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Abstract

One of the most widely used method for the time-series analysis of
continuous Global Navigation Satellite System (GNSS) observations is
Maximum Likelihood Estimation (MLE) which in most implementa-
tions requires O(n3) operations for n observations. Previous research
by the authors has shown that this amount of operations can be re-
duced to O(n2) for observations without missing data. In the current
research we present a reformulation of the equations that preserves
this low amount of operations, even in the common situation of having
some missing data.

Our reformulation assumes that the noise is stationary to ensure a
Toeplitz covariance matrix. However, most GNSS time-series exhibit
power-law noise which is weakly non-stationary. To overcome this
problem, we present an Toeplitz covariance matrix that provides an
approximation for power-law noise that is accurate for most GNSS
time-series.
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Numerical results are given for a set of synthetic data and a set
of International GNSS Service (IGS) stations, demonstrating a reduc-
tion in computation time of a factor of 10-100 compared to the stan-
dard MLE method, depending on the length of the time-series and the
amount of missing data.

1 Introduction

The methods of estimating a linear trend from continuous GNSS observa-
tions have received considerable attention in the last decades (Johnson and
Agnew, 1995; Zhang et al, 1997; Williams, 2003). This interest stems mostly
from the power spectral density of the noise at the low frequencies where it
can be described by a power-law model (Williams et al, 2004; Santamaŕıa-
Gómez et al, 2011). Mao et al (1999) have shown that this spectral density
behaviour of the noise must be taken into account in the analysis to avoid
underestimating the trend error by a factor of 5-11.

Therefore, not only the trend, but also the noise properties need to
be estimated from the data. The Maximum Likelihood Estimation (MLE)
method is widely used for this type of analysis (Mao et al, 1999; Langbein,
2004; Williams, 2008). This is an iterative minimization process and each
step requires computing the inverse of the covariance matrix. For power-law
noise this matrix is full because the autocorrelation between the observations
decreases slowly with increasing separation in time. As a result, calculating
the inverse of the covariance matrix is computational demanding.

Williams (2003) noted that the computation time for analysing 10 years
of data was around 6 hours. Computers have become much more powerful
since then but Hackl et al (2011) still mention a computation time of several
days to analyse 50 IGS stations using the CATS software (Williams, 2008)
that employs the MLE method. They use this result as an argument in
favour of their more rapid Allan Variance of the Rate method.

However, Hackl et al (2011) also mention that MLE gives more robust
results. Therefore, it is desirable to lower the computation time of MLE
to have the best results in a time comparable to heuristic methods. This
becomes particularly important when global networks with hundreds of sta-
tions are being analysed.

Improved performance of MLE was already presented by Bos et al (2008)
who reduced the complexity of taking the inverse of the covariance matrix
from O(n3) operations to O(n2) operations, where n is the number of ob-
servations. They achieved this result by assuming that there are no missing
data in the evenly spaced time-series and by taking the first difference of the
data to make the noise stationary. The latter operation creates a Toeplitz
covariance matrix that can be inverted using fast algorithms.

Unfortunately, most evenly spaced time-series contain missing data that
destroy the symmetry and thereby the Toeplitz nature of the covariance
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matrix. Simple linear interpolation or ignoring the presence of missing data
in the construction of the covariance matrix are two ad hoc solutions that
give good results (Bos et al, 2008). However, it is difficult to predict under
which circumstances these two solutions can no longer be applied. Therefore,
we have reformulated our equations without any loss of accuracy to avoid
any type of interpolation while maintaining a Toeplitz structure for the
covariance matrix.

2 Reformulation of MLE

The equations used in the MLE have already been explained in detail by
Langbein (2004), Bos et al (2008) and Williams (2008) but to explain our
modifications, we will summarize the steps.

Using the notation of Bos et al (2008), the GNSS observation vector
x minus the estimated signal gives us the residual vector r that represent
the noise in the data. This signal contains a linear trend, representing for
instance the motion of the tectonic plates, a nominal bias, possible seasonal
signals and other parameters such as offsets.

The n×n covariance matrix C that is used in the weighted least-squares
estimation and in the likelihood function is constructed by first assuming
that there are no missing data and afterwards by eliminating all rows and
columns that correspond to the location of the missing data in the observa-
tions. The resulting matrix is indicated by C̆ and, assuming that there are
m missing data points and n observations, has dimensions (n−m)×(n−m).
Its inversion, and construction, takes around O(n − m)3 operations. The
missing data must also be eliminated from the observation vector x and
residual vector r, resulting in observation and residual vectors x̆ and r̆ of
lengths n −m. If we denote the n × p design matrix by H, containing the
above mentioned trend, bias, seasonal signals and offsets, then we can apply
the same process to get a new design matrix H̆.

Using these matrices and vectors, the parameter p-vector θ̂ estimated
with weighted least-squares equation is given by:

θ̂ =
(

H̆T C̆−1H̆
)−1

H̆T C̆−1x̆ (1)

The residuals are given by:
r̆ = x̆− H̆θ̂ (2)

The properties of the covariance matrix C are normally not known before-
hand and must also be estimated from the observations. As explained in
section 1, we will discuss MLE which maximizes the logarithm of the likeli-
hood function:

ln(p(r)) = −1

2

[

(n−m) ln(2π) + ln det(C̆) + r̆T C̆−1r̆
]

(3)
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The values of the parameters that describe the noise model, and thus the
covariance matrix C̆, are varied until the most likely value of Eq. (3) has
been found. For each variation of the parameters, Eqs. (1) and (2) need to
be used to update the values of the residuals.

Eqs. (1) to (3), with the before mentioned procedure of dealing with
missing data, are implemented in the CATS software (Williams, 2008) and
in the program of Langbein (2010) and we will call this the standard method.

Next, it will be convenient to separate the residuals into observed and
missing residuals:

r = ro + rm =















r1o
0
...

rn−1
o

0















+















0
r2m
...
0
rnm















(4)

For example, assume that we have made five observations but that the first,
second and fourth observation failed. Our vector ro is:

ro =













0
0
r3o
0
r5o













(5)

Matrix F is now defined to have a column for each missing point and n rows.
Each column is filled with zeros except for a one on the row that corresponds
to the location of the missing point. For our example we have:

F =













1 0 0
0 1 0
0 0 0
0 0 1
0 0 0













(6)

The product FTC−1F will select the rows and columns of the inverse of the
covariance matrix for which observations are missing. Using this matrix F

and some algebra, see appendix A, we obtain the following relation for the
last expression of Eq. (3) :

r̆T C̆−1r̆ = rTo
(

C−1 −C−1F(FTC−1F)−1FTC−1
)

ro (7)

Similar relations exist for H̆T C̆−1x̆ and H̆T C̆−1H̆ that can be inserted in
Eq. (1). Furthermore, we have:

ln det(C̆) = ln det(C) + ln det(FTC−1F) (8)
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that can used to compute the second term on the right side of Eq. (3). Eqs.
(7) and (8) are the main result of this research. Since the full covariance
matrix C is used, the Toeplitz nature is preserved and its inverse can be
computed in O(n2) operations. The inversion of FTC−1F, which is a m×m
matrix, will take O(m3) operations. We will call the MLE method based
on Eqs. (7) and (8) the reformulated method. The reformulated method is
faster if the fraction of missing data points in the data is less than around
50%, otherwise the standard method is faster. From an analysis of nearly
3000 time series from publicly available datasets we found the median num-
ber of missing data to be 9% with a 95th percentile of 41%. Only 1 in 30
time series are likely to have missing data over 50%. Therefore, using the
reformulated method is more efficient with the advantage that no approxi-
mations are introduced into the equations when stationary noise models are
used.

We will assume that the noise properties are constant over time. In
reality they probably vary slightly because GNSS receivers and the computed
GNSS satellite orbits, among others, continue to improve in accuracy over
the years. Nevertheless, this topic falls outside the scope of the current
research except for the fact that if the amplitude of the standard deviation
of the noise varies by a known amount over time, then this variation can be
incorporated into the design matrix H and observation vector x (by scaling
bothH and x by the inverside of this variation). In this way, we can continue
to use a constant covariance matrix C.

3 Taking the first difference of the data

So far we have assumed that the noise is stationary. However, as was noted in
section 1, the noise in GNSS data is weakly non-stationary which means that
the variance grows without bounds over time. To overcome this problem,
Bos et al (2008) took the first difference of the observations which creates a
stationary data set and they developed the corresponding covariance matrix
for power-law noise. This makes it possible to use combination of power-law
noises, such as white, flicker and random walk noise (Langbein, 2012), in
the equations presented in section 2.

The disadvantage of using first differenced data is that a single missing
data point will cause two missing first differenced data points. Even in the
case of a sequence of missing data points, there are less first differenced
observations than undifferenced ones. The result is a larger uncertainty in
the estimated trend. In principle one could create a new first differenced
observation using the two values around the sequence of missing data points
and compute the associated covariance value. However, this would in general
not restore the Toeplitz nature of the covariance matrix and we will therefore
still not be able to use the fast method discussed in the previous section.
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For a few missing data points this extra loss of observations might be ac-
ceptable but in this section we will investigate if the weakly non-stationary
covariance matrix cannot be approximated by a stationary covariance ma-
trix. To do so, we first have another look at the underlying assumptions
that are used to compute the covariance matrix. Mao et al (1999), Williams
(2003) and Langbein (2010) assume that the power-law noise starts to de-
velop at the same time when one starts the measurements. On the other
hand, Bos et al (2008) assume that the power-law noise is always present,
independent of the fact if measurements are taken or not.

Using the uncertainty about what is the right approach, we can define
that the power-law noise started at some arbitrary time in the past. Since
flicker noise is weakly non-stationary, the variance grows only with the log-
arithm of time and it quickly approximates a quasi-stationary situation. In
Fig. 1 the covariance matrix C for flicker noise with unit innovation variance
is plotted. As such, it is without dimensions. Furthermore, we will omit any
scaling factors related to the sampling period, see Williams (2003) and Bos
et al (2008). In the left panel one can see that the covariance starts to grow
for increasing row and column index. On the first diagonal, C(1, 1) = 1
while on the last diagonal C(100, 100) = 2.53. Thus, the variance in the
observations has grown by 253% since the start of the measurements.

In the right panel the covariance matrix for flicker noise is again plot-
ted but now starting at row and column 1000. For this case, the matrix
looks much closer to a Toeplitz matrix. The values on the first and last
diagonal, entry 1001 and 1100, are 3.27 and 3.30 respectively which corre-
sponds to only a 1% difference. This example demonstrates that by putting
the time when the noise starts to develop far enough in the past, a near
Toeplitz covariance matrix for power-law noise can be obtained. For strong
non-stationary noise the covariance on the diagonal grows linearly and this
approximation becomes less accurate. However, even for an spectral in-
dex α of 1.6 the difference in estimated trend error using the full and the
approximated covariance matrix is less than 10%.

For a spectral index α smaller than one, the noise is stationary and the
covariance matrix will be exactly Toeplitz. This matrix can be constructed
using the analytical expressions given by Hosking (1981).

The covariance matrix for power-law noise, that is assumed to have
started at some specified time in the past, can be constructed by computing
the matrix product UTU where U is a n×n upper triangular matrix, filled
with coefficients hi (Kasdin, 1995; Williams, 2003):

U =











1 h1 h2 . . . hn
0 1 h1 hn−1

...
. . .

0 0 . . . 1











(9)
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Figure 1: The covariance matrix for flicker noise. The left panel shows the
covariance matrix for the first 100 × 100 elements. The right panel shows
the same but starting at row and column 1000.

The last column of the product of UTU is our Toeplitz approximation
of matrix C which can be computed using only O(n log2 n) operations, see
Bos et al (2008). The results of using this approximation of the covariance
matrix are discussed in sections 5 and 6.

4 Fast Toeplitz solver

Before discussing the numerical results using Eqs. (7) and (8), we introduce
some new auxiliary matrices and vectors that facilitate their implementation
into a computational application. Our starting point is the method described
by Bos et al (2008) that involves performing a Cholesky decomposition of
the covariance matrix in O(n2) operations:

C = UTU (10)

where U is a n×n upper triangular matrix. This decomposition also allows
us to compute the determinant of matrix C quickly. At the same time, a
set of linear equations are solved using back substitution:

We next introduce a n× p matrix A and a p-term vector y, defined by

UTA = Ho (11)

UTy = xo (12)

so, A and y can be computed by back substitution. Because C is Toeplitz,
we do not actually need to compute U, because we can do the back substi-
tution as part of the Cholesky decomposition. This saves on memory space
and increases the computation speed, see Bos et al (2008).
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Note that we have to repeat this back substitution, which requires O(n2)
operations, for each column separately.

Using these matrices and vectors and assuming for the moment that
there are no missing data, the equation for weighted least-squares, Eq. (1),
reduces to:

θ̂ =
(

ATA
)−1

ATy (13)

which is the well known equation for ordinary least-squares because the
multiplication with matrix U−T can be viewed as an inverse filter operation
that makes the noise in the observations white. If we now define the n-vector
t:

t = y −Aθ̂ (14)

then Eq. (7) reduces to:

r̆T C̆−1r̆ = rTo C
−1ro

= (xo −Hθ̂)TU−1U−T (xo −Hθ̂)

= (y −Aθ̂)T (y −Aθ̂)

= tT t

(15)

If there are missing data, then we also need to compute the n ×m matrix
G:

UTG = F (16)

Again, each column of matrix G can be computed with back substitution.
One can already see that for large number m of missing data this will slow
down the computation.

To make full use of the symmetry in Eq. (7), it will be convenient to
define the m×m matrix M, which comes from the Cholesky decomposition
of

M = chol(FTC−1F) = chol(GTG) (17)

This also facilitates the computation of the determinant in Eq. (8). Next,
we introduce the m× p matrix QA and m-vector Qy:

MTQA = GTA (18)

MTQy = GTy (19)

Eqs. (18) and (19) can again be solved using back substitution because M

is a triangular matrix.
Looking back at the equation for weighted least-squares, Eq. (1), one can

see that it contains the matrix product H̆T C̆−1H̆. Using our new matrices
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and Eq. (7) this can be rewritten as:

H̆T C̆−1H̆ =

HTC−1H−HTC−1F(FTC−1F)−1FTC−1H =

ATA−ATG
(

GTG
)−1

GTA =

ATA− (ATGM−1)(M−TGTA) =

ATA−QT
AQA

(20)

A similar expression exists for H̆T C̆−1x̆ and we can write Eq. (1) as:

θ̂ =
(

ATA−QT
AQA

)−1 (

ATy −QT
AQy

)

(21)

Comparing Eq. (13) with Eq. (21) one can see that the matrix QA and
vector Qy are corrections that take into account the presence of missing
data. To compute the weighted sum of squares of the residuals, we need to
introduce the m-vector Qt:

MTQt = GT t (22)

This gives us:
r̆T C̆−1r̆ = tT t−QT

t Qt (23)

The total number of operation for solving Eq. (16) is of the order of O(mn2),
which becomes large quickly for increasing number of missing data points m.
In fact, numerical experiments showed that already for 1-2% missing data
the standard method is faster than using Eqs. (10) to (22), which defies the
objective of this research.

This problem has been solved by using the results of Ammar and Gragg
(1988) who describe the first step of a Levinson’s algorithm (Szegö recur-
sions) that decompose the inverse of our matrix C as:

C−1 = RD−1RT (24)

where R is a n × n unit upper triangular matrix and D a n × n diagonal
matrix that can be easily inverted. The determinant of matrix D is also
easily calculated and corresponds to the determinant of matrix C. The
computation of this decomposition takes O(n2) operations. However, once
it is done we only need the last column of R, which we will denote by
l = (1, l1, . . . , ln−1), and the last entry of D = δn to compute the inverse of
C:

C−1 =
1

δn

(

L1L
T
1 − L2L

T
2

)

(25)

where

L1 =











1 0 . . . 0
ln−1 1 0
...

. . . 0
l1 . . . ln−1 1











L2 =











0 0 . . . 0
l1 0 0
...

. . . 0
ln−1 . . . l1 0











(26)
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Eq. (25) was derived by Trench (1964) and Gohberg and Semencul (1972),
and can be used the solve each unknown column vector in Eqs. (11) to (16)
using only O(n log2 n) operations because the L1 and L2 can be embedded
into circulant matrices. The product with circulant matrices can be per-
formed using the Fast Fourier Transform (FFT) which results in the given
number of numerical operations.

To keep the equations concise, the factor 1/
√
δn in Eq. (25) will from

now on be included in the matrices L1 and L2.
Almost equal to what we did before, we will define the following matrices:

A1 = LT
1 Ho (27)

A2 = LT
2 Ho (28)

The vectors and matrices y1, y2, G1, G2, t1 and t2 are defined in an anal-
ogous manner. We also have:

MTQA = GT
1 A1 −GT

2 A2 (29)

whereM is again the Cholesky decomposition of the matrix productGT
1 G1−

GT
2 G2. The definitions of matrices Qy and Qt are similar. The weighted

least-squares equation, Eq. (1), becomes:

θ̂ =
(

AT
1 A1 −AT

2 A2 −QT
AQA

)−1 (

AT
1 y1 −AT

2 y2 −QT
AQy

)

(30)

and Eq. (7) can be written as:

r̆T C̆−1r̆ = tT1 t1 − tT2 t2 −QT
t Qt (31)

To understand the gain in speed we obtained it must be realised that Eq.
(25) is only computed once, requiring O(n2) operations. The construction of
matrices y1, y2, A1, A2, G1 and G2 requires in total O(2(1+p+m)n log2 n)
operations which is still less than O(n2) for sufficient large value of n. The
construction of the other auxiliary matrices and the other matrix operations
needed to compute the weighted least-squares equation and the MLE cost-
function require less than O(m3) operations.

Eqs. (30) and (31) are used to compute Eq. (3) and have been imple-
mented in a C++ program that was used to produce the results presented
in sections 5 and 6.

Ammar and Gragg (1988) also provide an algorithm that performs Eq.
(24) in O(n log22 n) operations. However, numerical experiments showed us
that, for the time-series discussed in this research, it was slower than the
O(n2) method due to the larger constant that is hidden in the O notation.
In other words, the algorithm of Ammar and Gragg (1988) requires more
intermediate steps and the fact that the algorithm is faster in the limit,
only start to pay off at large value of n. Nevertheless, when time-series are
used that are about ten times longer, it will be advantageous to use this
alternative.
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5 Results with synthetic data

This section describes results obtained from analysing synthetic data. Due
to the large amount of matrix operations, it is essential to use an optimized
BLAS/LAPACK library such as ATLAS or the IntelTM Math Kernel Li-
brary. Without such an optimized library of subroutines, the computation
time will be at least a factor of ten longer.

Our choice of noise model will be the standard power-law plus white
noise model which exist in many GNSS observations (Williams et al, 2004):

C = σ2
(

sin2(φ)I+ cos2(φ)E(α)
)

(32)

where σ is the innovation noise and I is the unit matrix, which is the co-
variance matrix for white noise, and E is the unit covariance matrix for
power-law that depends on the spectral index α (=−κ). We have followed
Williams (2008) by writing the variance in front of the sum of the two ma-
trices and introducing an angle φ which determines the distribution of white
and power-law noise. For our simulations we used the value of φ that we
observed in the GNSS time-series of Kootwijk (KOSG) in The Netherlands,
see also Bos et al (2008). However, the spectral index α of the power-law
was set to one, to have exact flicker noise.

The time span of the observations was 1000 and 4000 days and have been
computed using CATS, version 3.0.1 and a C++ implementation of the Eqs.
(30) and (31), using the Toeplitz approximation described in section 3. It
was assumed that the noise started to develop 1000 days before the first
observation was taken.

The computation time, or more precisely, the wall-clock time has been
plotted for various percentages of missing data points in Fig. 2. The location
of the missing data have been selected randomly and for each percentage of
missing data 10 different simulations were performed to get an idea of the
variations in the result. The computer used had a dual-core Intel Core i3
processor, 2.26 GHz, with 4 GByte of memory.

Fig. 2 shows that the analysis of a time-series of 1000 days, which cor-
responds to roughly 3 years of data, requires less than a minute for both
methods. However, the analysis of 4000 days, or roughly 11 years of data,
takes 25 minutes using the standard method. Analysing the East, North and
Up component for 50 stations would require 3 days of computations. As-
suming an average of 3% of missing data, the reformulated method requires
12 seconds for each separate analysis, corresponding to a total computation
time of half an hour, or 125 times faster than the standard method.

The estimated spectral index α estimated by CATS minus the index
estimated using the reformulated MLE program have been plotted in Fig. 3.
One can see that the new method lightly underestimates the spectral index
but for the longer time-series the difference is minimal. The reason is the use
of our Toeplitz approximation of the covariance matrix. We tested this by
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Figure 2: The computation time required by CATS and our new program
using the reformulated MLE equations for synthetic time-series with a data
span of 1000 and 4000 days and varying amount of missing data points.

-0.05

 0

 0.05

 0.1

 0.15

 0  10  20  30  40  50  60  70

∆α

Percentage of gaps

-0.05

 0

 0.05

 0.1

 0.15

 0  10  20  30  40  50  60  70

∆α

Percentage of gaps

T = 1000 days T = 4000 days

Figure 3: The difference in the estimated spectral index α of CATS minus
our reformulated MLE program.

also implementing the standard method, using the non-Toeplitz covariance
matrix in our program. The results were in very close agreement with the
results from CATS.

It is of course essential that both methods give the same value for the
estimated trend. Their difference has been plotted in Fig. 4 which shows
that there is no significant discrepancy. The same has been done for the
estimated trend error which is plotted in Fig. 5. It can be seen that the use
of our covariance matrix gives a slightly larger error bar because the noise
has had more time to develop, it is non-stationary, to larger values. Bos
et al (2008) explain this phenomenon with more detail.

So far we have assumed that the missing data points are randomly dis-
tributed over the time-series. To investigate if the location of the missing
data points has an influence on the computation time, we have repeated the
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Figure 4: The same as Fig. 3 but for the estimated trend value. Shown is
CATS minus our reformulated MLE program.
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Figure 5: The same as Fig. 3 but for the estimated trend error. Shown is
CATS minus our reformulated MLE program.
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above described Monte Carlo simulations but with all missing data points
put together into one sequence of missing data. Two runs were computed:
one run with this large sequence of missing data put in the middle and one
run with this sequence put at the end of the time-series, just before the last
observation. In both cases no noticeable difference in computation time was
observed.

6 Results with real data

In the previous section we analysed synthetic data but the new algorithm
also performs well on real GNSS data as we will show in this section. We
have selected 16 global stations of the International GNSS Service (Dow
et al, 2009) that have between 8 and 15 years of good observations. Their
names, data span in days and the percentage of missing data are given in the
first three columns of Table 1. The raw GNSS observations were processed
with the GIPSY-OASIS II software (Webb and Zumberge, 1995) using the
PPP method (Zumberge et al, 1997) to produce daily solutions that were
subsequently mapped into ITRF2008 (Altamimi et al, 2011).

Besides missing data, these time-series contain outliers that were elim-
inated by removing all observations for which the residual value, obtained
by subtraction of the modelled signal, fell outside our chosen threshold of
three times the interquartile range. This modelled signal was estimated by
ordinary least-squares (thus assuming white noise) and repeated until there
were no more outliers left in the time-series. The cleaned data were then
analysed both with CATS and the new algorithm. The results for the East
and North component are listed in columns 4 to 11 of Table 1. For these
computations a quad-core Intel Core i3 processor, 2.1 Ghz, with 4 GByte of
memory was used.

Table 1 clearly shows that a factor of 10-100 in computation time is
gained with the new algorithm, while similar results are obtained. The
highest gain is obtained for series with the smallest amount of missing data
which is in agreement with the results of section 5. The speed up factors,
thus the computation times of CATS divided by those of the new algorithm,
for the North and East component have been plotted as function of the
amount of percentage of missing data in Fig. 6. In this figure also the speed
up factors obtained for the synthetic data with data spans of 1000 and 4000
days are shown.

The slight differences, although well within the uncertainties, in esti-
mated trend and trend error values in Table 1 are caused by our approx-
imation of the covariance matrix. Since MLE is an iterative method that
converges to a solution, one has to decide when a good enough solution has
been obtained. We used the default thresholds of CATS and we confirmed
that our threshold was good enough by decreasing it by a factor of 10 and re-
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Figure 6: The speed up factor (CATS computation time divided by the time
needed by the new algorithm) for various percentages of missing data. Also
shown are the speed up factors for the analysis of synthetic data shown in
Fig. 2.

computing the results. We observed only some changes in the third decimal
value which indicates our chosen threshold is sufficient.

For the results computed with our new algorithm, it was assumed that
the noise started to develop 5000 days before the first observations. To
verify that this assumption does not have a large influence on the results,
we also performed the same analysis with the noise starting at the same
time as the first observation. The differences were only noticeable in the
second and third decimal of the estimated spectral index α and of the esti-
mated trend and trend error. Since the spectral index α ranged from 0.8 to
1.5, this shows that our approximation of the covariance matrix gives very
satisfactory results.

7 Discussion and Conclusions

We have shown how the MLE method can be reformulated to gain a factor
of 10-100 in computation time compared to the standard MLE method for
the estimation of the linear trend in GNSS time-series with up to 20% of
missing data points. This is an improvement with respect to the results of
Bos et al (2008) because it is no longer necessary to fill the missing data by
interpolation.

The influence of time correlated noise on time series and the presence
of reasonably fast method to include coloured noise in the analysis of time-
series, such as shown in this paper and by Hackl et al (2011), strongly
suggest that people should routinely add time correlated noise analysis in
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Table 1: The results of the time-series analysis using both CATS and the new algorithm, East and North component. Given
are the estimated trends with the standard deviations in mm/year and the computation times t in seconds.

East North
n miss CATS new algorithm CATS new algorithm

Station (days) (%) trend ± σ t trend ± σ t trend ± σ t trend ± σ t

ALRT 2890 3 -21.71 ± 0.84 406 -21.52 ± 0.96 3 5.90 ± 0.94 408 5.44 ± 1.00 2
BOR1 5332 3 20.18 ± 0.09 2111 20.18 ± 0.11 24 14.86 ± 0.05 2077 14.82 ± 0.06 24
BRUS 5294 3 17.68 ± 0.11 1882 17.71 ± 0.13 41 15.68 ± 0.14 2134 15.71 ± 0.17 47
DRAO 5369 2 -13.05 ± 0.06 1873 -13.04 ± 0.07 28 -10.38 ± 0.04 2162 -10.38 ± 0.04 17
HLFX 2861 2 -15.19 ± 0.05 751 -15.19 ± 0.05 7 8.77 ± 0.05 705 8.76 ± 0.06 7
HNLC 4236 14 -62.55 ± 0.07 1206 -62.55 ± 0.07 92 34.56 ± 0.05 2104 34.56 ± 0.05 214
HYDE 2777 7 42.15 ± 0.45 313 42.20 ± 0.52 15 33.34 ± 0.76 291 33.33 ± 0.84 13
MATE 5356 2 23.76 ± 0.17 1687 23.80 ± 0.20 32 19.29 ± 0.09 2046 19.25 ± 0.10 26
METS 4980 9 19.84 ± 0.08 1612 19.87 ± 0.09 75 12.85 ± 0.06 1686 12.85 ± 0.07 82
NRIL 3465 8 22.08 ± 0.06 542 22.09 ± 0.06 15 -2.09 ± 0.11 601 -2.07 ± 0.12 17
NYAL 4851 11 10.23 ± 0.09 1555 10.22 ± 0.10 129 14.18 ± 0.11 1323 14.14 ± 0.13 141
ONSA 5310 3 17.08 ± 0.04 2126 17.07 ± 0.05 27 14.73 ± 0.05 1861 14.72 ± 0.05 31
PERT 4979 9 39.08 ± 0.13 1646 39.04 ± 0.15 114 57.78 ± 0.15 1566 57.75 ± 0.18 101
TIXI 4169 7 16.92 ± 0.22 909 16.94 ± 0.26 61 -11.75 ± 0.20 988 -11.73 ± 0.24 51
WSRT 4773 3 17.57 ± 0.05 1632 17.55 ± 0.06 25 16.38 ± 0.05 1403 16.40 ± 0.06 28
WTZR 5322 3 20.50 ± 0.06 2055 20.51 ± 0.07 9 15.47 ± 0.04 2115 15.47 ± 0.05 8
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the uncertainties estimation.
The new algorithm is highly parallelizable which is beneficial to run it on

a cluster computer or for grid computing. For longer time-series one could
implement the super-fast Toeplitz solver to reduce the number of operations
for the inverse Cholesky decomposition, Eq. (24), even further from O(n2)
to O(n log22 n).

Although the processing speed of new computers continues to grow ex-
ponentially over the year, this new algorithm opens the possibility to analyse
even more challenging problems such as the simultaneous time-series anal-
ysis of several stations, allowing both for spatial and temporal correlations
(Amiri-Simkooei, 2009).

Agnew (1992) noted that most geophysical signals exhibit temporal cor-
relation, mostly in the form of some kind of power-law, and therefore the
algorithm we described can also be helpful to analyse tide gauge, strain and
gravity data.
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A Derivation of key equations

In this appendix we give the derivations of Eqs. (7) and (8) that were
presented in section 2. These derivation make use of Jacobi’s determinant
identity and the formula for the inverse of a block matrix (Brualdi and
Schneider, 1983). To start, assume that our square covariance matrix C,
size n× n, can be partitioned into four sub-matrices:

C =

(

Coo Com

Cmo Cmm

)

(33)

where the subscripts m and o represent the rows and columns of missing and
observed data respectively. Consequently, Cmm is a square m×m matrix.

Using Gaussian elimination we can reduce Cmo to a zero matrix:

(

In−m 0

−CmoC
−1
oo Im

)(

Coo Com

Cmo Cmm

)

=

(

Coo Com

0 C′
mm

)

(34)

where C′
mm = Cmm −CmoC

−1
oo Com which is called the Schur complement

of Coo in C. When we take the determinant of Eq. (34), we obtain:

det(C) = det(Coo) det(C
′
mm) (35)
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Using the matrices C̆ (=Coo) and F that were introduced in section 2, we
can rewrite Eq. (35) as:

det(C) = det(C̆) det
(

(FTC−1F)−1
)

(36)

The last term of Eq. (36) can be obtained by realising that the two mul-
tiplications with matrix F do nothing more than selecting a submatrix of
matrix C−1. The relation with C′

mm can be found by looking at the formula
for the matrix inverse for a block matrix (Brualdi and Schneider, 1983):

C−1 =
(

C−1
oo +C−1

oo Com(C′
mm)−1CmoC

−1
oo −C−1

oo Com(C′
mm)−1

−(C′
mm)−1CmoC

−1
oo (C′

mm)−1

)

(37)

one will note the equivalence of this submatrix with the inverse of the Schur
complement. Thus, we have:

C′
mm =

(

FTC−1F
)−1

(38)

By taking the logarithm of Eq. (36), and using the relation det(C) =
1/det(C−1), Eq. (8) of section 2 is obtained.

Of course the missing data will normally not occur after all observations
have been made. Determinants have the property that rows and columns
of the matrix can be interchanged without changing the value except for a
change in sign. However, when rows i and j are swapped of the covariance
matrix, the columns i and j are swapped at the same time which means
that the sign does not change. Therefore, Eq. (8) is valid for any sequence
of missing data.

Next, using Eq. (38) we have:

F(FTC−1F)−1FT =

(

0 0

0 C′
mm

)

(39)

Using Eq. (37), this leads to the following result:

C−1F(FTC−1F)−1FTC−1 =
(

C−1
oo Com(C′

mm)−1CmoC
−1
oo −C−1

oo Com(C′
mm)−1

−(C′
mm)−1CmoC

−1
oo (C′

mm)−1

)

(40)

Changing the sign of Eq. (40) and adding C−1 finally gives us:

C−1 −C−1F(FTC−1F)−1FTC−1 =

(

C−1
oo 0

0 0

)

(41)

This provides us the proof for Eq. (7) in section 2:

r̆T C̆−1r̆ = rTo
(

C−1 −C−1F(FTC−1F)−1FTC−1
)

ro (42)
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Swapping rows i and j of the covariance matrix C will cause a swap of
columns i and j of matrix C−1. Swapping the columns of C will cause a
swap of the rows of C−1 in a similar way. Thus, we can reshuffle our set of
observations and missing data, while at the same time adjusting matrix F,
to obtain the form of Eq. (34) which proves the general validity of Eq. (42)
for any sequence of missing data.
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