
Fast Exact Inference with a Factored Model for
Natural Language Parsing

Dan Klein
Department of Computer Science

Stanford University
Stanford, CA 94305-9040
klein@cs.stanford.edu

Christopher D. Manning
Department of Computer Science

Stanford University
Stanford, CA 94305-9040

manning@cs.stanford.edu

Abstract

We present a novel generative model for natural language tree structures
in which semantic (lexical dependency) and syntactic (PCFG) structures
are scored with separate models. This factorization provides concep-
tual simplicity, straightforward opportunities for separately improving
the component models, and a level of performance comparable to simi-
lar, non-factored models. Most importantly, unlike other modern parsing
models, the factored model admits an extremely effective A* parsing al-
gorithm, which enables efficient, exact inference.

1 Introduction

Syntactic structure has standardly been described in terms of categories (phrasal labels and
word classes), with little mention of particular words. This is possible, since, with the
exception of certain common function words, the acceptable syntactic configurations of a
language are largely independent of the particular words that fill out a sentence. Conversely,
for resolving the important attachment ambiguities of modifiers and arguments, lexical
preferences are known to be very effective. Additionally, methods based only on key lexical
dependencies have been shown to be very effective in choosing between valid syntactic
forms [1]. Modern statistical parsers [2, 3] standardly use complex joint models of over
both category labels and lexical items, where “everything is conditioned on everything” to
the extent possible within the limits of data sparseness and finite computer memory. For
example, the probability that a verb phrase will take a noun phrase object depends on the
head word of the verb phrase. A VP headed by acquired will likely take an object, while
a VP headed by agreed will likely not. There are certainly statistical interactions between
syntactic and semantic structure, and, if deeper underlying variables of communication
are not modeled, everything tends to be dependent on everything else in language [4].
However, the above considerations suggest that there might be considerable value in a
factored model, which provides separate models of syntactic configurations and lexical
dependencies, and then combines them to determine optimal parses. For example, under
this view, we may know that acquired takes right dependents headed by nouns such as
company or division, while agreed takes no noun-headed right dependents at all. If so,
there is no need to explicitly model the phrasal selection on top of the lexical selection.
Although we will show that such a model can indeed produce a high performance parser,
we will focus particularly on how a factored model permits efficient, exact inference, rather
than the approximate heuristic inference normally used in large statistical parsers.

S

NP

NN

Factory

NNS

payrolls

VP

VBD

fell

PP

IN

in

NN

September

fell-VBD

payrolls-NNS

Factory-NN

Factory

payrolls

fell in-IN

in September-NN

September

S, fell-VBD

NP, payrolls-NNS

Factory-NN

Factory

payrolls-NNS

payrolls

VP, fell-VBD

fell-VBD

fell

PP, in-IN

in-IN

in

September-NN

September

(a) PCFG Structure (b) Dependency Structure (c) Combined Structure

Figure 1: Three kinds of parse structures.

2 A Factored Model

Generative models for parsing typically model one of the kinds of structures shown in fig-
ure 1. Figure 1a is a plain phrase-structure tree T , which primarily models syntactic units,
figure 1b is a dependency tree D, which primarily models word-to-word selectional affini-
ties [5], and figure 1c is a lexicalized phrase-structure tree L, which carries both category
and (part-of-speech tagged) head word information at each node.

A lexicalized tree can be viewed as the pair L = (T, D) of a phrase structure tree T and
a dependency tree D. In this view, generative models over lexicalized trees, of the sort
standard in lexicalized PCFG parsing [2, 3], can be regarded as assigning mass P(T, D)
to such pairs. To the extent that dependency and phrase structure need not be modeled
jointly, we can factor our model as P(T, D) = P(T)P(D): this approach is the basis
of our proposed models, and its use is, to our knowledge, new. This factorization, of
course, assigns mass to pairs which are incompatible, either because they do not generate
the same terminal string or do not embody compatible bracketings. Therefore, the total
mass assigned to valid structures will be less than one. We could imagine fixing this by
renormalizing. For example, this situation fits into the product-of-experts framework [6],
with one semantic expert and one syntactic expert that must agree on a single structure.
However, since we are presently only interested in finding most-likely parses, no global
renormalization constants need to be calculated.

Given the factorization P(T, D) = P(T)P(D), rather than engineering a single complex
combined model, we can instead build two simpler sub-models. We show that the com-
bination of even quite simple “off the shelf” implementations of the two sub-models can
provide decent parsing performance. Further, the modularity afforded by the factorization
makes it much easier to extend and optimize the individual components. We illustrate this
by building improved versions of both sub-models, but we believe that there is room for
further optimization.

Concretely, we used the following sub-models. For P(T), we used successively more
accurate PCFGs. The simplest, PCFG-BASIC, used the raw treebank grammar, with nonter-
minals and rewrites taken directly from the training trees [7]. In this model, nodes rewrite
atomically, in a top-down manner, in only the ways observed in the training data. For im-
proved models of P(T), tree nodes’ labels were annotated with various contextual markers.
In PCFG-PA, each node was marked with its parent’s label as in [8]. It is now well known
that such annotation improves the accuracy of PCFG parsing by weakening the PCFG inde-
pendence assumptions. For example, the NP in figure 1a would actually have been labeled
NPˆS. Since the counts were not fragmented by head word or head tag, we were able
to directly use the MLE parameters, without smoothing.1 The best PCFG model, PCFG-
LING, involved selective parent splitting, order-2 rule markovization (similar to [2, 3]), and
linguistically-derived feature splits.2

1This is not to say that smoothing would not improve performance, but to underscore how the
factored model encounters less sparsity problems than a joint model.

2Infinitive VPs, possessive NPs, and gapped Ss were marked, the preposition tag was split into

O(n5) Items and Schema
X(h)

hi j

X(h)

hi j

+

Y(h′)

h′j k

+
Z(h)

X(h) Y(h′)

Z(h)

hi k

An Edge The Edge Combination Schema

Figure 2: Edges and the edge combination schema for an O(n5) lexicalized tabular parser.

Models of P(D) were lexical dependency models, which deal with tagged words: pairs
〈w, t〉. First the head 〈wh, th〉 of a constituent is generated, then successive right depen-
dents 〈wd , td 〉 until a STOP token � is generated, then successive left dependents until �

is generated again. For example, in figure 1, first we choose fell-VBD as the head of the
sentence. Then, we generate in-IN to the right, which then generates September-NN to the
right, which generates � on both sides. We then return to in-IN, generate � to the right, and
so on.

The dependency models required smoothing, as the word-word dependency data is very
sparse. In our basic model, DEP-BASIC, we generate a dependent conditioned on the head
and direction, using a mixture of two generation paths: a head can select a specific argument
word, or a head can select only an argument tag. For head selection of words, there is a prior
distribution over dependents taken by the head’s tag, for example, left dependents taken by
past tense verbs: P(wd , td |th, dir) = count(wd, td , th, dir)/count(th, dir). Observations
of bilexical pairs are taken against this prior, with some prior strength κ :

P(wd , td |wh, th, dir) =
count(wd, td , wh, th, dir) + κ P(wd, td |th, dir)

count(wh, th, dir) + κ

This model can capture bilexical selection, such as the affinity between payrolls and fell.
Alternately, the dependent can have only its tag selected, and then the word is generated
independently: P(wd , td |wh, th, dir) = P(wd |td)P(td |wh, th, dir). The estimates for
P(td |wh, th, dir) are similar to the above. These two mixture components are then lin-
early interpolated, giving just two prior strengths and a mixing weight to be estimated on
held-out data.

In the enhanced dependency model, DEP-VAL, we condition not only on direction, but also
on distance and valence. The decision of whether to generate � is conditioned on one of
five values of distance between the head and the generation point: zero, one, 2–5, 6–10,
and 11+. If we decide to generate a non-� dependent, the actual choice of dependent is
sensitive only to whether the distance is zero or not. That is, we model only zero/non-zero
valence. Note that this is (intentionally) very similar to the generative model of [2] in broad
structure, but substantially less complex.

At this point, one might wonder what has been gained. By factoring the semantic and
syntactic models, we have certainly simplified both (and fragmented the data less), but
there are always simpler models, and researchers have adopted complex ones because of
their parsing accuracy. In the remainder of the paper, we demonstrate the three primary
benefits of our model: a fast, exact parsing algorithm; parsing accuracy comparable to
non-factored models; and useful modularity which permits easy extensibility.

several subtypes, conjunctions were split into contrastive and other occurrences, and the word not
was given a unique tag. In all models, unknown words were modeled using only the MLE of
P(tag|unknown) with ML estimates for the reserved mass per tag. Selective splitting was done using
an information-gain like criterion.

3 An A* Parser

In this section, we outline an efficient algorithm for finding the Viterbi, or most probable,
parse for a given terminal sequence in our factored lexicalized model. The naive approach
to lexicalized PCFG parsing is to act as if the lexicalized PCFG is simply a large nonlexical
PCFG, with many more symbols than its nonlexicalized PCFG backbone. For example,
while the original PCFG might have a symbol NP, the lexicalized one has a symbol NP-x
for every possible head x in the vocabulary. Further, rules like S → NP VP become a
family of rules S-x → NP-y VP-x .3 Within a dynamic program, the core parse item in
this case is the edge, shown in figure 2, which is specified by its start, end, root symbol,
and head position.4 Adjacent edges combine to form larger edges, as in the top of figure 2.
There are O(n3) edges, and two edges are potentially compatible whenever the left one
ends where the right one starts. Therefore, there are O(n5) such combinations to check,
giving an O(n5) dynamic program.5

The core of our parsing algorithm is a tabular agenda-based parser, using the O(n5) schema
above. The novelty is in the choice of agenda priority, where we exploit the rapid parsing
algorithms available for the sub-models to speed up the otherwise impractical combined
parse. Our choice of priority also guarantees optimality, in the sense that when the goal
edge is removed, its most probable parse is known exactly. Other lexicalized parsers ac-
celerate parsing in ways that destroy this optimality guarantee. The top-level procedure is
given in figure 3. First, we parse exhaustively with the two sub-models, not to find com-
plete parses, but to find best outside scores for each edge e. An outside score is the score of
the best parse structure which starts at the goal and includes e, the words before it, and the
words after it, as depicted in figure 3. Outside scores are a Viterbi analog of the standard
outside probabilities given by the inside-outside algorithm [11]. For the syntactic model,
P(T), well-known cubic PCFG parsing algorithms are easily adapted to find outside scores.
For the semantic model, P(D), there are several presentations of cubic dependency parsing
algorithms, including [9] and [12]. These can also be adapted to produce outside scores in
cubic time, though since their basic data structures are not edges, there is some subtlety.
For space reasons, we omit the details of these phases.

An agenda-based parser tracks all edges that have been constructed at a given time. When
an edge is first constructed, it is put on an agenda, which is a priority queue indexed by
some score for that node. The agenda is a holding area for edges which have been built
in at least one way, but which have not yet been used in the construction of other edges.
The core cycle of the parser is to remove the highest-priority edge from the agenda, and
act on it according to the edge combination schema, combining it with any previously
removed, compatible edges. This much is common to many parsers; agenda-based parsers
primarily differ in their choice of edge priority. If the best known inside score for an edge
is used as a priority, then the parser will be optimal. In particular, when the goal edge is
removed, its score will correspond the most likely parse. The proof is a generalization of
the proof of Dijkstra’s algorithm (uniform-cost search), and is omitted for space reasons

3The score of such a rule in the factored model would be the PCFG score for S → NP VP,
combined with the score for x taking y as a dependent and the left and right STOP scores for y.

4The head position variable often, as in our case, also specifies the head’s tag.
5Eisner and Satta [9] propose a clever O(n4) modification which separates this process into two

steps by introducing an intermediate object. However, even the O(n4) formulation is impractical for
exhaustive parsing with broad-coverage, lexicalized treebank grammars. There are several reasons for
this: the constant factor due to the grammar is huge (these grammars often contain tens of thousands
of rules once binarized), and larger sentences are more likely to contain structures which unlock
increasingly large regions of the grammar ([10] describes how this can cause the sentence length
to leak into terms which are analyzed as constant, leading to empirical growth far faster than the
predicted bounds). We did implement a version of this parser using the O(n4) formulation of [9],
but, because of the effectiveness of the A* estimate, it was only marginally faster; see section 4.

1. Extract the PCFG sub-model and set up the PCFG parser.
2. Use the PCFG parser to find outside scores αPCFG(e) for each edge.
3. Extract the dependency sub-model and set up the dependency parser.
4. Use the dependency parser to find outside scores αDEP(e) for each edge.
5. Combine PCFG and dependency sub-models into the lexicalized model.
6. Form the combined outside estimate a(e) = αPCFG(e) + αDEP(e)
7. Use the lexicalized A* parser, with a(e) as an A* estimate of α(e) words

e

β

α

Figure 3: The top-level algorithm and an illustration of inside and outside scores.

PCFG Model Precision Recall F1 Exact Match
PCFG-BASIC 75.3 70.2 72.7 11.0

PCFG-PA 78.4 76.9 77.7 18.5
PCFG-LING 83.7 82.1 82.9 25.7

Dependency Model Dependency Acc
DEP-BASIC 76.3
DEP-VAL 85.0

(a) The PCFG Model (b) The Dependency Model

Figure 4: Performance of the sub-models alone.

(but given in [13]). However, removing edges by inside score is not practical (see section 4
for an empirical demonstration), because all small edges end up having better scores than
any large edges. Luckily, the optimality of the algorithm remains if, rather than removing
items from the agenda by their best inside scores, we add to those scores any optimistic
(admissible) estimate of the cost to complete a parse using that item. The proof of this is a
generalization of the proof of the optimality of A* search.

To our knowledge, no way of generating effective, admissible A* estimates for lexicalized
parsing has previously been proposed.6 However, because of the factored structure of
our model, we can use the results of the sub-models’ parses to give us quite sharp A*
estimates. Say we want to know the outside score of an edge e. That score will be the score
α(Te, De) (a logprobability) of a certain structure (Te, De) outside of e, where Te and De
are a compatible pair. From the initial phases, we know the exact scores of the overall best
T ′

e and the best D′
e which can occur outside of e, though of course it may well be that T ′

e
and D′

e are not compatible. However, αPCFG(Te) ≤ αPCFG(T ′
e) and αDEP(De) ≤ αDEP(D′

e),
and so α(Te, De) = αPCFG(Te) + αDEP(De) ≤ αPCFG(T ′

e) + αDEP(D′
e). Therefore, we can

use the sum of the sub-models’ outside scores, a(e) = αPCFG(T ′
e)+αDEP(D′

e), as an upper
bound on the outside score for the combined model. Since it is reasonable to assume that
the two models will be broadly compatible and will generally prefer similar structures, this
should create a sharp A* estimate, and greatly reduce the work needed to find the goal
parse. We give empirical evidence of this in section 4.

4 Empirical Performance

In this section, we demonstrate that (i) the factored model’s parsing performance is compa-
rable to non-factored models which use similar features, (ii) there is an advantage to exact
inference, and (iii) the A* savings are substantial. First, we give parsing figures on the stan-
dard Penn treebank parsing task. We trained the two sub-models, separately, on sections
02–21 of the WSJ section of the treebank. The numbers reported here are the result of then
testing on section 23 (length ≤ 40). The treebank only supplies node labels (like NP) and

6The basic idea of changing edge priorities to more effectively guide parser work is standardly
used, and other authors have made very effective use of inadmissible estimates. [2] uses extensive
probabilistic pruning – this amounts to giving pruned edges infinitely low priority. Absolute pruning
can, and does, prevent the most likely parse from being returned at all. [14] removes edges in order of
estimates of their correctness. This, too, may result in the first parse found not being the most likely
parse, but it has another more subtle drawback: if we hold back an edge e for too long, we may use
e to build another edge f in a new, better way. If f has already been used to construct larger edges,
we must then propagate its new score upwards (which can trigger still further propagation).

PCFG Model Dependency Model Precision Recall F1 Exact Match Dependency Acc
PCFG-BASIC DEP-BASIC 80.1 78.2 79.1 16.7 87.2
PCFG-BASIC DEP-VAL 82.5 81.5 82.0 17.7 89.2

PCFG-PA DEP-BASIC 82.1 82.2 82.1 23.7 88.0
PCFG-PA DEP-VAL 84.0 85.0 84.5 24.8 89.7

PCFG-LING DEP-BASIC 85.4 84.8 85.1 30.4 90.3
PCFG-LING DEP-VAL 86.6 86.8 86.7 32.1 91.0

PCFG Model Dependency Model Thresholded? F1 Exact Match Dependency Acc
PCFG-LING DEP-VAL No 86.7 32.1 91.0
PCFG-LING DEP-VAL Yes 86.5 31.9 90.8

Figure 5: The combined model, with various sub-models, and with/without thresholding.

does not contain head information. Heads were calculated for each node according to the
deterministic rules given in [2]. These rules are broadly correct, but not perfect.

We effectively have three parsers: the PCFG (sub-)parser, which produces nonlexical
phrase structures like figure 1a, the dependency (sub-)parser, which produces dependency
structures like figure 1b, and the combination parser, which produces lexicalized phrase
structures like figure 1c. The outputs of the combination parser can also be projected down
to either nonlexical phrase structures or dependency structures. We score the output of our
parsers in two ways. First, the phrase structure of the PCFG and combination parsers can
be compared to the treebank parses. The parsing measures standardly used for this task are
labeled precision and recall.7 We also report F1, the harmonic mean of these two quanti-
ties. Second, for the dependency and combination parsers, we can score the dependency
structures. A dependency structure D is viewed as a set of head-dependent pairs 〈h, d〉,
with an extra dependency 〈root, x〉 where root is a special symbol and x is the head of
the sentence. Although the dependency model generates part-of-speech tags as well, these
are ignored for dependency accuracy. Punctuation is not scored. Since all dependency
structures over n non-punctuation terminals contain n dependencies (n − 1 plus the root
dependency), we report only accuracy, which is identical to both precision and recall. It
should be stressed that the “correct” dependency structures, though generally correct, are
generated from the PCFG structures by linguistically motivated, but automatic and only
heuristic rules.

Figure 4 shows the relevant scores for the various PCFG and dependency parsers alone.8

The valence model increases the dependency model’s accuracy from 76.3% to 85.0%, and
each successive enhancement improves the F1 of the PCFG models, from 72.7% to 77.7%
to 82.9%. The combination parser’s performance is given in figure 5. As each individual
model is improved, the combination F1 is also improved, from 79.1% with the pair of basic
models to 86.7% with the pair of top models. The dependency accuracy also goes up:
from 87.2% to 91.0%. Note, however, that even the pair of basic models has a combined
dependency accuracy higher than the enhanced dependency model alone, and the top three
have combined F1 better than the best PCFG model alone. For the top pair, figure 6c
illustrates the relative F1 of the combination parser to the PCFG component alone, showing
the unsurprising trend that the addition of the dependency model helps more for longer
sentences, which, on average, contain more attachment ambiguity. The top F1 of 86.7%
is greater than that of the lexicalized parsers presented in [15, 16], but less than that of
the newer, more complex, parsers presented in [3, 2], which reach as high as 90.1% F1.

7A tree T is viewed as a set of constituents c(T). Constituents in the correct and the proposed
tree must have the same start, end, and label to be considered identical. For this measure, the lexical
heads of nodes are irrelevant. The actual measures used are detailed in [15], and involve minor
normalizations like the removal of punctuation in the comparison.

8The dependency model is sensitive to any preterminal annotation (tag splitting) done by the
PCFG model. The actual value of DEP-VAL shown corresponds to PCFG-LING.

1

10

100

1000

10000

100000

1000000

0 10 20 30 40

Length

E
dg

es
 P

ro
ce

ss
ed

Uniform-Cost
A-Star

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

Length

T
im

e
(s

ec
)

Combined Phase

Dependency Phase

PCFG Phase

0

25

50

75

100

0 10 20 30 40

Length

A
bs

ol
ut

e
F

1

0

0.5

1

1.5

2

R
el

at
iv

e
F

1

Combination
PCFG
Combination/PCFG

(a) (b) (c)

Figure 6: (a) A* effectiveness measured by edges expanded, (b) time spent on each phase,
and (c) relative F1, all shown as sentence length increases.

However, it is worth pointing out that these higher-accuracy parsers incorporate many finely
wrought enhancements which could presumably be extracted and applied to benefit our
individual models.9

The primary goal of this paper is not to present a maximally tuned parser, but to demonstrate
a method for fast, exact inference usable in parsing. Given the impracticality of exact
inference for standard parsers, a common strategy is to take a PCFG backbone, extract a
set of top parses, either the top k or all parses within a score threshold of the top parse,
and rerank them [3, 17]. This pruning is done for efficiency; the question is whether it is
hurting accuracy. That is, would exact inference be preferable? Figure 5 shows the result
of parsing with our combined model, using the best model pair, but with the A* estimates
altered to block parses whose PCFG projection had a score further than a threshold δ = 2
in log-probability from the best PCFG-only parse. Both bracket F1 and exact-match rate
are lower for the thresholded parses, which we take as an argument for exact inference.10

We conclude with data on the effectiveness of the A* method. Figure 6a shows the average
number of edges extracted from the agenda as sentence length increases. Numbers both
with and without using the A* estimate are shown. Clearly, the uniform-cost version of
the parser is dramatically less efficient; by sentence length 15 it extracts over 800K edges,
while even at length 40 the A* heuristics are so effective that only around 2K edges are
extracted. At length 10, the average number is less than 80, and the fraction of edges not
suppressed is better than 1/10K (and improves as sentence length increases). To explain
this effectiveness, we suggest that the combined parsing phase is really only figuring out
how to reconcile the two models’ preferences.11 The A* estimates were so effective that
even with our object-heavy Java implementation of the combined parser, total parse time
was dominated by the initial, array-based PCFG phase (see figure 6b).12

9For example, the dependency distance function of [2] registers punctuation and verb counts, and
both smooth the PCFG production probabilities, which could improve the PCFG grammar.

10While pruning typically buys speed at the expense of some accuracy (see also, e.g., [2]), pruning
can also sometimes improve F1: Charniak et al. [14] find that pruning based on estimates for P(e|s)
raises accuracy slightly, for a non-lexicalized PCFG. As they note, their pruning metric seems to
mimic Goodman’s maximum-constituents parsing [18], which maximizes the expected number of
correct nodes rather than the likelihood of the entire parse. In any case, we see it as valuable to have
an exact parser with which these types of questions can be investigated at all for lexicalized parsing.

11Note that the uniform-cost parser does enough work to exploit the shared structure of the dynamic
program, and therefore edge counts appear to grow polynomially. However, the A* parser does so
little work that there is minimal structure-sharing. Its edge counts therefore appear to grow exponen-
tially over these sentence lengths, just like a non-dynamic-programming parser’s would. With much
longer sentences, or a less efficient estimate, the polynomial behavior would reappear.

12The average time to parse a sentence with the best model on a 750MHz Pentium III with 2GB
RAM was: for 20 words, PCFG 13 sec, dependencies 0.6 sec, combination 0.3 sec; 40 words, PCFG
72 sec, dependencies 18 sec, combination 1.6 sec.

5 Conclusion

The framework of factored models over lexicalized trees has several advantages. It is con-
ceptually simple, and modularizes the model design and estimation problems. The concrete
model presented performs comparably to other, more complex, non-exact models proposed,
and can be easily extended in the ways that other parser models have been. Most impor-
tantly, it admits a novel A* parsing approach which allows fast, exact inference of the most
probable parse.

Acknowledgements. We would like to thank Lillian Lee, Fernando Pereira, and Joshua
Goodman for advice and discussion about this work. This paper is based on work supported
by the National Science Foundation (NSF) under Grant No. IIS-0085896, by the Advanced
Research and Development Activity (ARDA)’s Advanced Question Answering for Intelli-
gence (AQUAINT) Program, by an NSF Graduate Fellowship to the first author, and by an
IBM Faculty Partnership Award to the second author.

References

[1] D. Hindle and M. Rooth. Structural ambiguity and lexical relations. Computational Linguistics,
19(1):103–120, 1993.

[2] M. Collins. Head-Driven Statistical Models for Natural Language Parsing. PhD thesis, Uni-
versity of Pennsylvania, 1999.

[3] E. Charniak. A maximum-entropy-inspired parser. NAACL 1, pp. 132–139, 2000.
[4] R. Bod. What is the minimal set of fragments that achieves maximal parse accuracy? ACL 39,

pp. 66–73, 2001.
[5] I. A. Mel′ čuk. Dependency Syntax: theory and practice. State University of New York Press,

Albany, NY, 1988.
[6] G. E. Hinton. Training products of experts by minimizing contrastive divergence. Technical

Report GCNU TR 2000-004, GCNU, University College London, 2000.
[7] E. Charniak. Tree-bank grammars. Proceedings of the Thirteenth National Conference on

Artificial Intelligence (AAAI ’96), pp. 1031–1036, 1996.
[8] M. Johnson. PCFG models of linguistic tree representations. Computational Linguistics,

24:613–632, 1998.
[9] J. Eisner and G. Satta. Efficient parsing for bilexical context-free grammars and head-automaton

grammars. ACL 37, pp. 457–464, 1999.
[10] D. Klein and C. D. Manning. Parsing with treebank grammars: Empirical bounds, theoretical

models, and the structure of the Penn treebank. ACL 39/EACL 10, pp. 330–337, 2001.
[11] J. K. Baker. Trainable grammars for speech recognition. D. H. Klatt and J. J. Wolf, editors,

Speech Communication Papers for the 97th Meeting of the Acoustical Society of America, pp.
547–550, 1979.

[12] J. Lafferty, D. Sleator, and D. Temperley. Grammatical trigrams: A probabilistic model of link
grammar. Proc. AAAI Fall Symposium on Probabilistic Approaches to Natural Language, 1992.

[13] D. Klein and C. D. Manning. Parsing and hypergraphs. Proceedings of the 7th International
Workshop on Parsing Technologies (IWPT-2001), 2001.

[14] E. Charniak, S. Goldwater, and M. Johnson. Edge-based best-first chart parsing. Proceedings
of the Sixth Workshop on Very Large Corpora, pp. 127–133, 1998.

[15] D. M. Magerman. Statistical decision-tree models for parsing. ACL 33, pp. 276–283, 1995.
[16] M. J. Collins. A new statistical parser based on bigram lexical dependencies. ACL 34, pp.

184–191, 1996.
[17] M. Collins. Discriminative reranking for natural language parsing. ICML 17, pp. 175–182,

2000.
[18] J. Goodman. Parsing algorithms and metrics. ACL 34, pp. 177–183, 1996.

