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a b s t r a c t 

In recent years, Independent Components Analysis (ICA) has proven itself to be a powerful signal-processing 

technique for solving the Blind-Source Separation (BSS) problems in different scientific domains. In the present 

work, an application of ICA for processing NIR hyperspectral images to detect traces of peanut in wheat flour is 

presented. Processing was performed without a priori knowledge of the chemical composition of the two food 

materials. The aim was to extract the source signals of the dif-ferent chemical components from the initial data set 

and to use them in order to determine the distribu-tion of peanut traces in the hyperspectral images. To determine 

the optimal number of independent component to be extracted, the Random ICA by blocks method was used. This 

method is based on the repeated calculation of several models using an increasing number of independent 

components after ran-domly segmenting the matrix data into two blocks and then calculating the correlations 

between the sig-nals extracted from the two blocks. The extracted ICA signals were interpreted and their ability to 

classify peanut and wheat flour was studied. Finally, all the extracted ICs were used to construct a single syn-thetic 

signal that could be used directly with the hyperspectral images to enhance the contrast between the peanut and 

the wheat flours in a real multi-use industrial environment. Furthermore, feature extrac-tion methods (connected 

components labelling algorithm followed by flood fill method to extract object contours) were applied in order to 

target the spatial location of the presence of peanut traces. A good visualization of the distributions of peanut traces 

was thus obtained. 

1. Introduction 

In recent years, hyperspectral imaging (HSI) has emerged as a 

promising tool for monitoring the safety and quality of various 

food commodities. The ability of HSI to integrate the information 

of spectroscopy and imaging and to simultaneously acquire spec­

tral and spatial information in a single system has made it a suit­

able choice for dealing with complex issues associated with 

evaluating individual food items ( W u and Sun, 2013). HSI often 

collects images with high spatial and spectral resolutions (Qin 

et al., 2013) from which the data can be further transformed into 

radiometric quantities such as reflectance, absorbance, and trans-

mittance in order to relate them to the physical properties or 

chemical composition of samples ( W u and Sun, 2013). Different 

supervised and unsupervised methods followed by feature extrac­

tion procedures are generally used to extract important spatial and 

spectral patterns. The main steps required to analyze hyperspectral 

images include pre-processing of data, dimensionality reduction, 

enhancement of spectral responses, and component detection or 

classification (Mahesh et al., 2015). HSI with advanced chemomet-

rics methods is nowadays gaining in importance for detecting 

adulteration in various food products. Some recent works include 

detection of minced lamb meat adulteration (Kamruzzaman 

et al., 2013), gelatine adulteration in prawns ( W u et al., 2013), 

detection and quantification of melamine in milk powders (Fu 

et al., 2014; Santos et al., 2013), detection of microbial contamina­

tion in pork (Barbin et al., 2013) and faecal contamination in leafy 

greens (Kang et al., 2011). However, these works were mainly 

focussed on the use of statistical methods based on second-order 

moment such as PCA (Principal Component Analysis), PLS regres­

sion (Partial Least Square), Multi-Linear Regression (MLR), or on 
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spectral similarity measures like Spectral Angle Mapper (SAM), 

Euclidian Distance Measure (EDM) and Spectral Correlation 

Measure (SCM). The need to resolve the spectra using Blind 

Source Separation methods was not initiated for complex data 

processing. 

Independent Components Analysis (ICA), first proposed by 

Herault and Jutten in 1986, is known to be a powerful 

signal-processing technique for solving Blind-Source Separation 

(BSS) problems in various scientific and engineering domains. In 

recent years, ICA has received wide attention in analytical chem­

istry for pre-processing, exploration, classification, regression and 

resolution of data. One major capability of ICA is to perform unsu-

pervised classification (classify objects with unknown spectral sig­

natures) by finding a linear representation of non-Gaussian data so 

that the components are statistically independent (Du, 2004). In 

contrast to the statistical methods based on second-order 

moments, ICA uses fourth-order moment of the signals to obtain 

the latent variables (Wang et al., 2008). Recent applications of 

ICA for spectroscopic data interpretation includes processing of 

infrared spectra of marine organic matter aggregates 

(Monakhova et al., 2015), detection of orange juice frauds using 

front-face fluorescence spectroscopy (Ammari et al., 2015), spec-

trophotometric analysis of polysaccharide/milk protein interac­

tions with methylene blue (Rohart et al., 2015), near-infrared 

spectroscopy for analysis of bioactive components (Chuang et al., 

2014a), near infrared spectroscopy for evaluation of rice freshness 

(Chuang et al., 2014b), analysis of Raman images of pharmaceutical 

drug product (Boiret et al., 2014), fluorescence spectroscopy for 

studying interaction between plastic food packaging and olive oil 

(Kassouf et al., 2014) and to characterise organic matter in soils 

(Ammari et al., 2014). The outcomes of these studies indicate that 

ICA simplified the interpretation of the results by decomposing the 

original spectral data into ‘‘source signals’’. The source signals 

extracted were further easily related to chemical compounds and 

for determining their spatial distribution. 

The present paper deals with a combined approach of using 

independent components analysis to process NIR hyperspectral 

image in order to detect peanut fragments as a food adulterant 

in wheat flour. Peanut allergy is a potentially life-threatening con­

dition accounting for the majority of frequent allergenic reactions 

to foods (Finkelman, 2010). Unlike other allergies such as milk 

and egg allergies, peanut allergy persists throughout life while 

others typically resolve themselves during early childhood. 

Peanut allergy has become a major health concern in developed 

countries. However, the reasons for its increasing prevalence are 

still not well understood (Burks, 2008). The potential for accidental 

exposure to peanuts is an important concern and the ubiquitous 

nature of peanut in the food industry makes dietary avoidance dif­

ficult. Furthermore, manufacturing and labelling errors and label 

misinterpretation can contribute to the risk of inadvertent expo­

sure (Yu et al., 2006). To protect allergic consumers, European 

Directive 2003/89/EC makes the labelling of all ingredients manda­

tory, especially food allergens used in the recipes of packaged 

foods. However, as small amounts of adventitious allergens can 

be found in a large range of industrial food products, a risk still per­

sists (Crépet et al., 2015). 

In this paper, adulterated mixtures of peanut traces in wheat 

flour were prepared and analysed by Near Infrared (NIR) HSI to test 

the potential of coupling HSI, ICA and image processing tools for 

detecting peanut traces in early stages of food manufacturing. As 

peanut and wheat flour contain a range of chemical constituents 

such as starch, fatty acid and proteins, the objective was to extract 

the interpretable source signals by applying ICA to the signal mix­

tures, so that they could then be used to enhance the contrast 

between the peanut traces and wheat flour in the hyperspectral 

images. As ICA is based on the decomposition of the original data 

matrix into mutually independent source signals, the number of 
independent components to be extracted is of critical importance. 
To decide on the optimum number of ICs, Random fCAbygfocks 
method was used. This method is based on the calculation of ICA 
models using an increasing number of independent components 
after segmenting the matrix data by randomly distributing the 
samples into two blocks and then calculating the correlations 
between the signals extracted from the blocks. After having 
obtained enhanced contrast images, a feature extraction method 
was used to detect the position of peanut fragments in the image. 

2. Materials and methods 

2.7. Samples 

To obtain the hyperspectral images, four sets of samples were 
prepared: 100% ground peanuts, 100% wheat flour and 0.05% and 
0.01% (w/w) ground peanuts in wheat flour. Wheat flour 
(Tn'n'cnm aesrivnm), ‘‘Coeur de Blé’’ (MasterChef), with particle size 
125-100 u m to 212-160 |im, was purchased from a local super­
market, Montpellier France. The list of ingredient on the pack does 
not indicate the presence of peanuts. Ground peanuts (Aracfik 
fiypogaea) (IRMM-481kit) were obtained from the European 
Commission Joint Research Centre, Institute for Reference 
Materials and Measurements. The kit (IRMM-481) with six differ­
ent vials contains non-salted peanut powder with a particle size 
range from 500 p,m to 1000 p,m. Four of the six vials were used: 
i.e. IRMM-481a, origin from Runners Argentina, corresponded to 
blanched peanuts, air-roasted at 140 °C for 20 min; IRMM-481b 
origin from C o m m o n Natal South Africa refers to raw peanuts, air 
roasted at 160 °C for 13 min; IRMM-481c from Virginia USA, were 
blanched peanuts, oil roasted at 145 °C for 25 min; and IRMM-481e 
from Jumbo Runners, USA, were blanched peanuts without roast­
ing. These samples were mixed manually with wheat flour to cre­
ate the trace samples. These four peanut varieties with the 
different pre-processing procedures were used in order to take into 
account the variability of peanut traces to be found in an industrial 
environment. An analytical weighing balance with precision of 
0.00001g (KERN 770, Balingen, Germany) was used to measure 
the different masses of peanut and wheat flour for subsequent 
mixing. An aluminium platform with an exposed sample surface 
area of 95 c m 2 was designed for performing the sample presenta­
tion for image acquisition. The depth of the surface used for sample 
presentation was 3 m m . Aluminium was chosen as a material 
because it is optically neutral, i.e., it presents constant absorption 
throughout the spectral range used. This property allows measur­
ing the spectra of the samples without interferences from the plat­
form. Samples were spread out and smoothed using a disposable 
wooden spatula for even distribution. 

2.2. Hyperspecrraf imaging measurements 

The images were acquired with a line-scan push broom hyper­
spectral imaging system. The system consists of a HySpex 
SWIR-320m-e hyperspectral push broom camera (Norsk Elektro 
Optikk, Lørenskog, Norway), translation stage operated by a step­
per motor and a computer supported by Norsk software (Norsk 
Elektro Optikk, Lørenskog, Norway). An illumination unit including 
150 W tungsten halogen source mounted at a 45° angle on side of 
the camera in respect to the vertical plane was used to illuminate 
the sample. The hyperspectral camera covers the spectral range 
from 1000 to 2500 n m in 256 bands (spectral resolution of 6 nm) 
with 320 pixels over the cross-track field of view (FOV). The cam­
era was equipped with a 30 cm lens that produced a nominal pixel 
size of approximately 0.287 m m across and 0.427 m m along the 



FOV respectively. Settings of acquisition parameters (integration 
time and dark current subtraction), data acquisition and recording 
were performed by means of the software provided by NEO. Prior 
to acquisition of images, the halogen bulb was switched on for a 
half hour in order to stabilize the light source temperature drift 
and improve the spatial uniformity of the lighting of the sample 
placed under the Field of View (FOV) (Piqueras et al., 2012). 
Samples were placed successively on the translation stage to be 
scanned line by line by the imaging sensors. Raw images were first 
corrected in radiance using sensor characteristics (e.g. spectral sen­
sitivity) provided by the manufacturer. To obtain reflectance 
images (images independent of illumination conditions), a 
2-point reflectance calibration was performed using a white dif­
fuse reflectance standard (SPECTRALONf Labsphere, Martillac, 
France). Finally, absorbance images (-log10) were computed for 
use in further analysis. 

23. Chemometric analysis 

23.1. Preprocessing ofhyperspectral images 
Pre-processing of spectroscopic data sets are necessary to 

improve chemometric modelling (Rohart et al., 2015), and to 
remove any non-chemical biases such as scattering effects due to 
inhomogeneity of the surface, interference from external light 
sources or random noise (Boiret et al., 2014). SNV (Standard 
Normal Variate) pre-processing method (Barnes et al., 1989) is very 
helpful for spectroscopic techniques as it reduces effects of base­
line shift and variations in global signal intensity (Boiret et al., 
2014). Before performing the SNV pre-processing step, the spectral 
range of hyperspectral images was reduced to 1000-2200 n m 
(region of interest). Then the mean and standard deviations of each 
spectrum were calculated. Each mean was then subtracted from 
the data points of the corresponding spectrum, which was then 
divided by the corresponding standard deviation. 

23.2. ICA by the JADE algorithm 
ICA is a blind source separation method that has been used for 

multivariate resolution purposes in analytical chemistry. In ICA, 
the data matrix is assumed to be a collection of weighted sums 
of the source signals, the weights being proportional to the contri­
bution of the corresponding source signal to each mixed signal. The 
aim of ICA is to obtain linear transformations of the data matrix 
that maximize the statistical independence (non-Gaussianity) 
among the extracted source signals. According to the Central 
Limit Theorem, the measured signals, which are mixtures of sev­
eral independent sources, should be ‘‘more Gaussian’’ than the 
source signals. Hence, the objective of ICA is to search for the least 
Gaussian sources (Rutledge and Jouan-Rimbaud Bouveresse, 2013). 
Let us suppose a mixed signal gives a data matrix X (r x c) where r 
is the number of observed mixed spectra in X and c is the number 
of points in the signal, or variables corresponding to the matrix col­
umns. In ICA it is assumed that the matrixXcan be decomposed as: 

X = A x S 

where S is k x c matrix ofk independent source signals (ICs) called 
the Independent Components, and A is the rx k mixing matrix (pro­
portions of pure signals). ICA aims to determine both S (ICs) and A 
(proportions), with knowledge only of X. With higher order statistic, 
ICA aims to find a demixing matrix W in order to extract the source 
signals from the mixture, as per the equation: 

S = W xX 

This demixing matrix approximates the pseudo inverse of mix­
ing matrix. Once this demixing matrix is approximated, the source 
signals can be extracted from the observed signals. 

Hence, the mixing matrix (concentration) is calculated as: 

A = X x ST x (S x ST)" 

The aim of ICA is to determine the ICs, which are as independent 
as possible. To perform this, there are different algorithms (FastICA 
(Hyvärinen and Oja, 1997) ?, InfoMax (Bell and Sejnowski, 1995) 
and JADE (Cardoso, 1993)). In the present work, the JADE algorithm 
was used to obtain this demixing matrix. The algorithm used in the 
experiment analysis has been explained in Rutledge and 
Jouan-Rimbaud Bouveresse (2013). 

23.3. Deciding on the optimal number ofICs by random ICA-by-blocks 
Before extracting the source signals, it is critical to determine 

the number of relevant components to be extracted so that it con­
tains the useful information. For that purpose, an extension of the 
ICA-by-blocks (Jouan-Rimbaud Bouveresse et al., 2012) method was 
used. In the present work, ICA-by-blocks has been applied in mod­
ified form by performing Random ICA-by-blocks with repetitions. 
This method consists of splitting the data matrix into 2 blocks. 
The distribution of the samples into the 2 blocks was done ran­
domly for each repetition. The 2 blocks contain approximately 
equal numbers of rows selected from the complete data matrix. 
Then, for each of these blocks, Amax ICA models are computed. 
Amax should exceed the expected optimal number of ICs. If the dif­
ferent blocks are representative of the whole data set, the true 
source signals should be found in both blocks. Calculating the 
absolute correlation between each pair of source signals can help 
in comparing the computed ICs for different blocks. The correlation 
of a source signal with itself, even when extracted from another 
block, will give a value close to one, but its correlation with a dif­
ferent source signal or a noise signal, will be close to zero. Hence, 
the decrease in correlations as a function of number of extracted 
ICs can provide appropriate information about the relevant num­
ber of ICs to be extracted. 

2.4. Pixel detection using image segmentation 

Imaging is an important way to characterise food quality. Image 
pre-processing (denoising, enhancement) and image analysis are 
two major steps in image processing (i.e. image segmentation, fea­
ture extraction), which have for goal the extraction of the useful 
information from images (Huang et al., 2001). In this work, image 
segmentation was used to subdivide images provided by the ICA 
treatment (‘proportion’ or ‘score’ images obtained from ICA) in 
order to isolate peanut particles. Once the images with enhanced 
contrast are obtained for different components present in a mixed 
image, different feature extraction algorithms can be applied to 
locate the exact area of the interesting pixels within the image. 
In the present work, the connected components labelling algo­
rithm (Di Stefano and Bulgarelli, 1999) followed by the flood fill 
method to extract object contours (Lee and Kang, 2010), from the 
image processing toolbox of MATLAB (R2014a), was used to isolate 
the pixels of peanut particles from the background in the score 
images. The threshold used to separate the peanut particles from 
the background was 0.10 and was set by successive trials until 
the optimal value corresponding to the perfect detection of the 
overall peanut particles. Finally, the position of the detected pea­
nut pixels was extracted as x and y coordinates with the help of 
the regionprops function in Matlab and represented in the corre­
sponding image. 

2.5. Data analysis 

For performing ICA and Random ICAbyBlocks, a data matrix 
(2000, 199) was created, consisting of 2000 spectra at 199 
wavenumbers, randomly selected from the hyperspectral images 
of 100% peanut and 100% wheat flour. The first 1000 spectra were 



of wheat flour whereas the second thousand spectra were of pea­
nut. The Random ICAbyblocks method distributed the spectra into 
two blocks randomly, so as to have two blocks representative of 
the whole data set. ICA models were computed for both blocks, 
with from 1 to 20 ICs. The random distribution of spectra, followed 
by ICAbyblocks, was repeated 10 times. ICs were compared by cal­
culating the correlation coefficients between the signals extracted 
from each blocks. The optimal numbers of ICs were decided upon 
by visualizing the decrease in the correlation. The ability of the 
extracted components to classify peanut and wheat flour was val­
idated from the corresponding concentrations obtained for the 
same data. Finally, the independent components were merged to 
create a new signal with the aim of applying it to the hyperspectral 
images to maximize the contrast between peanut and wheat flour. 
To construct this new synthetic signal, all the ICs, which corre­
sponded to higher proportions for the wheat flour, were added in 
negative sense to the ICs, which corresponded to higher propor­
tions for the peanut. For validating the ability of resulting synthetic 
signal to detect peanuts, a hyperspectral image was simulated with 
known position of peanut at four different places. The simulated 
hyperspectral image was made with the random pure peanut 
and wheat flour spectra. Thus after the validation, the synthetic 
signal was used directly to enhance the contrast between peanut 
and wheat flour in the hyperspectral images. The enhanced con­
trast images were subsequently used for feature extraction in order 
to have an overview of the distribution of peanut traces in the 
images. 

All data analyses were performed using MATLAB_R2014a ver­
sion 8.3.0.532 (The MathWorks, Natick, USA) software. The 
Matlab codes of the ICA by JADE algorithm and Random 
ICAbyblocks were downloaded from the web site in Cordella and 
Bertrand (2014). 

3. Results and Discussion 

3.1. Spectra 

Fig. 1 shows the mean NIR absorbance spectra (before and after 
pre-treatment) of peanut and wheat flour extracted from hyper­
spectral images. Initially in the raw spectra (Fig. 1a), higher absor­
bance values were observed for peanut spectra compared to wheat 
flour. The smaller particle size of wheat flour (125-100 u m and 
212-160 |im) caused a very high light scattering and consequently 
a low absorbance level whereas, larger particle size of peanut par­
ticles (500-1000 p,m) caused low scattering and high absorbance 
levels. To have a more meaningful interpretation of the shape of 
spectra and to reduce the environmental and texture effects, the 
absorbance spectra were pre-processed with SNV. As can be seen 
in Fig. 1b, after pre-processing the spectra showed some clear 
stable peaks at different wavelengths. Absorbance peaks at 
1200 nm, 1395 n m and 1734 n m in the peanut spectra can be 
related to the presence of long chain fatty acids (Osborne et al., 
1993), which give rise to a CH2 second overtone at 1200 nm, a com­
bination of 2 x C A H stretch + C A H deformation and C A H at 
1395 n m and CH2 first overtone at 1734 nm. On the wheat flour 
spectra, the two main peaks, related to O H bonds, are observed: 
at 1450 n m and 1940 nm. In this case, absorbance at 1450 n m is 
due to the first overtone of O H stretching and at 1940 n m to the 
combination of O H stretching and O H bending (Osborne et al., 
1993). Another smaller negative peak, at 1580 nm, is caused by 
O A H stretching first overtone and is related to starch (Osborne 
et al., 1993). A positive peak at 2030 n m is caused by C @ O stretch­
ing second overtone and is related to amide function (Osborne 
et al., 1993). Finally, a clear negative peak at 2100 n m is caused 
by the combination (2 x O A H deformation + 2 x CA O stretching) 

Fig. 1. Absorbance and SNV-treated mean spectra for peanut (thick red) and wheat 

flour (thin blue). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

and is related to starch (Osborne et al., 1993). These observed spec­

tral differences suggest that ICA could be useful to extract these 

different source signals. These signals could then be used for the 

detection of peanut traces in wheat flour samples. 

3.2. Random ICA by blocks 

Deciding the optimum number of ICs is a primary step to 

extract signals with ICA. A number larger than the optimal number 

of ICs can induce noise in the signals whereas extracting a number 

less than optimal can result in incomplete source separation. A rep­

resentation of correlation between the blocks is presented in Fig. 2, 

the colours representing correlation values. In Fig. 2, it can be seen 

that after the 3rd IC, the correlation decreases for the next few ICs. 

However, it can also be seen that after the 4th IC, the correlation 

increases again to 0.90 until the 7th IC. A reason for initial decrease 

after 3rd ICs was assumed to be that the ICs are not extracted from 

the two data blocks in the same order (Boiret et al., 2014). After the 

7th IC, the correlation further decreases significantly in a very 

steep way. Hence, the optimum numbers of ICs to decompose 

the data was fixed to 7. 

Since in the spectral range of 1000–2200 nm, the peanut parti­

cles and wheat flour contain four important compounds i.e. fatty 

acid, starch, amide and water, it was assumed that there would 

be four independent components and that the acquired spectra 

would be linear mixtures of these four independent components. 



Fig. 2. (a) Representation of the results obtained from Random ICA-by-blocks (blue 

for the lowest and red for the highest) and correlation values (0–1), (b) correlation 

values between ICs extracted after 10 permutations of samples between the 2 

blocks. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

However, in our work 7 ICs were detected by Random ICAbyblocks 
to be optimum. The reason for obtaining extra ICs source signals 
could be the detection of physical and chemical effects such as 
the size of the particles and different varieties of peanuts used 
(Boiret et al., 2014). 

3.3. Explanation ofsource signals and corresponding proportions 

The decomposition of the data matrix (1000 wheat flour spectra 
and 1000 peanut spectra) resulted in 7 ICs. The extracted ICs also 
provide their proportion in each of the 2000 acquired spectra; 
hence, both the extracted IC signal and corresponding proportion 
are presented in Fig. 3. 

As can be seen in Fig. 3a-g, all the ICs except IC1 (Fig. 3a) seems 
to be relevant and can be easily interpreted chemically. IC1 is not 
related to the chemical information that is represented by the 
peaks, but by a non-chemical variation, represented more by the 
baseline drift of the spectra. In fact, every time there is a peak, 
either in the wheat flour spectrum or peanut spectrum, the corre­
sponding peak summit in IC1 tends towards zero. 

IC2 (Fig. 3b) has a peak at 2100 n m caused by the combination 
(2 x O A H deformation + 2 x C A O stretching) and is related to 
starch (Osborne et al., 1993). IC3 (Fig. 3c) has a peak at 1940 nm, 
which can be related to the combination of O H stretching, and 
O H bending. IC4 (Fig. 3d) presents a peak at 2030 nm, caused by 
C @ O stretching second overtone and is related to the amide func­
tion (Osborne et al., 1993). IC5 (Fig. 3e) presents one high peak at 
1734 n m and two low peaks at 1200 n m and 1395 nm. These peaks 
can be related to the presence of long chain fatty acids (Osborne 
et al., 1993) which give rise to a C H 2 second overtone at 
1200 nm, a combination of 2 x C A H stretch+ C A H deformation 
and C A H at 1395 n m and C H 2 first overtone at 1734 nm. IC6 
(Fig. 3f) presents a peak at 1450 n m due to first overtone of O H 
stretching; and IC7 (Fig. 3g) presents another smaller negative 
peak, at 1580 nm, caused by O A H stretching first overtone and is 
related to starch (Osborne et al., 1993). 

IC2 and IC7 were related to the starch, and wheat flour contains 
more starch than do peanuts. This was in accordance from the cor­
responding proportions obtained for IC2 and IC7 (Fig. 3b and g) 
where the wheat flour has higher proportions of starch. Similarly, 
peaks found in IC3 and IC6 (Fig. 3c and f) provide information 

regarding higher moisture content in wheat flour than in peanuts. 
IC5 provides information regarding the fatty acids, which are 
higher in peanut than in wheat flour. The corresponding concentra­
tions for IC5 (Fig. 3e) shows a high concentration of fatty acid in 
peanut and shows almost null concentration in wheat flour. 
Similarly, IC4 (Fig. 3d) reflects a higher concentration of amide 
for peanuts than in wheat flour. 

In an industrial environment, it is not wise to rely on just one 
chemical compound for classification. Hence, all 7 ICs were used 
to construct a new synthetic signal, which can simultaneously rep­
resent different chemical components and can be used for classifi­
cation of pixel spectra. Fig. 3h presents the final synthetic signal 
constructed after taking into account all 7 ICs. The new signal 
was constructed as the sum of all the ICs with positive proportions 
for wheat flour, multiplied by -1, and the all ICs with positive pro­
portions for peanut, multiplied by +1. The resulting signal can then 
be used directly to enhance the contrast between peanut and 
wheat flour in the hyperspectral images. The final constructed sig­
nal contains information about all the main chemical components 
i.e. fatty acid (1734 n m ) starch (1580 nm, 2100 nm), amide 
(2030 nm), water (1940 nm, 1450 n m ) and overtones (1200 nm, 
1395 nm). Hence, using this signal alone, a classification can be 
obtained, as can be seen in the corresponding concentrations 
obtained for the signal in Fig. 3h, when the signal was applied 
directly to the data used for decomposing. 

3.4. Validation ofpeanut detection 

Application of synthetic signal to the simulated hyperspectral 
image resulted in a clear contrast difference between peanut and 
wheat flour pixels. All the four locations where the peanut was 
added in a supervised way were identified. The peanut pixels 
appeared to be brighter than the wheat flours. Brightness of the 
peanut pixels was because of the higher score values obtained 
for the peanuts, compared to the wheat flour pixels (see Fig. 4). 

3.5. Score images and images afterfeature extraction 

ICA-score images were converted from grayscale images to bin­
ary (BW) images. The output B W image replaces all pixels in the 
input image with luminance greater than threshold level (0.10) 
with the value 1 (white) and replaces all other pixels with the 
value 0 (black). The next step consisted in image segmentation 
with a connected components labelling algorithm (Di Stefano 
and Bulgarelli, 1999) followed by a flood fill method (Lee and 
Kang, 2010) to extract object contours. The regionprops function 
of Matlab Image Processing Toolbox measures different set of 
properties for each connected component and allows one to 
retrieve the centroid coordinates of peanut-dots detected in the 
image. The use of ICA before applying the feature extraction proce­
dure improves the performance of the image segmentation and 
contour detection processes, by increasing the contrast between 
the target points and the general background of the image. 

It can be seen that the score values for peanut are higher than 
for the wheat flour. That is the reason why the peanut particle 
appears to be brighter than the wheat flour in the score images. 
After enhancing the contrast, images were used for feature extrac­
tion in order to locate the position of the pixels detected as peanut 
in the image. The results of the application of ICA followed by fea­
ture extraction are presented in Figs. 5 and 6. The total numbers of 
points detected as being peanut in 0.05% adulterated images were 
12 and for 0.01% adulterated image were 3. It was logical that with 
reduction in the amount of adulteration the number of detected 
pixels decreased. 

In our recent earlier work (Mishra et al., 2015), the hyperspec­
tral images were analysed using PCA to detect the peanut traces in 



Fig. 3. Representation of IC signals extracted and the corresponding proportions (left block wheat flour and right block peanuts). (a) First Independent Component (IC1), (b) 

Second Independent Component (IC2), (c) Third Independent Component (IC3), (d) Fourth Independent Component (IC4), (e) Fifth Independent Component (IC5), (f) Sixth 

Independent Component (IC6), (g) Seventh Independent Component (IC7) and (h) synthetic signal. 



construct a synthetic vector as required to highlight a particular 

component of the system. 

The main challenge raised was in using the feature extraction to 

decide the threshold in order to separate the peanut regions from 

the background. An incorrect threshold can result in false positives 

and can lead to misinterpretation of peanut distribution. However, 

iterative trials and comparison between the two images helped in 

deciding on the threshold value. In order to avoid this challenge for 

applying this method in real situations, random hyperspectral 

images with repetition of the samples could be tested to decide 

the optimum threshold for separating the peanut pixels from the 

background. 

4. Conclusions 

HSI with advanced chemometrics methods is nowadays gaining 

in importance for detecting of adulteration in various food prod­

ucts. Independent Components Analysis (ICA) has proved to be as 

a powerful signal-processing technique for solving the 

blind-source separation (BSS) problem in spectroscopy by resolv­

ing the observed signals into source signals, which provides better 

chemical interpretation of data. Processing of hyperspectral images 

with ICA can help in detection of foreign materials in food 

products. 

In the present work, an application of ICA to process hyperspec-

tral images is presented. The ability to resolve multivariate hyper-

spectral images was studied by detecting the adulteration of 

peanut traces in wheat flour. The Random ICAbyblocks method indi­

cated the optimal number of independent signals to be extracted 

from the data set. The calculated ICA signals were interpreted 

and then used to detect peanut in wheat flour. Furthermore, a fea­

ture extraction method was applied to have an overview of the 

spatial location of the peanut traces. The results provided a clear 

detection of peanut traces. HSI with ICA can be applied for quanti­

tative prediction of the chemical constituents and to study physical 

properties of samples, with simultaneous representation of their 

spatial distribution. 

Fig. 5. Score images and extracted features image for 0.05% peanut traces in wheat flour. (146 464 pixels). 

Fig. 4. Validation score image obtained from the application of synthetic signal. 

wheat flour (down to 0.01%). The interpretation of the resulting 
loadings vector was not very straightforward as each PCA loadings 
vector represented combinations of different phenomena 
described by the data. 

In this present work, ICA proves to be a better processing 
method as it extracts the different physico-chemical signatures 
with their corresponding proportion in the peanut and wheat flour 
mixes. This difference is due to the fundamental difference in the 
principles of the two methods: while PCA is based on determining 
the orthogonal directions of m a x i m u m dispersion of the samples in 
the multidimensional space defined by the variables, ICA aims to 
recover the source signals mixed together in the observed signals. 
Interpretation was therefore simpler as the ICs directly provided 
the underlying source signals. 

One example of this was the extraction of the overtones of fatty 
acid as a single independent signal by ICA (Fig. 3e). As can be seen 
in Fig. 3e, IC5 presents one intense peak at 1734 n m and two small 
peaks at 1200 n m and 1395 nm. These peaks were related to the 
presence of long chain fatty acids which give rise to CH2 first and 
second overtones and a combination of 2 x C A H stretch + C A H 
deformation. The simplified ICs can then be easily used to 



Fig. 6. Score images and extracted features image for 0.01% peanut traces in wheat flour. (146 464 pixels). 
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