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Most current machine learning works
well because of human-designed

representations and input features

Parser
Machine learning becomes just optimizing r R

weights to best make a final prediction

Representation learning attempts to s
automatically learn good features or representations

Deep learning algorithms attempt to learn multiple levels of
representation of increasing complexity/abstraction



A Deep Architecture

Mainly, work has explored deep belief networks (DBNs), Markov
Random Fields with multiple layers, and various types of
multiple-layer neural networks

Output layer

Here predicting a supervised target

Hidden layers

These learn more abstract
representations as you head up

Input layer —

3 Raw sensory inputs (roughly)



Part 1.1: The Basics

~Five Reasons to Exptare.
Deep Learning



# 1 Learnhing reprasenta&ians

Handcrafting features is time-consuming

The features are often both over-specified and incomplete

The work has to be done again for each task/domain/...

We must move beyond handcrafted features and simple ML

Humans develop representations for learning and reasoning
Our computers should do the same

Deep learning provides a way of doing this
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# 2 The need for distributed
representations

Current NLP systems are incredibly fragile because of
their atomic symbol representations
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# 2 The need for distributional &
distributed representations

Learned word representations help enormously in NLP
They provide a powerful similarity model for words

Distributional similarity based word clusters greatly help most
applications

+1.4% F1 Dependency Parsing 15.2% error reduction (Koo &
Collins 2008, Brown clustering)

+3.4% F1 Named Entity Recognition 23.7% error reduction
(Stanford NER, exchange clustering)

Distributed representations can do even better by representing
more dimensions of similarity



#2 The need for distributed o ¢ o
represenkakiohs
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LOCAL PARTITION

Learning features that are not mutually exclusive can be exponentially
more efficient than nearest-neighbor-like or clustering-like models



Diskributed representations deal with
the curse of dimensionality

Generalizing locally (e.g., nearest
neighbors) requires representative
examples for all relevant variations!

1 dimension:
10 positions

2 dimensions:
100 positions
[ J

Classic solutions:
e Manual feature design

e Assuming a smooth target
function (e.g., linear models)

e Kernel methods (linear in terms
of kernel based on data points)

» 3 dimensions:
1000 positions!

Neural networks parameterize and
learn a “similarity” kernel



#3 Uv\su.pe.rvised feature and
weight Learning

Today, most practical, good NLP& ML methods require
labeled training data (i.e., supervised learning)

But almost all data is unlabeled

Most information must be acquired unsupervised

Fortunately, a good model of observed data can really help you
learn classification decisions
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#4" Learnhing mui.!:ipi.e levels of

repre.se.v\!:a!:i.on

Biologically inspired learning

The cortex seems to have a generic
learning algorithm

The brain has a deep architecture

Task 1 OutputIq Task 2 OutputP L Task 3 Output

We need good intermediate representations
that can be shared across tasks

Multiple levels of latent variables allow
combinatorial sharing of statistical strength

Insufficient model depth can be
exponentially inefficient
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#4' Learhning mui.!:ipie levels ,
of representation i

[Lee et al. ICML 2009; Lee et al. NIPS 209]

Successive model layers learn deeper intermediate representations

High-level
Layer 3 linguistic representations

e TN ALYV
I AVNNSET T REE




Hondling the recursivity of human

Language

Human sentences are composed —it z‘t <

from words and phrases - >8 >8>
o o 0o

We need compositionality in our xt_lr X, r XHI_)
ML models 0000 (ecoe| (ecoo

Recursion: the same operator

A small crowd

i i quietly enters
(same parametgrs) is applied pheny enter
repeatedly on different church
components semantic

Representations

A small quietly
crowd enters

Det Adj.

o
historic
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#5 ka Now¢

Despite prior investigation and understanding of many of the
algorithmic techniques ...

Before 2006 training deep architectures was unsuccessful ®

What has changed?

*  New methods for unsupervised pre-training have been
developed (Restricted Boltzmann Machines = RBMs,
autoencoders, contrastive estimation, etc.)

*  More efficient parameter estimation methods
* Better understanding of model regularization



Deep Learning models have alread
achieved impressive results for HL

Neural Language Model n

[Mikolov et al. Interspeech 2011] © &

=/

MSR MAVIS Speech System
[Dahl et al. 2012; Seide et al. 2011;
following Mohamed et al. 2011]

r o o -
“The algorithms represent the first time a
company has released a deep-neural-
networks (DNN)-based speech-recognition

algorithm in a commercial product.”
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Recurrent NN combination

Discriminative LM

Model \ WSJ ASR task m

KN5 Baseline

17.2
16.9
14.4

Acoustic model & | Recog | RT03S
training \ WER | FSH

GMM 40-mix,
BMMI, SWB 309h

DBN-DNN 7 layer
x 2048, SWB 309h

GMM 72-mix,
BMMI, FSH 2000h

1l-pass 27.4 23.6
—-adapt

1l-pass 18.5 16.1
—adapt (-33%) (-32%)
k-pass 18.6 17.1

+adapt



Deep Learih Models Have Interesting
Pertormance Characteristics

Deep Iearning models can now be very fast in some circumstances

* SENNA [Collobert et al. 2011] can do POS or NER faster than
other SOTA taggers (16x to 122x), using 25x less memory
e WSJ POS 97.29% acc; CoNLL NER 89.59% F1; CoNLL Chunking 94.32% F1

Changes in computing technology favor deep learning
* In NLP, speed has traditionally come from exploiting sparsity

e But with modern machines, branches and widely spaced
memory accesses are costly

e Uniform parallel operations on dense vectors are faster
These trends are even stronger with multi-core CPUs and GPUs
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Outline of the Tutorial

1. The Basics
1. Motivations
2. From logistic regression to neural networks
3. Word representations
4. Unsupervised word vector learning
5. Backpropagation Training
6. Learning word-level classifiers: POS and NER

7.

Sharing statistical strength

2. Recursive Neural Networks

3. Applications, Discussion, and Resources
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Outline of the Tutorial

1. The Basics
2. Recursive Neural Networks

1.

A i

7.

Motivation

Recursive Neural Networks for Parsing

Optimization and Backpropagation Through Structure
Compositional Vector Grammars:  Parsing
Recursive Autoencoders: Paraphrase Detection

Matrix-Vector RNNs:
Recursive Neural Tensor Networks: Sentiment Analysis

Relation classification

3. Applications, Discussion, and Resources
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Outline of the Tutorial

1. The Basics
2. Recursive Neural Networks

3. Applications, Discussion, and Resources
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1.

2.
3.
4

Assorted Speech and NLP Applications
Deep Learning: General Strategy and Tricks
Resources (readings, code, ...)

Discussion
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Part 1.2: The Basics

From Logistic regression to
neural nets




Demystifying neural nebtworks

Neural networks come with A single neuron
their own terminological A computational unit with n (3) inputs

bagoase and 1 output
g8ag and parameters W, b

... just like SVMs

_—
But if you understand how
logistic regression or maxent
models work
Then you already understand the Inputs Activation  Output
operation of a basic neural function

nhetwork neuron!

Bias unit corresponds to intercept term
22



From Maxent Classifiers ko Neural
Networlks

In NLP, a maxent classifier is normally written as:

exp E,ﬂi f(c,d)
S o0 3 A

Supervised learning gives us a distribution for datum d over classes in C

P(cld,A) =

eAT fle,d)

E ’e)LTf(c’,d)
C

Such a classifier is used as-is in a neural network (“a softmax layer”)

Vector form: P(cld,\)=

e Often as the top layer: J = softmax(A-x)

But for now we’ll derive a two-class logistic model for one neuron
23



From Maxent Classifiers ko Neural
Networles

e)LTf(c,d)
Vector form:  P(cld,A) = ——
E e f(c'.d)
C
Make two class: T e d) T e d) AT e )
e b e b e b
P(c, ld,A)= = '
1 ’ AT f (e, d) AT f(cy,d) AT f(e.d) ATf(cy.d) A f(cd)
e + e e + e 4
1
= = forx = f(c,,d)- f(c,,d)
T ~ T 1° 20
1_|_e7L [f(cy,d)=f(c;,d)] 1+€ Ax

= f(A'x)

for f(z) = 1/(1 + exp(-z)), the logistic function — a sigmoid non-linearity.

-6 -4 -2 0 2 4 6
24



This is exaxc!:i.v whal a neuron
compu&es

b: We can have an “always on”

h (X) = f(WTx + b) «——— feature, which gives a class prior,
w.,b | .
or separate it out, as a bias term
1

f(z)=1 =

+e°

X1
x — | faY |
2 ¥ X 6 -4 -2 0 2 4 6
L T hylx)
\ / w,b
X3 N
T w, b are the parameters of this neuron

75 i.e., this logistic regression model




A neural network = running several
Logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs ...

But we don’t have to decide
ahead of time what variables
these logistic regressions are
trying to predict!

26



A neural network = running several
Logistic regressions at the same time

... which we can feed into another logistic regression function

It is the training

criterion that will direct

what the intermediate
7N\ hidden variables should
\_ /‘Tm(':) be, so as to do a good
job at predicting the
targets for the next
layer, etc.

Layer L,

27



A neural network = running several
Logistic regressions at the same time

Before we know it, we have a multilayer neural network....

28



Matrix notation for a Layer

We have
a, = f(W,x; + Wiox, + Wisx; + b))
a, = f (W x, + Wyx, + Wysx; + b))
etc.

In matrix notation

z=Wx+b
a=f(z)

where fis applied element-wise:

f([Zl,Zz,Z3])=[f(zl),f(zz),f(z3)] Layer L,

29



How do we train the weights W?

e For asingle supervised layer, we train just like a maxent model —
we calculate and use error derivatives (gradients) to improve

* Online learning: Stochastic gradient descent (SGD)
e Or improved versions like AdaGrad (Duchi, Hazan, & Singer 2010)

e Batch learning: Conjugate gradient or L-BFGS

e A multilayer net could be more complex because the internal
(“hidden”) logistic units make the function non-convex ... just as
for hidden CRFs [Quattoni et al. 2005, Gunawardana et al. 2005]

* But we can use the same ideas and techniques

e Just without guarantees ...

o ° We “backpropagate” error derivatives through the model



Nown-Linearities: ka &key’ re needed

e For logistic regression: map to probabilities —Z vl

. . . 0 XN )
e Here: function approximation, ‘.\T

e.g., regression or classification !

* Without non-linearities, deep neural networks

can’t do anything more than a linear transform 1 M =3

e Extra layers could just be compiled down into
a single linear transform x

* Probabilistic interpretation unnecessary except in

=

the Boltzmann machine/graphical models

e People often use other non-linearities, suchas 1 M =10
tanh, as we’ll discuss in part 3

31
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Summar
Khnowing the meaning of words!

You now understand the basics and the relation to other models

e Neuron = logistic regression or similar function

* |nput layer = input training/test vector

e Bias unit = intercept term/always on feature

e Activation = response

e Activation function is a logistic (or similar “sigmoid” nonlinearity)

e Backpropagation = running stochastic gradient descent backward
layer-by-layer in a multilayer network

e Weight decay = regularization / Bayesian prior

32



Effective deep Learning became possible
through whsupervised pre-training

w
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test classification error (perc)

28

o
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(with RBMs and Denoising Auto-Encoders)

With unsupervised pre-training
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Part 1.3: The Basics

Word Rapresen&a!:wns




The standard word repre.se.hka&i.cv\

The vast majority of rule-based and statistical NLP work regards
words as atomic symbols: lhobel, acrwfar@\f:e, walle

In vector space terms, this is a vector with one 1 and a lot of zeroes

[coocoo0o000001 000 O]
Dimensionality: 20K (speech) — 50K (PTB) — 500K (big vocab) — 13M (Google 1T)
We call this a “one-hot” representation. Its problem:

motel [c 6 000000001 0000] AND
hotel [oo 000001000000 0] = ©

35



Diskributional similarity based
rapresevx&a&ions

You can get a lot of value by representing a word by
means of its neighbors

“You shall know a word by the company it keeps”
(J. R. Firth 1957: 11)

One of the most successful ideas of modern statistical NLP

banking
banking

N These words will represent banking 77

You can vary whether you use local or large context
36 to get a more syntactic or semantic clustering



Class-based (hard) and soft
clustering word representations

Class based models learn word classes of similar words based on
distributional information ( ~ class HMM)

e Brown clustering (Brown et al. 1992)
e Exchange clustering (Martin et al. 1998, Clark 2003)
e Desparsification and great example of unsupervised pre-training

Soft clustering models learn for each cluster/topic a distribution
over words of how likely that word is in each cluster

e Latent Semantic Analysis (LSA/LSI), Random projections
e Latent Dirichlet Analysis (LDA), HMM clustering

37



Neural word embeddings
as o distributed representation

Similar idea

Combine vector space 4
semantics with the prediction of 0.286
probabilistic models (Bengio et 8;3?
al. 2003, Collobert & Weston :0'107
2008, Turian et al. 2010) linguistics = 0.109
In all of these approaches, -0.542
including deep learning models, 0.349
a word is represented as a 0.271

dense vector \_

38




Neural word embeddings -
visualization

need help
come
go
take
give keep
make  get
meet oo continue
expect want become
think
say remain
are .
is
be
wergas
being
been
39 haqms

have




Skunning hew resullt ab bthis conference!
Milkolov, Yikh & Zweiqg (NAACL 2013)

These representations are way better at encoding dimensions of
similarity than we realized!

* Analogies testing dimensions of similarity can be solved quite
well just by doing vector subtraction in the embedding space

Syntactically

* X

apple ~ X

apples =~ Xcar — X

cars = Xfamily ~ Xfamilies
e Similarly for verb and adjective morphological forms
Semantically (Semeval 2012 task 2)

® Xsnirt ~ Xclothing = Xchair = Xfurniture

40



Skunning hew resullt ab bthis conference!
Milcolov, Yikh & Zweig (NAACL 2013)

Method _____| Syntax % correct

shirt LSA 320 dim 16.5 [best]
RNN 80 dim 16.2
L RNN 320 dim 28.5
) RNN 1600 dim 39.6

clothing

Method | semantics Spearm p

UTD-NB (rink & H.2012)  0.230 [Semeval win]
desk
/ LSA 640 0.149
—
V2

) RNN 80 0.211
furniture

RNN 1600 0.275 [new SOTA]

41



Advantages of the neural word
embedding approach

Compared to a method like LSA, neural word embeddings
can become more meaningful through adding supervision
from one or multiple tasks

“Discriminative fine-tuning”

For instance, sentiment is usually not captured in unsupervised
word embeddings but can be in neural word vectors

We can build representations for large linguistic units

See part 2

42
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Part 1.4: The Basics

Uv\supe.rvise.d word vector
Leariing




A neural nekworlke for Learning word
vectors (Collobert et al. IMLR 2011)

ldea: A word and its context is a positive training
sample; a random word in that same context gives
a negative training sample:

E[bcat chills on a mat == cat chills Jeju a mat

Similar: Implicit negative evidence in Contrastive
Estimation, (Smith and Eisner 2005)

44



A neural nekworlke for Learning word
vectors

How do we formalize this idea? Ask that

score(cat chills on a mat) > score(cat chills Jeju a mat)

How do we compute the score?

e With a neural network

e Each word is associated with an
n-dimensional vector

45



Word embedding matrix

e |nitialize all word vectors randomly to form a word embedding
matrix [, € R**IVI

V]
o o o) o0
o o o) o0
| = o o o o o],
e o o o 0

the cat mat ..
e These are the word features we want to learn
e Also called a look-up table

* Conceptually you get a word’s vector by left multiplying a

one-hotvectoreby l: x=le
46



Word vectors as anu,!: ko a neural
nebtworle

e score(cat chills on a mat)

e To describe a phrase, retrieve (via index) the corresponding
vectors from L

cat chillson a mat

e Then concatenate them to 5n vector:
X =[ 0000 0000 0000 0000 000O ]

How do we then compute score(x)?

47



A Single Layer Neural Network

 Asingle layer was a combination of a linear
layer and a nonlinearity: z = Wz +b

a = f(z)

 The neural activations a can then
be used to compute some function

e For instance, the score we care about:
score(r) = U'acR

48



Summary: Feed-forward Computation

Computing a window’s score with a 3-layer Neural
Net: s = score(cat chills on a mat)

g — UTf(Wa?—I—b) = R2OX1,W c R8X2O,U c RSXl

s = Ula T
a = f(z) o000 0000
z = Wx+b

T = [gccat Tehills Lon Ta $mat] 0000 0000 0000 0000 0000

L E]Rnx“/' cat chills on a mat
49



Summary: Feed-forward Computation

e s =score(cat chills on a mat)
* s_=score(cat chills Jeju a mat)
e |dea for training objective: make score of true window

larger and corrupt window’s score lower (until they're
good enough): minimize

J = max(0,1 — s + s.) —(o——

e This is continuous, can perform SGD

50




Training with Backpropagation

s=U"f(Wax + b)

J = max(0,1 — s + s.) o = UT f(Wio 1 )

Assuming cost Jis > 0, it is simple to see that we

can compute the derivatives of s and s_ wrt all the
involved variables: U, W, b, x

ds 9 o Os
au —ou’ ¢ au

a

51



Training with Backpropagation

* Let’s consider the derivative of a single weight W,

s 0 ..o 0 _p 0 7
8W_8WU a—aWU f(z)—aWU f(Wx +0)

* This only appears inside g; U,

* For example: W,; is only

w
used to compute a, 23

52



Training with Backprogaga&iav\

0s 0 0
— =—Ula= —UTf(z)= ==U"f(Wz +b
L. : oy Oy Ju
Derivative of weight W/ eyl
o . 9
8W7;jU “© 7 oW Viai
0 8&2- 8ZZ
_ _af(zi) 0z;
B UZ 8zz 8Ww
) 7 aWw

53 . 8Wm



Training with Backpropagation

Derivative of single weight W;:

0 > Wiy

= Uif/(zi)aW”
iJ L

= Uif'(z) %
N——

T

Local error Local input
signal signal

54



Training with Backpropagation

* From single weight W, to full W:
0.J

TN (=),

— 52 X 4

e We want all combinations of
i=1,2andj=1,2,3

e Solution: Outer product:
where § ¢ R2X1is the
“responsibility” coming from
each activation a

0J
oW

55



Training with Backpropagation

e For biases b, we get:

0
Uza—bzaz

= Uf'(=)
— 5

ob;

56



Training with Backpropagation

That’s almost backpropagation

It’s simply taking derivatives and using the chain rule!

Remaining trick: we can re-use derivatives computed for
higher layers in computing derivatives for lower layers

Example: last derivatives of model, the word vectors in x

57



Training with Baakproragahoh

e Take derivative of score with 0s

respect to single word vector Oz,

(for simplicity a 1d vector,
but same if it was longer)

e Now, we cannot just take
into consideration one g,
because each X; is connected
to all the neurons above and
hence X; influences the
overall score through all of
these, hence:

Z@UTCL da;
i1 8a7; 8xj
2. Of(Wiz +b)
Ui
P o0x
2
oW, .x
/ 7
) ) b
> Uif'(Wiz+b) T

Z 0;Wij

5TW

58 Re-used part of previous derivative N"



Training with Backpropagation:
softmax

What is the major benefit of deep learned word vectors?

Ability to also propagate labeled information into them,
via softmax/maxent and hidden layer:

AT f(e.d)

€

E ,e)LTf(c’,d)
C

exp(Se.a)
> exp(Se.a)

Cx2
P(cld.})= S eR™”

p(clz) =

59
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Part 1.5: The Basics

Backpropagation Training




Back—-‘?rc:p

e Compute gradient of example-wise loss wrt
parameters

* Simply applying the derivative chain rule wisely
_ _ Oz __ Oz Oy
e=fly) y=9) 5 =573

* If computing the loss(example, parameters) is O(n)
computation, then so is computing the gradient

61



Sim Fte. Chain Rule

62

s

Az = %Ay

Ay = =2 Ax

Az = g; ngx
9z __ 9z dy

Ox ~ Oy Ox



Muﬂ:i‘.pte. Palbths Chain Rule

Oz __ Oz Oy

Oz OYo

X Ox — Oy; Ox

63

Oys Ox



Mui&ipia Pabths Chain Rule - General

&

64



Chain Rule in Flow G’T‘QF"\
2

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

{y1, Ya, ... yn}=successors of XU

65



Back-—?mp TN Mutki‘.-—Lajer Net
NLL = —log P(Y = y|x)

66



Back—-‘?’mp i Greneral Flow Grapk

Single scalar output 2

1. Fprop: visit nodes in topo-sort order
- Compute value of node given predecessors
2. Bprop:
- initialize output gradient =1
- visit nodes in reverse order:
Compute gradient wrt each node using
gradient wrt successors

{yl, Y2, « .. yn} = successors of X

67



Automatic Differentiation

68

W

* The gradient computation can
be automatically inferred from
the symbolic expression of the
fprop.

* Each node type needs to know
how to compute its output and
how to compute the gradient
wrt its inputs given the
gradient wrt its output.

* Easy and fast prototyping
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Part 1.6: The Basics

Learning word-level classifiers:
POS and NER




The Model

(Collobert & Weston 2008;
Collobert et al. 2011)

70

D
£
5
.

Similar to word vector
learning but replaces the
single scalar score with a
Softmax/Maxent classifier

Training is again done via
backpropagation which gives
an error similar to the score
in the unsupervised word
vector learning model




The Model - Training

e We already know the softmax classifier and how to optimize it

e The interesting twist in deep learning is that the input features
are also learned, similar to learning word vectors with a score:

U,

W23
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The secret sauce is the uv\supe.rvised
pre-training on a large text collection

NER
CoNLL (F1)

State-of-the-art* 97.24 89.31
Supervised NN 96.37 81.47
Unsupervised pre-training 97.20 88.87
followed by supervised NN**

+ hand-crafted features*** Q7 .29 89.59

* Representative systems: POS: (Toutanova et al. 2003), NER: (Ando & Zhang
2005)

** 130,000-word embedding trained on Wikipedia and Reuters with 11 word
window, 100 unit hidden layer — for 7 weeks! — then supervised task training

;‘2**Features are character suffixes for POS and a gazetteer for NER



Supervised refinement of the
uv\su,pervised word represewl:a&i.ov\ ketps

NER
CoNLL (F1)

Supervised NN 96.37 81.47
NN with Brown clusters 96.92 87.15
Fixed embeddings* 97.10 88.87
C&W 2011** 97.29 89.59

* Same architecture as C&W 2011, but word embeddings are kept constant
during the supervised training phase

** C&W is unsupervised pre-train + supervised NN + features model of last slide
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Part 1.7

Sharing statistical strength




Multi-Task Learning

e Generalizing better to new

tasks is crucial to approach E
Al

Deep architectures learn
good intermediate
representations that can be
shared across tasks

e Good representations make
sense for many tasks

75



Combining Mulhpl.e. Sources of
Evidence wn&k Shared Embeddings

e Relational learning
e Multiple sources of information / relations
e Some symbols (e.g. words, wikipedia entries) shared

e Shared embeddings help propagate information
among data sources: e.g., WordNet, XWN, Wikipedia,

FreeBase, ...
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Sharing Statistical Strength

e Besides very fast prediction, the main advantage of
deep learning is statistical

e Potential to learn from less labeled examples because
of sharing of statistical strength:

* Unsupervised pre-training & multi-task learning
* Semi-supervised learning =2

77



Se.mi.--Supe.rvisad Learhing

e Hypothesis: P(c|x) can be more accurately computed using
shared structure with P(x)

purely
supervised
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Se.m£-’5uperv£se.d Learhing

e Hypothesis: P(c|x) can be more accurately computed using
shared structure with P(x)

semi-
supervised
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“Dee.p autoencoders

Alternative to contrastive unsupervised word learning
* Another is RBMs (Hinton et al. 2006), which we don’t cover today

Works well for fixed input representations
1. Definition, intuition and variants of autoencoders

2. Stacking for deep autoencoders
3. Why do autoencoders improve deep neural nets so much?
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Auto-Encoders

e Multilayer neural net with target output = input
e Reconstruction=decoder(encoder(input))

a = tanh(Wx + b)
v’ = tanh(W'a + c)
/
cost = ||2' -zl O®® -~ O reconstruction
decoder
* Probable inputs have COO@  codetatent features
small reconstruction error encoder

000 - @
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PCA = Linear Manifold = Linear Auto-
Encoder

input x, 0-mean
features=code=h(x)=W x
reconstruction(x)=W" h(x) = W™ W x
W = principal eigen-basis of Cov(X)

Linear manifold

LSA example:
x = (normalized) distribution
of co-occurrence frequencies
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The Manifold Learning Hypothesis

e Examples concentrate near a lower dimensional
“manifold” (region of high density where small changes are only
allowed in certain direction-®




Auto-Encoders Learn Salienk
Variakions, Like a non-linear PCA

o ® %,
. <
¢ o
Minimizing reconstruction error ®
forces latent representation of O
“similar inputs” to stay on ®

manifold
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Auto-Encoder Varianks

85

Discrete inputs: cross-entropy or log-likelihood reconstruction
criterion (similar to used for discrete targets for MLPs)

Preventing them to learn the identity everywhere:

* Undercomplete (eg PCA): bottleneck code smaller than input

g

e Sparsity: penalize hidden unit activations so at or near O
[Goodfellow et al 2009]

e Denoising: predict true input from corrupted input
[Vincent et al 2008]

e Contractive: force encoder to have small derivatives
[Rifai et al 2011]




Sparse autoencoder illustration for
imaqges

Natural Images

Learned bases: |

Test example

[a,, .., agl =1[0,0,..,0,0.8,0,..00.3,0,..,0,0.5,0]
8 (feature representation)




Stacking Auto-Encoders

e (Can be stacked successfully (Bengio et al NIPS’2006) to form highly
non-linear representations

r

U
hz@OOCADOOO) OOO00O00)
W >W2' WZA
Jlelelelelelol®) h,(ooog)oo@ elelelololel0l N  oTelelol0l0]0)
A
W] WI' w; W,

x ©O000O00YD *xO©OOO0D x COO00)
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Layer-wise Uhsupervised Learning

Input 000 .. O
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Layer-wise Unsupervised Pre-training

features O00©® ... @
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Layer-wise Uv\supe.rvi.se.d Pre-training

features @O @@

_ ?
reconstruptlon 00 ..0 = 000 O input
of input '\
.\
Input %
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Layer-wise Unsupervised Pre-training

features O00©® ... @

91



Layer-wise Unsupervised Pre-training

More abstract

features V '{

features 009 @®

Input o0 ..
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Layer-wise Unsupervised Learning

reconstruction

of features ®

More abstract
features

features

Input %
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Layer-wise Unsupervised Pre-training

More abstract

features V '{

features 009 @®

Input o0 ..
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Layer-wise Uhsupervised Learning

Even more abstract
features

More abstract I/;><
features V 'ﬁ

features OO0©® ... @

Input o0 ..
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Supervisad Fine-Tuning

Output - Target
f(X) six _Y
@
Even more abstract / / \
features O

... @
More abstract I/;><T
features V ﬁ

features WV
iInput o0 ..
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Why is unsupervised pre-training
working so well?

e Regularization hypothesis:

* Representations good for P(x) N AN 720 R A R
are good for P(y|x) sof oo SN KL ipreTEnng

1000k £ _____ w i_t.h_?l_l_t. _Pfﬁit_r?ini_n_gg ____________ SR

e Optimization hypothesis: oL
* Unsupervised initializations start

near better local minimum of
supervised training error

* Minima otherwise not I
aChieva ble by random _15—04?000 —30iOO —20iOO —10i00 (I) 1(';00 20i(]0 30i00 40i00
initialization

-500

-1000

Erhan, Courville, Manzagol,
Vincent, Bengio (JMLR, 2010)
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Part 2

Recursive Deep Learning




Building on Word Vector Space Models

A
X, .
57T ) ¢ 5
4T X [1.1]

4

31T HKGermany [ ;]

-+ 9
2 France [2 ] xMonday[ ]
1T - K Tuesday [ ]
0 1 2 3 4 5 6 7 8 9 10

the country of my birth
the place where | was born

But how can we represent the meaning of longer phrases?

9 By mapping them into the same vector space!



How should we mayp pkrases inko a

vector space?

Use principle of compositionality

The meaning (vector) of a sentence
is determined by

(1) the meanings of its words and
(2) the rules that combine them.

Tuesd
, ¢
I e . . T m me B T T S 2
0 1 2 3 4 5 6 7 8 9 10 X4

country

x the country of my birth
x the place where | was born

x France x Monday

ay

Models in this section
can jointly learn parse
trees and compositional
vector representations
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Semantic Vector Spaces

Vectors

representing

Phrases and Sentences

that do not ignore word order

and capture semantics for NLP tasks

l—l—\

<€ >
Single Word Vectors Documents Vectors

e Distributional Techniques * Bag of words models
 Brown Clusters * LSA, LDA
e Useful as features inside * Great for IR, document

models, e.g. CRFs for exploration, etc.

NER, etc. * |gnore word order, no
e Cannot Capture |Onger detailed UnderStanding

phrases



Recursive Deep Learhing
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Motivation
Recursive Neural Networks for Parsing
Optimization and Backpropagation Through Structure

Compositional Vector Grammars: Parsing
Recursive Autoencoders: Paraphrase Detection
Matrix-Vector RNNs: Relation classification

Recursive Neural Tensor Networks: Sentiment Analysis



Sentence Parsing: What we want

VP

A000dm

at mat.



Learn Skructure and Re.prese.nl:a&f.ou

()

()"
2]) e



Recursive Neural Networks for
Structure Prediction

Inputs: two candidate children’s representations

Outputs:
1. The semantic representation if the two nodes are merged.

2. Score of how plausible the new node would be.

- ;) ]

oo )
4t

mat.
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Recursive Neural Network Definikion

score = 1.3 [2] = parent

score = U'p

Neural
Network 1| p= tanh(W [21] b),
2

Same W parameters at all nodes
of the tree
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Related Work to Socher et al. (ICML
2011)

e Pollack (1990): Recursive auto-associative memories

e Previous Recursive Neural Networks work by
Goller & Kuchler (1996), Costa et al. (2003) assumed
fixed tree structure and used one hot vectors.

e Hinton (1990) and Bottou (2011): Related ideas about
recursive models and recursive operators as smooth
versions of logic operations
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Parsing a sentence with an RNN




Parsing a sentence




Parsing a sentence



Parsing a sentence

oM o
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Max-Margin Framework - Details

1 4(:]

) :)

e Similar to max-margin parsing (Taskar et al. 2004), a supervised
max-margin objective

J = Zs Xi Vi) — még)(S(XiJ)ﬂLA(%Yi))

* The Ioss A(y,y;) penalizes all incorrect decisions

e The score of a tree is computed by
the sum of the parsing decision
scores at each node.

e Structure search for A(x) was maximally greedy

* |nstead: Beam Search with Chart
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Backpropagation Through Structure

e Introduced by Goller & Kiichler (1996) B N
e Principally the same as general backpropagation

e Two differences resulting from the tree structure:
e Split derivatives at each node

e Sum derivatives of W from all nodes
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BTS: SFLE& derivatives ot each node

e During forward prop, the parent is computed using 2 children
]
] 3 p = tanh(w [zllb)
) Ul 2

e Hence, the errors need to be computed wrt each of them:

[8]
3
~
RN
// \\
s ~
L,
[8] F]
5 3

where each child’s error is n-dimensional
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BTS: Sum derivatives of all nodes

e You can actually assume it’s a different W at each node
e |ntuition via example:

0
Wf(W(f(Wa;)

)
= f{(W(f(W 0 w %4 %4 0 %4

= S GwD) (W) S0V + W fv )
= [f(W({f(Wz))(f(Wz) + W f (Wz)x)

e |f take separate derivatives of each occurrence, we get same:

0
At ( 2(f (Wlx))+Wf(W2(f(W1m))

= ( 2(f(Whz)) (f Whz)) + f/(Wa(f(Wiz)) (W f' (Whz)z)
= [ (Wa(f(Whz)) (f(Whz) + Waf' (Wz)z)
= [W(Wa)) (fWz) + W[ (Wz)z)



BTS: Op&i.mi‘,z.a!:iov\

* As before, we can plug the gradients into a
standard off-the-shelf L-BFGS optimizer

e Best results with AdaGrad (Duchi et al, 2011):
Ori = 01—1,4 — ta -
\/2721 gT,i

* For non-continuous objective use subgradient
method (Ratliff et al. 2007)

9t.,i
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Discussion: Si.mpte NN

Good results with single matrix RNN (more later)

Single weight matrix RNN could capture some
phenomena but not adequate for more complex,
higher order composition and parsing long sentences

The composition function is the same
for all syntactic categories, punctuation, etc



Sotu&uow Syh&ac&s.catty-()h&md RNN

ldea: Condition the composition function on the
syntactic categories, “untie the weights”

e Allows for different composition functions for pairs
of syntactic categories, e.g. Adv + AdjP, VP + NP

e Combines discrete syntactic categories with
continuous semantic information

Standard Recursive Neural Network Syntactically Untied Recursive Neural Network




Solution: CVG& =
PCFG + Sjv\&acki.cauyt)v\ﬁed RNN

 Problem: Speed. Every candidate score in beam
search needs a matrix-vector product.

e Solution: Compute score using a linear combination
of the log-likelihood from a simple PCFG + RNN

* Prunes very unlikely candidates for speed

* Provides coarse syntactic categories of the
children for each beam candidate

e Compositional Vector Grammars: CVG = PCFG + RNN



Details: Composﬂ:ﬁovml Vector
Grramvmmar

e Scores at each node computed by combination of
PCFG and SU-RNN:

s (pﬂ)) = (PN D L10g P(P, —» B C)

* |nterpretation: Factoring discrete and continuous
parsing in one model:
P((Pr1,p1) = (B,b)(C,¢c))
=P(pp —b ¢]PL—-B C)P(PhL— B C)

e Socher et al (2013): More details at ACL



Related Worle

Resulting CVG Parser is related to previous work that extends PCFG
parsers

Klein and Manning (2003a) : manual feature engineering

Petrov et al. (2006) : learning algorithm that splits and merges
syntactic categories

Lexicalized parsers (Collins, 2003; Charniak, 2000): describe each
category with a lexical item

Hall and Klein (2012) combine several such annotation schemes in a
factored parser.

CVGs extend these ideas from discrete representations to richer
continuous ones

Hermann & Blunsom (2013): Combine Combinatory Categorial
Grammars with RNNs and also untie weights, see upcoming ACL 2013



Experiments
e Standard WSJ split, labeled F1

e Based on simple PCFG with fewer states

e Fast pruning of search space, few matrix-vector products
e 3.8% higher F1, 20% faster than Stanford parser

Parser ____________|TestAll Sentences

Stanford PCFG, (Klein and Manning, 2003a) 85.5
Stanford Factored (Klein and Manning, 2003b) 86.6
Factored PCFGs (Hall and Klein, 2012) 89.4
Collins (Collins, 1997) 87.7
SSN (Henderson, 2004) 89.4
Berkeley Parser (Petrov and Klein, 2007) 90.1
CVG (RNN) (Socher et al., ACL 2013) 85.0
CVG (SU-RNN) (Socher et al., ACL 2013) 90.4
Charniak - Self Trained (McClosky et al. 2006) 91.0

Charniak - Self Trained-ReRanked (McClosky et al. 2006) 92.1



SO-KNN Awad.jsis

* Learns notion of soft head words

VP-NP




Analysis of resulting vector
rapresev\&ahiov\s

All the figures are adjusted for seasonal variations
1. All the numbers are adjusted for seasonal fluctuations
2. All the figures are adjusted to remove usual seasonal patterns

Knight-Ridder wouldn’t comment on the offer
1. Harsco declined to say what country placed the order
2. Coastal wouldn’t disclose the terms

Sales grew almost 7% to SUNK m. from SUNK m.
1. Sales rose more than 7% to $94.9 m. from $88.3 m.
2. Sales surged 40% to UNK b. yen from UNK b.




SU-RNN Ahad.vsf.s

e Can transfer semantic information from
single related example

* Train sentences:
* He eats spaghetti with a fork.
* She eats spaghetti with pork.
* Test sentences
* He eats spaghetti with a spoon.
* He eats spaghetti with meat.



SO=-RNN Analysis

(a) Stanford factored parser

S S
NP VP NP VP
I |
PRP PRP
|  VBZ NP | VBZ NP
He | /\ He | /\
t
eats NP Bp cats NP PP
| PN
ks TN NNs N NP
| IN NP | | |
spaghetti w!th DT/\NN spaghetti  with PTP
| | meat
a spoon
< (b) Compositional Vector Grammar S
/\ NP VP
NP VP |
| PRP
PRP | VBZ NP
H| He | /\
(&
v1|32 NlP PP cats e Bp
/\

spaghetti wilth DT/\NN

a spoon

| |
spaghetti  with NN
|

meat



Labeling in Recursive Neural Networlkes

NP
e \We can use each node’s

representation as features for a Softmax
softmax classifier:

Layer

p(elp) = softmaz(Sp) Q

Neural

Network

e Training similar to model in part 1 with
standard cross-entropy error + scores
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Scene Parsing

Similar principle of compositionality.

128

The meaning of a scene image is
also a function of smaller regions,

how they combine as parts to form
larger objects,

and how the objects interact



Algorithm for Parsing Images

Same Recursive Neural Network as for natural language parsing!
(Socher et al. ICML 2011)

Parsing Natural Scene Images

Semantic

Representations
Features

Segments
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Mul.!:t.-ctass seqgmentation

B sky .tree .road .grass .water .bldg .mntn I fg obj.

Pixel CRF (Gould et al., ICCV 2009) 74.3
Classifier on superpixel features 75.9
Region-based energy (Gould et al., ICCV 2009) 76.4
Local labelling (Tighe & Lazebnik, ECCV 2010) 76.9
Superpixel MRF (Tighe & Lazebnik, ECCV 2010) 77.5
Simultaneous MRF (Tighe & Lazebnik, ECCV 2010) 77.5
Recursive Neural Network 78.1

130 stanford Background Dataset (Gould et al. 2009)



Recursive Deep Learning
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Motivation
Recursive Neural Networks for Parsing
Theory: Backpropagation Through Structure

Compositional Vector Grammars: Parsing
Recursive Autoencoders: Paraphrase Detection
Matrix-Vector RNNs: Relation classification

Recursive Neural Tensor Networks: Sentiment Analysis



Se.mi,--supervf.se.d Recursive
Aubtoencoder

e To capture sentiment and solve antonym problem, add a softmax classifier

e Erroris a weighted combination of reconstruction error and cross-entropy
Socher et al. (EMNLP 2011)

Reconstruction error Cross-entropy error

( )

0000000 000O0OCOCO O0O0OCGOCO
W(Z) W(Iabel)

0000000

wo
(0000000 (0000000
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‘Parapkrase Detection

e Pollack said the plaintiffs failed to show that Merrill
and Blodget directly caused their losses

e Basically, the plaintiffs did not show that omissions
in Merrill’s research caused the claimed losses

e The initial report was made to Modesto Police
December 28

e |t stems from a Modesto police report
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How Fo compare
the meaning
of two sentences?



Unsupervi:se.d Recursive Autoencoders

 Similar to Recursive Neural Net but instead of a
supervised score we compute a reconstruction error

at each node. Socher et al. (EMNLP 2011)

Erecllersea]) = 5 |[lexsea] — [¢h:¢)]

(c000)
oo y,=f(W[xy;y1] + b)

I

(o Q0 o) (0000)

eeee y1=f(W[x2;x3] + b)

(e0e0@) (eeee) (0000
135 X1 X2 X3

- J




Unsupervised unfolding RAE

e Attempt to encode entire tree structure at each node

(© 00 O) Xl' (OGO 00O) X2' (OO0 0) X3'

Wy W
(0000 yll
V<\;°»">V2\
e 0000 yl
We

e000)Xq1 (ee00)X) (0000)X3
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Recursive Autoencoders for Full
Sentence Para pkrase. Detection

e Unsupervised Unfolding RAE and a pair-wise sentence
comparison of nodes in parsed trees

e Socher et al. (NIPS 2011)

Recursive Autoencoder Neural Network for Variable-Sized Input

VACX X X

6 002‘5\” :ooooi 4@ee®
(ﬂZjZigﬁ) 3@eew 4o JGee® 2(11‘Z$m

The “cats catch _Cats” eat e
;e cats catc m|ce ats ea mlcEJ 3 7

—y 4 :
W4567

Paraphrase pajrwise Classification Output

Neural Network

Variable-Sized Pooling Layer

Similarity Matrix
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Recursive Autoencoders for Fall
Senktence ‘Fampkmse Detection

e Experiments on Microsoft Research Paraphrase Corpus
e (Dolan et al. 2004)

I -

Rus et al.(2008) 70.6 80.5
Mihalcea et al.(2006) 70.3 81.3
Islam et al.(2007) 72.6 81.3
Qiu et al.(2006) 72.0 81.6
Fernando et al.(2008) 74.1 82.4
Wan et al.(2006) 75.6 83.0
Das and Smith (2009) 73.9 82.3
Das and Smith (2009) + 18 Surface Features 76.1 82.7
F. Bu et al. (ACL 2012): String Re-writing Kernel 76.3

Unfolding Recursive Autoencoder (NIPS 2011) 76.8 83.6
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Recursive Autoencoders for Full
Sentence ‘Parapkrase. Detection

Sentences

Sim.Mat.

0.95

(1) LLEYTON Hewitt yesterday traded his tennis racquet for his first sporting passion -
Australian football - as the world champion relaxed before his Wimbledon title defence

(2) LLEYTON Hewitt yesterday traded his tennis racquet for his first sporting passion-
Australian rules football-as the world champion relaxed ahead of his Wimbledon defence

;;1..::

0.82

(1) The lies and deceptions from Saddam have been well documented over 12 years
(2) It has been well documented over 12 years of lies and deception from Saddam

0.67

(1) Pollack said the plaintiffs failed to show that Merrill and Blodget directly caused their
losses

(2) Basically , the plaintiffs did not show that omissions in Merrill’s research caused the
claimed losses

0.49

(1) Prof Sally Baldwin, 63, from York, fell into a cavity which opened up when the struc-
ture collapsed at Tiburtina station, Italian railway officials said

(2) Sally Baldwin, from York, was killed instantly when a walkway collapsed and she fell
into the machinery at Tiburtina station

0.44

(1) Bremer, 61, is a onetime assistant to former Secretaries of State William P. Rogers and
Henry Kissinger and was ambassador-at-large for counterterrorism from 1986 to 1989
(2) Bremer, 61, is a former assistant to former Secretaries of State William P. Rogers and
Henry Kissinger

139

0.11

(1) The initial report was made to Modesto Police December 28
(2) It stems from a Modesto police report




Recursive Deep Learning
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Motivation
Recursive Neural Networks for Parsing
Theory: Backpropagation Through Structure

Compositional Vector Grammars: Parsing
Recursive Autoencoders: Paraphrase Detection
Matrix-Vector RNNs: Relation classification

Recursive Neural Tensor Networks: Sentiment Analysis



Compositionalily Through Recursive
Matrix-Vector Spaces

p = tanh(W [2;4] b)

e One way to make the composition function more powerful
was by untying the weights W

e But what if words act mostly as an operator, e.g. “very” in
very good

e Proposal: A new composition function
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Compositionality Through Recursive
Mabrix-Vector Recursive Neural Neblworles

p = tanh(W [E qb) p = tanh(W [Czcl ab)

1
2 C,c,

Recursive Matrix-Vector Model

- vector

0| i
®0 matrix

)
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Predicting Semtiment Distribukions

e Good example for non-linearity in language

fairly annoying fairly awesome fairly sad
05 051 05
——MV-RNN oal ——MV-RNN oal ——MV-RNN
- -+-RNN ' -+--RNN
03+ 03r
0.2 021
041;_'4’“//_“‘ 0-1‘F—t——t_F--- I S SRR e e T
€
%2 5 4 5 6 7 8 9 10 %2 s 4 5 6 7 8 9 10
not annoying not awesome not sad
0.5 051 05
oa —o—MV-RNN 0al ——MV-RNN oa —o—MV-RNN
' -+-RNN ' ~+-RNN ' -+~ RNN
031 03 —=—Ground Truth
0.2+ ’_,r""
0‘10--~-;---:—---j———-i--'*’ﬁtﬁ o——o—2 NSNS e

1 2 3 4 5 6 7 8 9 10

unbelievably annoying unbelievably awesome unbelievably sad
051 05r 0.5
oal —o— MV-RNN 0al —— MV-RNN » oa —— MV-RNN
' -+~ RNN ' -+~ RNN ' -~+=RNN
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MV-RNN for Relationship Classification

| Classifier: Message-Topic | \
‘ A
0 @O ©o (e® @ @D
the [movie] showed [wars] ...
. . . . Classifier  Feature Sets F1
Relationship Sentence with labeled nouns for which T e T
to predict relaﬁonships SVM word pair, words in betw.een 725
SVM POS, WordNet, stemming, syntactic 74.8
patterns
Cause- Avian [influenza]e1 is an infectious SYM - Pos, WordRe, morpholosical fea- 7.6
. . tures, thesauri, Google n-grams

Effect(e2,el) disease caused by type a strains of the MaxEnt — POS, WordNet, morphological fea- 77.6

tures, noun compound system, the-
influenza [virus]e2. s Googlemgrms__________
N or et, prenxes an other .

. 0 hological fi , POS, depen-

Entity- The [mother]ez left her native [land]e2 dency pesse feamures, Levin cas,

Origin(el,e2) about the same time and they were B s Ton.

g g g tRunner

married in that city. e g
. . LinMVR - 73.0
Message- Roadside [attractions]e1 are frequently MV-RNN - 79.1
. . . . RNN POS,WordNet,NER 77.6
Topic(e2,el) advertised with [billboards]e2 to attract LinMVR  POS.WordNet NER 787
to U rists MV-RNN  POS,WordNet,NER 82.4
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Senktiment Detection

e Sentiment detection is crucial to business
intelligence, stock trading, ...

3/18/11 at 4:00 PM 17 Comments
Mentions of the

| Name ‘Anne
| Hathaway’ May
| Drive Berkshire
Hathaway Stock

By Patrick Huguenin

The Huffington Post recently pointed
out that whenever Anne Hathaway is
Maybe she'll change her name to Halliburton. Just to mfhe news, fhie stack price fox Warren
see. Buffett's Berkshire Hathaway goes up.
Really. When Bride Wars opened, the
stock rose 2.61 percent. (Rachel
145 Getting Married only kicked it up 0.44 percent, but, you know, that one was so
light on plot compared to Bride Wars.)



Sentiment Detection and Bag-of-Words
Models

e Most methods start with a bag of words
+ linguistic features/processing/lexica

e But such methods (including tf-idf) can’t
distinguish:
+ white blood cells destroying an infection
- an infection destroying white blood cells
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Sembtiment Detection and Bag-of-Words
Models

Sentiment is that sentiment is “easy”
Detection accuracy for longer documents ~90%
Lots of easy cases (... horrible... or ... awesome ...)

For dataset of single sentence movie reviews
(Pang and Lee, 2005) accuracy never reached
above 80% for >7 years

Harder cases require actual understanding of
negation and its scope and other semantic effects



Data: Movie Reviews

Stealing Harvard doesn't care about
cleverness, wit or any other kind of
intelligent humor.

There are slow and repetitive parts
but it has just enough spice to keep it
Interesting.
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Two missing pieces for improving
sentiment

1. Compositional Training Data

2. Better Compositional model



1. New Senbtiment Treebanle




1. New Sentiment Treebawnle

nerdy folks

e Parse trees of 11,855 sentences j,y Noghivo Somiwnat Nowral Sombwnat Potve  Viry
e 215,154 phrases with labels o - o o

phenomenal fantasy best sellers

* Allows training and evaluating 0
. .. o o . Very Negative Somewhat Neutral Somewhat Positive Very
with combpositional information negative negative posiive pasiive

(a) (b) (c) (d)

[ [ 1l I

100%

80% -

60%

40%

% of Sentiment Values

20% -

0%

5 10 15 20 25 30 35 40 45
N-Gram Length



2. New Composikiohat Model

Recursive Neural Tensor Network

More expressive than any other RNN so far
Idea: Allow more interactions of vectors

©o P2 = g(a,p1)

— ey o e e e e e =)




2. New Composikiohat Model

e Recursive Neural Tensor Network oo P, = g(a,p1)

— e wy e e e e e e =)
P — — — — — — — — —

—— —— — — — — — —



2. New Composikiohat Model

e Recursive Neural Tensor Network oo P, = g(a,p1)

— e e o e e e e e =)
P — — — — — — — — —




Recursive Neural Tewnsor Nebtworlk

Neural Tensor Layer

Slices of
Tensor Layer

-— b

Standard
Layer

|
|
| 0000
|+

\

©o P2 = g(a,p1)

©o p1=g(b,c)




Experimental Result on T reebanlie

1.0 1.0 Model

M RNTN

M MV-RNN

™ RNN

M binB
NB

0.8 0.9

0.6 0.8

Accuracy
Cumulative Accuracy

0.4 0.7

0.2 0.6
5 10 15 20 25 5 10 15 20 25

N-Gram Length N-Gram Length

Model Fine-grained Positive/Negative
All Root All Root
NB 67.2 41.0 82.6 81.8
SVM 64.3 40.7 84.6 79.4
BiNB 71.0 41.9 82.7 83.1
VecAvg 73.3 32.7 85.1 80.1
RNN 79.0 43.2 86.1 82.4
MV-RNN 78.7 44 4 86.8 82.9

RNTN 80.7 45.6 87.6 85.4




Experimental Result on T reebanle

e RNTN can capture X but'Y

e RNTN accuracy of 72%, compared to MV-RNN (65),
biNB (58) and RNN (54)
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Negation Results
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Negation Results

e Most methods capture that negation often makes
things more negative (See Potts, 2010)

e Analysis on negation dataset

Negated Positive Sentences: Change in Activation

biNB
RRN
MV-RNN -0.5
RNTN | -0.54

| | |

-0.6 -0.4 -0.2 0.0 0.2 0.4

Negated Positive

biNB 19.0
RNN 33.3
MV-RNN 52.4

RNTN 71.4



Negation Results
e But how about negating negatives?
e Positive activation should increase!

Model Accuracy
Negated Positive  Negated Negative
biNB 19.0 27.3
RNN 33.3 45.5
MV-RNN 524 54.6
RNTN 71.4 90.9

Negated Positive Sentences: Change in Activation

biNB
RRN
MV-RNN
RNTN

-0.6 -0.4 -0.2 0.0 0.2 0.4
Negated Negative Sentences: Change in Activation

biNB -0.01
's definitely RN oo
MV-RNN +0.01
RNTN +0.25

-0.6 -0.4 -0.2 0.0 0.2 0.4
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Overview of RNN Model Variakions

e Objective Functions
e Supervised Scores for Structure Prediction
* Classifier for Sentiment, Relations, Visual Objects, Logic
* Unsupervised autoencoding immediate children or entire tree structure
e Composition Functions
* Syntactically-Untied Weights
* Matrix Vector RNN
* Tensor-Based Models
* Tree Structures
* Constituency Parse Trees
* Combinatory Categorical Grammar Trees
* Dependency Parse Trees

o * Fixed Tree Structures (Connections to CNNs)



Summaurv: Recursive 'Bee.p Learning

e Recursive Deep Learning can predict hierarchical structure and classify the

structured output using compositional vectors
e State-of-the-art performance (all with code on www.socher.org)

e Parsing on the WSJ (Java code soon)

* Sentiment Analysis on multiple corpora

e Paraphrase detection with unsupervised RNNs

* Relation Classification on SemEval 2011, Task8

* Object detection on Stanford background and MSRC datasets

Parsing Natural Scene Images

Neural Tensor Layer

~ . Slices of Standard
it interesting Tensor Layer Layer

Recursive Autoencoder ‘ Neural Network for Variable-Sized Input

A small crowd

=
SO0
}+
e

) Q;J}I]eetm setrc:'iecrs ﬁ\ 5@ Paraphrase  pajrwise Classification Output
— church 6esto 5esse 4esew Neural Network
A small quietly 7 TLNP ?? A A J
crowd enters Det j N.  Semantic 1 2 4 16ee0)esew 3esww Variable-Sized Pooling Layer " T b b N
1 / [1:2]
\Y4 + W
C

IC 2 OO Lo DY OO OE COCD)
““““ Rep tati The cats catch mice | Cats eat mice
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Indices —, 4
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Part 3

Assorted Speech and NLP Applications
Deep Learning: General Strategy and Tricks
Resources (readings, code, ...)

B w e

Discussion
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Part 3.1: Applications

Assorted Spe.eck and NL?P
Appticalzi.ov\s
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Existing NLP Applications

e Language Modeling (Speech Recognition, Machine Translation)
e Word-Sense Learning and Disambiguation
 Reasoning over Knowledge Bases

e Acoustic Modeling

e Part-Of-Speech Tagging

e Chunking

e Named Entity Recognition

* Semantic Role Labeling

* Parsing

e Sentiment Analysis

e Paraphrasing

. . 166
* (Question-Answering



Language Modeling

Predict P(next word | previous word)
* Gives a probability for a longer sequence
* Applications to Speech, Translation and Compression

 Computational bottleneck: large vocabulary V means that
computing the output costs #hidden units x |V|.
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Neural Language Model

i-th output = P(w; = i | context)

 Bengio et al NIPS’2000
and JMLR 2003 “A |

Neural Probabilistic B
Language Model” tanh

(eo0o o0 )

normalized exponential
(e o - o - (XX

* Each word represented by
a distributed continuous-
valued code

Generalizes to sequences
of words that are ~, Matix ¢
semantically similar to shared parameters

training sequences o ot o

across words
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Recurrent Neural Net Langquage
Modeling for ASR

45 T T
... | —¢—BN\N
14>__ DTN ——k—— RNN+KNA
*  [Mikolov et al 2011] ol T e
@ Bigger is better... R N e e
‘ experiments on Broadcast § ke NI R
"= News NIST-RT04 s
& :
= 125
perplexity goes from
140 to 102 12
15 L SRR
Paper shows how to o : 12
train a recurrent neural net Hidden layer size

P(w:| context) P(w:t| context)

with a single core in a few — —
days, with > 1% absolute
improvement in WER

VT
VR
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Appi.ica&i.ou to Statistical Machine
Tronslation :i

* Schwenk (NAACL 2012 workshop on the future of LM)
e 41M words, Arabic/English bitexts + 151M English from LDC

* Perplexity down from 71.1 (6 Gig back-off) to 56.9 (neural
model, 500M memory)

* +1.8 BLEU score (50.75 to 52.28)

* (Can take advantage of longer contexts

Code: http://lium.univ-lemans.fr/cslm/

170



Learning Multiple Word Vectors

171

Tackles problems with polysemous words

Can be done with both standard tf-idf based
methods [Reisinger and Mooney, NAACL 2010] i)

Recent neural word vector model by [Huang et al. ACL 2012]
learns multiple prototypes using both local and global context

State of the art Local Context Global Context

score

correlations with /‘i\

human similarity
judgments




Learning Multiple Word Vectors

e Visualization of learned word vectors from
Huang et al. (ACL 2012)

translatnorqovels fantasy stars

manga
laundering mévie—
transaction talk  ({plevision Inais
finance bank, M constellation
banking camera venue oracle
8P flash asteroid mars S
: galaxy moon
rer%trwé:lpality direction planet
boundary
gap  danal.
plateau
territory

12 FﬂE’?ﬁ'hav'lfbods



Common Sense Reasoning
Inside Knowledqge Bases

e Question: Can Neural Networks learn to capture logical
inference, set inclusions, part-of and hypernym relationships?

Knowledge Base Word Vector Space Reasoning about Relations

Relation: has part

Confidence for Triplet

Neural
Tensor
Network

;ZSX] N

( Bengal tiger, has part, tail)

Does a Bengal tiger have a tail?
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Neural Networlks for Reasoning
over Relationships

Neural Tensor Layer

e Higher scores for each

. Linear Slices of Standard Bias
tnplet T= (el)R)eZ) Layer Tensor Layer Layer
. . o, | @0® ggg I
indicate that entities are f urL______;_gi______. g8 v
more likely in relationship @ : :

* Training uses contrastive
estimation function, similar
to word vector learning

 NTN scoring function: g(e1, R.e2) = uiﬁf( Wh l‘]fg +Vr [ ] ‘|‘bR)

e (Cost: Z Zma\ ( l1—g <T(i)) + g (Téz))) + A||Q||§

174 i=1 e=1



Accuracy of Predicting True and False
Relationships

historian male

e Related Work

gender
s\ fhender \ e Bordes, Weston,
Francesco Francesco Collobert & Be ngio,
place of blrth Guicciardini \ FE AAAI 2011)
nationality /
. nationality * (Bordes, Glorot,
orence .
aly Weston & Bengio,
Iocatik Matteo /nationality AISTATS 2012)
Rosselli
N
Distance Model 68.3 61.0
Hadamard Model 80.0 68.8
Standard Layer Model (<NTN) 76.0 85.3
Bilinear Model (<NTN) 84.1 87.7

Neural Tensor Network (Chen et al. 2013) 86.2 90.0



Accuracy Per Relationship

WordNet

domain topic

similar to

synset domain topic
domain region
subordinate instance of
has part

part of

member holonym
member meronym

type of

has instance

70 75 80 85 90 95
Accuracy (%)
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ethnicity (211)

religion (107)

cause of death (170)

institution (727)

profession (455)

nationality (188)

gender (2)

7

[an]
~
[$a]
[ee]
o

85 90 95
Accuracy (%)



Part 3.2

Deep Learnhing
General Strategy and Tricks
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Greneral Strategy
1. Select network structure appropriate for problem

1. Structure: Single words, fixed windows vs Recursive
Sentence Based vs Bag of words

2. Nonlinearity

2. Check for implementation bugs with gradient checks

3. Parameter initialization

4. Optimization tricks

5. Check if the model is powerful enough to overfit
1. If not, change model structure or make model “larger”
2. If you can overfit: Regularize
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Nown-Linearities: What's used

logistic (“sigmoid”) tanh
1 B e —e”
O - T f(e) = tanh(s) = S,
f'(2) = F(z)(1 - f(=)) (@) =1—f(2)’

tanh is just a rescaled and shifted sigmoid tanh(z) = 2logistic(2z) -1

tanh is what is most used and often performs best for deep nets
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Nown-Linearities: There are various
other choices

hard tanh soft sign rectifier
-1 ifx<-—1 . a
HardTanh(x) = { x if —~1<=x<=1 softsign(z)=—r-— rect(z) = max(z,0)
1 ifx>1 1+|d]
o ncton 1 3
| |
1
) S S S R e T—
Q.5 ...................... —Sigmoid| .l z
: —Softsign

-5 _2:5 0 2 5 5 ‘3 ‘é ‘i 0 Il 2' 3

e hard tanh similar but computationally cheaper than tanh and saturates hard.

e [Glorot and Bengio AISTATS 2010, 2011] discuss softsign and rectifier
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Max0Out Nebworlke

* A very recent type of nonlinearity/network
e Goodfellow et al. (2013)

fz(Z) — manE[Lk] Zij

CIZ‘TW..Z‘j -+ bz’j

e Where Z@j

e This function too is a universal approximator
e State of the art on several image datasets
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Grradient Checles are Awesome!

182

Allows you to know that there are no bugs in your neural
network implementation!

Steps:
1. Implement your gradient

2. Implement a finite difference computation by looping
through the parameters of your network, adding and
subtracting a small epsilon (~¥107-4) and estimate derivatives

J(06)) — J(96-))
2 x EPSILON

gi(0) = 9(+) — 9 + EPSILON x &,

3. Compare the two and make sure they are the same



Greneral Strategy

1. Select appropriate Network Structure

1. Structure: Single words, fixed windows vs Recursive
Sentence Based vs Bag of words

2. Nonlinearity

2. Check for implementation bugs with gradient check

3. Parameter initialization

4. Optimization tricks

5. Check if the model is powerful enough to overfit
1. If not, change model structure or make model “larger”
2. If you can overfit: Regularize
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Parameber Initialization

e |nitialize hidden layer biases to 0 and output (or reconstruction)
biases to optimal value if weights were 0 (e.g. mean target or
inverse sigmoid of mean target).

e Initialize weights ~ Uniform(-r,r), r inversely proportional to fan-
in (previous layer size) and fan-out (next layer size):

\/6/(fan-in + fan-out)

for tanh units, and 4x bigger for sigmoid units [Glorot AISTATS 2010]

e Pre-training with Restricted Boltzmann machines
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Stochastic Grradient Descent (SGD)

185

Gradient descent uses total gradient over all examples per
update, SGD updates after only 1 or few examples:

_ OL(z,0)
H(t) — Q(t ) _ €t &
00

L = loss function, z, = current example, 6 = parameter vector, and
g, = learning rate.

Ordinary gradient descent as a batch method, very slow, should
never be used. Use 2" order batch method such as LBFGS. On
large datasets, SGD usually wins over all batch methods. On
smaller datasets LBFGS or Conjugate Gradients win. Large-batch
LBFGS extends the reach of LBFGS [Le et al ICML'2011].



Learining Rates

186

Simplest recipe: keep it fixed and use the same for all
parameters.

Collobert scales them by the inverse of square root of the fan-in
of each neuron

Better results can generally be obtained by allowing learning
rates to decrease, typically in O(1/t) because of theoretical
convergence guarantees, e.g., ¢ — — "

with hyper-parameters g, and t

max(t, 7)

Better yet: No learning rates by using L-BFGS or AdaGrad (Duchi
et al. 2011)



Long-Term Dependencies
and Clipping Trick

* Invery deep networks such as recurrent networks (or possibly
recursive ones), the gradient is a product of Jacobian matrices,
each associated with a step in the forward computation. This
can become very small or very large quickly [Bengio et al 1994],

and the locality assumption of gradient descent breaks down.
. N

e The solution first introduced by Mikolov is to clip gradients n
to a maximum value. Makes a big difference in RNNs éf)
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Geue.rat Strategy

Select appropriate Network Structure
1. Structure: Single words, fixed windows vs Recursive Sentence Based vs Bag of words
2. Nonlinearity

Check for implementation bugs with gradient check

Parameter initialization

Optimization tricks

vk wnN

Check if the model is powerful enough to overfit
1. If not, change model structure or make model “larger”
2. If you can overfit: Regularize

Assuming you found the right network structure, implemented it
correctly, optimize it properly and you can make your model
overfit on your training data.

Now, it’s time to regularize
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Prevent Overfitting:
Model Size and Regularization

e Simple first step: Reduce model size by lower number of units
and layers and other parameters

e Standard L1 or L2 regularization on weights
e Early Stopping: Use parameters that gave best validation error
e Sparsity constraints on hidden activations, e.g. add to cost:

KL (1 /NS a,(”)||0.0001)

n=1 "1

e Dropout (Hinton et al. 2012):

* Randomly set 50% of the inputs at each layer to O

e At test time half the outgoing weights (now twice as many)
189 ° Prevents Co-adaptation



Deep Learning Tricks of the Trade

* Y.Bengio (2012), “Practical Recommendations for Gradient-
Based Training of Deep Architectures”

* Unsupervised pre-training |
* Stochastic gradient descent and setting learning rates

* Main hyper-parameters

Learning rate schedule & early stopping
Minibatches

Parameter initialization

Number of hidden units

L1 or L2 weight decay

Sparsity regularization

Debugging = Finite difference gradient check (Yay)

How to efficiently search for hyper-parameter configurations
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Part 3.3: Resources

Resources: Tutorials and Code
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Related Tutorials

e See “Neural Net Language Models” Scholarpedia entry
e Deep Learning tutorials:

e Stanford deep learning tutorials with simple programming
assignments and reading list

e Recursive Autoencoder class project
e Graduate Summer School: Deep Learning, Feature Learning
e |CML 2012 Representation Learning tutorial

e More reading (including tutorial references):
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Software

* Theano (Python CPU/GPU) mathematical and deep learning
library
* Can do automatic, symbolic differentiation
 Senna: POS, Chunking, NER, SRL
* by Collobert et al.
* State-of-the-art performance on many tasks
* 3500 lines of C, extremely fast and using very little memory
e Recurrent Neural Network Language Model

e Recursive Neural Net and RAE models for paraphrase detection,
sentiment analysis, relation classification
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Software: what’s next

194

Off-the-shelf SVM packages are useful to researchers
from a wide variety of fields (no need to understand
RKHS).

One of the goals of deep learning: Build off-the-shelf
NLP classification packages that are using as training

input only raw text (instead of features) possibly with a
label.



Part 3.4:

Discussion
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Concerns

e Many algorithms and variants (burgeoning field)

e Hyper-parameters (layer size, regularization, possibly
learning rate)

* Use multi-core machines, clusters and random
sampling for cross-validation (Bergstra & Bengio 2012)

* Pretty common for powerful methods, e.g. BM25, LDA
e Can use (mini-batch) L-BFGS instead of SGD
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Concerns

 Not always obvious how to combine with existing NLP

e Simple: Add word or phrase vectors as features. Gets
close to state of the art for NER, [Turian et al, ACL
2010]

* Integrate with known problem structures: Recursive
and recurrent networks for trees and chains

* Your research here
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Concerns

* Slower to train than linear models

* Only by a small constant factor, and much more
compact than non-parametric (e.g. n-gram models)

 Very fast during inference/test time (feed-forward
pass is just a few matrix multiplies)

e Need more training data

* Can handle and benefit from more training data,
suitable for age of Big Data (Google trains neural
nets with a billion connections, [Le et al, ICML 2012])
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Concerns

e There aren’t many good ways to encode prior
knowledge about the structure of language into deep
learning models

* There is some truth to this. However:

* You can choose architectures suitable for a problem
domain, as we did for linguistic structure

* You can include human-designed features in the first
layer, just like for a linear model

* And the goal is to get the machine doing the learning!
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Concern:
Problems with model iv\&erpre&abi.u&j

* No discrete categories or words, everything is a continuous
vector. We’d like have symbolic features like NP, VP, etc. and

see why their combination makes sense.

* True, but most of language is fuzzy and many words have soft
relationships to each other. Also, many NLP features are
already not human-understandable (e.g., concatenations/
combinations of different features).

e Can try by projections of weights and nearest neighbors, see
part 2
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Concerin: non—convex op&imaz.ataon

e Caninitialize system with convex learner
* Convex SVM

* Fixed feature space

e Then optimize non-convex variant (add and tune learned
features), can’t be worse than convex learner

 Not a big problem in practice (often relatively stable
performance across different local optima)
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Advantages

202

Despite a small community in the intersection of deep
learning and NLP, already many state of the art results
on a variety of language tasks

Often very simple matrix derivatives (backprop) for
training and matrix multiplications for testing = fast
implementation

Fast inference and well suited for multi-core CPUs/GPUs
and parallelization across machines



Learning Multiple Levels of
Abstraction

e The big payoff of deep learning
is to learn feature
representations and higher
levels of abstraction

e This allows much easier
generalization and transfer
between domains, languages,
and tasks
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