Serving Netflix Video
Traffic at 400Gb/s and
Beyond

Serving Netflix Video
Traffic at 400Gb/s and
Beyond

Netflix Workload:

e Serve only static media files
e Pre-encoded for all codecs/bitrates
o Video quality is of the utmost
Importance, so we don’t transcode on
the server
e Greatly simplifies server workload

Netflix Video Serving Stack

e FreeBSD-current

e NGINX web server

e \ideo served via asynchronous
sendfile(2) and encrypted using kTLS

Timeline:

Asynchronous Sendfile (2014)
Kernel TLS (2016)

Network-centric NUMA (2019)
Inline Hardware (NIC) KTLS (2022)
800G initial results

Sendfile

e Since we are serving static files, we can
use sendfile(2)

e Sendfile directs the kernel to send data
from a file descriptor to a TCP socket

e This eliminates the need to copy data
into or out of the kernel

Netflix Video Serving Data Flow
Using sendfile, data is sent directly S _>

from disk to network and not
touched by the host CPU.

Metadata

W ~
1

nlw.l.l
luli‘l‘

111
2~

CPU

S v

T I -l
== 100GB/s 100GB/s e $
[[jm— o[— | ST RN - 0 |, Ty
] p—] j— | p—] | : :
T e P EE

Disks Memory m I\I"e"{'\'}!}'y)"rl'%"@g"rm -

Problem: Disk reads can block
sendfile

e \When an nginx worker is blocked, it
cannot service other requests

e Solutions to prevent nginx from blocking
like aio or thread pools scale poorly

Solution: Asynchronous sendfile

e sendfile() becomes “fire and forget”

e Empty buffers are appended to the TCP
socket buffer. TCP stops when it sees
an empty buffer.

e \When disk read completes, disk
interrupt handler informs TCP it is ready
to send

Asynchronous sendfile

Socket Buffer

T

o (I
|

N NGINX

Asynchronous sendfile

Socket Buffer

T

o (I
|

“~ N NGINX

Asynchronous sendfile

$88888888888

Socket Buffer

T

J |
o [l
AT

N NGINX

Asynchronous sendfile

EEEEEEEEEEER

Soc ke,{Bff

T

o (I
|

N NGINX

Asynchronous sendfile

EEEEEEEEEEE

Soc ke,{Bff

i

|
|
a I

N NGINX

Asynchronous sendfile

BEEEEEE:EOEE

Socket Buffer

i

|
|
a I

N NGINX

Asynchronous sendfile

Socket Buffer

T

o (I
|

N NGINX

Asynchronous Sendfile Performance

e |ntel Xeon E5-2697v2
o 12 cores @ 2.7GHz
o 256GB DDR3-800
o Chelsio T580 40GbE
e 23Gbs -> 36Gb/s

Timeline:

e Asynchronous Sendfile (2014)

Kernel TLS (2016)

Network-centric NUMA (2019)

Inline Hardware (NIC) KTLS (2022)
800G initial results

What’'s TLS?

e Transport Layer Security
e TLS encrypts traffic between clients and the OCA

" Chrome File Edit View History Bookmarks Profiles

00 Netflix X +

< 2 O & netflix.com/watch/81404995%trackld=14170286

netflix.com X

@ Connection is secure >

TLS Prevents Sendfile & Triples Memory BW
Data is touched by CPU: Bk Dot -

1. Copy from kernel to userspac
2. Read data to encrypt

3. Write encrypted data to memory
4. Copy from userspace to kernel

Metadata

LIIIIII
rllllll

100GB/s

n
=
m
O
o
o
~

- 100GB/s

100GB/s I

L.l
Tl
i

Ul

Disks

Solution: Move TLS into the kernel

e Eliminates copies between userspace and kernel

Restores sendfile dataflow

e TLS handshakes (eg, session setup, session
resumption) handled in userspace.

e TLS state handed to the kernel

e Kernel does bulk crypto as part of sendfile pipeline

Asynchronous sendfile + KTLS

Socket Buffer

N NGINX

Asynchronous sendfile

Socket Buffer

“~ N NGINX

Asynchronous sendfile + KTLS

@&!@&!&3@@&!@@&3@

Socket Buffer

N NGINX

Asynchronous sendfile + KTLS

EEEEEEEEEEER

Socke}‘ Buffer
/

N NGINX

Asynchronous sendfile + KTLS

IIII@@@!@@@@

Asynchronous sendfile + KTLS

lllllll@i@@@ £

Socket Buffer

i

|
o [l
(7] =] |
AT

N NGINX

Asynchronous sendfile + KTLS

Socket Buffer

N NGINX

Netflix 800Gb/s Video Serving Data Flow
Using sendfile and software kTLS, i, _>

data is encrypted by the host CPU.w Medata

800Gb/s == 100GB/s

LIIIIII 1Ll
rllllll

~400GB/sec of memory bandwidt

: 1
is needed to serve 800Gb/s 0
(@)
o =
m
O
o
= = s]
—pesr=yes 100GB/s 7 100GB/s R
—wi—wji—w——w q ' T ﬁ > =
T E—— @ . P | PTEETEEIEITEIEETEEIEITE - . W

Disks Memory - I\I"e"{'\'}!}'y)"rl'%"@g"rm -

Timeline:

e Asynchronous Sendfile (2014)
Kernel TLS (2016)

. NUMA (2019)
e [nline Hardware (NIC) kTLS (2022)
e 300G initial results

What is NUMA?
Non Uniform Memory Architecture

That means memory and/or devices can
be “closer” to some CPU cores

Multi CPU Before NUMA

== | Memory access
Disks Mern.ary Memory was UNIFORM:

" Disks N e =4+= Each core had

a4 a@ T k" ¢

- ~ = H'E:J equal and direct

l-. T . - CPU access to all

N A : : = o = memory and 10O

QL =t devices.

= k&l

- CPU

5 = North Bridge

Multi Socket system with NUMA:

T (I (I — [E

Memory access can be S
NON-UNIFORM
e Each core has

Memory
unequal access to
memory = . —
| - | .
e Fachcorehas = = O | — = ¢ | m

unequal access to N NS R
/O devices

Present day NUMA:

Node O
Each locality zone Disks NYMA
called a T SEEY [SR
“NUMA Domain” or f = gt | e £
“NUMA Node” S, S| KSR
CPU
. |
L

II{IWIIOIIII_EEIII{IEIIgIPII il

Strategy: Keep as much of our
400GB/sec of bulk data off the
NUMA fabric as possible

e Bulk data congests NUMA fabric and leads to
CPU stalls.

Dual AMD: Worst Case Data Flow

==
== === |

Steps to send data: Disks] Me’mory Sy T(m“m““.
Card

s
¥ | 1| |31 i
=== o g |

Card

Dual AMD: Worst Case Data Flow

F
I
[

1

i
i
Ul

)

Nauere
Card

Steps to send data:
e DMA data from disk to memory
o First NUMA bus crossing

eréllfl\l;l\llglilr(lllnlllllll.
Card

Dual AMD: Worst Case Data Flow

o
L
i

)
= [l

A

Steps to send data:
e DMA data from disk to memory
o First NUMA bus crossing
e CPU reads data for encryption
o Second NUMA crossing

Card

[| p— | p— j—
[y— | i— | —
[I=—wa— == ==]
[—j

Card

Dual AMD: Worst Case Data Flow

—an—an—an—| . = .|
EEEE ==
Steps to send data: Disks N“é“ I\IIII\IIPSIP,T(Imnmm
e DMA data from disk to memory Card

o First NUMA bus crossing
e CPU reads data for encryption

o Second NUMA crossing
e CPU writes encrypted data

o Third NUMA crossing

L2 nll.l-l-llll

[p— j— | j—

[| —) j— | —
[I=—wa— == ==]
[—j

Card

Steps to send data:

Dual AMD: Worst Case Data Flow

i
I
i

2 Wi

O
»

DMA data from disk to memory
o First NUMA bus crossing
CPU reads data for encryption
o Second NUMA crossing
CPU writes encrypted data
o Third NUMA crossing
DMA from memory to network
o Fourth NUMA crossing

[| p— | p— j—
[p— | — | j—
[—= | — i — =i ——]
[—— i —

Disks

""""" 5
Nléll I\Ill\lllglP,T(llllllllllll
Card

eréllfl\l;l\lles P,T(IIIIIIIIIIII.
Card

Worst Case Summary:

e 4 NUMA crossings
e 400GB/s of data on the NUMA fabric

Dual AMD: Best Case Data Flow

== === |
| | j— | j— S |
=l=l=l=1 11l L

Steps to send data: Disks] 'Me'mory IS 2, dspma
Card

Card

Dual AMD: Best Case Data Flow

="
| .

()

e . W

Steps to send data: " Memory RYp s
e DMA data from disk to memory Card

i
I
i

2 Wi

O
»

[] ——

Disks Memory eréllfl\l;l\lll IIHI(IIIIIIIIIIII.
Card

Dual AMD: Best Case Data Flow

—a—wg—wp— . | mm
EEEE == |3
Steps to send data: Disks “"Mem ory IS s

e DMA data from disk to memory Card
e CPU Reads data for encryption =%

[— | p— | j— | j—
(== —wn=]
}r—-.}r—-yr:

eréllfl\l;l\lll IIFT(IIIIIIIIIIII.
Card

Dual AMD: Best Case Data Flow

Steps to send data:

DMA data from disk to memory
CPU Reads data for encryption
CPU Writes encrypted data

il

gl

& Wil

O
»

i

eréll I\IIAII18II 1I(IIIIIIIIIIII.
Card

(2
B

eréllfl\l;l\llggli[i
Card

Dual AMD: Best Case Data Flow

EEe——r: =3
Steps to send data: Disks ~ Memory Network™™
e DMA data from disk to memory Card
e CPU Reads data for encryption = s
e CPU Writes encrypted data Lyt
e DMA from memory to Network 1S
CPU
0 NUMA crossings!
EET -

Disks - : eréllfl\l;l\ll ?5'}‘12'""""".
Card

Best Case Summary:

e 0 NUMA crossings
e 0GB/s of data on the NUMA
fabric

Impose order on the chaos..
somehow:

e Disk centric siloing
o Try to do everything on the NUMA node where
the content is stored
e Network centric siloing
o Try to do as much as we can on the NUMA
node that the LACP partner chose for us

Dual AMD: Worst Case Data Flow
With Network Centric NUMA Siloing

w1
=== i
— =2 3 Bl E

Steps to send data: Disks Mem ory er&nf%@i?wllllllllll.
Card
= . 3
S et
s — |
CPU

— e
E UL 3

S et
CPU

i = |
[a=—w —mi——

Disks M em ory eréllfl\l;l\ll Eww |||||||||| i
Card

Dual AMD: Worst Case Data Flow
With Network Centric NUMA Siloing

= im
i .-I
Steps to send data: Network™™
e DMA data from disk to memory Card
o First NUMA bus crossing
|
| .

eréllfl\l;l\lll I@T(IIIIIIIIIIII.
Card

Dual AMD: Worst Case Data Flow
With Network Centric NUMA Siloing

s p—a—an—| | .l

SisiSis T o E
Steps to send data: D' sks “Memory TSR
e DMA data from disk to memory Card
o First NUMA bus crossing = s
e CPU Reads data for encryption Lygt
L: -
CPU

[

eréllfl\l;l\ll | ii}[wllllllllllo
Card

Dual AMD: Worst Case Data Flow
With Network Centric NUMA Siloing

StepS to send data: Di sks : 'Memory eréllfl\lll\llll “P' A
e DMA data from disk to memory Card
o First NUMA bus crossing = s
e CPU Reads data for encryption gt
e CPU Writes encrypted data IS R

: nd
PU
Disks ‘Memory

Card

Dual AMD: Worst Case Data Flow

==
== === |

StepS to send data: Disks "Memory eré“f%?s“ 1|(||||||||||||.
e DMA data from disk to memory Card
o First NUMA bus crossing = s
e CPU Reads data for encryption FE
e CPU Writes encrypted data L W
e DMA from memory to Network CPU
e ack
: =1
PU
DiSkS ‘ M em Ory = eréllfl\l;l\l/ |8|F Ny

Card

Worst Case Summary:

e 1 NUMA crossing on average
o 100% of disk reads across NUMA
e 100GB/s of data on the NUMA fabric
o Still less than fabric bandwidth

Dual AMD: Worst Case Data Flow
With Disk Centric NUMA Siloing

w1
—a—wi—wp—w| i
—% — 3 Bl E

Steps to send data: Disks Mem ory er&nf%@i?wllllllllll.
Card
= . 3
S et
s — |
CPU

— e
E UL 3

S et
CPU

i = |
[a=—w —mi——

Disks M em ory eréllfl\l;l\ll Eww |||||||||| i
Card

Dual AMD: Worst Case Data Flow
With Disk Centric NUMA Siloing

Steps to send data:

DMA data from disk to memory

svan |
P i .
()
s iy
,,,,, = o

eré“fl\"ll\lll IIP,‘I(IIIIIIIIIIII
Card

eréllfl\l;l\ll | I@#%IIIIIIIIII;
Card

Dual AMD: Worst Case Data Flow
With Disk Centric NUMA Siloing

swazs I
i BB o
[® v E =

S g |

Steps to send data: BIETRS Rfeun g
e DMA data from disk to memory

e CPU Reads data for encryption

Card

]| p— j—) j— -l
= u| I—
| —] .|

Disks A M emory = eréllfl\l;l\ll 1 ﬁilﬁlnmmn
Card

Dual AMD: Worst Case Data Flow
With Disk Centric NUMA Siloing

=== == T im
=iisied S
Steps to send data: Disks S, g
e DMA data from disk to memory Card
e CPU Reads data for encryption
e CPU Writes encrypted data
= 3
e et
= =1
CPU
w1 .|
= E:':: E:':i i:':E -IIEI?" =

Disks ‘ M em Ory = eréllfl\l;l\l/ 1 ﬁilwnmmn
Card

Dual AMD: Worst Case Data Flow
With Disk Centric NUMA Siloing

Steps to send data:

DMA data from disk to memory
CPU Reads data for encryption
CPU Writes encrypted data
NIC Reads data for transmit

o First NUMA bus crossing

ﬁ 777777 N
" ']Mélmory Nlé“fl\“l\lllg?'wl“““m
Card
YR
et
Aa i |
CPU
. !
r= =N
CPU
Memdry g NI&IIEIIIWIH?[mmmn

Card

Worst Case Summary:

e 1 NUMA crossing on average
o 100% of disk reads across NUMA

e 100GB/s of data on the NUMA fabric
o Less than theoretical fabric bandwidth

Dual AMD: Worst Case Data Flow
With Strict Disk Centric NUMA Siloin

svan |
—ai—wm—wmn—u e | .
—an 1 il

Steps to send data: Disks Mem ory N%ﬂf%@i?wllllllllll.
Card
= . 3
S et
s — |
CPU

e
E L. 3

S et
CPU

Disks Memory eréllfl\l;l\llglijw |||||||||| i
Card

Dual AMD: Worst Case Data Flow

With Strict Disk Centric NUMA Siloin

Steps to send data:

DMA data from disk to memory

svan |
P i .
()
s iy
,,,,, = o

eré“fl\"ll\lll IIP,‘I(IIIIIIIIIIII
Card

eréllfl\l;l\ll | I@#%IIIIIIIIII;
Card

Dual AMD: Worst Case Data Flow
With Strict Disk Centric NUMA Siloing

SISISS ==
Steps to send data: Disks “Memory Iy, A
e DMA data from disk to memory Card
e CPU Reads data for encryption = =
ot
=
CPU
= 3
e et
= =1
CPU
—am—an—an— .|
= E:':: E:':i i:':E -IIEI?" =

Disks ‘ M em Ory = eréllfl\l;l\l/ 1 ﬁilwnmmn
Card

Dual AMD: Worst Case Data Flow
With Strict Disk Centric NUMA Siloin

=SIEE 7=
Steps to send data: Disks S, g
e DMA data from disk to memory Card
e CPU Reads data for encryption
e CPU Writes encrypted data
e ot
h —
CPU
=EEE e
Disks | M em Ory ‘ eréllfl\l;l\ll '3'}‘12"'""""

Card

Dual AMD: Worst Case Data Flow
With Strict Disk Centric NUMA Siloin

—ai—wm—wmn—u g | W
SiSiSiS = ¢ |
Steps to send data: Disks Memory et SR
e DMA data from disk to memory Card
e CPU Reads data for encryption = $Hm
e CPU Writes encrypted data —
e NIC Reads data for transmit hi 5 1
CPU
e
& E
CPU
=== e 5
BISts Memory NI P

Card

Worst Case Summary:

e 0 NUMA crossing on average
o 0% of disk reads across NUMA
e 0GB/s of data on the NUMA fabric

Timeline:

e Asynchronous Sendfile (2014)
e Kernel TLS (2016)
e NUMA (2019)

e Inline Hardware (NIC)

KTLS (2022)
e 800G initial results

Why offload kTLS?

KTLS uses almost half of our CPU cycles

B0 ngx htt..
| ngx_kqueue_proc..
NgX_process_even..

TgX_Spawn_process

PMC Flame Graph

Il

| top_rack 21q22p7 rack do_segm..’| ||

|| tep_rack 21q22p7_ctf proces:
Jasi] | {
i m.. i
p-. tep Iro flush all aes_gcm_precomp 256

crypto_dispatch

_ ktls ocf dispatch

lock delay
_ mix loc..
(vm_page_pab.;
|#8) vm page pgs..
- vm.. [V_page unwir:|

Netflix 800Gb/s Video Serving Data Flow
Using sendfile and software kTLS, i, _>

data is encrypted by the host CPU.

- ;'; = Metadata
800Gb/s == 100GB/s = .
L &

~407)GE/sec of memory bandwidttx CPU [
Is-needed to serve 800Gb/s ‘I"

0 '
y i >
O
(@) e
<« known Distribator SW 223
Unknown Distrbu I

100GB/s I ~ 100GB/s I S .

Disks Memory I\I"e"i'\'}!}"cl)"rﬂ"wg"rm -

.
100GB s

Il
1
I

|

Mellanox (NVIDIA) NIC kTLS

<3

NVIDIA. /4

NVIDIA CONNECTX-6 DX
Ethernet SmartNIC

Discussed with Mellanox starting in 2016
First prototypes of CX6-DX in early 2020
lterated for 2+ years to make it production ready

kTLS offload enabled in production last quarter

What is NIC kTLS?:

e Hardware Inline TLS

TLS session is established in userspace.

e \When crypto is moved to the kernel, the kernel
passes crypto keys to the NIC

e TLS records are encrypted by NIC as the data
flows through it on transmit
o No more detour through the CPU for crypto
o This cuts memory BW & CPU use in half!

Netflix 800Gb/s Video Serving Data Flow
Using sendfile and software kTLS, i, _>

data is encrypted by the host CPU.w Medata

800Gb/s == 100GB/s

LIIIIII 1Ll
rllllll

~400GB/sec of memory bandwidt

: 1
is needed to serve 800Gb/s 0
(@)
o =
m
O
o
= = s]
—pesr=yes 100GB/s 7 100GB/s R
—wi—wji—w——w q ' T ﬁ > =
T E—— @ . P | PTEETEEIEITEIEETEEIEITE - . W

Disks Memory - I\I"e"{'\'}!}'y)"rl'%"@g"rm -

Netflix 800Gb/s Video Serving Data Flow
Using sendfile and software kTLS, i, _>

data is encrypted by the host CPU.

- ;'; = Metadata
800Gb/s == 100GB/s = .
L &

~407)GE/sec of memory bandwidttx CPU [
Is-needed to serve 800Gb/s ‘I"

0 '
y i >
O
(@) e
<« known Distribator SW 223
Unknown Distrbu I

100GB/s I ~ 100GB/s I S .

Disks Memory I\I"e"i'\'}!}"cl)"rﬂ"wg"rm -

.
100GB s

Il
1
I

|

Netflix 800Gb/s Video Serving Data Flow
Using sendfile and NIC kTLS, data Bulk Data e -

is encrypted by the NIC. Metdata

1111
» -
W ~
1

800Gb/s == 100GB/s

nlw-
||‘i|-

~200GB/sec of memory bandwidth | CPU
is needed to serve 800Gb/s

[FH

il

= 100GB/s I 7 100GB/s I S .

Disks Memory { I\I"e"i'\'}!}"cl)"rl'énwg"rm -

Mellanox ConnectX-6 Dx

e Offloads TLS 1.2 and 1.3 for AES GCM cipher
e Retains crypto state within a TLS record
o Means that the TCP stack can send partial
TLS records without performance loss
e |If a packet is sent out of order (eg, a TCP
retransmit), it must re-DMA the record containing
the out of order packet

CX6-DX: In-order Transmit

Host Memory

100GbE Network

Host Memory

15928 13032 | 11584 | 10136 | 8688 4344 | 2896 | 1448
TC ext TLS Record
//’

100GbE Network

Host Memory

15928 | 14480 | 13032 | 11584 | 10136 | 8688 | 7240 | 5792 | 4344 | 2896 | 1448

TCP segments of Plaintext TLS Record

o 010

111
, 1100110

1101101
1100001

100GbE Network

Host Memory

TCP segments of Encrypted TLS Record

Host Memory

15928 | 14480 | 13032 | 11584 | 10136 | 8688 4344 | 2896 | 1448
U

o

100GbE Network

Host Memory

15928 | 14480 | 13032 | 11584 | 10136 | 8688 | 7240 | 5792 | 4344 | 2896 | 1448

TCP segments of Plaintext TLS Record

o 010

111
, 1100110

1101101
1100001

100GbE Network

Host Memory

15928 | 14480 | 13032 | 11584 | 10136 | 8688 | 7240 | 5792 | 4344 | 2896 | 1448

TCP segments of Plaintext TLS Record

15298 | 14480 | 13032 | 11584 | 10136 | 8688

TCP segments of Encrypted TLS Record

CX6-DX: TCP Retransmit

Host Memory

1448

100GbE Network

Host Memory

15928 | 14480 | 13032 | 11584 | 10136 | 8688 | 7240 | 5792 | 4344 | 2896 | 1448 n
N\ e A A A

|

100GbE Network

Host Memory

15928 | 14480 | 13032 | 11584 | 10136 | 8688 | 7240 | 5792 | 4344 | 2896 | 1448

TCP segments of Plaintext TLS Record

o 010

111
, 1100110

1101101
1100001

100GbE Network

Host Memory

14480

TCP segments of Encrypted TLS Record

Timeline:

Asynchronous Sendfile (2014)
Kernel TLS (2016)

NUMA (2019)

Inline Hardware (NIC) KTLS (2022)

e 800G initial results

800G Prototype Details

Dell R7525

2x AMD EPYC 7713 64c / 128t (128c / 256t total)
3x XxGMI links between sockets

512 GB RAM

4x Mellanox ConnectX-6 Dx (8x 100GbE ports)
16x Intel Gen4 x4 14TB NVME

Initial Results: 420Gb/s

e Ran in 1NPS mode
e Network Siloing mode

e CPUs mostly idle
o AMD guessed that xGMI was down-linking to x2
o Set xGMI speed to 18GT/s and forced link width to

x16, and disabled dynamic link width management

Results with DLWM forced: 500Gb/s

e Ran in 1NPS mode

e Network Siloing mode
o NVME data DMA'ed to NIC's NUMA Node
e XGMI link usage very uneven:
o 15GB/s, 4GB/s and 2GB/s
o Turns out that NVME is not evenly distributed by

|O Quadrants
o Even hashing of cross-socket to xGMI depends on

evenly distributed IO

How to Improve xGMI Hashing

e Hashing based on device doing DMA
o NVME is very uneven
o NICs are much less uneven
o “Network Siloing” normally does DMA from NVME
to remote node, local to NIC
e Flip things, and do DMA from NVME to local buffers
o “Disk centric siloing”
e The NICs are now doing DMA across xGMI

Results with Disk Centric Siloing:
670Gb/s

e Much more even xGMI hashing:

o 10/10/7 GB/s

e Problematic because:

o Daemon that “locks” content into memory is not
NUMA aware & can lead to page daemon
thrashing.

o Still pressure on xGMI links

Strict Disk Centric Siloing

e Move Egress NIC to be local to NUMA node with disk
o No bulk data crosses NUMA Bus

e Incoming TCP traffic still uses original NIC
o Metadata crosses NUMA bus

“Strict Disk Centric Siloing” Results:
720Gb/s

e Much less xGMI traffic
e Limited by NIC output drops, not CPU.
e Cause of drops is now largely due to:
o Page daemon interfering with nginx on popular
node
o Uneven loading on NICs due to content popularity
differences. (NICs on popular node doing 94Gb/s,
others doing 84Gb/s)

c001.wasB01.dev.ix.nflxvideo.net SNMP Throughput, OpStatus, and BGP Route Count

o
L)
v
~
- 480
-~
-
[aa]

86:21 80:24 90:27 98:38 98:33 88:36 98:39 90:42 909:45 00:48 80:51 86:54 88:57 : ‘ 81:86 81:69 81:12 81:15 81:18

17:21 17:24 17:27 17:38 17:33 17:36 17:39 17:42 17:45 17:48 17:51 17:54 17:57 18:86 18:89 112 18:15 18:18

Credits

e Async Sendfile

O Gleb Smirnoff, Konstantin Belousov, Igor Sysoey, Jeff Roberson, Scott Long

e KTLS

O scott Long, Randall Stewart, Drew Gallatin, John Mark Gurney, John Baldwin

e NUMA
O Drew Gallatin, Jeff Roberson, Mark Johnston

e Inline Hardware (NIC) kTLS

O John Baldwin, Drew Gallatin, Hans Petter Seleaski, Boris Pismenny, Navdeep Parhar

Credits

o Experimental 800GbE Host
o Warren Harrop and the Netflix hardware team
MBX (integrator)
AMD (EPYC 7713 CPUs)
Dell (PowerEdge R7525)
Mellanox/NVIDIA (ConnectX-6 Dx NICS)
Intel (P5316 NVME)

@+ %@L -1 08 (C

Thank you!

