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NER WordNet
Most current machine learning works
well because of human-designed

representations and input features

Machine learning becomes just optimizing “
weights to best make a final prediction c

Representation learning attempts to
automatically learn good features or representations

Deep learning algorithms attempt to learn multiple levels of
representation of increasing complexity/abstraction



A Deep Architecture

Mainly, work has explored deep belief networks (DBNs), Markov
Random Fields with multiple layers, and various types of
multiple-layer neural networks

Output layer

Here predicting a supervised target

Hidden layers

These learn more abstract
representations as you head up

Input layer —

3 Raw sensory inputs (roughly)



Part 1.1: The Basics

~Five Reasons to Exptare.
Deep Learning



# 1 Learnhing reprasenta&ians

Handcrafting features is time-consuming

The features are often both over-specified and incomplete

The work has to be done again for each task/domain/...

We must move beyond handcrafted features and simple ML

Humans develop representations for learning and reasoning
Our computers should do the same

Deep learning provides a way of doing this
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# 2 The need for distributed
representations

Current NLP systems are incredibly fragile because of
their atomic symbol representations
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# 2 The need for distributed
representations

Learned word representations that model similarities
help enormously in NLP

Distributional similarity based word clusters greatly help most
applications

+1.4% F1 Dependency Parsing 15.2% error reduction (Koo &
Collins 2008, Brown clustering)

+3.4% F1 Named Entity Recognition 23.7% error reduction
(Stanford NER, exchange clustering)
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DISTRIBUTED PARTITION

LOCAL PARTITION

Learning features that are not mutually exclusive can be exponentially
more efficient than nearest-neighbor-like or clustering-like models



Diskributed representations deal with
the curse of dimensionality

Generalizing locally (e.g., nearest
neighbors) requires representative
examples for all relevant variations!

1 dimension:
10 positions

2 dimensions:
100 positions
[ J

Classic solutions:
e Manual feature design

e Assuming a smooth target
function (e.g., linear models)

e Kernel methods (linear in terms
of kernel based on data points)

» 3 dimensions:
1000 positions!

Neural networks parameterize and
learn a “similarity” kernel



#3 Uv\su.pe.rvised feature and
weight Learning

Today, most practical, good NLP& ML methods require
labeled training data (i.e., supervised learning)

But almost all data is unlabeled

Most information must be acquired unsupervised

Fortunately, a good model of observed data can really help you
learn classification decisions
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#4" Learnhing mui.!:ipi.e levels of

repre.se.v\&ation

Biologically inspired learning

e The cortex seems to have a generic learning
algorithm

e The brain has a deep architecture

Task 1 OutputIq Task 2 OutputP L Task 3 Output

We need good intermediate representations
that can be shared across tasks

Multiple levels of latent variables allow

combinatorial sharing of statistical strength

e [Insufficient model depth can be
exponentially inefficient

11




#4' Learhning mui.!:ipie levels ,
of representation i

[Lee et al. ICML 2009; Lee et al. NIPS 209]

Successive model layers learn deeper intermediate representations

High-level
Layer 3 linguistic representations

e TN ALYV
I AVNNSET T REE




Hondling the recursivity of human

Language

Human sentences are composed —it z‘t <

from words and phrases - >8 >8>
o o 0o

We need compositionality in our xt_lr X, r XHI_)
ML models 0000 (ecoe| (ecoo

Recursion: the same operator

A small crowd

i i quietly enters
(same parametgrs) is applied pheny enter
repeatedly on different church
components semantic

Representations

A small quietly
crowd enters

Det Adj.

o
historic
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#5 Nkv Now¢

Despite prior investigation and understanding of many of the
algorithmic techniques ...

Before 2006 training deep architectures was unsuccessful ®

What has changed?

*  New methods for unsupervised pre-training have been
developed (Restricted Boltzmann Machines = RBMs,
autoencoders, contrastive estimation, etc.)

*  More efficient parameter estimation methods
* Better understanding of model regularization



Deep Learning models have alread
achieved impressive results for HL

Neural Language Model (*) Model \WsJ task ____| Eval WER_

[Mikolov et al. Interspeech 2011] S &7  KN5Baseline 17.2
%} Discriminative LM 16.9

Recurrent NN combination 14.4

MSR MAVIS Speech System et e o RTO3S
[Dahl et al. 2012; Seide et al. 2011; \(\EI\CI(I)E?% %
following Mohamed et al. 2011] :

GMM 40-mix, 1l-pass 27.4 23.6
BMMI, SWB 309h -adapt

& J

“The algorithms represent the first time a ~ CD-DNN 7 layerx  1-pass 18'50 16'10
company has released a deep-neural- 2048, SWB 309h  -adapt (-33%) (-32%)

networks (DNN)-based speech-recognition  GMM 72-mix, k-pass 18.6 17.1

algorithm in a commercial product.” BMMI, FSH 2000h +adapt
15



Deep Learih Models Have Interesting
Pertormance Characteristics

Deep Iearning models can now be very fast in some circumstances

* SENNA [Collobert et al. 2011] can do POS or NER faster than
other SOTA taggers (16x to 122x), using 25x less memory
e WSJ POS 97.29% acc; CoNLL NER 89.59% F1; CoNLL Chunking 94.32% F1

Changes in computing technology favor deep learning
* In NLP, speed has traditionally come from exploiting sparsity

e But with modern machines, branches and widely spaced
memory accesses are costly

e Uniform parallel operations on dense vectors are faster
These trends are even stronger with multi-core CPUs and GPUs
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Outline of the Tutorial

1. The Basics
1. Motivations
2. From logistic regression to neural networks
3. Word representations
4. Unsupervised word vector learning
5. Backpropagation Training
6. Learning word-level classifiers: POS and NER

7.

Sharing statistical strength

2. Recursive Neural Networks

3. Applications, Discussion, and Resources
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Outline of the Tutorial

1. The Basics
2. Recursive Neural Networks

1.

A i

7.

Motivation

Recursive Neural Networks for Parsing

Theory: Backpropagation Through Structure

Recursive Autoencoders

Application to Sentiment Analysis and Paraphrase Detection
Compositionality Through Recursive Matrix-Vector Spaces
Relation classification

3. Applications, Discussion, and Resources
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Outline of the Tutorial

20

The Basics
Recursive Neural Networks

Applications, Discussion, and Resources

1. Applications
1. Neural language models
2. Structured embedding of knowledge bases
3. Assorted other speech and NLP applications

2. Resources (readings, code, ...)
3. Tricks of the trade

4. Discussion: Limitations, advantages, future directions
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Part 1.2: The Basics

From Logistic regression to
neural nets




Demystifying neural networks

Neural networks come with
their own terminological
baggage

... just like SVMs

But if you understand how
maxent/logistic regression
models work

Then you already understand the
operation of a basic neural
network neuron!

22

A single neuron
A computational unit with n (3) inputs
and 1 output
and parameters W, b

Inputs Activation Output
function

Bias unit corresponds to intercept term



From Maxent Classifiers ko Neural
Networlks

In NLP, a maxent classifier is normally written as:

exp E,ﬂi f(c,d)
S o0 3 A

Supervised learning gives us a distribution for datum d over classes in C

P(cld,A) =

eﬂ fle,d)

E ’e)LTf(c’,d)
C

Such a classifier is used as-is in a neural network (“a softmax layer”)

Vector form: P(cld,\)=

e Often as the top layer

But for now we’ll derive a two-class logistic model for one neuron
23



From Maxent Classifiers ko Neural
Networles

e)LTf(c,d)
Vector form:  P(cld,A) = ——
E e f(c'.d)
C
Make two class: T e d) T e d) AT e )
e b e b e b
P(c, ld,A)= = '
1 ’ AT f (e, d) AT f(cy,d) AT f(e.d) ATf(cy.d) A f(cd)
e + e e + e 4
1
= = forx = f(c,,d)- f(c,,d)
T ~ T 1° 20
1_|_e7L [f(cy,d)=f(c;,d)] 1+€ Ax

= f(A'x)

for f(z) = 1/(1 + exp(-z)), the logistic function — a sigmoid non-linearity.

-6 -4 -2 0 2 4 6
24



This is exaxc!:i.v whal a neuron
compu&es

b: We can have an “always on”

h (X) = f(WTx + b) «——— feature, which gives a class prior,
w.,b | .
or separate it out, as a bias term
1

f(z)=1 =

+e°

X1
x — | faY |
2 ¥ X 6 -4 -2 0 2 4 6
L T hylx)
\ / w,b
X3 N
T w, b are the parameters of this neuron

75 i.e., this logistic regression model




A neural network = running several
Logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs

But we don’t have to decide
ahead of time what variables

these logistic regressions are
trying to predict!
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A neural network = running several
Logistic regressions at the same time

... which we can feed into another logistic regression function

and it is the training
criterion that will
decide what those
intermediate binary
target variables should
be, so as to do a good
job of predicting the
targets for the next
layer, etc.

27



A neural network = running several
Logistic regressions at the same time

Before we know it, we have a multilayer neural network....

28



Matrix notation for a Layer

We have
a, = f(W,x; + Wiox, + Wisx; + b))
a, = f (W x, + Wyx, + Wysx; + b))
etc.

In matrix notation

z=Wx+b
a=f(z)

where fis applied element-wise:

f([Zl,Zz,Z3])=[f(zl),f(zz),f(z3)] Layer L,

29



How do we train the weights W?

e For a supervised single layer neural net, we can train the model
just like a maxent model — we calculate and use gradients

* Stochastic gradient descent (SGD)
e Conjugate gradient or L-BFGS

e A multilayer net could be more complex because the internal
(“hidden”) logistic units make the function non-convex ... just as
for hidden CRFs [Quattoni et al. 2005, Gunawardana et al. 2005]

* But we can use the same ideas and techniques
e Just without guarantees ...

e This leads into “backpropagation”, which we cover later
30



Nown-Linearities: ka &key’ re needed

e For logistic regression: map to probabilities —Z vl

. . . 0 XN )
e Here: function approximation, ‘.\T

e.g., regression or classification !

* Without non-linearities, deep neural networks

can’t do anything more than a linear transform 1 M =3

e Extra layers could just be compiled down into
a single linear transform x

* Probabilistic interpretation unnecessary except in

=

the Boltzmann machine/graphical models

e People often use other non-linearities, suchas 1 M =10
tanh, as we’ll discuss in part 3

31
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Summar
Khnowing the meaning of words!

You now understand the basics and the relation to other models

e Neuron = logistic regression or similar function

* |nput layer = input training/test vector

e Bias unit = intercept term/always on feature

e Activation = response

e Activation function is a logistic (or similar “sigmoid” nonlinearity)

e Backpropagation = running stochastic gradient descent across a
multilayer network

e Weight decay = regularization / Bayesian prior

32



Effective deep Learning became possible
through whsupervised pre-training

w
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test classification error (perc)

28
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(with RBMs and Denoising Auto-Encoders)

With unsupervised pre-training
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Part 1.3: The Basics

Word Rapresen&a!:wns




The standard word repre.se.hka&i.cv\

The vast majority of rule-based and statistical NLP work regards
words as atomic symbols: lhobel, acrwfar@\f:e, walle

In vector space terms, this is a vector with one 1 and a lot of zeroes

[coocoo0o000001 000 O]
Dimensionality: 20K (speech) — 50K (PTB) — 500K (big vocab) — 13M (Google 1T)
We call this a “one-hot” representation. Its problem:

motel [c 6 000000001 0000] AND
hotel [oo 000001000000 0] = ©

35



Diskributional similarity based
rapresevx&a&ions

You can get a lot of value by representing a word by
means of its neighbors

“You shall know a word by the company it keeps”
(J. R. Firth 1957: 11)

One of the most successful ideas of modern statistical NLP

banking
banking

N These words will represent banking 77

You can vary whether you use local or large context
36 to get a more syntactic or semantic clustering



Class-based (hard) and soft
clustering word representations

Class based models learn word classes of similar words based on
distributional information ( ~ class HMM)

e Brown clustering (Brown et al. 1992)
e Exchange clustering (Martin et al. 1998, Clark 2003)
e Desparsification and great example of unsupervised pre-training

Soft clustering models learn for each cluster/topic a distribution
over words of how likely that word is in each cluster

e Latent Semantic Analysis (LSA/LSI), Random projections
e Latent Dirichlet Analysis (LDA), HMM clustering

37



Neural word embeddings
as o distributed representation

Similar idea

Combine vector space 4
semantics with the prediction of 0.286
probabilistic models (Bengio et 8;3?
al. 2003, Collobert & Weston :0'107
2008, Turian et al. 2010) linguistics = 0.109
In all of these approaches, -0.542
including deep learning models, 0.349
a word is represented as a 0.271

dense vector \_

38




Neural word embeddings -
visualization

need help
come
go
take
give keep
make  get
meet oo continue
expect want become
think
say remain
are .
is
be
wergas
being
been
39 haqms

have




Advantages of the neural word
embedding approach

Compared to a method like LSA, neural word embeddings
can become more meaningful through adding supervision
from one or multiple tasks

For instance, sentiment is usually not captured in unsupervised
word embeddings but can be in neural word vectors

We can build representations for large linguistic units

See part 2

40
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Part 1.4: The Basics

Uv\supe.rvise.d word vector
Leariing




A neural nekworlke for Learning word
vectors (Collobert et al. IMLR 2011)

ldea: A word and its context is a positive training
sample; a random word in that same context gives
a negative training sample:

E[bcat chills on a mat == cat chills Jeju a mat

Similar: Implicit negative evidence in Contrastive
Estimation, (Smith and Eisner 2005)

42



A neural nekworlke for Learning word
vectors

How do we formalize this idea? Ask that

score(cat chills on a mat) > score(cat chills Jeju a mat)

How do we compute the score?

e With a neural network

e Each word is associated with an
n-dimensional vector

43



Word embedding matrix

e |nitialize all word vectors randomly to form a word embedding
matrix [, € R**IVI

V]
o o o) o0
o o o) o0
| = o o o o o],
e o o o 0

the cat mat ..
e These are the word features we want to learn
e Also called a look-up table

* Conceptually you get a word’s vector by left multiplying a

one-hotvectoreby l: x=le
44



Word vectors as anu,!: ko a neural
nebtworle

e score(cat chills on a mat)

e To describe a phrase, retrieve (via index) the corresponding
vectors from L

cat chillson a mat

e Then concatenate them to 5n vector:
X =[ 0000 0000 0000 0000 000O ]

How do we then compute score(x)?

45



A Single Layer Neural Network

* Asingle layer is a combination of a linear layer
and a nonlinearity: z = Wax+b

a = f(z)

 The neural activations can then
be used to compute some function.

e For instance, the score we care about:
score(r) = U'acR

46



Summary: Feed-forward Computation

Computing a window’s score with a 3-layer Neural
Net: s = score(cat chills on a mat)

g — UTf(Wa?—I—b) = R2OX1,W c R8X2O,U c RSXl

s = Ula T
a = f(z) o000 0000
z = Wx+b

T = [gccat Tehills Lon Ta $mat] 0000 0000 0000 0000 0000

L E]Rnx“/' cat chills on a mat
47



Summary: Feed-forward Computation

e s =score(cat chills on a mat)
* s_=score(cat chills Jeju a mat)
e |dea for training objective: make score of true window

larger and corrupt window’s score lower (until they're
good enough): minimize

J = max(0,1 — s + s.) —(o——

e This is continuous, can perform SGD

48




Training with Backpropagation

s=U"f(Wax + b)

J = max(0,1 — s + s.) o = UT f(Wio 1 )

Assuming cost Jis > 0, it is simple to see that we

can compute the derivatives of s and s_ wrt all the
involved variables: U, W, b, x

ds 9 o Os
au —ou’ ¢ au

a

49



Training with Backpropagation

* Let’s consider the derivative of a single weight W,

s 0 ..o 0 _p 0 7
8W_8WU a—aWU f(z)—aWU f(Wx +0)

* This only appears inside g; U,

* For example: W,; is only

w
used to compute a, 23

50



Training with Backprogaga&iav\

0s 0 0
— =—Ula= —UTf(z)= ==U"f(Wz +b
L. : oy Oy Ju
Derivative of weight W/ eyl
o . 9
8W7;jU “© 7 oW Viai
0 8&2- 8ZZ
_ _af(zi) 0z;
B UZ 8zz 8Ww
) 7 aWw

51 . 8Wm



Training with Backpropagation

Derivative of single weight W;:

0 > Wiy

= Uif/(zi)aW”
iJ L

= Uif'(z) %
N——

T

Local error Local input
signal signal

52



Training with Backpropagation

* From single weight W, to full W:
0.J

TN (=),

— 52 X 4

e We want all combinations of
i=1,2andj=1,2,3

e Solution: Outer product:
where § ¢ R2X1is the
“responsibility” coming from
each activation a

0J
oW
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Training with Backpropagation

e For biases b, we get:

0
Uza—bzaz

= Uf'(=)
— 5

ob;

54



Training with Backpropagation

That’s almost backpropagation

It’s simply taking derivatives and using the chain rule!

Remaining trick: we can re-use derivatives computed for
higher layers in computing derivatives for lower layers

Example: last derivatives of model, the word vectors in x

55



Training with Baakproragahoh

e Take derivative of score with 0s

respect to single word vector Oz,

(for simplicity a 1d vector,
but same if it was longer)

e Now, we cannot just take
into consideration one g,
because each X; is connected
to all the neurons above and
hence X; influences the
overall score through all of
these, hence:

Z@UTCL da;
i1 8a7; 8xj
2. Of(Wiz +b)
Ui
P o0x
2
oW, .x
/ 7
) ) b
> Uif'(Wiz+b) T

Z 0;Wij

5TW

56 Re-used part of previous derivative N"



Training with Backpropagation:
softmax

What is the major benefit of learned word vectors?

Ability to also propagate labeled information into them,
via softmax/maxent and hidden layer:

AT f(e.d)

€

E ,e)LTf(c’,d)
C

exp(Se.a)
> exp(Se.a)

Cx2
P(cld.})= S eR™”

p(clz) =

57
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Part 1.5: The Basics

Backpropagation Training




Back—-‘?rc:p

e Compute gradient of example-wise loss wrt
parameters

* Simply applying the derivative chain rule wisely
_ _ Oz __ Oz Oy
e=fly) y=9) 5 =573

* If computing the loss(example, parameters) is O(n)
computation, then so is computing the gradient

59



Sim Fte. Chain Rule

60

s

Az = %Ay

Ay = =2 Ax

Az = g; ngx
9z __ 9z dy

Ox ~ Oy Ox



Muﬂ:i‘.pte. Palbths Chain Rule

Oz __ Oz Oy

Oz OYo

X Ox — Oy; Ox

61

Oys Ox



Mui&ipia Pabths Chain Rule - General

&
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Chain Rule in Flow G’T‘QF"\
2

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

{y1, Ya, ... yn}=successors of XU

63



Back-—?mp TN Mutki—Lajer Net
NLL = —log P(Y = y|x)

64



Back—-‘?’mp i Greneral Flow Grapk

Single scalar output 2

1. Fprop: visit nodes in topo-sort order
- Compute value of node given predecessors
2. Bprop:
- initialize output gradient =1
- visit nodes in reverse order:
Compute gradient wrt each node using
gradient wrt successors

{yl, Y2, « .. yn} = successors of X

65



Automatic Differentiation

66

W

* The gradient computation can
be automatically inferred from
the symbolic expression of the
fprop.

* Each node type needs to know
how to compute its output and
how to compute the gradient
wrt its inputs given the
gradient wrt its output.

* Easy and fast prototyping
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Part 1.6: The Basics

Learning word-level classifiers:
POS and NER




The Model

(Collobert & Weston 2008;
Collobert et al. 2011)

68

F
5
¥

Similar to word vector
learning but replaces the
single scalar score with a
Softmax/Maxent classifier

Training is again done via
backpropagation which gives
an error similar to the score
in the unsupervised word
vector learning model




The Model - Training

e We already know the softmax classifier and how to optimize it

e The interesting twist in deep learning is that the input features
are also learned, similar to learning word vectors with a score:

U,

W23
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The Model - Training

e All derivatives of layers beneath the score were multiplied by U,
for the softmax, the error vector becomes the difference
between predicted and gold standard distributions

U,

W23

70



The secret sauce is the uv\supe.rvised
pre-training on a large text collection

NER
CoNLL (F1)

State-of-the-art* 97.24 89.31
Supervised NN 96.37 81.47
Unsupervised pre-training 97.20 88.87
followed by supervised NN**

+ hand-crafted features*** Q7 .29 89.59

* Representative systems: POS: (Toutanova et al. 2003), NER: (Ando & Zhang
2005)

** 130,000-word embedding trained on Wikipedia and Reuters with 11 word
window, 100 unit hidden layer — for 7 weeks! — then supervised task training

;‘1**Features are character suffixes for POS and a gazetteer for NER



Supervised refinement of the
uv\su,pervised word represewl:a&i.ov\ ketps

NER
CoNLL (F1)

Supervised NN 96.37 81.47
NN with Brown clusters 96.92 87.15
Fixed embeddings* 97.10 88.87
C&W 2011** 97.29 89.59

* Same architecture as C&W 2011, but word embeddings are kept constant
during the supervised training phase

** C&W is unsupervised pre-train + supervised NN + features model of last slide
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Multi-Task Learning

e Generalizing better to new

tasks is crucial to approach E
Al

Deep architectures learn
good intermediate
representations that can be
shared across tasks

e Good representations make
sense for many tasks

73



Combining Mulhpl.e. Sources of
Evidence wn&k Shared Embeddings

e Relational learning
e Multiple sources of information / relations
e Some symbols (e.g. words, wikipedia entries) shared

e Shared embeddings help propagate information
among data sources: e.g., WordNet, XWN, Wikipedia,

FreeBase, ...

74
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Part 1.7

Sharing statistical strength




Sharing Statistical Strength

e Besides very fast prediction, the main advantage of
deep learning is statistical

e Potential to learn from less labeled examples because
of sharing of statistical strength:

* Unsupervised pre-training & Multi-task learning
* Semi-supervised learning =2

76



Se.mi.--Supe.rvisad Learhing

e Hypothesis: P(c|x) can be more accurately computed using
shared structure with P(x)

purely
supervised
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Se.m£-’5uperv£se.d Learhing

e Hypothesis: P(c|x) can be more accurately computed using
shared structure with P(x)

semi-
supervised
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“De.e.p aultoencoders

e Alternative to contrastive unsupervised word learning
* Another is RBMs (Hinton et al. 2006), which we don’t cover today

e Works well for fixed input representations (word vectors are not
but bag of word representations are)

1. Definition, intuition and variants of autoencoders
2. Stacking for deep autoencoders
3. Why do autoencoders improve deep neural nets so much?

79



Auto-Encoders

e Multilayer neural net with target output = input
e Reconstruction=decoder(encoder(input))

a = tanh(Wx + b)
v’ = tanh(W'a + c)
/
cost = ||2' -zl O®® -~ O reconstruction
decoder
* Probable inputs have COO@  codetatent features
small reconstruction error encoder

000 - @

80



PCA = Linear Manifold = Linear Auto-
Encoder

input x, 0-mean
features=code=h(x)=W x
reconstruction(x)=W" h(x) = W™ W x
W = principal eigen-basis of Cov(X)

Linear manifold

LSA example:
x = (normalized) distribution
of co-occurrence frequencies

81



The Manifold Learning Hypothesis

e Examples concentrate near a lower dimensional
“manifold” (region of high density where small changes are only
allowed in certain direction-®




Auto-Encoders Learn Salienk
Variakions, Like a non-linear PCA

o ® %,
. <
¢ o
Minimizing reconstruction error ®
forces latent representation of O
“similar inputs” to stay on ®

manifold

83



Auto-Encoder Varianks

84

Discrete inputs: cross-entropy or log-likelihood reconstruction
criterion (similar to used for discrete targets for MLPs)

Preventing them to learn the identity everywhere:

* Undercomplete (eg PCA): bottleneck code smaller than input

g

e Sparsity: penalize hidden unit activations so at or near O
[Goodfellow et al 2009]

e Denoising: predict true input from corrupted input
[Vincent et al 2008]

e Contractive: force encoder to have small derivatives
[Rifai et al 2011]




Sparse autoencoder illustration for
imaqges

Natural Images

Learned bases: |

Test example

[a,, .., agl =1[0,0,..,0,0.8,0,..00.3,0,..,0,0.5,0]
8 (feature representation)




Stacking Auto-Encoders

e (Can be stacked successfully (Bengio et al NIPS’2006) to form highly
non-linear representations

r

U
hz@OOCADOOO) OOO00O00)
W >W2' WZA
Jlelelelelelol®) h,(ooog)oo@ elelelololel0l N  oTelelol0l0]0)
A
W] WI' w; W,

x ©O000O00YD *xO©OOO0D x COO00)
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Layer-wise Uhsupervised Learning

Input 000 .. O
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Layer-wise Unsupervised Pre-training

features O00©® ... @
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Layer-wise Uv\supe.rvi.se.d Pre-training

features @O @@

_ ?
reconstruptlon 00 ..0 = 000 O input
of input '\
.\
Input %
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Layer-wise Unsupervised Pre-training

features O00©® ... @
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Layer-wise Unsupervised Pre-training

More abstract

features V '{

features 009 @®

Input o0 ..
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Layer-wise Unsupervised Learning

reconstruction

of features ®

More abstract
features

features

Input %
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Layer-wise Unsupervised Pre-training

More abstract

features V '{

features 009 @®

Input o0 ..
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Layer-wise Uhsupervised Learning

Even more abstract
features

More abstract I/;><
features V 'ﬁ

features OO0©® ... @

Input o0 ..
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Supervisad Fine-Tuning

Output - Target
f(X) six _Y
@
Even more abstract / / \
features O

... @
More abstract I/;><T
features V ﬁ

features WV
iInput o0 ..
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Why is unsupervised pre-training
working so well?

e Regularization hypothesis:

* Representations good for P(x) N AN 720 R A R
are good for P(y|x) sof oo SN KL ipreTEnng

1000k £ _____ w i_t.h_?l_l_t. _Pfﬁit_r?ini_n_gg ____________ SR

e Optimization hypothesis: oL
* Unsupervised initializations start

near better local minimum of
supervised training error

* Minima otherwise not I
aChieva ble by random _15—04?000 —30iOO —20iOO —10i00 (I) 1(';00 20i(]0 30i00 40i00
initialization

-500

-1000

Erhan, Courville, Manzagol,
Vincent, Bengio (JMLR, 2010)
9
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Part 2

Recursive Neural Nebworles




Building on Word Vector Space Models

A
X, .
57T ) ¢ 5
4T X [1.1]

4

31T HKGermany [ ;]

-+ 9
2 France [2 ] xMonday[ ]
1T - K Tuesday [ ]
0 1 2 3 4 5 6 7 8 9 10

the country of my birth
the place where | was born

But how can we represent the meaning of longer phrases?

%8 By mapping them into the same vector space!



How should we mayp pkrases inko a
veckor space?

Use principle of compositionality 2
the country of my birth

x the place where | was born

The meaning (vector) of a sentence
is determined by

(1) the meanings of its words and

(2) the rules that combine them. X Monda:y

Tuesd
, ¢
I e . . T m me B T T S 2
0 1 2 3 4 5 6 7 8 9 10 X4

Recursive Neural Nets
can jointly learn
compositional vector
representations and
parse trees
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Recursive Neural Nebworlkes

Motivation

Recursive Neural Networks for Parsing

Theory: Backpropagation Through Structure

Recursive Autoencoders

Application to Sentiment Analysis and Paraphrase Detection
Compositionality Through Recursive Matrix-Vector Spaces

N o Uk W hhE

Relation classification
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Sentence Parsing: What we want

VP

A000dm

at mat.



Learn Skructure and Re.prese.nl:a&f.ou

()

()"
2]) e



Recursive Neural Networks for
Structure Prediction

Inputs: two candidate children’s representations

Outputs:
1. The semantic representation if the two nodes are merged.

2. Score of how plausible the new node would be.

- ;) ]

oo )
4t

mat.

103




Recursive Neural Network Definikion

score = 1.3 [2] = parent

score = U'p

Neural
Network 1| p= tanh(W [21] b),
2

Same W parameters at all nodes
of the tree
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Related Work to Socher et al. (ICML
2011)

* Pollack (1990): Recursive auto-associative memories

B
/7

. PreV|ous Recursive Neural Networks work by Goller & Kuchler

(1996), Costa et al. (2003) assumed fixed tree structure and
used one hot vectors. ¥ =\

e Hinton (1990) and Bottou (2011): Related ideas about
recursive models and recursive operators as smooth

versions of logic operations
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Parsing a sentence with an RNN




Parsing a sentence




Parsing a sentence



Parsing a sentence

oM o
[
]
o0 ™M | J
[
<
] t
~N o

[
]
[
]
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[

]

N N

[
]

a
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Max-Margin F’mme.work[-i- Details

o

8 3
5 3

e Similar to max-margin parsing (Taskar et al. 2004), a supervised
max-margin objective

J = Zs(xi,yl-) — max (s(xi,y) —|—A<y7)7i))
i yEA(x,-)

e The score of a tree is computed by
the sum of the parsing decision
scores at each node.

e The loss A(y,yi) penalizes all incorrect decisions
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Backpropagation Through Structure
(BTS)

Al
e Introduced by Goller & Ktchler (1996) H

e Principally the same as general backpropagation

e Two differences resulting from the tree structure:

e Split derivatives at each node

e Sum derivatives of W from all nodes
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BTS: SFLE& derivatives ot each node

e During forward prop, the parent is computed using 2 children
]
] 3 p = tanh(w [zllb)
) Ul 2

e Hence, the errors need to be computed wrt each of them:

[8]
3
~
RN
// \\
s ~
L,
[8] F]
5 3

where each child’s error is n-dimensional
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BTS: Sum derivatives of all nodes

e You can actually assume it’s a different W at each node
e |ntuition via example:

0
Wf(W(f(Wa;)

)
= f{(W(f(W 0 w %4 %4 0 %4

= S GwD) (W) S0V + W fv )
= [f(W({f(Wz))(f(Wz) + W f (Wz)x)

e |f take separate derivatives of each occurrence, we get same:

0
At ( 2(f (Wlx))+Wf(W2(f(W1m))

= ( 2(f(Whz)) (f Whz)) + f/(Wa(f(Wiz)) (W f' (Whz)z)
= [ (Wa(f(Whz)) (f(Whz) + Waf' (Wz)z)
= (W) (fWz) + W[ (Wz)z)



BTS: Op&'umi.z.a!:iov\

* As before, we can plug the gradients into a
standard off-the-shelf L-BFGS optimizer

* For non-continuous objective use subgradient
method (Ratliff et al. 2007)
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Labeling in Recursive Neural Networlkes

NP
e \We can use each node’s

representation as features for a Softmax
softmax classifier:

Layer

p(elp) = softmaz(Sp) Q

Neural

Network
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Experiments: Parsing Short Sentences

e Standard WSJ train/test L15Dev  L15 Test

e Good results on short

sentences Sigmoid NN (Titov & Henderson 2007) 89.5

e More work is needed for
longer sentences

All the figures are adjusted for seasonal variations
1. All the numbers are adjusted for seasonal fluctuations
2. All the figures are adjusted to remove usual seasonal patterns

Knight-Ridder wouldn’t comment on the offer
1. Harsco declined to say what country placed the order
2. Coastal wouldn’t disclose the terms

Sales grew almost 7% to SUNK m. from SUNK m.
1. Sales rose more than 7% to $94.9 m. from $88.3 m.
2. Sales surged 40% to UNK b. yen from UNK b. 116




Short Para Fhmsa Deltection

e Goalis to say which of candidate phrases are a good
paraphrase of a given phrase
* Motivated by Machine Translation

e Initial algorithms: Bannard & Callison-Burch 2005 (BC 2005), Callison-
Burch 2008 (CB 2008) exploit bilingual sentence-aligned corpora and
hand-built linguistic constraints

» We simply re-use our F1 of Paraphrase Detection

system learned on 0.5
parsing the WSJ 0.4

0.3
0.2
0.1 -

0 -
117 BC 2005 CB 2008 RNN




Para pk'mse detection task, CCB dagtq,

the united
states

around the
world

it would be

of capital
punishment

in the long
run

118

Candidates with human goodness label (1-5) ordered by our system

the usa (5) theus(5) united states(5) north america(4) united (1)
the (1) of the united states (3) america (5) nations (2) we (3)

around the globe(5) throughout the world(5) across the world(5) over
the world(2) in the world(5) of the budget(2) of the world(5)

it would represent (5) there will be (2) that would be (3) it would be
ideal (2) it would be appropriate (2) itis(3) itwould(2)

of the death penalty (5) to death (2) the death penalty (2) of (1)

in the long term (5) in the shortterm (2) for the longer term (5) in
the future (5) inthe end (3) inthelong-term (5) intime (5) of the (1)



Scene Parsing

Similar principle of compositionality.

119

The meaning of a scene image is
also a function of smaller regions,

how they combine as parts to form
larger objects,

and how the objects interact



Algorithm for Parsing Images

Same Recursive Neural Network as for natural language parsing!
(Socher et al. ICML 2011)

Parsing Natural Scene Images

Semantic

Representations
Features

Segments
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Mul.!:t.-ctass seqgmentation

B sky .tree .road .grass .water .bldg .mntn I fg obj.

Pixel CRF (Gould et al., ICCV 2009) 74.3
Classifier on superpixel features 75.9
Region-based energy (Gould et al., ICCV 2009) 76.4
Local labelling (Tighe & Lazebnik, ECCV 2010) 76.9
Superpixel MRF (Tighe & Lazebnik, ECCV 2010) 77.5
Simultaneous MRF (Tighe & Lazebnik, ECCV 2010) 77.5
Recursive Neural Network 78.1

121 stanford Background Dataset (Gould et al. 2009)



Recursive Neural Nebworles

Motivation

Recursive Neural Networks for Parsing

Theory: Backpropagation Through Structure

Recursive Autoencoders

Application to Sentiment Analysis and Paraphrase Detection
Compositionality Through Recursive Matrix-Vector Spaces

N o Uk W hhE

Relation classification
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Recursive Autoencoders

e Similar to Recursive Neural Net but instead of a
supervised score we compute a reconstruction error

ateachnode. f (1¢;: o)) = % [[[e15 2] — [l ¢ H2
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Se.mi,--supervf.se.d Recursive
Aubtoencoder

e To capture sentiment and solve antonym problem, add a softmax classifier

e Erroris a weighted combination of reconstruction error and cross-entropy
Socher et al. (EMNLP 2011)

Reconstruction error Cross-entropy error

( )

0000000 000O0OCOCO O0O0OCGOCO
W(Z) W(Iabel)

0000000

wo
(0000000 (0000000
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Senktiment Detection

e Sentiment detection is crucial to business
intelligence, stock trading, ...

3/18/11 at 4:00 PM 17 Comments
Mentions of the

| Name ‘Anne
| Hathaway’ May
| Drive Berkshire
Hathaway Stock

By Patrick Huguenin

The Huffington Post recently pointed
out that whenever Anne Hathaway is
Maybe she'll change her name to Halliburton. Just to mfhe news, fhie stack price fox Warren
see. Buffett's Berkshire Hathaway goes up.
Really. When Bride Wars opened, the
stock rose 2.61 percent. (Rachel
125 Getting Married only kicked it up 0.44 percent, but, you know, that one was so
light on plot compared to Bride Wars.)



Sentiment Detection and Bag-of-Words
Models

e Most methods start with a bag of words
+ linguistic features/processing/lexica

e But such methods (including tf-idf) can’t
distinguish:
+ white blood cells destroying an infection
- an infection destroying white blood cells
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Single Scale Experiments: Movies

Stealing Harvard doesn’t care about

cleverness, wit or any other kind of
intelligent humor.

a film of ideas and wry comic
mayhem.

127



Accuracy of Positive/Negative
Sentiment Classification

e Results on movie reviews (MR) and opinions (MPQA).

e All other methods use hand-designed polarity shifting
rules or sentiment lexica.

e RAE: no hand-designed features, learns vector

Phrase voting with lexicons 63.1 81.7
Bag of features with lexicons 76.4 84.1
Tree-CRF (Nakagawa et al. 2010) 77.3 86.1

RAE (this work) 77.7 86.4 €=
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Sorted Negative and Positive N-gqrams

Most Negative N-grams Most Positive N-grams

bad; boring; dull; flat; pointless  touching; enjoyable; powerful

that bad; abysmally pathetic the beautiful; with dazzling
is more boring; funny and touching;
manipulative and contrived a small gem

boring than anything else.; cute, funny, heartwarming;

a major waste ... generic with wry humor and genuine

loud, silly, stupid and pointless. ; , deeply absorbing piece that
dull, dumb and derivative horror works as a;
film. ... one of the most ingenious and

entertaining;
129
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Sewtiment Distribution Experiments
e Learn distributions over multiple complex
sentiments 2 New dataset and task

* Experience Project
* http://www.experienceproject.com
* “| walked into a parked car”

* Sorry, Hugs; You rock; Tee-hee ; | understand;
Wow just wow

* Over 31,000 entries with 113 words on average
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Sentiment distributions
* Sorry, Hugs; You rock; Tee-hee ; | understand;

Wow just wow
Predicted and Anonymous Confession

Gold Distribution

l..

Dear Love, | just want to say that | am looking for you. Tonight |

. felt the urge to write, and | am becoming more and more
il I frustrated that | have not found you yet. I’'m also tired of spending

so much heart on an old dream. ...

i am a very succesfull business man. i make good money but i
have been addicted to crack for 13 years. i moved 1 hour away

| from my dealers 10 years ago to stop using now i dont use daily
but ...

well i think hairy women are attractive
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Experience Project most votes resulls

Method | Accuracy% _

Random 20
Most frequent class 38
Bag of words; MaxEnt classifier 46
Spellchecker, sentiment lexica, SVM 47
SVM on neural net word features 46
RAE (this work) 50

Average KL between 08

gold and predicted

|abe| d|Str|but|0nS: l 0.83 0.81 0.72 0.73 0.70
133 06

Avg.Distr._ BoW FeaturesWord Vec. RAE



‘Parapkrase Detection

e Pollack said the plaintiffs failed to show that Merrill
and Blodget directly caused their losses

e Basically, the plaintiffs did not show that omissions
in Merrill’s research caused the claimed losses

e The initial report was made to Modesto Police
December 28

e |t stems from a Modesto police report
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How to compare the
meaning of two
sentences?



Recursive Autoencoders for Full
Sentence Para pkrase. Detection

e Unsupervised Unfolding RAE and a pair-wise sentence
comparison of nodes in parsed trees

e Socher et al. (NIPS 2011)

Recursive Autoencoder Neural Network for Variable-Sized Input

VACX X X

6 002‘5\” :ooooi 4@ee®
(ﬂZjZigﬁ) 3@eew 4o JGee® 2(11‘Z$m

The “cats catch _Cats” eat e
;e cats catc m|ce ats ea mlcEJ 3 7

—y 4 :
W4567

Paraphrase pajrwise Classification Output

Neural Network

Variable-Sized Pooling Layer

Similarity Matrix
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Recursive Autoencoders for Fall
Senktence ‘Fampkmse Detection

e Experiments on Microsoft Research Paraphrase Corpus
e (Dolan et al. 2004)

I -

Rus et al.(2008) 70.6 80.5
Mihalcea et al.(2006) 70.3 81.3
Islam et al.(2007) 72.6 81.3
Qiu et al.(2006) 72.0 81.6
Fernando et al.(2008) 74.1 82.4
Wan et al.(2006) 75.6 83.0
Das and Smith (2009) 73.9 82.3
Das and Smith (2009) + 18 Surface Features 76.1 82.7
F. Bu et al. (ACL 2012): String Re-writing Kernel 76.3

Unfolding Recursive Autoencoder (NIPS 2011) 76.8 83.6
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Recursive Autoencoders for Full
Sentence ‘Parapkrase. Detection

Sentences

Sim.Mat.

0.95

(1) LLEYTON Hewitt yesterday traded his tennis racquet for his first sporting passion -
Australian football - as the world champion relaxed before his Wimbledon title defence

(2) LLEYTON Hewitt yesterday traded his tennis racquet for his first sporting passion-
Australian rules football-as the world champion relaxed ahead of his Wimbledon defence

;;1..::

0.82

(1) The lies and deceptions from Saddam have been well documented over 12 years
(2) It has been well documented over 12 years of lies and deception from Saddam

0.67

(1) Pollack said the plaintiffs failed to show that Merrill and Blodget directly caused their
losses

(2) Basically , the plaintiffs did not show that omissions in Merrill’s research caused the
claimed losses

0.49

(1) Prof Sally Baldwin, 63, from York, fell into a cavity which opened up when the struc-
ture collapsed at Tiburtina station, Italian railway officials said

(2) Sally Baldwin, from York, was killed instantly when a walkway collapsed and she fell
into the machinery at Tiburtina station

0.44

(1) Bremer, 61, is a onetime assistant to former Secretaries of State William P. Rogers and
Henry Kissinger and was ambassador-at-large for counterterrorism from 1986 to 1989
(2) Bremer, 61, is a former assistant to former Secretaries of State William P. Rogers and
Henry Kissinger

138

0.11

(1) The initial report was made to Modesto Police December 28
(2) It stems from a Modesto police report




Recursive Neural Nebworles

Motivation

Recursive Neural Networks for Parsing

Theory: Backpropagation Through Structure

Recursive Autoencoders

Application to Sentiment Analysis and Paraphrase Detection
Compositionality Through Recursive Matrix-Vector Spaces

N o Uk W hhE

Relation classification
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Compositionality Through Recursive
Matrix-Vector Spaces

p = tanh(W [214] b)

2

e But what if words act mostly as an operator, e.g. “very” in

very good
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Compositionality Through Recursive
Mabrix-Vector Recursive Neural Neblworles

p = tanh(W [E qb) p = tanh(W [Czcl ab)

1
2 C,c,

Recursive Matrix-Vector Model

- vector

0| i
®0 matrix

)

141



Predicting Semtiment Distribukions

fairly annoying
——MV-RNN

not annoying

0.5

Ny ——MV-RNN
' ~+=RNN

0.3

0.2 g

0.1

unbelievably annoying

—e—MV-RNN
-+~ RNN

05

04r
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fairly awesome

iy —e—MV-RNN

| -+~ RNN

03

0.2

0.1 ’_'M/M
€

not awesome

05r

oal —e—MV-RNN

' -+~ RNN

0.3r

02} r""

0.1 & e o ° ‘—"' °
'*-~-+---+---4—-—-+---¥”4_

1 2 3 4 5 6 7 8 9 10

unbelievably awesome

—e—MV-RNN
~+=RNN

fairly sad
05
ol ——MV-RNN
| ~+=RNN
03r
021
01 pnne oz o fpocaipanadpmant——— =009
b

not sad
0.5
s ——MV-RNN
-+-RNN
03 —=—Ground Truth

unbelievably sad
—— MV-RNN

0.5




MV-RNN for Relationship Classification

| Classifier: Message-Topic | \
A

More info at

oo EMNLP talk
. th
B S N

the [movie] showed [wars] ...
. . . . Classifier  Feature Sets F1
Relationship | Sentence with labeled nouns for which T e T
to predict relaﬁonships SVM word pair, words in betw.een 725
SVM POS, WordNet, stemming, syntactic 74.8
patterns
Cause- Avian [influenza]ez is an infectious SVM POS, WordNet, morphological fea- 776
. . tures, thesauri, Google n-grams
Effect(e2,el) disease caused by type a strains of the MaxEnt  POS, WordNet, morphological fea- 77.6
tures, noun compound system, the-
influenza [virus]e2. s Googlemgrms__________
N or et, prenxes an other .
. 0 hological fi , POS, depen-
Entity- The [mother]e1 left her native [land]e2 oy parse. features. Levin clamses,
Origin(el,e2) about the same time and they were B s Ton.
g g g tRunner
married in that city. e g
. . LinMVR - 73.0
Message- Roadside [attractions]e1 are frequently MV-RNN - 79.1
. . . . RNN POS,WordNet,NER 77.6
Topic(e2,el) advertised with [billboards]e2 to attract LinMVR  POS.WordNet NER 787
to U rists MV-RNN  POS,WordNet,NER 82.4
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Su,mmaurv: Recursive 'Bee.p Learning

e Recursive Deep Learning can predict hierarchical structure and classify the
structured output using compositional vectors

e State-of-the-art performance on
e Sentiment Analysis on multiple corpora
* Paraphrase detection on the MSRP dataset
* Relation Classification on SemEval 2011, Task8
* Vision modality (Stanford background dataset)

e Code on www.socher.org

Recursive Autoencoder

Neural Network for Variable-Sized Input

7 eee®

/\ SN
6 @ee® Seee® j?zir‘
1&&-’-24\&.-» l@eee@ee0 30000
The cats catch mice |, Cats eat mice
- 0

ParaEhrase Pairwise Classification Output

Neural Network
Variable-Sized Pooling Layer

Similarity Matrix

Recursive Matrix-Vector Model

44

©o - vector

-matrix
Ba=@e Ab=Geo .
B N
e o0
@® @® @),
. very good movie
(a,A b,B) (c,C
& =ees]
o0 X) 00




Part 3

1. Applications
1. Neural language models
2. Structured embedding of knowledge bases
3. Assorted other speech and NLP applications
2. Resources (readings, code, ...)
3. Tricks of the trade
Discussion: Limitations, advantages, future directions
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Existing NLP Applications

Language Modeling

e Speech Recognition

* Machine Translation
Part-Of-Speech Tagging
Chunking

Named Entity Recognition
Semantic Role Labeling
Sentiment Analysis
Paraphrasing
Question-Answering
Word-Sense Disambiguation
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Part 3.1: Applications

Neural Language Models
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Language Modeling

Predict P(next word | previous word)
* Gives a probability for a longer sequence
* Applications to Speech, Translation and Compression

 Computational bottleneck: large vocabulary V means that
computing the output costs #hidden units x |V|.
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Neural Language Model

i-th output = P(w; = i | context)

 Bengio et al NIPS’2000
and JMLR 2003 “A |

Neural Probabilistic B
Language Model” tanh

(eo0o o0 )

normalized exponential
(e o - o - (XX

* Each word represented by
a distributed continuous-
valued code

Generalizes to sequences
of words that are ~, Matix ¢
semantically similar to shared parameters

training sequences o ot o

across words
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Recurrent Neural Net Langquage
Modeling for ASR

45 T T
... | —¢—BN\N
14>__ DTN ——k—— RNN+KNA
*  [Mikolov et al 2011] ol T e
@ Bigger is better... R N e e
‘ experiments on Broadcast § ke NI R
"= News NIST-RT04 s
& :
= 125
perplexity goes from
140 to 102 12
15 L SRR
Paper shows how to o : 12
train a recurrent neural net Hidden layer size

P(w:| context) P(w:t| context)

with a single core in a few — —
days, with > 1% absolute
improvement in WER

VT
VR
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Language Modeling Output Bottlenecie

151

" k|

[Morin & Bengio 2005; Blitzer et al 2005; Mnih & Hinton
2007,2009; Mikolov et al 2011]: hierarchical representations,
multiple output groups, conditionally computed, predict

¢ P(word category | context)

* P(sub-category | context, category)

* P(word | context, sub-category, category)

[Schwenk et al 2002]: only predict most frequent words
(short list) and use n-gram for the others

categories

* Hard categories, can be arbitrary

[Mikolov et al 2011] Y- words within each category



Neural Net Language Modeling for ASR

*  [Schwenk 2007], real-time ASR, perplexity AND word error rate |mprove
(CTS evaluatlon set 2003), perplexmes go from 50.1 to 45.5 ~

o backoff LM, CTS data £ | |
D hybrid LM, CTS data ===
2 x|l ystem backoff LM, CTS+BN data ———1 | _
= 25270 hybrid LM, CTS+BN data Ezzz2
— . 0 g
@)
24.51%
5 24t % system?2 _
-g Z 23.04%§
22.19% — 22.32%
(i 21 Z v 7] 2177% §
Syst 3
% 2 7 ystem
= 20 F 19.94% -
- ? Z 19.10% 1930%
/ / 18.85%
18 F / / ]
1 A 1 1
7.2M 12.3M 27.3M
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Appi.ica&i.ou to Statistical Machine
Tronslation :i

* Schwenk (NAACL 2012 workshop on the future of LM)
e 41M words, Arabic/English bitexts + 151M English from LDC

* Perplexity down from 71.1 (6 Gig back-off) to 56.9 (neural
model, 500M memory)

* +1.8 BLEU score (50.75 to 52.28)

* (Can take advantage of longer contexts

Code: http://lium.univ-lemans.fr/cslm/
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Part 3.1: Applications

Skructured embedding of
imowledge bases
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Modeling Semamntics

Learning Structured Embeddings of
Knowledge Bases, (Bordes, Weston,
Collobert & Bengio, AAAI 2011)

o

ck 2)

(_door_1, has part, |

’
Joint Learning of Words and Meaning e
Representations for Open-Text A Righi

Semantic Parsing, (Bordes, Glorot,
Weston & Bengio, AISTATS 2012) Noor 1N e o
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Modeling Relations with Matrices

energy

choose matrices

o

lh's

Model (lhs, relation, rhs)

Each concept = 1 embedding vector

Each relation = 2 matrices. Matrix acts like an operator.
Ranking criterion

Energy = low for training examples, high o/w
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Eoose vector
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Question Answering: implicitly
adding new relations to WN or FB

Model (All) TextRunner
lhs ~army_NN_1 army
rel _attack_vB_1 attacked
_troop_NN_4 Israel
top | _armed_service_.NN_1| the village
ranked Ship_NN_1 another army
rhs _territory_NN _1 the city
_military_unit_NN_1 the fort
_business_firm_NN_1 People
top _person_NN_1 Players
ranked family_NN_1 one
lhs _payoff_NN_3 Students
_card_game_NN_1 business
rel _earn_VB_1 earn
rhs ~“money_NN_1 money

MRs inferred from text
define triplets between
WordNet synsets.

Model captures
knowledge about
relations between nouns
and verbs.

- Implicit addition of
new relations to

WordNet!

- Generalize Freebase!



Embedding Nearest Neighbors of
Words & Sewnses

“mark_NN “mark_NN_1 “mark_NN_2
_indication_NN _score_NN_1 “marking_NN_1
_print_NN_3 _number_NN_2 symbolizing_NN_1
_print_NN _gradation_NN “naming_NN_1
_roll_ NN _evaluation_NN_1 ~marking_NN
_pointer_NN “tier_.NN_1 _punctuation_NN_3
_take VB ~canary_NN _different_JJ_1
_bring_VB _Ssea_mew_NN_1 _eccentric_NN
_put_VB _yellowbird_NN_2 _dissimilar_JJ
~ask_VB _canary_bird_NN_1 _Same_JJ_ 2
_hold_VB larus_marinus_NN_1| _similarity_NN_1

_provide_VB

“mew_NN

~common_JJ_1
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Word Sense Disambiquation

e Senseval-3 results
(only sentences with
Subject-Verb-Object
structure)

MFS=most frequent sense

All=training from all sources
Gamble=Decadt et al 2004

(Senseval-3 SOA)

e XWN results
XWN = eXtended WN
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Part 3.1: Applications

Assorted Spe.eck and NL?P
Appticalzi.ov\s
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Learning Multiple Word Vectors

161

Tackles problems with polysemous words

Can be done with both standard tf-idf based
methods [Reisinger and Mooney, NAACL 2010] i)

Recent neural word vector model by [Huang et al. ACL 2012]
learns multiple prototypes using both local and global context

State of the art Local Context Global Context

score

correlations with /‘i\

human similarity
judgments




Learning Multiple Word Vectors

e Visualization of learned word vectors from
Huang et al. (ACL 2012)

translatnorqovels fantasy stars

manga
laundering mévie—
transaction talk  ({plevision Inais
finance bank, M constellation
banking camera venue oracle
8P flash asteroid mars S
: galaxy moon
rer%trwé:lpality direction planet
boundary
gap  danal.
plateau
territory

102 FﬂE’?ﬁ'hav'lfbods



Phoneme~Level Acoustic Models

* [Mohamed et al, 2011, IEEE Tr.ASLP] Tq :
2PN
* Unsupervised pre-training as Deep Belief Nets (a stack of
RBMs), supervised fine-tuning to predict phonemes
* Phoneme classification on TIMIT:
e CD-HMM: 27.3% error
* CRFs: 26.6%
* Triphone HMMs w. BMMI: 22.7%
* Unsupervised DBNs: 24.5%
* Fine-tuned DBNs: 20.7%
* Improved version by Dong Yu is RELEASED IN MICROSOFT’S
ASR system for Audio Video Indexing Service
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Domain Adaptation for

Senkiment Av\atjsi.s

e [Glorotetal, ICML 2011]
beats SOTA on Amazon
benchmark, 25 domains

* Embeddings pre-trained in
denoising auto-encoder

* Disentangling effect
(features specialize to
domain or sentiment)
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Part 3.2: Resources

Resources: Tutorials and Code

165



Related Tutorials

e See “Neural Net Language Models” Scholarpedia entry
e Deep Learning tutorials:

e Stanford deep learning tutorials with simple programming
assignments and reading list

e Recursive Autoencoder class project
e Graduate Summer School: Deep Learning, Feature Learning
e |CML 2012 Representation Learning tutorial

e Paper references in separate pdf
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Software

* Theano (Python CPU/GPU) mathematical and deep learning
library
* Can do automatic, symbolic differentiation
 Senna: POS, Chunking, NER, SRL
* by Collobert et al.
* State-of-the-art performance on many tasks
* 3500 lines of C, extremely fast and using very little memory
e Recurrent Neural Network Language Model

e Recursive Neural Net and RAE models for paraphrase detection,
sentiment analysis, relation classification
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Software: what’s next

e Off-the-shelf SVM packages are useful to researchers
from a wide variety of fields (no need to understand
RKHS).

e One of the goals of deep learning: Build off-the-shelf
NLP classification packages that are using as input only
raw text, possibly with a label.
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Part 3.3: Deep Learning Tricks

Deep Learning Tricks
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Deep Learning Tricks of the Trade

* Y.Bengio (2012), “Practical Recommendations for Gradient-
Based Training of Deep Architectures”

* Unsupervised pre-training |
* Stochastic gradient descent and setting learning rates

* Main hyper-parameters

Learning rate schedule & Early stopping
Minibatches

Parameter initialization

Number of hidden units

L1 or L2 weight decay

Sparsity regularization

Debugging = Finite difference gradient check (Yay)

How to efficiently search for hyper-parameter configurations
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Nown-Linearities: What's used

logistic (“sigmoid”) tanh
1 Z . —2Z
f(z) = 1+ exp(—z) f(Z) - tanh(z) - Zz + Z_z:

tarh hncton

1- E—

/

—5
6 -4 -2 0 2 4 6

tanh is juét a rescaled and shifted sigmoid (2 x a§ steep, [-1,1]):
tanh(z) = 2logistic(2z) -1

tanh is what is most used and often performs best for deep nets
171
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Nown-Linearities: There are various
other choices

hard tanh soft sign rectifier
-1 ifx<-—1 . a
HardTanh(x) = { x if —~1<=x<=1 softsign(z)=—r-— rect(z) = max(z,0)
1 ifx>1 1+|d]
o ncton 1 3
| |
1
) S S S R e T—
Q.5 ...................... —Sigmoid| .l z
: —Softsign

-5 _2:5 0 2 5 5 ‘3 ‘é ‘i 0 Il 2' 3

e hard tanh similar but computationally cheaper than tanh and saturates hard.

e [Glorot and Bengio AISTATS 2010, 2011] discuss softsign and rectifier
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Stochastic Grradient Descent (SGD)

173

Gradient descent uses total gradient over all examples per
update, SGD updates after only 1 or few examples:

_ OL(z,0)
ALt — gUt—1) _ ¢, 070
o0

L = loss function, z, = current example, 6 = parameter vector, and
g, = learning rate.

Ordinary gradient descent is a batch method, very slow, should
never be used. Use 2" order batch method such as LBFGS. On
large datasets, SGD usually wins over all batch methods. On
smaller datasets LBFGS or Conjugate Gradients win. Large-batch
LBFGS extends the reach of LBFGS [Le et al ICML'2011].



Learining Rates

e Simplest recipe: keep it fixed and use the same for all
parameters.

e Collobert scales them by the inverse of square root of the fan-in
of each neuron

e Better results can generally be obtained by allowing learning

rates to decrease, typically in O(1/t) because of theoretical
convergence guarantees, e.g.,

€E0T

T max(t, 7)

with hyper-parameters g, and t.
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Long-Term Dependencies SNs

omd Clipping Trick

175

In very deep networks such as recurrent networks (or possibly
recursive ones), the gradient is a product of Jacobian matrices,
each associated with a step in the forward computation. This
can become very small or very large quickly [Bengio et al 1994],
and the locality assumption of gradient descent breaks down.

L=L(sr(sr—1(...8t11(8¢,...))))
OL  OL Osr 0St11
Os;  Osp Osp_,  0Os
The solution first introduced by Mikolov is to clip gradients Q

S

to a maximum value. Makes a big difference in RNNs &)




Parameber Initialization

e |nitialize hidden layer biases to 0 and output (or reconstruction)
biases to optimal value if weights were 0 (e.g. mean target or
inverse sigmoid of mean target).

e Initialize weights ~ Uniform(-r,r), r inversely proportional to fan-
in (previous layer size) and fan-out (next layer size):

\/6/(fan-in + fan-out)

for tanh units, and 4x bigger for sigmoid units [Glorot AISTATS 2010]

Note: for embedding weights, fan-in=1 and we don’t care about

fan-out, Collobert uses Uniform(-1,1).
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Part 3.4: Discussion

Discussion: Limitations,
Advantaqges, Future Directions

177



Concerns

178

Many algorithms and variants (burgeoning field)

Hyper-parameters (layer size, regularization, possibly
learning rate)

* Use multi-core machines, clusters and random
sampling for cross-validation (Bergstra & Bengio 2012)

* Pretty common for powerful methods, e.g. BM25

e Can use (mini-batch) L-BFGS instead of SGD



Concerns

 Not always obvious how to combine with existing NLP

e Simple: Add word or phrase vectors as features. Gets
close to state of the art for NER, [Turian et al, ACL
2010]

* Integrate with known structures: Recursive and
recurrent networks for trees and chains

* Your research here
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Concerns

* Slower to train than linear models

* Only by a small constant factor, and much more
compact than non-parametric (e.g. n-gram models)

 Very fast during inference/test time (feed-forward
pass is just a few matrix multiplies)

e Need more training data

* Can handle and benefit from more training data,
suitable for age of Big Data (Google trains neural
nets with a billion connections, [Le et al, ICML 2012])
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Concerns

e There aren’t many good ways to encode prior
knowledge about the structure of language into deep
learning models

* There is some truth to this. However:

* You can choose architectures suitable for a problem
domain, as we did for linguistic structure

* You can include human-designed features in the first
layer, just like for a linear model

* And the goal is to get the machine doing the learning!
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Concern:
Problems with model iv\&erpre&abi.u&j

182

No discrete categories or words, everything is a continuous
vector. We’d like have symbolic features like NP, VP, etc. and
see why their combination makes sense.

* True, but most of language is fuzzy and many words have soft
relationships to each other. Also, many NLP features are
already not human-understandable (e.g., concatenations/
combinations of different features).



Concerin: non—convex op&imi.z.a!:i.ou

e Can initialize system with convex learner
* Convex SVM

* Fixed feature space

e Then optimize non-convex variant (add and tune learned
features), can’t be worse than convex learner
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Advantages

184

Despite a small community in the intersection of deep
learning and NLP, already many state of the art results
on a variety of language tasks

Often very simple matrix derivatives (backprop) for
training and matrix multiplications for testing = fast
implementation

Fast inference and well suited for multi-core CPUs/GPUs
and parallelization across machines



Learning Multiple Levels of
Abstraction

e The big payoff of deep learning is to allow learning
higher levels of abstraction

e Higher-level abstractions disentangle the factors of
variation, which allows much easier generalization and
transfer oG

* More abstract representations
—Successful transfer (domains,

O

languages)
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