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Netflix Workload:

e Serve only static media files
e Pre-encoded for all codecs/bitrates
o Video quality is of the utmost
Importance, so we don’t transcode on
the server
e Greatly simplifies server workload



Netflix Video Serving Stack

e FreeBSD-current

e NGINX web server

e \ideo served via asynchronous
sendfile(2) and encrypted using kTLS



Timeline:

Asynchronous Sendfile (2014)
Kernel TLS (2016)

Network-centric NUMA (2019)
Inline Hardware (NIC) KTLS (2022)
800G initial results



Sendfile

e Since we are serving static files, we can
use sendfile(2)

e Sendfile directs the kernel to send data
from a file descriptor to a TCP socket

e This eliminates the need to copy data
into or out of the kernel



Netflix Video Serving Data Flow
Using sendfile, data is sent directly S _>

from disk to network and not
touched by the host CPU.
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Problem: Disk reads can block
sendfile

e \When an nginx worker is blocked, it
cannot service other requests

e Solutions to prevent nginx from blocking
like aio or thread pools scale poorly



Solution: Asynchronous sendfile

e sendfile() becomes “fire and forget”

e Empty buffers are appended to the TCP
socket buffer. TCP stops when it sees
an empty buffer.

e \When disk read completes, disk
interrupt handler informs TCP it is ready
to send



Asynchronous sendfile
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Asynchronous sendfile
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Asynchronous sendfile
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Asynchronous Sendfile Performance

e |ntel Xeon E5-2697v2
o 12 cores @ 2.7GHz
o 256GB DDR3-800
o Chelsio T580 40GbE
e 23Gbs -> 36Gb/s



Timeline:

e Asynchronous Sendfile (2014)

Kernel TLS (2016)

Network-centric NUMA (2019)

Inline Hardware (NIC) KTLS (2022)
800G initial results



What’'s TLS?

e Transport Layer Security
e TLS encrypts traffic between clients and the OCA
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TLS Prevents Sendfile & Triples Memory BW
Data is touched by CPU: Bk Dot -

1. Copy from kernel to userspac
2. Read data to encrypt

3. Write encrypted data to memory
4. Copy from userspace to kernel
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Solution: Move TLS into the kernel

e Eliminates copies between userspace and kernel

Restores sendfile dataflow

e TLS handshakes (eg, session setup, session
resumption) handled in userspace.

e TLS state handed to the kernel

e Kernel does bulk crypto as part of sendfile pipeline



Asynchronous sendfile + KTLS
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Asynchronous sendfile + KTLS
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Asynchronous sendfile + KTLS
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Asynchronous sendfile + KTLS
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Asynchronous sendfile + KTLS
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Asynchronous sendfile + KTLS
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Netflix 800Gb/s Video Serving Data Flow
Using sendfile and software kTLS, i, _>

data is encrypted by the host CPU.w Medata
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Timeline:

e Asynchronous Sendfile (2014)
Kernel TLS (2016)

. NUMA (2019)
e [nline Hardware (NIC) kTLS (2022)
e 300G initial results



What is NUMA?
Non Uniform Memory Architecture

That means memory and/or devices can
be “closer” to some CPU cores



Multi CPU Before NUMA
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Multi Socket system with NUMA:
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Present day NUMA:
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Strategy: Keep as much of our
400GB/sec of bulk data off the
NUMA fabric as possible

e Bulk data congests NUMA fabric and leads to
CPU stalls.



Dual AMD: Worst Case Data Flow
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Dual AMD: Worst Case Data Flow
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Dual AMD: Worst Case Data Flow
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Dual AMD: Worst Case Data Flow
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Steps to send data:

Dual AMD: Worst Case Data Flow
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DMA data from disk to memory
o First NUMA bus crossing
CPU reads data for encryption
o Second NUMA crossing
CPU writes encrypted data
o  Third NUMA crossing
DMA from memory to network
o  Fourth NUMA crossing
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Worst Case Summary:

e 4 NUMA crossings
e 400GB/s of data on the NUMA fabric



Dual AMD: Best Case Data Flow
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Dual AMD: Best Case Data Flow
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Dual AMD: Best Case Data Flow
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Dual AMD: Best Case Data Flow

Steps to send data:

DMA data from disk to memory
CPU Reads data for encryption
CPU Writes encrypted data
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Dual AMD: Best Case Data Flow
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Best Case Summary:

e 0 NUMA crossings
e 0GB/s of data on the NUMA
fabric



Impose order on the chaos..
somehow:

e Disk centric siloing
o Try to do everything on the NUMA node where
the content is stored
e Network centric siloing
o Try to do as much as we can on the NUMA
node that the LACP partner chose for us



Dual AMD: Worst Case Data Flow
With Network Centric NUMA Siloing
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Dual AMD: Worst Case Data Flow
With Network Centric NUMA Siloing
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Dual AMD: Worst Case Data Flow
With Network Centric NUMA Siloing
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Dual AMD: Worst Case Data Flow
With Network Centric NUMA Siloing
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Dual AMD: Worst Case Data Flow
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Worst Case Summary:

e 1 NUMA crossing on average
o 100% of disk reads across NUMA
e 100GB/s of data on the NUMA fabric
o Still less than fabric bandwidth



Dual AMD: Worst Case Data Flow
With Disk Centric NUMA Siloing
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Dual AMD: Worst Case Data Flow
With Disk Centric NUMA Siloing

Steps to send data:

DMA data from disk to memory
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Dual AMD: Worst Case Data Flow
With Disk Centric NUMA Siloing
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Dual AMD: Worst Case Data Flow
With Disk Centric NUMA Siloing
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Dual AMD: Worst Case Data Flow
With Disk Centric NUMA Siloing

Steps to send data:

DMA data from disk to memory
CPU Reads data for encryption
CPU Writes encrypted data
NIC Reads data for transmit

o First NUMA bus crossing

ﬁ 777777 N
" ']Mélmory Nlé“fl\“l\lllg?'wl“““m
Card
YR
et
Aa i |
CPU
. !
r= =N
CPU
Memdry g NI&IIEIIIWIH?[ mmmn

Card



Worst Case Summary:

e 1 NUMA crossing on average
o 100% of disk reads across NUMA

e 100GB/s of data on the NUMA fabric
o Less than theoretical fabric bandwidth



Dual AMD: Worst Case Data Flow
With Strict Disk Centric NUMA Siloin
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Dual AMD: Worst Case Data Flow

With Strict Disk Centric NUMA Siloin

Steps to send data:

DMA data from disk to memory
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Dual AMD: Worst Case Data Flow
With Strict Disk Centric NUMA Siloing
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Dual AMD: Worst Case Data Flow
With Strict Disk Centric NUMA Siloin
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Dual AMD: Worst Case Data Flow
With Strict Disk Centric NUMA Siloin
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Worst Case Summary:

e 0 NUMA crossing on average
o 0% of disk reads across NUMA
e 0GB/s of data on the NUMA fabric



Timeline:

e Asynchronous Sendfile (2014)
e Kernel TLS (2016)
e NUMA (2019)

e Inline Hardware (NIC)

KTLS (2022)
e 800G initial results



Why offload kTLS?

KTLS uses almost half of our CPU cycles
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Netflix 800Gb/s Video Serving Data Flow
Using sendfile and software kTLS, i, _>

data is encrypted by the host CPU.
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Mellanox (NVIDIA) NIC kTLS

<3

NVIDIA. /4

NVIDIA CONNECTX-6 DX
Ethernet SmartNIC

Discussed with Mellanox starting in 2016
First prototypes of CX6-DX in early 2020
lterated for 2+ years to make it production ready

kTLS offload enabled in production last quarter



What is NIC kTLS?:

e Hardware Inline TLS

TLS session is established in userspace.

e \When crypto is moved to the kernel, the kernel
passes crypto keys to the NIC

e TLS records are encrypted by NIC as the data
flows through it on transmit
o No more detour through the CPU for crypto
o This cuts memory BW & CPU use in half!



Netflix 800Gb/s Video Serving Data Flow
Using sendfile and software kTLS, i, _>

data is encrypted by the host CPU.w Medata
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Netflix 800Gb/s Video Serving Data Flow
Using sendfile and software kTLS, i, _>

data is encrypted by the host CPU.
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Netflix 800Gb/s Video Serving Data Flow
Using sendfile and NIC kTLS, data Bulk Data e -

is encrypted by the NIC. Metdata
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Mellanox ConnectX-6 Dx

e Offloads TLS 1.2 and 1.3 for AES GCM cipher
e Retains crypto state within a TLS record
o Means that the TCP stack can send partial
TLS records without performance loss
e |If a packet is sent out of order (eg, a TCP
retransmit), it must re-DMA the record containing
the out of order packet



CX6-DX: In-order Transmit
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Host Memory

TCP segments of Encrypted TLS Record
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CX6-DX: TCP Retransmit
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Timeline:

Asynchronous Sendfile (2014)
Kernel TLS (2016)

NUMA (2019)

Inline Hardware (NIC) KTLS (2022)

e 800G initial results



800G Prototype Details

Dell R7525

2x AMD EPYC 7713 64c / 128t (128c / 256t total)
3x XxGMI links between sockets

512 GB RAM

4x Mellanox ConnectX-6 Dx (8x 100GbE ports)
16x Intel Gen4 x4 14TB NVME



Initial Results: 420Gb/s

e Ran in 1NPS mode
e Network Siloing mode

e CPUs mostly idle
o AMD guessed that xGMI was down-linking to x2
o Set xGMI speed to 18GT/s and forced link width to

x16, and disabled dynamic link width management



Results with DLWM forced: 500Gb/s

e Ran in 1NPS mode

e Network Siloing mode
o NVME data DMA'ed to NIC's NUMA Node
e XGMI link usage very uneven:
o 15GB/s, 4GB/s and 2GB/s
o Turns out that NVME is not evenly distributed by

|O Quadrants
o Even hashing of cross-socket to xGMI depends on

evenly distributed IO



How to Improve xGMI Hashing

e Hashing based on device doing DMA
o NVME is very uneven
o NICs are much less uneven
o “Network Siloing” normally does DMA from NVME
to remote node, local to NIC
e Flip things, and do DMA from NVME to local buffers
o “Disk centric siloing”
e The NICs are now doing DMA across xGMI



Results with Disk Centric Siloing:
670Gb/s

e Much more even xGMI hashing:

o 10/10/7 GB/s

e Problematic because:

o Daemon that “locks” content into memory is not
NUMA aware & can lead to page daemon
thrashing.

o Still pressure on xGMI links



Strict Disk Centric Siloing

e Move Egress NIC to be local to NUMA node with disk
o No bulk data crosses NUMA Bus

e Incoming TCP traffic still uses original NIC
o Metadata crosses NUMA bus



“Strict Disk Centric Siloing” Results:
720Gb/s

e Much less xGMI traffic
e Limited by NIC output drops, not CPU.
e Cause of drops is now largely due to:
o Page daemon interfering with nginx on popular
node
o Uneven loading on NICs due to content popularity
differences. (NICs on popular node doing 94Gb/s,
others doing 84Gb/s)
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Thank you!



