) Percentage difference (%)

Line 6 Mean 30.69 32.09 1.40 4.6
Standard Deviation 18.86 20.25 1.39 7.4
Coefficient. of Variation 61.45 63.1 1.65 2.7

Line 10 Mean 30.32 31.63 1.31 4.3
Standard Deviation 17.29 18.25 0.96 5.5
Coefficient. of Variation 57.03 57.70 0.67 1.2

Line 1 Mean 31.06 31.65 0.59 1.9
Standard Deviation 18.6 18.94 0.34 1.8
Coefficient. of Variation 59.88 59.84 �0.04 �0.07

Line 5 Mean 29.87 30.15 0.28 0.9
Standard Deviation 18.34 18.54 0.20 1.1
Coefficient. of Variation 61.40 61.49 0.09 0.1

* In order to compare two scenarios, with and without the lines considered, stations on lines without a connection to a different line have been eliminated from both
scenarios (as a consequence they would be without service).

Table 8
Weighted average travel times (minutes) at station level as a result of disruption in each links with travel alternatives.

Mean Standard deviation Minimum Maximum

Station times with disruption to links 33.37 7.02 21.30 62.46
Station times (normal situation) 32.79 7.13 20.76 61.88
Total loss 0.57 0.42 0.07 1.93
Percentage loss 1.90 1.57 0.19 6.99
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the most critical link (in a network in which the previous link
has been eliminated) is located on Line 6. Disruption to these
two links results in an increase in average global times of
4.1 min, an increment of 13.5% (Table 9). Fig. 6 shows the most
critical situations with disruptions in three, four and five links. In
the worst scenario, with disruption in five links, average times in-
crease by 13 min (around 43.6%). It is significant that these are all
located in the south of the network. The total number of trips
requiring a change of route as a result of this sequence of disrup-
tions rises from 163,000 when the first link is disrupted (around
6.6% of total trips) to 753,000 when disruption occurs in five links
(around 31%). If an attack on the network takes place on five ran-
dom links, there is a much lower time loss (around 19.1%), in a sit-
uation in which more than 22% of the trips would have to be
modified (Table 9).

5.4. Redistribution of trip flows

Fig. 7 shows trips redistribution for three different scenarios:
disruption of the most critical link (Fig. 7a); a targeted attack on
the 5 links that would produce the most critical situation (7b);
and an attack on 5 random links (7c). Although a good number

of these trips would be channelled through other public transport
networks, such as buses or suburban trains, all the trips have been
redistributed in order to ascertain which links would be the most
affected as a result of them being diverted to other lines. With dis-
ruption of the most critical link, the trips towards the city centre
now passes to Line 5 until reaching the circular Line 6, which
serves as a redistribution point for reconnecting with Line 10
and, to a lesser extent, to Lines 3 and 1 (Fig. 7a). As a result of this
redistribution, links of Line 5 would multiply their current number
of trips by 4, and those of Line 6 by 2. In contrast, the number of
trips on the central links of Line 10 would drop by between 10%
and 20%. In scenarios with 5 disruption links, redistribution is more
complex, but in both cases, Line 6 once more plays a crucial role in
trip redistribution. In the targeted attack scenario, links on the
southern part of Line 6 would redistribute trips coming into the
city centre, which would use Line 6 in order to reach Line 5 to ac-
cess the centre. The number of trips in the links of Lines 6 and 5
would be multiplied by 10, thus producing saturation. In the case
of the 5 random closures, links of the NW and NE of Line 6 receive
the greatest number of trips, duplicating their normal demand.
However, in this case the trips redistribution between different
lines is much more homogeneous.

Fig. 5. Average percentage losses by station with disruption in links with trip alternatives (station exposure).
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Fig. 6. Links in a sequence of more critical successive disruptions (only for links with trip alternative).
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6. Conclusions

In this paper we present a methodology for analysing the criti-
cality and vulnerability of a public transport network. In contrast
with studies based on graph theory indicators, we have used real
network trips distribution and the impact on trips of disruption
on links of the network is analysed. A full scan approach is used
to analyse the impact that each of the links has on network rela-
tions as a whole (criticality). This methodology has been auto-
mated in a GIS, enabling the most critical links and lines to be
identified. Station exposure has been obtained from data on criti-
cality. This not only enables the distribution of criticality and vul-
nerability to be known, but also assesses possible scenarios (such
as the role of Line 6) and obtains the most critical scenarios in a se-
quence of link disruptions. The automation of processes also makes
it easier to identify critical disruption sequences in the links and
trips redistribution in the different scenarios. It is essential to have
this information available in order to mitigate the effects of inci-
dents on the network and to plan new lines or extend existing ones
in such a way that vulnerability and critical elements are reduced.

The effect of closure is different for each link and depends on its
position in the network and the total number of trips channelled
through it. When no trip alternative is available, disruption leaves
the link without any possibility of service and the use of other
transport networks is required. These situations occur in the radial
lines that access the city. The greatest criticality is found in links of
lines that connect a large number of stations and have high passen-
ger numbers. With respect to links with an alternative route, the
most critical are those that channel a significant number of trips

in areas where network density is lower and there are few alterna-
tives for these trips, resulting in long detours. In contrast, in areas
where network density is high, trips are redistributed along a
greater number of lines and passengers find alternatives to the dis-
rupted links that are acceptable in terms of time.

The exposure of the stations has been obtained from data on
criticality. The most exposure are the ones situated along the most
critical links in the south of the city, while stations in the north and
centre of the city are less exposure. The morphology and density of
the network is a key factor. In this respect, this paper draws atten-
tion to the importance of circular lines as an element of network
robustness. By generating trip alternatives, these lines enable the
impacts of incidents in different links of the network to be
absorbed.

Finally, with the model developed it is possible to obtain critical
sequences in disrupted links of the network, simulating a possible
targeted attack or act of sabotage. Analysis of the most critical sce-
narios reveals that the impact is much greater in the targeted at-
tack than in a random attack, with time losses of up to 24%
more, but it also shows much greater congestion on lines affected
by diverted trips.

One element that has not been considered concerns the charac-
teristics of the population affected when a link is disrupted. Vul-
nerability will be greater in stations located in the poorer
residential areas where people depend more on public transport.
In Madrid, the most critical links and the most vulnerable stations
on the Metro network are located in the south, which is the poorest
sector of the city. By taking the characteristics of the affected pop-
ulation into account, a relation between network vulnerability

Table 9
Weighted average travel times (minutes) and trips affected in the most critical disruption sequences.*

Critical disruption sequences Average times (minutes) Accumulated losses (minutes) Accumulated losses (%) Total trips affected % of the total

Initial situation 30.47 2,446,665
1 (Lago-P. Pío; Line 10) 32.66 2.19 7.2 162,623 6.6
2 (Pacífico-C. Casal; Line 6) 34.57 4.10 13.5 357,394 14.6
3 (Tirso de Molina-Sol; Line 1) 37.39 6.92 22.7 532,973 21.8
4 (Pta. Ángel-P. Pío; Line 6) 39.55 9.08 29.8 657,908 26.9
5 (P. Frontera-Embajadores; Line 3) 43.74 13.27 43.6 752,592 30.8
Random attack (on 5 links)* 36.30 5.83 19.1 541,782 22.1

⁄⁄Average value of 10 combinations of five random disrupted links.
* The most critical links and ‘‘Random attack’’ have been selected excluding links that would lead to unsatisfied demand.

Fig. 7. Trips redistribution in three scenarios (Closed links in (c) (example obtained by first random selection): Ibiza-Sainz de Baranda (L9), Tetuán-Valdeacederas (L1),
Arguelles-San Bernardo (L4), Plaza de España-Tribunal (L10), Rubén Darío-Núñez de Balboa (L10).)
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analysis and social vulnerability can be established, although this
has not been included in this study.

Vulnerability changes in the system depending on the time of day
were not considered. Whilst our results reflect the average situation
along the day, there are fewer impacts and less vulnerability in the
late evening versus rush-hours. It was also assumed that when a link
is disrupted travel time remains constant for all other non-disrupted
links. Nevertheless, in the short-term it is possible to expect in-
creases in travel times as a result of congestion on non-disrupted
links. On the other hand, in the long-term, travel delays could poten-
tially alter the general travel patterns. These changes may remain
even when the normal service has been re-established.

Our approach considers the demand to be inelastic (similar to
Jenelius et al., 2006), thus the demand remains constant with dis-
ruption links. Another line for future study deriving from this pa-
per is the consideration of trip alternatives that include the use
of other public transport networks. As public transport operates
as a multimodal network, many of the incidents occurring on the
Metro are resolved by passengers finding alternative networks.
Madrid has a particularly dense network of urban and interurban
buses and, within the city itself, a further alternative for trips can
often be found in the suburban train service. However, in this pa-
per the Metro system is not studied as part of a wider multimodal
network. Instead, it has been studied separately in order to assess
the role played by its own elements with respect to its
vulnerability.

However, results shown in this paper provide extremely useful
information for mitigating the effects of potential incidents on the
network. For example, identifying the most critical links and link-
sequences facilitates control and management tasks, which even-
tually increments security. Also, knowing the redistribution of
flows on the network and the affected lines is of great help to iden-
tify and manage new needs as well as a potential increase in the
frequency or capacity of those lines. In the case of an incident over
a link with no alternative route, identifying unsatisfied demand
gives useful information of the trips that would be transferred to
other public transport networks.

The results obtained are also of high interest in planning new
lines or broadening the network. New criteria for vulnerability
and critical element reduction could be introduced in addition to
current efficiency and equity criteria when designing new lines
and deciding the location of new stations. In this regard, circular
lines play a key role due to their capacity to provide multiple alter-
native routes, and thus enabling an efficient way to redistribute
flows.
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