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Preface

I have written/edited several books on my own speciality, agricultural and
horticultural entomology, but always at the request of a publisher or col-
leagues. This book is different in two ways. Firstly, it is a book I have
positively wanted to write for many years and secondly, I am stepping out
of my “comfort zone” in doing so.

The origins of this book stem from my appointment to the Horticul-
ture Department of Reading University under Professor O. V. S. Heath,
FRS. Professor Heath appreciated the importance of statistics and, at a
time when there was no University-wide provision of statistics teaching, he
taught the final year students himself. Following Heath’s retirement, the
course was given by his successor, Professor Peter Huxley, and I was asked
to run the practical exercises which followed the lectures. You cannot teach
what you do not understand yourself, but I tried nonetheless.

Eventually I took over the entire course. By then it was taught in the
second year and in the third year the students went on to take a Faculty-
wide course. I did not continue the lectures; the whole course was in the
laboratory where I led the students (using pocket calculators) through the
calculations in stages. The laboratory class environment involved continu-
ous interaction with students in a way totally different from what happens
in lectures, and it rapidly became clear to me that many biologists have
their neurons wired up in a way that makes the traditional way of teaching
statistics rather difficult for them.

What my students needed was confidence – confidence that statistical
ideas and methods were not just theory, but actually worked with real
biological data and, above all, had some basis in logic! As the years of
teaching went on, I began to realize that the students regularly found the
same steps a barrier to progress and damage to their confidence. Year after
year I tried new ways to help them over these “crisis points”; eventually
I succeeded with all of them, I am told.
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The efficacy of my unusual teaching aids can actually be quantified.
After having taken the Faculty course taught by professional statisticians,
my students were formally examined together with cohorts of students
from other departments in the Faculty (then of “Agriculture and Food”)
who had attended the same third year course in Applied Statistics. My
students mostly (perhaps all but three per year out of some 20) appeared
in the mark list as a distinct block right at the upper end, with percentage
marks in the 70s, 80s, and even 90s. Although there may have also been
one or two students from other courses with high marks, there then tended
to be a gap until marks in the lower 60s appeared and began a continuum
down to single figures.

I therefore feel confident that this book will be helpful to biologists with
its mnemonics such as SqADS and “you go along the corridor before you
go upstairs.” Other things previously unheard of are the “lead line” and
“supertotals” with their “subscripts” – yet all have been appreciated as
most helpful by my students over the years. A riffle through the pages will
amaze – where are the equations and algebraic symbols? They have to a
large extent been replaced by numbers and words. The biologists I taught –
and I don’t think they were atypical – could work out what to do with a
“45,” but rarely what to do with an “x.” Also, I have found that there are a
number of statistical principles students easily forget, and then inevitably
run into trouble with their calculations. These concepts are marked with

the symbol of a small elephant – “Never forget . . ..”
The book limits itself to the traditional foundations of parametric

statistics: the t-test, analysis of variance, linear regression, and chi-square.
However, the reader is guided as to where there are important extensions of
these techniques. Finally the topic of nonparametric tests is introduced, but
the calculation procedures are not explained. This is because the principles
of the significant tests and therefore the calculations involved are outside
the scope of this book; these calculations and the associated tables are read-
ily available on the internet or in larger textbooks. However, the chapter
does include one worked example of each test described as well as a check
list of nonparametric methods linked to their parametric counterparts.

Many chapters end with an “executive summary” as a quick source for
revision, and there are additional exercises to give the practice which is so
essential to learning.

In order to minimize algebra, the calculations are explained with numer-
ical examples. These, as well as the “spare-time activity” exercises, have
come from many sources, and I regret the origins of many have become
lost in the mists of time. Quite a number come from experiments carried out
by horticulture students at Reading as part of their second year outdoor



Van Emden: “C000” — 2008/1/31 — 16:18 — PAGE xv — #15

Preface xv

practicals, and others have been totally fabricated in order to “work out”
well. Others have had numbers or treatments changed better to fit what was
needed. I can only apologize to anyone whose data I have used without due
acknowledgment; failure to do so is not intentional. But please remember
that data have often been fabricated or massaged – therefore do not rely on
the results as scientific evidence for what they appear to show!

Today, computer programs take most of the sweat out of statistical pro-
cedures, and most biologists have access to professional statisticians. “Why
bother to learn basic statistics?” is therefore a perfectly fair question, akin
to “Why keep a dog and bark?” The question deserves an answer; to save
repetition, my answer can be found towards the end of Chapter 1.

I am immensely grateful to the generations of Reading students who
have challenged me to overcome their “hang-ups” and who have therefore
contributed substantially to any success this book achieves. Also many
postgraduate students as well as experienced visiting overseas scientists
have encouraged me to turn my course into book form. My love and special
thanks go to my wife Gillian who, with her own experience of biological
statistics, has supported and encouraged me in writing this book; it is to her
that I owe its imaginative title.

I am also most grateful for the very helpful, constructive and encourag-
ing comments made by Professor Rob Marrs (School of Biological Sciences,
University of Liverpool) and Dr Steve Coad (School of Mathematical Sci-
ences, Queen Mary University of London). They both took the trouble to
read the entire text at the request of the publisher and to do this they have
given up a great deal of their time. Any misinterpretations of their advice
or other errors are my fault and certainly not theirs.

Finally, I should like to thank Ward Cooper of Blackwells for having faith
in this biologist, who is less terrified of statistics than he once was.

Helmut van Emden
May 2007
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How to use this book

Chapter features

Introduction 1
The text of the chapters 1
What should you do if you run into trouble? 2
Elephants 3
The numerical examples in the text 3
Boxes 3
Spare-time activities 4
Executive summaries 4
Why go to all that bother? 4
The bibliography 6

Introduction

Don’t be misled! This book cannot replace effort on your part. All it can
aspire to do is to make that effort effective. The detective thriller only suc-
ceeds because you have read it too fast and not really concentrated – with
that approach, you’ll find this book just as mysterious.

The text of the chapters

The chapters, particularly 2–8, develop a train of thought essential to the
subject of analyzing biological data. You just have to take these chapters in
order and quite slowly. There is only one way I know for you to maintain the
concentration necessary for comprehension, and that is for you to make
your own summary notes as you go along.

My Head of Department when I first joined the staff at Reading used
to define a university lecture as “a technique for transferring information
from a piece of paper in front of the lecturer to a piece of paper in front
of the student, without passing through the heads of either.” That’s why
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I stress making your own summary notes. You will retain very little
by just reading the text; you’ll find that after a while you’ve been thinking
about something totally different but seem to have apparently read several
pages meanwhile – we’ve all been there! The message you should take
from my Head of Department’s quote above is that just repeating in your
writing what you are reading is little better than taking no notes at all –
the secret is to digest what you have read and reproduce it in your own
words and in summary form. Use plenty of headings and subheadings,
boxes linked by arrows, cartoon drawings, etc. Another suggestion is to use
different color pens for different recurring statistics such as “variance” and
“correction factor.” In fact, use anything that forces you to convert my text
into as different a form as possible from the original; that will force you
to concentrate, to involve your brain, and to make it clear to you whether
or not you have really understood that bit in the book so that it is safe to
move on.

The actual process of making the notes is the critical step – you can
throw the notes away at a later stage if you wish, though there’s no harm
in keeping them for a time for revision and reference.

So DON’T MOVE ON until you are ready. You’ll only undo the value of
previous effort if you persuade yourself that you are ready to move on when
in your heart of hearts you know you are fooling yourself !

A key point in the book is the diagram in Fig. 7.5 on page 55. Take real
care to lay an especially good foundation up to there. If you really feel
at home with this diagram, it is a sure sign that you have conquered any
hang-ups and are no longer a “terrified biologist.”

What should you do if you run into trouble?

The obvious first step is to go back to the point in this book where you last
felt confident, and start again from there.

However, it often helps to see how someone else has explained the same
topic, so it’s a good idea to have a look at the relevant pages of a different
statistics text (see Appendix 4 for a few suggestions, though of course there
are many other excellent textbooks).

A third possibility is to see if someone can explain things to you face to
face. Do you know or have access to someone who might be able to help?
If you are at university, it could be a fellow student or even one of the
staff. The person who tried to teach statistics to my class at university failed
completely as far as I was concerned, but I found he could explain things to
me quite brilliantly in a one-to-one situation.
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Elephants

At certain points in the text you will find the “sign of the elephant,”

i.e. .
They say “elephants never forget” and the symbol means just that –

NEVER FORGET! I have used it to mark some key statistical concepts which,
in my experience, people easily forget and as a result run into trouble later
and find it hard to see where they have gone wrong. So, take it from me
that it is really well worth making sure these matters are firmly embedded
in your memory.

The numerical examples in the text

In order to avoid “algebra” as far as possible, I have used actual numbers to
illustrate the working of statistical analyses and tests. You probably won’t
gain a lot by keeping up with me on a hand calculator as I describe the
different steps of a calculation, but you should make sure at each step that
you understand where each number in a calculation has come from and
why it has been included in that way.

When you reach the end of each worked analysis or test, however, you
should go back to the original source of the data in the book and try and
rework the calculations which follow on a hand calculator. Try to avoid
looking up later stages in the calculations unless you are irrevocably stuck,
and then use the “executive summary” (if there is one at the end of the
chapter) rather than the main text.

Boxes

There will be a lot of individual variation among readers of this book in the
knowledge and experience of statistics they have gained in the past, and
in their ability to grasp and retain statistical concepts. At certain points,
therefore, some will be happy to move on without any further explanation
from me or any further repetition of calculation procedures.

For those less happy to take things for granted at such points, I have
placed the material and calculations they are likely to find helpful in “boxes”
in order not to hold back or irritate the others. Calculations in the boxes
may prove particularly helpful if, as suggested above, you are reworking a
numerical example from the text and need to refer to a box to find out why
you are stuck or perhaps where you went wrong.
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Spare-time activities

These are numerical exercises you should be equipped to complete by the
time you reach them at the end of several of the chapters.

That is the time to stop and do them. Unlike the within-chapter numerical
examples, you should feel quite free to use any material in previous chapters
or “executive summaries” to remind you of the procedures involved and
guide you through them. Use a hand calculator and remember to write
down the results of intermediate calculations; this will make it much easier
for you to detect where you have gone wrong if your answers do not match
the solution to that exercise given in Appendix 3. Do read the beginning of
that Appendix early on – it explains that you should not worry or waste time
recalculating if your numbers are similar, even if they are not identical.
I can assure you, you will recognize – when you compare your figures with
the “solution” – if you have followed the statistical steps of the exercise
correctly; you will also immediately recognize if you have not.

Doing these exercises conscientiously with a hand calculator, and when
you reach them in the book rather than much later, is really important.
They are the best thing in the book for impressing the subject into your
long-term memory and for giving you confidence that you understand
what you are doing.

The authors of most other statistics books recognize this and also include
exercises. If you’re willing, I would encourage you to gain more confidence
and experience by going on to try the methods as described in this book on
their exercises.

Executive summaries

Certain chapters end with such a summary, which aims to condense the
meat of the chapter into little over a page or so. The summaries provide a
reference source for the calculations which appear more scattered in the
previous chapter, with hopefully enough explanatory wording to jog your
memory about how the calculations were derived. They will, therefore,
prove useful when you tackle the “spare-time activities.”

Why go to all that bother?

You might ask – why teach how to do statistical analyses on a hand calcula-
tor when we can type the data into an Excel spreadsheet or other computer
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program and get all the calculations done automatically? It might have
been useful once, but now . . . ?

Well, I can assure you that you wouldn’t ask that question if you had
examined as many project reports and theses as I have, and seen the con-
sequences of just “typing data into an Excel spreadsheet or other computer
program.” No, it does help to avoid trouble if you understand what the
computer should be doing.

So why go to all that bother?

• Planning experiments is made much more effective if you understand
the advantages and disadvantages of different experimental designs and
how they affect the “experimental error” against which we test our
differences between treatments. It probably won’t mean much to you
now, but you really do need to understand how experimental design
as well as treatment and replicate numbers impact on the “residual
degrees of freedom” and whether you should be looking at one-tailed
or two-tailed statistical tables. My advice to my students has always
been that, before embarking on an experiment, they should draw up
a form on which to enter the results, invent some results, and com-
plete the appropriate analysis on them. It can often cause you to think
again.

• Although the computer can carry out your calculations for you, it has the
terminal drawback that it will accept the numbers you type in without
challenging you as to whether what you are asking it to do with them is
sensible. Thus – and again at this stage you’ll have to accept my word that
these are critical issues – no window will appear on the screen that says:
“Whoa – you should be analyzing these numbers nonparametrically,”
or “No problem. I can do an ordinary factorial analysis of variance, but
you seem to have forgotten you actually used a split-plot design,” or
“These numbers are clearly pairs; why don’t you exploit the advantages
of pairing in the t-test you’ve told me to do?” or “I’m surprised you are
asking for the statistics for drawing a straight line through the points on
this obvious hollow curve.” I could go on.

• You will no doubt use computer programs rather than a hand calculator
for your statistical calculations in the future. But the printouts from these
programs are often not particularly user-friendly. They usually assume
some knowledge of the internal structure of the analysis the computer
has carried out, and abbreviations identify the numbers printed out. So
obviously an understanding of what your computer program is doing
and familiarity with statistical terminology can only be of help.
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• A really important value you will gain from this book is confidence that
statistical methods are not a “black box” somewhere inside a computer,
but that you could in extremis (and with this book at your side) carry out
the analyses and tests on the back of an envelope with a hand calculator.
Also, once you have become content that the methods covered in this
book are based on concepts you can understand, you will probably be
happier using the relevant computer programs.

• More than that, you will probably be happy to expand the methods you
use to ones I have not covered, on the basis that they are likely also to
be “logical, sensible and understandable routes to passing satisfactory
judgments on biological data.” Expansions of the methods I have cov-
ered (e.g. those mentioned at the end of Chapter 17) will require you to
use numbers produced by the calculations I have covered. You should be
able confidently to identify which these are.

• You will probably find yourself discussing your proposed experiment and
later the appropriate analysis with a professional statistician. It does so
help to speak the same language! Additionally, the statistician will be of
much more help to you if you are competent to see where the latter has
missed a statistical constraint to the advice given arising from biological
realities.

• Finally, there is the intellectual satisfaction of mastering a subject which
can come hard to biologists. Unfortunately, you won’t appreciate it was
worth doing until you view the effort from the hindsight of having suc-
ceeded. I assure you the reward is real. I can still remember vividly the
occasion many years ago when, in the middle of teaching an under-
graduate statistics class, I realized how simple the basic idea behind the
analysis of variance was, and how this extraordinary simplicity was only
obfuscated for a biologist by the short-cut calculation methods used. In
other words, I was in a position to write Chapter 10. Later, the gulf
between most biologists and trained statisticians was really brought
home to me by one of the latter’s comments on an early version of
this book: “I suggest Chapter 10 should be deleted; it’s not the way we do
it.” I rest my case!

The bibliography

Right at the back of this book is a short list of other statistics books. Very
many such books have been written, and I only have personal experience
of a small selection. Some of these I have found particularly helpful, either
to increase my comprehension of statistics (much needed at times!) or to
find details of and recipes for more advanced statistical methods. I must
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emphasize that I have not even seen a majority of the books that have been
published and that the ones that have helped me most may not be the ones
that would be of most help to you. Omission of a title from my list implies
absolutely no criticism of that book, and – if you see it in the library – do
look at it carefully; it might be the best book for you.
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What are statistics?

“Statistics” are summaries or collections of numbers. If you say “the tallest
person among my friends is 173 cm tall,” that is a statistic based on a
scrutiny of lots of different numbers – the different heights of all your
friends, but reporting just the largest number.

If you say “the average height of my friends is 158 cm” – then that is
another statistic. This time you have again collected the different heights of
all your friends, but this time you have used all those figures in arriving at
a single summary, the average height.

If you have lots and lots and lots of friends, it may not be practical to
measure them all, but you can probably get a good estimate of the average
height by measuring not all of them but a large sample, and calculating
the average of the sample. Now the average of your sample, particularly
of a small sample, may not be identical to the true average of all your
friends. This brings us to a key principle of statistics. We are usually trying
to evaluate a parameter (from the Greek for “beyond measurement”) by
making an estimate from a sample it is practical to measure. So we must
always distinguish parameters and estimates. So in statistics we use the word
“mean” for the estimate (from a sample of numbers) of something we can
rarely measure – the parameter we call the “average” (of the entire existing
population of numbers).

Notation

“Add together all the numbers in the sample, and divide by the number of
numbers” – that’s how we actually calculate a mean, isn’t it? So even that
very simple statistic takes a lot of words to describe as a procedure. Things
can get much more complicated – see Box 2.1.
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BOX 2.1

“Multiply every number in the first column by its partner in the second column,
and add these products together. Now subtract from this sum the total of
the numbers in the first column multiplied by the total of the numbers in the
second column, but first divide this product of the totals by the number of
pairs of numbers. Now square the answer. Divide this by a divisor obtained as
follows: For each column of numbers separately, square and add the numbers
and subtract the square of the total of the column after dividing this square by
the number of numbers. Then add the results for the two columns together.”

We really have to find a “shorthand” way of expressing statistical com-
putations, and this shorthand is called notation. The off-putting thing about
notation for biologists is that it tends to be algebraic in character. Also there
is no universally accepted notation, and the variations between different
textbooks are naturally pretty confusing to the beginner!

What is perhaps worse is a purely psychological problem for most
biologists – your worry level has perhaps already risen at the very men-
tion of algebra? Confront a biologist with an “x” instead of a number like
“57” and there is a tendency to switch off the receptive centers of the brain
altogether. Yet most statistical calculations involve nothing more terrifying
than addition, subtraction, multiplying, and division – though I must admit
you will also have to square numbers and find square roots. All this can
now be done with the cheapest hand calculators.

Most of you now own or have access to a computer, where you only
have to type the sampled numbers into a spreadsheet or other program
and the machine has all the calculations that have to be done already
programmed. So do computers remove the need to understand what their
programs are doing? I don’t think so! I have discussed all this more fully in
Chapter 1, but repeat it here in case you have skipped that chapter. Briefly,
you need to know what programs are right for what sort of data, and what
the limitations are. So an understanding of data analysis will enable you
to plan more effective experiments. Remember that the computer will be
quite content to process your figures perfectly inappropriately, if that is
what you request! It may also be helpful to know how to interpret the final
printout – correctly.

Back to the subject of notation. As I have just pointed out, we are going
to be involved in quite unsophisticated “number-crunching” and the whole
point of notation is to remind us of the order in which we do this. Notation
may look formidable, but it really isn’t. It would be quite dangerous, when
you start out, to think that notation enables you to do the calculations
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without previous experience. You just can’t turn to page 257, for example,
of a statistics book and expect to tackle something like:

(
∑

xy)2
∑

x2 + ∑
y2

without the necessary homework on the notation! Incidentally, Box 2.1
translates this algebraic notation into English for two columns of paired
numbers (values of x and y). As you progress in statistics, each part of
the formula above will ring a bell in your brain for a less algebraic form of
shorthand:

(sum of cross products)2

sum of squares for x + sum of squares for y

These terms will probably mean nothing to you at this stage, but being able
to calculate the sum of squares of a set of numbers is just about as common
a procedure as calculating the mean.

We frequently have to cope with notation elsewhere in life. Recognize
03.11.92? It’s a date, perhaps a “date of birth.” The Americans use a
different notation; they would write the same birthday as 11.03.92. And
do you recognize Cm? You probably do if you are a musician – it’s notation
for playing together the three notes C, Eb, and G – the chord of C minor
(hence Cm).

In this book, the early chapters will include notation to help you remem-
ber what statistics such as sums of squares are and how they are calculated.
However, as soon as possible, we will be using keywords such as sums of
squares to replace blocks of algebraic notation. This should make the pages
less frightening and make the text flow better – after all, you can always go
back to an earlier chapter if you need reminding of the notation. I guess it’s
a bit like cooking? The first half dozen times you want to make pancakes
you need the cookbook to provide the information that 300 ml milk goes
with 125 g plain flour, one egg, and some salt, but the day comes when you
merely think the word “batter”!

Notation for calculating the mean

No one is hopefully going to baulk at the challenge of calculating the mean
height of five people – say 149, 176, 152, 180, and 146 cm – by totalling
the numbers and dividing by 5.

In statistical notation, the instruction to total is “
∑

,” and the whole
series of numbers to total is called by a letter, often “x” or “y.”
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So “
∑

x” means “add together all the numbers in the series called “x,”
the five heights of people in our example. We use “n” for the “number of
numbers,” 5 in the example, making the full notation for a mean:

∑
x

n

However, we use the mean so often, that it has another even shorter
notation – the identifying letter for the series (e.g. “x”) with a line over
the top, i.e. x.
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Introduction

Life would be great if the mean were an adequate summary statistic of
a series of numbers. Unfortunately it is not that useful! Imagine you are
frequently buying matchboxes – you may have noticed they are labeled
something like “Average contents 48 matches” (I always wonder, why
not “50”?). You may have bought six boxes of “Matchless Matches” to
verify their claim, and found it unassailable at contents of 48, 49, 49, 47,
48, and 47. When you switch to “Mighty Matches” you equally cannot
fault the claim “Average contents 48 matches,” with six boxes containing
respectively 12, 62, 3, 50, 93, and 68. Would you risk buying a box of
“Mighty Matches”? The mean gives no idea at all of how frequently num-
bers close to it are going to be encountered. We need to know about the
variation to make any sense of the mean value.

The example of human heights I used in Chapter 2 straightaway intro-
duces the inevitability of variation as soon as we become involved in
biological measurements. Just as people vary in height, so lettuces in the
same field will vary in weight, there will be different numbers of blackfly on
adjacent broad bean plants, our dahlias will not all flower on the same day,
a “handful” of lawn fertilizer will be only a very rough standard measure,
and eggs from the same farm will not all be the same size. So how to deal
with variation is a vital “tool of the trade” for any biologist.

Now there are several ways we might summarize variation of a set of
numbers, and we’ll go through them using and explaining the relevant
notation. Alongside this in text boxes (which you can skip if you don’t find
them helpful) we’ll do the calculations on the two samples above from the
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different matchbox sources (differentiating them as x for “Matchless” and
y for “Mighty,” so both x̄ and ȳ are 48, but with very different variation).

Different summaries of variation

Range

“Matchless” series x had the range 47–49, contrasting with the much wider
range of 3–93 for “Mighty” y. Although the range clearly does distinguish
these two series of matchboxes with the same mean number of matches,
we have only used two of the six available numbers in each case. Was the 3
a fluke? Or would it really turn up about one in six times? We really could do
with a measure of variation which uses all the numbers we have collected.

Total deviation

To make the best use of the numbers in a sample, we really need a measure
of variation which includes all the numbers we have (as does the mean).
However, just adding the six numbers in each series will give the identical
answer of 288 (6 × mean of 48).

The clue to getting somewhere is to realize that if all numbers in one
of our matchbox series were identical, they would all be the mean, 48. So
if the numbers are not the same, but vary, each number’s contribution
to total variation will be its deviation (difference) from the mean. So we
could add all the differences of the numbers from the mean (see Box 3.1 for
the calculations that apply for our matchbox example). In notation this is∑

(x − x̄). Ignoring whether the difference is + or −, the total deviation is
only 4 for “Matchless” compared with 162 for “Mighty.”

This looks good. However, there is a major snag! Total deviation will
just grow and grow as we include more numbers, so only samples of the
same size can be compared. It would be better if our measure of variation
were independent of sample size, in the same way as the mean is – we can
compare means (e.g. heights of men and women) even if we have measured
different numbers of each.

Mean deviation

The amount of variation per number included:

∑
(x − x̄)

n
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BOX 3.1

For “Matchless,”
∑

(x − x̄ ) = (48 − 48) + (49 − 48) + (49 − 48) + (47 − 48) +
(48 − 48) + (47 − 48) = 0 + 1 + 1 + (−1) + 0 + (−1) = 0 or 4 if we ignore
signs.

For “Mighty,”
∑

(y − ȳ ) = (12 − 48) + (62 − 48) + (3 − 48) + (50 − 48) +
(93 − 48) + (68 − 48) = −36 + 14 + (−45) + 2 + 45 + 20 = again 0, but 162
if we ignore signs.

If we ignore signs, then series x has
∑

(x−x̄ ) (called the sum of deviations =
differences from the mean) of 4, hugely lower than the

∑
(y − ȳ ) of 162 for

the obviously more variable series y .

BOX 3.2

Mean deviation for the matchbox example:
For “Matchless” (x series) mean deviation is total variation/6 = 4/6 = 0.67
For the more variable “Mighty” (y series) mean deviation is 162/6 = 27

is the obvious way around the problem. The mean (average) deviation will
stay much the same regardless of the number of samples. The calculations
in Box 3.2 give us the small mean deviation of 0.67 for “Matchless” and
the much larger 27 for “Mighty.”

There’s not a lot to criticize about mean deviation as a measure of variabil-
ity. However, for reasons which come later in this chapter, the standard
measure of variation used in statistics is not mean deviation. Nonethe-
less, the concept of “mean deviation” brings us very close to what is that
standard measure of variation, the variance.

Variance

Variance is very clearly related to mean deviation which I’ll remind you was:

In words:
the sum of all the deviations from the mean

the number of numbers

or in notation

∑
(x − x̄)

n
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BOX 3.3

For “Matchless” series x , calculating variance thus involves squaring the 6
deviations (see Box 3.1) from the mean, adding these squares together, and
dividing by 5 instead of 6:

02 + 12 + 12 + 12 + 02 + 12

5
= 0.8

and for “Mighty” series y :

362 + 142 + 452 + 22 + 452 + 202

5
= 1155.7

The variances for the two series are hugely different, that for series y being
nearly 1500 times the greater!

Variance is nearly the same, but with two important changes arrowed
and in bold capitals:

the sum of all the SQUAR�ED deviations from the mean
ONE LESS TH� AN the number of numbers

or in notation

∑
(x − x̄)2

n − 1

�

�

Variance is therefore the mean (using n−1) SQUARED deviation, and the
calculations for our matchbox example are given in Box 3.3. The variance
of only 0.8 for “Matchless” contrasts with the much larger 1155.7 for
the more variable “Mighty” boxes.

Two pieces of jargon which will from now on crop up over and over
again are the terms given to the top and bottom of the variance formula.
The bottom part (n − 1) is known as the degrees of freedom. The top part,∑

(x − x̄)2, which involves adding together the squared deviations, should
be called the “sum of squares of deviations,” but unfortunately this is
contracted to sum of squares. Why is this unfortunate? Well, I’ll come to
that at the end of this chapter but, believe me now, it is essential for
you to remember that sum of squares in statistics is the technical term for
summed .. squared DEVIATIONS from the mean. So if we are going to
add any other squared numbers, we’ll be careful in this book to stick with
the words “adding,” “addition,” etc. to distinguish it from sum of squares.
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Variance is such a frequent piece of number-crunching that it pays to

lodge firmly in the recall center of your brain that variance is:

the sum of squares (of deviations from the mean)
degrees of freedom

Why n − 1?

It certainly isn’t obvious that we should use n − 1 rather than n, and if you
like you can just accept it as part of a magic formula and not worry about
it! If that is your inclination, it could save you a lot of heartache to just skip
to the next heading (“Why the squared deviations?”) now!

However, degrees of freedom crop up often in statistical calculations, and
are not always just one less than the total number of numbers. So it is
perhaps worth making an effort to understand the concept of degrees of
freedom. The two important basics of the concept are (i) that we are calcu-
lating statistics from a sample rather than the entire population of numbers
and (ii) that the total of the numbers in the sample is used to calculate the
mean which is then used as the basis for the deviations that contribute to
the sum of squares.

In ignorance of the true mean of the population, we are forced into using
the total of our sample to calculate a mean from which the deviations
are then calculated. It is that use of the sample mean which restricts our
freedom from n to n − 1. If we used the true mean of the population and
not the mean of the sample in calculating sum of squares (of deviations
from the mean), we would divide the sum of squares by n of the sample –
not n − 1. I can remember a particular brand of pocket calculator in the
1980s which used n rather than n − 1 in its built-in variance program – it
made a surprising difference; everyone got the wrong answers!

It is hard to find an analogy for “degrees of freedom,” but looking at our
bookcase at home has given me an idea. Goodness knows how many books
there are on the seven long shelves, or what the mean thickness of all the
books is. So, merely to try and explain degrees of freedom, lets take a rather
ludicrously small sample of just six books. Well, their combined thickness
is 158 mm, giving us a mean book thickness in our sample of 26.3 mm.
Now, to calculate the “sum of squares” of deviations from this mean of
26.3 mm, I need to know the individual deviation from this for each of
the six books. So I pick up one book (1 degree of freedom) – its thickness
is 22 mm. The remaining five books must total 136 mm in thickness. I
pick up another of the books (2nd degree of freedom). It is 24 mm thick.
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By the time I have picked up the fifth book (5th degree of freedom) their
combined thickness has reached 129 mm. There are no more degrees of
freedom for my six books! I don’t need to pick up and measure the last book!
The total thickness of 158 mm for the six books (which is where the mean
of 26.3 mm used to calculate the sum of squares comes from) tells me the
last book has to be 29 mm thick. So, given the mean of a sample, I know
the total – and from this the individual thicknesses of all six books after
measuring only five (hence 5 degrees of freedom for a sample of six!).

By using the sample mean as the base from which to calculate the devi-
ations for the sum of squares, we have lost one “degree of freedom.” Thus
variance is not the simple mean of the squared deviations, it is the squared
deviation per opportunity for variation once we have been given the
sample mean.

Why the squared deviations?

The first person who tried to teach me statistics rationalized the squaring
as a way of making minus deviations positive! I guess he must have been
winding us up? Why not just ignore the sign and stick with mean deviation?
After all, once the deviations have been squared, the units no longer make
sense! In Box 3.3 the variance of the “Mighty” matches was calculated as
1155.7. But 1155.7 what? Squared matches?

However, if we square root the variance, we get back to recognizably nor-
mal and unsquared matches, in this case 34.0 of them. This square root of
the variance is called the standard deviation. You need to know that this is a
uniquely important statistic; below I refer to it as “the key to the statistical
lock.” Look at the curve (see Fig. 5.1) of how numbers in samples from a
single population are often distributed, symmetrically on either side of the
mean. The curve has three identifiable points. Firstly, the highest point (the
mean). Then, equally spaced on either side are the arrowed points where
the line, descending as a convex curve from the mean, changes to a con-
cave (hollow) curve. These identifiable arrowed points show a plus/minus
distance from the mean measured by the standard deviation. However, we
cannot calculate it directly from differences from the mean of unsquared
numbers, e.g. of matches, for it depends on large differences from the mean
being given more importance than small differences. So we square and sum
the deviations from the mean and divide by n − 1 to get variance, and only
then square root the result to arrive at what we are really after, which is the
standard deviation. Like the mean, we use variance and standard deviation
so often that their notation has been simplified from a formula to just “s”
for standard deviation and (appropriately) “s2” for variance.
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The mean was our first, the variance our second, and now the standard
deviation is our third important statistic that we calculate from a sample
of numbers. We summarize the whole population of numbers from which
our sample was drawn by . . . the mean± standard deviation. For the contents
of “Mighty” matchboxes, this is 48.0 ± 34.0 matches Such a summary
contains information far more complete than that provided by any other
calculation such as mean deviation. Assuming our sample is adequately
representative of a whole population of numbers which is “normally dis-
tributed” (see later, page 26 and Fig. 5.1), the mean ± standard deviation is
as good as having all the numbers, including those we didn’t sample (which
is usually most of them!). To put it another way, if you were to give me the
mean and standard deviation of a sample of 50 eggs from an egg farm
producing 500,000 eggs a week, I could work out for you the likely weight
of each of the 499,950 eggs you didn’t weigh! Thus I could tell you how
many of those eggs would weigh exactly 65 grams, or less than 55 grams,
or between 52 and 56 grams or any other statistic you would like. Hard to
believe? If so, don’t go away; read on!

The standard deviation

Standard deviation is the square root of variance. But what is so important
about it is it is the “key” to the statistical “lock.”You will find that very many
statistical tests rely on calculating the standard deviation of a sample.

We calculated the mean and standard deviation of the number of
“Mighty” matches per box as 48.0 ± 34.0. Well, 48.0 ± 34.0 suggests
variation between 14 and 82 matches per box, but if you go back to the
start of this chapter you’ll see those limits only include three of the six
matchboxes sampled. Well, six boxes is far too small a sample for reliable
statistics given such high variability. Yet I can tell you the range 14–82
should really have included four, which is pretty close for such a tiny sam-
ple, seeing that you can’t have half a matchbox and that the box with 12
was only just excluded. Are you getting the impression that I know what
proportion of the matchboxes should lie within the limits of mean±1 stan-
dard deviation? Perhaps surprisingly, I do! Then you might guess that I also
know the proportion that should lie in the ranges: mean ± 2 standard
deviations, mean ± 1

2 standard deviations, or even mean ± 0.35 standard
deviations!

So to visualize the power of the standard deviation we can imagine a
ruler with equal divisions, not marked out with any particular numbers,
but with a scale of ± “standard deviations worths” with the mean at
the center (Fig. 3.1). Any actual numerical measurement (such as numbers
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−4 −3 −2 −1 +1 +2 +3 +4Mean          

Scale of number of standard deviations

Fig. 3.1 An unusual ruler! The familiar scale increasing left to right has been replaced
by units of plus or minus “standard deviation’s worths” with the mean at the center.

BOX 3.4

Assume a mean of 50 with a standard deviation (s) of 10. On a scale of
standard deviations worths, selected numbers would translate as follows:

23: 23 − 50 = −27 −27/10 = −2.7 s
31: 31 − 50 = −19 −19/10 = −1.9 s
50: 50 − 50 = 0 mean
55: 55 − 50 = +5 +5/10 = +0.5 s
74: 74 − 50 = +24 +24/10 = +2.4 s

per matchbox) can be converted to this scale (Box 3.4). As hinted above, the
beauty of the standard deviations worths scale is that we can make pre-
dictions about the proportion of individual numbers that will fall between
any two marks on the scale.

So any measurement can be expressed either as a number, or as a devi-
ation from the mean or as a standard error worth’s difference from the
mean. For the moment, please just accept blindly that this is so – hopefully
you will be more convinced once you have read Chapter 5, where this idea –
which is so fundamental to understanding statistics – is explored in more
detail.

Before moving on, it is worth just mentioning that standard deviation
was once called root mean square deviation. This was really a much more
helpful name, as it was a constant reminder in reverse (“deviation, square,
mean, root”) of the computational procedure, where “mean” is in n − 1
form. You take the deviations, square them, work out the n − 1 mean, and
then square root the result:

√∑
(x − x̄)2

n − 1
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The next chapter

Often, after the relevant theory has been developed, short-cut methods have
been found to speed up calculations. The trouble is that the formulae for
these newer computational procedures do not carry the information con-
tent of what one is actually trying to achieve statistically. In this chapter
we have used the notation

∑
(x − x̄)2 for the sum of squares (of devia-

tions from the mean) – and this notation describes what one is doing. The
next chapter is a digression describing a quicker way of arriving at the
same numerical answer – but beware, although it involves adding together
squared numbers, these numbers are NOT the deviations from the mean.
So there has to be an additional step – a “correction” factor – before the
right answer is obtained. It is really well worth converting to this new and
quicker method for calculating the sum of squares of deviations – but you
must always remember you are using a different formula to arrive at the
same answer – summing the squares of deviations from the mean will not
be part of the new procedure.

Spare-time activities

1 What is the variance of the following numbers, which total 90?

9, 10, 13, 6, 8, 12, 13, 10, 9

2 Express the following set of samples as their mean ± standard deviation:

1, 3, 2, 6, 4, 4, 5, 7, 6, 4, 4, 5, 3, 5, 3, 2

How many standard deviations from the mean would an observation as
large as 8 represent?
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Introduction

In Chapter 3 we learnt that variance is the sum of squares (of deviations from
the mean) divided by the degrees of freedom. This “sum of squares,”

∑
(x−x)2

in our notation, is therefore the top half of the variance calculation. It takes
a long time to subtract each number from the mean, and a quicker way has

been found of arriving at the same answer. But never forget, you
still have to divide by n − 1 to convert sum of squares to variance!

My first years in research did involve squaring the deviations from the
mean. We had to do this by mental arithmetic, by looking up tables of
the squares of numbers, or by using logarithm10 tables. In the last named
method, you looked up the log. of your number, doubled it, and then re-
converted with antilog. tables! It was therefore a bonus that deviations
tended to be reasonably small numbers!

Calculating machines offer a quicker method of
calculating sums of squares

Added squares

With calculating machines came the power to square large numbers as eas-
ily as small ones, and so the calculation of sums of squares could be speeded
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up by eliminating the step of subtracting each number from the mean. We
can now just square and add the numbers themselves (REMINDER: I am
using the word “add” instead of “sum” to, probably more in hope than
in anticipation, prevent you from getting confused between “adding the
squares of the original numbers” and “summing squares of deviations”).
In notation, adding the squares of the numbers is

∑
x2. As numbers which

differ from the deviations are now squared and added, we clearly cannot
get at the same answer without further work.

∑
x2 just cannot be equal to∑

(x − x)2, unless the mean is zero!

The correction factor

To turn added squares of the numbers into the sum of squared deviations
from the mean, we have to subtract a correction factor from the added
squares. This factor is the square of the total of the numbers, divided by
how many numbers have been squared and added – in our notation:

(
∑

x)2

n
,

making the full notation for sum of squares by this “calculator” method:

∑
x2 − (

∑
x)2

n
.

This formula is what is called an “identity” for
∑

(x − x)2, since it is
a different calculation which gives the identical answer. There is quite a
complex algebraic proof that this is so. You will find this proof in most
larger statistical textbooks, but you will hopefully be satisfied with Box 4.1,
which compares the sum of squares for “Mighty” matches (see start of
Chapter 3) calculated by both methods.

Avoid being confused by the term “sum of squares”

Because both computations involve adding squared values, you will appre-
ciate there is serious room for confusion. Just keep in mind the contrast
between:

summing squared deviations and the calculation is finished
versus

adding squared numbers but the calculation is not finished, you have to
subtract the correction factor to finish.



Van Emden: “C004” — 2008/1/31 — 10:22 — PAGE 23 — #3

When are sums of squares NOT sums of squares? 23

BOX 4.1

∑
(x − x )2 = (12 − 48)2 + (62 − 48)2 + (3 − 48)2

+ (50 − 48)2 + (93 − 48)2 + (68 − 48)2

= 362 + 142 + 452 + 22 + 452 + 202 = 5946
∑

x2 = 122 + 622 + 32 + 502 + 932 + 682

= 19,770
(∑

x
)2 = 2982 = 82,944

(∑
x
)2

/n = 82,944/6 = 13,824

∑
x2 −

(∑
x
)2

/n = 19,770 − 13,824 = 5946

It can’t be repeated too often, either method gives you the sum of
squares (of deviations from the mean) calculation; you still have to divide
by n − 1 to convert this to variance.

In future in this book, we will be using the calculator method of adding
squared numbers and subtracting the correction factor; just never forget
this is a replacement for summing squared deviations from the mean, i.e.
∑

(x − x)2. Never forget – adding squares never, ever, gives you
the “sum of squares” unless the numbers you are squaring are deviations
from the mean.

Summary of the calculator method of calculating down to
standard deviation

1 (
∑

x)2: Add the numbers together and square this total.
2 (

∑
x)2/n: Divide this squared total by the number of numbers in the

total above – this is your correction factor.
3

∑
x2: Square the numbers and add the squares together – this is your

added squares.
4

∑
x2 − (

∑
x)2/n: Subtract your correction factor from your added

squares – this is your sum of squares (of deviations from the
mean),

∑
(x − x)2. Under no circumstances can this be negative! If
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your correction factor is larger than your added squares, you’ve made a
mistake somewhere.

5
∑

(x−x)2/(n−1) or s2: Divide the sum of squares by degrees of freedom
(n − 1) to get your variance.

6
√[∑(x−x)2/(n−1)] or s: Square root the variance to get the standard
deviation.

Spare-time activities

1 Recalculate the variances of the numbers given in “Spare-time activities” 1
and 2 from Chapter 3, now using the method described in Chapter 4, and
check that you get the same answer!

2 Calculate the mean and standard deviation of the following set of figures:

2.47, 2.55, 2.51.2.39, 2.41, 2.47, 2.44, 2.50, 2.46, 2.55,

2.51, 2.32, 2.50, 2.54, 2.51.

Describe 2.43 and 2.99 in terms of ± standard deviations from the mean.
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Introduction

In Chapter 3, I made some remarkable claims for the power of the statistics
mean ± standard deviation, but did add the rider . . . “assuming our sample is
adequately representative of a whole population of numbers which is nor-
mally distributed.” So now it’s time to explain what is meant by a “normal
distribution,” and then to try and convince you that the standard deviation
is indeed the “key” to the statistical “lock” as claimed in Chapter 3.

Frequency distributions

The word “distribution” is short for “frequency distribution,” i.e. the fre-
quency of occurrence of the different numbers in a population. The normal
distribution is a particular pattern of variation of numbers around the
mean. It is symmetrical (hence we express the standard deviation as ±)
and the frequency of individual numbers falls off equally away from the
mean in both directions (Fig. 5.1). In terms of human height, progres-
sively larger and smaller people than the average occur symmetrically with
decreasing frequency towards respectively giants or dwarfs. What is impor-
tant about this distribution is not only that this kind of natural variation



Van Emden: “C005” — 2008/1/31 — 10:22 — PAGE 26 — #2

26 Chapter 5

0

5

10

15

20

25

30

35

61 62 63 64 65 66 67 68 69
Weight of eggs (g)

F
re

qu
en

cy

Fig. 5.1 An example of the normal distribution: the frequencies in which 100 eggs
occur in different weights. The arrows show the points of inflexion where the curve
changes from convex to concave on either side of the mean (giving the limits for mean
± 1 standard deviation).

BOX 5.1 Data of Fig. 5.1

It would take a lot of space to write out all 100 weights, but (starting at the
lightest end) just 1 egg weighed in at 61 g, there were 6 eggs weighing 62 g, 10
at 63 g, 17 at 64 g, and 29 at 65 g, the most frequent weight. The frequencies
then declined again, with 19 at 66 g, 11 at 67 g, 5 at 68 g, and the heaviest
2 eggs at 69 g.

often occurs, but also that it is the distribution which comes with the best
statistical recipe book for data analysis and testing our hypotheses.

The normal distribution

Figure 5.1 uses the data of a sample of 100 chickens’ eggs (Box 5.1),
weighed to the nearest gram (g), from a large commercial poultry
enterprise. The mean weight of the sample was 65.1 g.

The histogram of Fig. 5.1 shows that this clearly coincides with the most
frequent weight, with eggs increasingly heavier or lighter in weight falling
off in frequency roughly equally to either side of the mean. The smoothed-
out curve which has been superimposed is a typical “normal distribution”
curve; it is symmetrical about the mean, and is made up of two “mirror
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BOX 5.2 Calculation of standard deviation [s] of sample of 100 eggs of total
weight 6505 g

From now on, we’ll use the quicker calculator method for sum of squares (of
deviations from the mean), which saves us calculating those very deviations;
see end of Chapter 4.

The correction factor is (
∑

x )2/n = 65052/100 = 423,150.2
The added squares of the numbers,

∑
x2, is 612 +622 +622 +622 +622 +

622 + 622 + 632 + · · · · · · + 692 + 692 = 423417
So sum of squares of deviations,

∑ (
x − x

)2 = added squares −
correction factor = 423,417 − 423,150.2 = 266.8

Then variance,
∑ (

x − x
)2

/n − 1 or s2 = 266.8/99 = 2.7 and the square
root of this, the standard deviation (s), is 1.6.

Note: Where many numbers in the frequency distribution share the same
value, as in this example, the sum of squares can more easily be calculated
from the frequencies (see the addendum at the end of this chapter).

image” S-shaped curves. These curves give points of inflexion (the arrows
on Fig. 5.1) where convex around the mean changes to convex towards the
extremes.

The sample included no eggs lighter than 61 g or heavier than 69 g. But
this was a sample of just 100 eggs from a pool of hundreds of thousands
produced on the same day. So it is very likely that both lighter and heavier
eggs were part of the day’s production, but too rare to be included by chance
in a sample of 100 eggs. The tails of the two mirror-image S-shaped curves
of the theoretical normal distribution curve approach the zero frequency
baseline so slowly they never actually reach it, so there is a remote chance
(theoretically) of an egg weighing a kilogram – pity the poor chicken!

The mean weight and standard deviation of the sample data in Fig. 5.1
is 65.1 ± 1.6 g (Box 5.2).

I can now predict that 68% of all the eggs produced by the poultry farm,
the same day as the sample was taken, would weigh between 63.5 and
66.7 g, i.e. the mean (65.1) ± 1 standard deviation (1.6 g) (Box 5.3).

What per cent is a standard deviation worth?

The prediction is possible because, for a perfect “normal” distribution, the
mean and standard deviation enable us to replace the frequency histogram
of the distribution with the kind of curve drawn in Fig. 5.1. We can then
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BOX 5.3

What per cent of eggs in the sample of 100 fall in the range of mean ± 1s (i.e.
63.5 − 66.7 g)? All those weighing 64 and 65 g, certainly. That’s 46 eggs to
start with. Ten eggs weighed 63 g, so we can add 5 for the 63.5, bringing the
number of eggs up to 51. Lastly we have the 66.7 for the 19 eggs weighing
66 g. 0.7 of 19 is 13, making our total eggs within the mean ± 1s limits to 64
out of a 100. Not quite the predicted 68%, but pretty close!

What per cent eggs lie outside the limits mean ± 2s? These limits are
65.1 ± 3.2 g, i.e. 61.9 − 68.3 g. The one 61 g egg and the 2.69 g are cer-
tainly outside the limits. The 0.3 of the 5.68 g eggs is 1.5, making a total of
1 + 2 + 1.5 = 4.5, very close to the predicted 5%.
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−2 −1 +1 +2
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Scale of number of standard deviations

Fig. 5.2 The normal distribution curve of Fig. 5.1 with the egg weight scale replaced
by the Fig. 3.1 “ruler”, divided into 1 standard deviation divisions on either side of the
mean. The per cent observations (eggs in this example) contained in each division of
the graph is shown. This percentage division will apply to any set of observations whose
frequencies follow a normal distribution.

line up our scale of “standard deviation worths” so that the mean coincides
with the peak of the distribution curve and the ±1s points line up with the
points of inflexion of the curve (see earlier). When we do this (Fig. 5.2), the
data become divided into blocks of different proportions. 34% lie between
the mean and 1s in either direction – hence my 68% prediction between
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mean ± 1s. 2.5 % of the data at either end are more extreme than 2s distant
from the mean (Box 5.3), leaving 13.5% in each of the two bands between
1 and 2s distant.

Are the percentages always the same as these?

Well, yes, actually – they are, in perfectly symmetrical normal distributions.
You may find this hard to believe, and you’ll either have to take my word
for it or get yourself a more advanced text and follow the mathematical
arguments! Something that may help to convince you is to take the egg
distribution curve, which seems to fit the percentage frequency pattern
I am trying to convince you about, and imagine you have “modeled” it
in three colors of plasticine (dark, lighter, and white, Fig. 5.3 – bottom
left). However we distort the distribution, vertically or horizontally – as
long as we keep it symmetrical, the three colors remain in their original
proportions and the equal spacing of the standard deviation scale on the
horizontal axis is retained. All we are changing is the distance between
the junctions where the plasticine changes color and the peak height of the
curve. Has that convinced you?

−2s    −1s             +1s  +2s

_

−2s −1s      +1s +2sx

_

−2s +2s−1s

These distributions have all been generated by
distorting the surface of the bottom left curve with
no other changes

+1s

−2s +2s−1s +1sx _

x

_

x

Fig. 5.3 Demonstration that the areas under the normal curve containing the
different proportions of observations maintain their proportional relationships in spite
of distortion of the curve, provided it remains symmetrical about the mean.
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Other similar scales in everyday life

It should not be a very difficult concept to grasp, for we use such “relative”
scales all the time in everyday life, whenever proportions seem more impor-
tant than absolute values. When I ran a Scout troop and was chuffed that
I got a 60% turnout at church parade, that meant 22 boys, yet the much
larger number of 1100 people is a disappointing 30% turnout at our local
elections. When I drive into work I’m “nearly there” as I turn into the
University entrance in Reading; yet when I drive back to Reading from
Grimsby I would say I’m “nearly home” at Maidenhead, still 14 miles away.

Figure 5.4 is another demonstration of the unifying concept that the
normal distribution provides for all suitable data, and plots three scales
against the per cent frequencies of the normal distribution curve. The top
scale is standard deviation worths, the second is the distribution of the
numbers of “Mighty” matches in boxes (from Chapter 3), and the bottom
scale is the weight of eggs from this chapter. Note that, although all three
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6160 62 63 64 65 66 67 68 69

Standard
deviations’ worths

“Mighty” matches per box

Egg weight (g)

Observations on different scales

+1s +2s +3s

Fig. 5.4 The unifying concept of the scale of standard deviations for two sets of
observations of very different ranges of 0–130 for matches per box and 61–69 g for
eggs. The vertical downward projections divide both ranges into sectors of 0–1 and
1–2 standard deviations on either side of the mean; to achieve this each major division
on the matches scale represents 20 matches, but only 1 g on the egg weight scale.
The scales therefore have to be at different “magnifications” in order for both to fit the
standard deviations scale.



Van Emden: “C005” — 2008/1/31 — 10:22 — PAGE 31 — #7

The normal distribution 31

scales have been made to fit the same normal curve, that for matches covers
over 130 matches while for eggs the whole scale is only about 8 grams.

The standard deviation as an estimate of the frequency of
a number occurring in a sample

The magnitude of any individual observation, be it 23 “Mighty”matches,
a 63 g egg, a man 160 cm tall, or 10 grasshoppers per m2 of grassland,
is some unit of standard deviation worths away from the mean for those
particular objects or organisms. The more standard deviation worths the
observation is away from the mean, the rarer is its frequency in the pop-
ulation of possible numbers available for sampling. So numbers within 1s
of the mean are pretty frequent; we could describe them as “quite usual.”
Numbers between 1 and 2s from the mean are “a bit on the large or small
side.” Beyond 2s distant from the mean, the numbers verge on the “excep-
tionally large or small.” The units themselves do not matter. No one has the
problem that a “normal” person is considerably larger than an “exception-
ally large” dachshund! Yet the first is within 1s of the mean whereas the
second is more than 2s larger than its mean.

From per cent to probability

133 “Mighty” matches in a box or a 61 g egg appear to have little in
common, but Fig. 5.4 reminds us that they have something very much in
common. They are both 2.5s away from the mean, and so are both equally
unusual matches or eggs, though the number of matches is exceptionally
large and the egg is exceptionally small. The chance of picking either in
a random grab from a pile of matchboxes or eggs is the same, less than a
2.5% (= 1 in 40) chance.

In statistics, we write this as “P < 0.025.” P stands for “probability”
where P = 1 is 100% certainty.

The standard deviation is perhaps best regarded as a unit of “percentage
expectation.” We can add this “expectation of occurrence in a sample”
scale to the standard deviations worths ruler (Fig. 5.5.). In biology, the
convention is to regard a datum more than ±2s away from the mean,
which therefore has a less than 1 in 20 chance of “turning up” in a sample,
as an unlikely event with P < 0.05. 2.5 of this 5% probability comes from
data beyond the 47.5% point at either end of the “percentage included”
scale. We know that 63 g eggs do occur on our egg farm. However, if we
picked up just one egg and found it was so exceptionally small, we might
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Scale of number of standard deviations
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Fig. 5.5 A scale of “per cent observations included by different standard deviations
worths” added to the “standard deviations worths” ruler of Fig. 3.1.

suspect it had come from a different establishment. And that, in a nutshell
(or eggshell!) is the basis of decision-making in biological statistics.

Addendum on calculating sum of squares from a frequency distribution
(using the egg data from the start of this chapter).

Datum
egg wt (x )

Frequency
(f )

f multiplied
by x (fx )

fx multiplied
by x (fx2)

61 1 61 3,721
62 6 372 23,064
63 10 630 39,690
64 17 1,088 69,632
65 29 1,885 122,525
66 19 1,254 82,764
67 11 737 49,379
68 5 340 23,120
69 2 138 9,522

Totals 100 6,505 423,417

Number eggs Total egg weight Added squares

What these totals
represent in the
formula for
variance

n
(∑

x
) ∑

x2

Sum of squares =
∑

x2 −
(∑

x
)2

/n = 423,417 − 65052

100

= 423,417 − 423,150.2 = 266.8

Answer checks with that in Box 5.2
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EXECUTIVE SUMMARY 1
The standard deviation

Just about all the statistical calculations we will handle in this introductory
book involve summarizing the variability of a set of numbers as one single
number (or statistic) – based on how different individual numbers in a set
are from the mean (= average of the whole set). This difference between a
number and the mean is called the DEVIATION.

The average deviation would be:

Sum (number – mean)
Number of numbers

The VARIANCE (the measure we actually use to summarize the
variability of numbers) is a slight modification of this:

Sum (square of {number – mean})
Number of numbers − 1

An easier way on a calculator to get the top half of the expression (called
the SUM OF SQUARES – it is actually the sum of squared deviations!)
is to calculate add the squares and subtract a correction factor.

The added squares are obtained simply by adding the squares of the
numbers. The correction factor is obtained by squaring the total of the
numbers and dividing by the number of numbers.

The STANDARD DEVIATION (s) is the square root of variance. It is the
“key” to the statistical “lock.”

Importance of the standard deviation

1 We can express any NUMBER in a new way – as the mean plus or minus
so many “standard deviation’s worths”: e.g. given a population
with a mean of 20 and standard deviation of 10, the figure of 15 is
also “mean −1/2 standard deviation (= 5).” Similarly, the number 40
is “mean +2 standard deviations (= 20).”

2 GIVEN A POPULATION (e.g. heights of people) with the mean some-
where in the middle, and the number of people with various heights
becoming progressively fewer on either side of the mean as we tend
towards giants and dwarfs, the “standard deviation” allows us to judge
how frequently something more extreme than a given height is likely
to occur. This is just by the very nature of populations of numbers
symmetrical about the mean – it just happens to be so!
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Examples

Mean = 100, s = 50. The number 180 has a deviation of +80, which is
also mean +1.6s.

Mean = 2, s = 1. The number 3.6 has a deviation of only +1.6, but is
the same in s units as the number 180 in the first example, i.e. mean
+1.6s.

If we were to sample 100 numbers from both populations, a little over
5% would be larger than 180 in the first population; similarly the same pro-
portion (a little over 5%) would be larger than 3.6 in the second population
(you can find the actual % for any s “worths” in statistical tables).

What have the following in common?:
A 120 cm high daisy, a 100 g fully grown lettuce, a four-leaved clover

and a 240 cm tall man?
They are all somewhat unusually large, small or many-leaved! Instead

of using words like “normal,” “a bit on the large side,” “unusually small,”
or “extraordinarily small,” it is “standard deviation’s worths” which allow
us to be much more precise. We might be able to say “in the largest 2.5%”
(if > mean + 2s) rather than just “very large.”
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To recap

The normal distribution is defined by just two statistics, the mean and the
standard deviation. It has had a “recipe book” developed for it, based on its
symmetry and the percentages of areas under the distribution curve related
to multiples of the standard deviation (“standard deviation’s worths”). We
can calculate the frequency with which different numbers will be found in
an infinite population from the results of just a sample thereof.

So it is the most useful distribution for statistical analysis, but we have to
admit two things straight away:

1 Biological data are frequently not normally distributed, but are asym-
metrical. We often find they peak well to the left with a long thin tail
of high values. This is often found with random or clumped data (the
gray histogram in Fig. 6.1 shows the frequencies of larvae of a stem
boring fly in 300 samples of a meter of row in a wheat crop) – common
phenomena in biology. With this kind of distribution the mean does not
coincide with the peak of the curve (the arrow on Fig. 6.1). Calculating
a symmetrical standard deviation is plain stupid. The standard devia-
tion should contain 34% of the observations on either side of the peak
frequency (which should coincide with the mean). The true and asym-
metrical spread of 34% of the data on either side of the peak frequency
is shown in solid black columns in Fig. 6.1, and the position of the mean
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Fig. 6.1 The frequency of occurrence of larvae of the frit fly (Oscinella frit) in 300
samples of a meter of row in a wheat crop, showing the peak frequency not coinciding
with the arithmetic mean. Normal distribution statistics calculations for mean ±1s give
the range shown under the horizontal axis; the proportion of samples which should
actually be included by peak ±1s (i.e. 102 samples = 34%, on either side of the peak)
is shown in solid black around the peak frequency (arrowed).

and standard deviation calculated from normal distribution statistics is
contrasted on the horizontal scale. The normal distribution statistics are
clearly not appropriate.

2 Any estimate of the standard deviation is just that, only an estimate
from a sample of the true value of the entire population. Obviously
it can be way off beam if we have taken too few samples in relation
to the variation in the population. Figure 6.2 shows six estimates of
the standard deviation (at each of six different sample sizes) from a
population with a true standard deviation of 21.4.

This chapter gives some advice on handling these two problems.

Is our observed distribution normal?

As pointed out earlier, the theoretical normal distribution has no finite
upper or lower limits. Thus a population of eggs averaging 65 g could
theoretically include a 1 kg egg, if there were enough eggs for an event
to occur that was 621 standard deviations’ worth larger than the mean.
Already, by the time we have moved 3s from the mean, we are into the
realm of pretty rare events at the level of 6 chances per thousand. By 621s,
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Fig. 6.2 Results of calculating the standard deviation of repeat samples of differ-
ent sizes from a single population with a true s of 21.4 (horizontal line). Even with
10 samples, we can get estimates of this true 21.4 varying from about 17 to 30!

we are more likely to hear we’ve won the national lottery while hitting a
hole in one!

That a chicken should lay a 1 kg egg is, in the real world, even more
unlikely than the normal distribution would suggest. The world record for
a chicken egg is less than 150 g, which is already 142s for the eggs in our
calculation. There is no doubt that the tails of biological distributions are
much shorter than those of the theoretical normal distribution. In practice,
this makes little difference to our estimation of probabilities from the nor-
mal distribution; it merely means that events of a particular magnitude are
in truth marginally less likely than our probability statistics would predict.

Checking for normality

The real problem is whether our experimental data are even an approxi-
mate fit to a normal distribution. This is easily checked with large samples.
There should be roughly equal numbers of observations on either side
of the mean. We may even have enough samples to draw a histogram
like Fig. 6.1 (where there are 200 observations lower than the mean, but
only 96 higher!) to judge the departure of the distribution from symmetry.
Things are more difficult when, as usually, we have only a few samples. In
experiments, it is not uncommon to have no more than three data per treat-
ment. However, even here we can get clues. If the distribution is normal,
there should be no relationship between the magnitude of the mean and its
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standard deviation. However if, for example, small means clearly show less
variation than large means, a poor fit to a normal distribution is indicated.
If the observations come from a single distribution (e.g. our egg data in
Chapter 5), we can combine data at random into different-sized groups in
order to obtain the range in mean values we need to do the same kind of
exercise.

What can we do about a distribution that clearly is
not normal?

Transformation

With large samples, we can identify whether the asymmetry causes the
peak to lie below or above the arithmetic mean. A statistician may even
be able to identify that the data follow a particular type of non-normal
distribution. Techniques are available for changing the horizontal scale
(the observed values) to a nonlinear one before statistical treatment of the
data is attempted. This process of converting the observations to a function
such as logarithm or square root in order to “normalize” the distribution
is called transformation. We can use the data of Fig. 6.1 as an example.
The peak is to the left of the mean and the distribution is actually close
to random, which is not unusual for the distribution of the pest insect in
question. A perfect random distribution is defined as having the variance
of the observed values equal to the mean. Our insect distribution has a
mean of 3.9 and s of 1.86. Variance (s2) is therefore 3.46, pretty close to
the mean. A random distribution can be “normalized” by converting the
observed values to logarithm to base 10. Usually we first add 1 to each
observed value, so that the transformation is log10(x + 1). This addition of
1 enables us to have a log. for zero values. There is no logarithm10 for zero –
zero is the log. of 1!

Figure 6.3a shows the untransformed data, and Fig. 6.3b the curve after
transformation. You can see how the mean of the transformed data is
nearer the peak, and areas to left and right of the 1 standard deviation
limits are more of similar size than these areas in Fig. 6.3a.

The subject of transformation is outside the scope of this book, but
the log. transformation is particularly common. Two other common
transformations are:

Square root transformation

This is used for more highly clumped data where the variance is obvi-
ously greater than the mean, but not to the extent where the reciprocal
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Fig. 6.3 The frequency distribution of frit fly larvae (see Fig. 6.1.) with normal dis-
tribution statistics on the horizontal scale. (a) Untransformed; (b) after logarithmic
transformation.

transformation might be appropriate (see below). As there is no square root
of a minus number, a constant needs to be added to each observation to
make even the lowest observation positive. The transformation therefore
becomes

√
x + constant. If there are numbers between 0 and 1, then it

pays to use 1 as the constant, since the transformation of the distribution
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towards normality is spoilt by the phenomenon that the square root of a
fraction becomes larger than the observation being transformed.

Arcsin or angular transformation

This is often used to normalize percentage data, especially where high or
low percentages are involved. It makes little difference in the 30–70% range.

The message here is that non-normal data can be transformed, so that
they can be analyzed by the extensive “recipe book” developed for normal
distributions. Once you are aware of this, the necessary further information
can always be sought elsewhere.

Grouping samples

Selecting groups of four samples at random, and using the means of the
groups as the data for analysis, will normalize even extremely non-normal
distributions. This is because the four samples will by chance have been
drawn from different parts of the distribution and the peculiarities of the
distribution will have been “cancelled out” in using their mean.

Doing nothing!

With small samples, it will be hard to tell whether or not the distribution is
normal. Failure to make the appropriate transformation is not the end of the
world. Even in Fig. 6.3a, the fit of the mean and standard deviation to the
non-normal curve is not catastrophically bad. One can also take comfort
in the fact that failure to make the appropriate transformation is probably
scientifically safe. Although we may fail to detect a difference that really
exists between our experimental treatments, we will not be misled into
claiming a difference which would be shown to be spurious by transforming
the data. This is because failure to transform is more likely to overestimate
the variation in the data than the appropriate transformation.

How many samples are needed?

Our calculated mean and standard deviation from a sample are only esti-
mates of the true values for the whole population of numbers. How good
these estimates are depends on how many samples we have taken and how
representative they are of the population. The greater the variability of the
population, the more samples will be needed to achieve the same precision.
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So the answer to the question “how many samples are needed?” depends
on what one is sampling! We often can’t take enough samples, or replicate
a treatment in an experiment sufficient times to get accurate estimates of
the mean and variability. However, statisticians have produced tables (see
later) which give us various forms of magnification factor for our estimates
of variability from small sample sizes. Such factors prevent us drawing fool-
ish conclusions from the application of probabilities appropriate to large
samples to our more restricted sample data.

We may at times have to accept that our experiment was too small to
enable us to validate an experimental result statistically. We will have
wasted our time, effort, and money. However, it is an equal waste of
resources to do so many repetitions of treatments that our analysis shows
that many fewer would have been enough.

Factors affecting how many samples we should take

How many samples to take is therefore a question well worth asking, and
three considerations will contribute to the answer:

1 The variability of our biological material – we can get an idea of this
from some preliminary sampling.

2 The size of difference that we wish to detect. If, for example, we are testing
a new slug killer, is a 5% reduction in leaf damage going to persuade
people to buy our product? Or do we need at least a 30% reduction?
A realistic aim can reduce the number of samples we need to take.

3 How important is it that, if the size difference we are looking for exists,
that we actually detect it? A 100% certainty of detection usually means
an impossible workload, but it pays to know what chance we have of
finding our difference with the workload that is practical.

Calculating how many samples are needed

There is a way of using the above considerations to estimate the right
number of samples to take, but it is not worth describing it until we have
covered a lot more statistical ground. The method is therefore at the end
of this book, in Appendix 1. It really is worth doing – there is no point in
embarking on an experiment if it clearly cannot yield results. Also working
the method will identify for us if we can control the variation, and therefore
our number of samples, by a transformation of the data (see earlier in this
chapter).
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Introduction

Things are now getting serious! This chapter is probably the most important
in the book, so don’t rush it. If, by the end, you really understand what the
standard error of the difference between two means is and its importance in
evaluating biological research, then statistics will hold no more fears for
you – once this important central chunk makes sense, the whole subject
will cease to be a “black box.” And that’s a promise!

So far we have explored how we can use limited sampling (from a large
population) to define that whole population as a symmetrical “normal”
distribution, with a mean and standard deviation as estimated from our
sample.

In this chapter, we come to the reason for doing this! In a nutshell,
calculations based on the standard deviation allow us to make objective
judgments – on standards accepted by other scientists – about the validity
of what we observe in biological experiments.

Is “A” bigger than “B”?

Suppose we grow large plots of two varieties of lettuce, “Gigantic” and
“Enormous,” which are both mature and ready for harvest at the same
time. The question we want to answer is “Does one variety produce heavier
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lettuces than the other, or is there really no noticeable difference?” If we
compare just one “Gigantic” with one “Enormous” lettuce, one is bound
to be heavier than the other, yet we cannot claim that this has answered
our question. We might be comparing a particularly minute specimen of
“Gigantic” with an exceptionally large one of “Enormous.” Common sense
tells us we need several specimens of each variety before we can make a
judgment.

Normal distribution statistics enable us to replace weighing a large num-
ber of lettuces of each variety with quite a small sample, and to discover if
we have weighed enough lettuces to convince others as to whether the two
lettuces differ in weight (see also Appendix 1).

We could take two samples (each of say four lettuces), either from the
same variety or from each of two different varieties (i.e. from the same
seed packet or from two different ones). In neither case is it likely that the
means of our two samples of four lettuces will be identical. Looking at the
difference in mean weight of the samples from the two varieties, we will
want to judge whether or not this difference is merely of a size that could
have equally arisen by chance when sampling the same variety twice. If
the large size of the difference makes such a possibility most unlikely, we
say that the difference between the means is “statistically significant.”

The yardstick for deciding

As samples from a single source will always show some variation (“back-
ground variation”), we need a “yardstick” for judging the likelihood of
a difference between two means occurring by chance sampling from
such “background” variation of our biological material (i.e. in the absence
of any other source of variation such as different packets of lettuce seeds!).
In Chapters 5 and 6 the standard deviation was described as just such a
“likelihood yardstick” in respect of the likelihood (= frequency) of a single
observation of any given magnitude being picked from the distribution.
Now we need a comparable yardstick to judge the size of a difference
between two means. There is indeed such a yardstick: it is the standard
error of a difference between two means (or s.e.d.m. for short). A compli-
cation here – “error” replaces “deviation” when talking about variation of
means rather than that of individual data; sorry about that!

What the standard error of difference between means denotes biologically
is one of the hardest concepts to grasp. Army quartermasters used to list
their stock “backwards” – for example “jackets, green, soldiers, for the
use of.” I always think that using this approach in statistics can make
things clearer: “means, differences between, standard error of.” It is a really
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important concept and everything in this chapter so far has been nought
but a preliminary to the calculation of this vital statistic.

The standard error of a difference between two means of three eggs

Using the raw (pardon the pun!) egg data from Box 5.1 together with
random number (1–100) tables, I sampled 300 eggs and recorded the
mean of each set of three consecutive eggs, to give me 100 means. I took
these in pairs to get 50 differences between means, subtracting the weight
of the second in each pair from that of the first. These 50 means are shown
in Box 7.1. We can treat these like any 50 numbers and calculate their
variance as 1.7, and square root this to get the “standard deviation” (but
now called the “standard error”) of 1.3.

BOX 7.1

50 differences between two means of the weights of 3 eggs randomly drawn
from the egg weight data in Box 5.1: +0.67, 0, −0.67, −0.67, +2.00, +0.33,
0, +3.33, +1.33, +1.67, −0.67, −1.67, +1.67, −1.67, +1.33, +2.00, +1.00,
−0.67, −1.33, +1.33, −1.33, +1.00, +0.67, −0.67, +1.33, +0.33, +1.00,
+2.67, 0, −0.33, +1.67, +1.33, −2.67, +1.67, +1.00, −2.00, +0.33, +0.67,
+0.33, +0.33, −2.33, 0, 0, +1.00, 0, −1.00, +1.00, −0.67, +0.67 and +2.33 g.

These 50 differences were a data set whose variance I could calculate
as if they were single observations. In the same way as for individual eggs
(page 48), we would expect the average difference to be zero, but the chances
of sampling give us a small mean difference of +0.35 (from a total of +17.64).

[If you still need to look up how to calculate a variance (s2), go back to
page 15 and remind yourself that it is sum of squares of deviations divided by
degrees of freedom, and then to page 23 to remind yourself of the “added
squares of numbers – correction factor” technique for calculating sum of
squares of deviations.]

The correction factor ((
∑

x )2/n) is +17.642/50 = 6.22.
The “added squares” (a minus squared is positive) are +0.672 + 02 +

(−0.672) + · · · + 2.332 = 89.32.
Therefore sum of squares = 89.32 − 6.22 = 83.10.
Variance is 83.10/(n − 1) = 83.10/49 = 1.7.
Standard error (= standard deviation when means are involved) is therefore√

1.7 = 1.3.
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So 1.3 is our “likelihood yardstick” for judging whether a difference
between two means (of egg weights each based on three eggs) is a likely or
unlikely difference to sample within a single batch of eggs. But how can we
work out this yardstick when we have far fewer data?

Derivation of the standard error of a difference between
two means

Fortunately we can easily calculate the s.e.d.m. directly from the variability
between individual samples rather than having to create lots of means to
find differences between.

All we need is the variance shown by the samples and the number of sam-
ples in each of the means being compared, because the variance of means
has a very simple relationship with the variance of the set of individual
samples, and the variance of differences between means has a similarly
simple relationship with the variance of means.

So in this chapter we will derive the standard error of a difference between
two means from the variance of a set of individual samples in three steps. It
will be painfully slow for anyone already familiar with the s.e.d.m., but
hopefully the lengthy explanation will make it easier for beginners. If you
are familiar with calculating the s.e.d.m., and just need a concise reminder,
then skip the sections indicated by a vertical line in the margin which use
the egg weight data to convince readers that the statements made check
out with actual numbers. As I’m going to need to use the same words like
variance and standard error so often, I hope it’s OK with you if I make
frequent use of the following abbreviations:

s for the standard deviation relevant to the variation among single data
s2 for variance calculated from a set of single data
s.e. for standard error (relevant to means)
s.e.d.m. for the standard error of differences between means.

Step 1 – from variance of single data to variance of means

End result: The variance of means of “n” numbers is the variance of single
data divided by “n” – it can’t be simpler than that, can it?

Check it out: The mean (x̄) for the sample of 100 eggs was 65.1, s2 was
2.7, and s (=√

s2) was 1.6. To obtain several means of smaller samples,
I’ve used random number tables to select 20 groups of 3 eggs to give me
20 mean values (Box 7.2). These 20 means can now have their s and s2

calculated by treating them as 20 single numbers.
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BOX 7.2

The first three eggs I picked at random weighed in at 65, 62, and 64 g, giving
x̄ of 63.67).

The next three were by chance heavier on average – 68, 66, and 66 again
(x̄ of 66.67, while the next group were lighter at 61, 63, and 65 (x̄ of 63.00).

Eventually I had 20 selections with a range of means – 63.67, 66.67, 63.00,
64.67, 65.33, 66.63, 64.67, 65.00, 65.00, 65.33, 64.33, 64.00, 64.67, 64.00,
64.33, 65.67, 64.67, 66.33, 65.67, and 65.00 (the total of these 20 numbers
is 1298.34 and their mean is 1298.34/20 = 64.92).

[Now go back to page 15 and remind yourself that s2 is sum of squares
of deviations divided by degrees of freedom, and then to page 23 to remind
yourself of the “added squares of numbers – correction factor” technique for
calculating sum of squares of deviations.]

The correction factor ((
∑

x )2/n) is 1298.342/20 = 84,284.34.
The “added squares” are 63.672 + 66.672 + 63.002 + · · · 652 = 84,300.74.
Therefore sum of squares = 84,300.74 − 84,284.34 = 16.40.
Variance is 16.40/(n − 1) = 16.40/19 = 0.86.

Compared with single eggs (x̄ = 65.1, s2 = 2.7), the 20 means each of
three eggs had x̄ = 64.9 and variance = 0.86. The similarity of the two
means (x̄) of 65.1 and 64.9 is no surprise – after all, they are both estimates
of the same thing, the mean egg weight of the whole production of the egg
farm. The variances are however rather different; again no surprise since
one would surely expect that averaging the weights of three eggs would
cancel out the variation between individual eggs to some extent, with a
reduced variation as the result. But note that the variance of individual eggs
is 2.7/0.86 = 3.1 times greater than the variation of means of 3 eggs –
3.1 is remarkably close to 3? Got it? So the variance of means of three eggs
(0.86) can be obtained from the variance of single eggs (2.7) by dividing
by three. The variance of means of 10 eggs would be 2.7 (the variance of
individual eggs)/10 = 0.27, that of means of 50 eggs would be 2.7/50 =
0.054, etc. To be able to do this from the individual data contributing to the
only mean we may have is a very important page in the “normal distribution
statistics recipe book.”

There is no problem in square rooting this variance of the 20 numbers
(each being the mean of 3 eggs) to get the standard deviation as ±√

0.86 =
±0.93 g (no, that’s not an error – square roots of values less than 1 do get
larger!). However (see above), we don’t call it the standard deviation, but
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the standard error. This saves writing “of individual data” or “of the mean”
behind either term.

So standard error (s.e.) is the square root of the variance of the mean,
and in notation is

√
s2

n
.

We can also derive the s.e. from the standard deviation (s) of the
individual numbers by re-arranging the algebra of

√
s2

n
as

s√
n

.

Figure 7.1 shows the scales for both individual egg weights and the mean
of 3 eggs under the same normal distribution curve and thus the same
scale of standard deviations’/errors’ worths (the scale for the mean weight
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34%

13.5%

2.5%

−3s −2s −1s +1s +2s +3s

60 61 62 63 64 65 66 67 68 69

Standard
deviations’ worths

Egg weight (g)

63 64 65 66 67

Mean weight of 3 eggs (g)

Observations on different scales

x–

Fig. 7.1 The unifying concept of the scale of standard deviations/errors for individual
observations and means for data on egg weights. The vertical downward projections
divide both ranges into sectors of 0–1 and 1–2 standard deviations on either side of the
mean; to achieve this each major division (1 g) on the mean egg weight scale is therefore
wider than for the single egg weight scale. The scales therefore have to be at different
“magnifications” in order for both to fit the standard deviations/errors scale.
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Egg weight (g)

Mean weight of
3 eggs (g)

Observations on same scales

60 61 62 63 64 65 66 67 68 69

60 61 62 63 64 65 66 67 68 69

Fig. 7.2 Figure 7.1 redrawn so that the same scale is used for weight, whether of
individual eggs or means of three eggs. Now the normal curve with the ± standard
deviation divisions projected down to the single egg scale with solid lines has to be
redrawn as a narrower curve for means of eggs, with the ± standard deviation divisions
projected down with dotted lines.

of 3 eggs has of course had to be widened to fit compared with the scale
of weights of individual eggs). Figure 7.2 presents the same data, but now
with the standard deviations/errors scale replaced by actual weight of eggs
in grams. So in Fig. 7.2, with the single scale of egg weight, it is the normal
distribution curve which has to be made narrower, to fit the statistics for
the mean weight of 3 eggs. The solid and dotted lines, respectively for single
eggs and means of 3, project the ±1 and 2 standard deviations/errors scale
onto the egg weight scale. Do spend some time comparing Figs 7.1 and 7.2.
If you can see they are just two different ways of illustrating the identical
statistics, then you are already well on top of this chapter!

Step 2 – from variance of single data to “variance of
differences”

End result: The variance of differences is twice as large as the variance of
single data – pretty simple again.

Check it out: Apart from means, there is another set of numbers we can
generate from the weights of individual eggs, and that is differences in
weight between two eggs picked at random (Box 7.3). These numbers form
another distribution, this time around a very small mean, since + and −
differences cancel out in the adding up the total. If you think about it,
the true average difference of numbers from the mean cannot be anything
other than zero – that’s what the mean is, it’s the middle number!
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BOX 7.3

Again using random numbers and the weights of eggs from Box 5.1, the first
two eggs selected weighed 65 and 68 g. The difference in weight (second
weight subtracted from first weight) was therefore −3 g.

I repeated this over and over again to get 50 such differences. Sometimes
the pair of eggs were the same weight, making the difference zero. The 50
differences came out as 1 at −5 g, 3 at −4 g, 6 at −3 g, 5 at −2 g, 5 at −1 g,
11 at 0, 7 at +1 g, 2 at +2 g, 7 at +3 g, and 3 at +4 g. You can tell by the
chance few at +2 g that I really did this and haven’t made the numbers up!.

The total of these .50 numbers is zero and their mean is also zero. This
exact zero is pure chance; usually there will be a small total and mean.

[If you still need to look up how to calculate a variance (s2), go back to
page 15 and remind yourself that it is sum of squares of deviations divided by
degrees of freedom, and then to page 23 to remind yourself of the “added
squares of numbers – correction factor” technique for calculating sum of
squares of deviations.]

The correction factor ((
∑

x )2/n) is 0/20 = 0.
The “added squares” (a minus squared is positive) are −52 + (−42) +

(−42) + · · · + 42 = 278.
Therefore sum of squares = 278 − 0 = 278.
Variance is 278/(n − 1) = 278/49 = 5.7.
Standard deviation is therefore

√
5.7 = 2.4.

Box 7.3 shows that the variance of the 50 differences comes out at 5.7.
Clearly 5.7 and 2.7 are close to an extremely simple relationship – that the
variance of differences is twice that of individual numbers. In notation, the
variance is therefore 2s2 (where s2 is the variance of individual values).

The standard deviation (not standard error, as we are dealing with indi-
vidual numbers) of differences between two observations is then the square
root of variance (2.4 g for differences between two eggs, see Box 7.3). In
notation this is

√
2s2 or (the same algebraically) s

√
2 (if we want to derive

it from s rather than s2).

Step 3 – the combination of Steps 1 and 2; the standard error
of difference between means (s.e.d.m.)

End result: From the distribution of individual values we have derived two
other distributions: first that of means of n numbers, and then that of
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BOX 7.4 (See also Fig. 7.3)

It’s pretty obvious, really. The original egg data had 61 g as the lightest egg,
a mean almost spot on 65 g and the heaviest eggs were 69 g. As deviations
from the mean, we had 66 g eggs (a deviation of +1), 64 g eggs (a deviation
of −1), then deviations of +2, −2, +3, −3, etc. with the largest deviations +4
(69 g) and −4 (61 g). This is a range of 8 g.

By contrast, with differences between pairs of eggs, the mean is 0, and we
have differences of +1 (67 − 66 g eggs), −1 (65 − 64 g), +2, −2 and so
until +8 (69 − 61 g) and −8 (61 − 69 g). This is a range of 16 g. Thus the
variation of deviations from a mean of 0 of differences between eggs is twice
the magnitude of the variation of deviations of individual eggs from the mean
of 65 g (Fig. 7.3).

−10 −5 +5

Mean 65 (0)
or mean 0 (0)

+10

61

69

66

62

61–69

69–61

67–61
64–66

65–62

62–69

Fig. 7.3 Random sampling of the same population of numbers gives a much smaller
range of deviations from the mean (65) for single observations (black ovals) than for
differences (mean zero, white ovals.). See Box 7.4.
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differences between two numbers. Starting with the s2 of the individual
values, it turned out that the variance for means of n numbers was s2/n
and for differences between 2 numbers it was 2s2. Now we can put the two
together as:

2s2

n
for the variance of difference between means,

making
√

2s2/n the standard error of differences between two means
(s.e.d.m.).

Check it out: The variance of differences between means is simply the
combination of multiplying the variance of individual numbers by 2 and
dividing by “n.” The s2 for single eggs was 2.7. Double it (for differences) to
5.4. The variance of differences between means of 3 eggs should then
be 5.4 divided by 3 (for means of 3) =1.8. To convince you, go back to the
calculation (near the beginning of this chapter, page 44) of the variance of
lots of sampled differences between such means of 3 eggs (Box 7.1). This
variance was 1.7, satisfyingly close (given the element of chance involved
when sampling) to the variance of 1.8 we have just calculated from the
variance shown by individual egg data.

As the final step – square rooting either the predicted 1.8 or the calculated
1.7 gives ±1.3 g as the standard error of differences between means
of 3 of our eggs, which in notation is:

±
√

2s2

n
or ± s

√
2
n

if we begin with standard deviation rather than variance.

Recap of the calculation of s.e.d.m. from the variance
calculated from the individual values

Double the variance (for differences) of the individual values (in the egg
example we double the variance of 2.7 for single eggs to 5.4). Then divide
(for the variance of differences between means) by the number of
observations in each of the means being compared (thus for means of
3 eggs we divide by 3 = 1.8).

As the final step – square rooting this variance gives us the standard
error of differences between means, which in notation is:

±
√

2s2

n
or ± s

√
2
n

(in the egg example this is
√

1.8 = 1.3).
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Coming back to the standard abbreviation to s.e.d.m. for the standard
error of difference between means, we can use this to create a hopefully
helpful mnemonic for you. If you substitute the words “estimated variance”
for “e” in s.e.d.m, you can remember the calculation as Square root of the
“Estimated variance” after Doubling and Mean-ing (dividing by n of the
mean).

The importance of the standard error of differences
between means

At the beginning of this chapter, I identified the standard error of differ-
ences between means (s.e.d.m.) as the “likelihood yardstick” for judging the
importance we can attach to the size of a difference between two means.
It is the yardstick we use most often in biology, since differences between
means are the main results of our experiments.

Differences of up to 1 s.e.d.m. between the means of two samples would
arise quite frequently by chance (68% of the time, see page 28) when taking
many samples from the same population (the two means are just different
estimates of a single true mean). However, differences exceeding 2 s.e.d.m.
would occur by chance less than 1 in 20 times (5% chance). This would
put them in the “unlikely” category, meaning it is unlikely that two samples
with those means could be drawn from the same population of numbers.
In other words, we would conclude that it is much more likely that the two
samples had come from two populations with different true means.

That is the basis of many statistical significance tests – “is the probability
of these two means being drawn from the same population less than 5%.”
If so (look back to page 43), we would declare the difference as “statistically
significant” at P < 0.05 (P stands for “probability,” and 0.05 is how we
express 5% in probability terms where 1 is certainty), or that the two means
are “significantly different” (P < 0.05).

You should therefore make sure you understand (i) what the s.e.d.m.
actually measures and why it is central to testing the results of experiments
and (ii) how to calculate it from the variance (s2) shown by the individual
observations (see the next section below) before tackling the next chapter.
There, we begin to put the s.e.d.m. through its paces.

Summary of this chapter

This chapter is so important, that it’s worth recapping what it
contains.
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Box 7.1 in this chapter calculated the standard error of differences between
means (n = 3) by actually taking 100 batches of 3 eggs at random, obtain-
ing the means weight of each batch, pairing these means, and obtaining
the 50 differences between the means in each pair. These 50 differences
provided a data set of which the variance could be calculated directly by
the normal algorithm for calculating the variance of a set of numbers. The
standard error of differences between means was then the square root of
this variance.

This calculation involved a sample of 300 eggs to obtain 50 differences
between pairs of means.

In biological experiments, we usually only have one estimate of the mean
for each experimental treatment, and thus only one difference between
means.

One can’t calculate the variability of one number – it hasn’t got any! So
the important message of this chapter is that we can get the variance
of differences between means from the variance shown by the population
of single observations – by doubling this single-observation variance and
then dividing by the n of the mean (i.e. the number of observations
contributing to the mean).

Figure 7.4 illustrates the contents of this chapter, using gray circles for
means and solid black circles for the individual numbers from which each
mean is calculated. Figure 7.5 then shows, in schematic form, the process of
reaching the s.e.d.m. from the variance calculated from the individual num-
bers (observations). Finally, Fig. 7.6 completes Fig. 7.1 by adding, under the
standard normal distribution curve, the scales for the standard deviation of
differences and also the standard error of differences between means. The four
scales for egg weight in this figure represent the four statistics highlighted
in bold type along the bottom line of Fig. 7.5.

Remember that, whatever we are measuring, we expect 95% of the popu-
lation of numbers forming a normal distribution to fall in the range between
2 standard error worths on either side of the mean. Look at Fig. 7.5. You
will see that we ought to be surprised if we picked up just one egg on our egg
farm and found it weighed more than 68.3 g, since this is mean + 2 stan-
dard deviations. Again from Fig. 7.5 , you will see that we ought to be
equally surprised if the total weight of 3 eggs picked at random was over
200 g (mean 66.8 g). Incidentally, 3 eggs weighing only 89 g in total (mean
63 g) would be just as unusual, as would 2 eggs differing in weight by more
than 4.6 g, or if we found a difference in mean weight for 2 batches of
3 eggs that was more than 2.6 g. All have less than a 1 in 20 chance
(less than 5% or P < 0.05) of turning up on the egg farm. All are equal
to or more than their respective mean ± twice their respective standard
deviation/error (see Fig. 7.6).
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Individual numbers
Variance = s2

Standard deviation = s

Differences between
individual numbers
Variance = 2s2

Standard deviation =   (2s2)
or s  2

Means of individual 
numbers
Variance = s 2/n
Standard error =   (s 2/n)
or s   (2/n)

Differences between
means of Individual
numbers
Variance = (2s2)/n
Standard error =   (2s2/n)
or s  (2/n)

Fig. 7.4 Differences between two means illustrated, with the notation for estimates of
variability associated with individual numbers, means, and differences between both.
Large gray circles represent means derived from the five individual numbers (small black
circles) they contain.

We expect the means of two samples from the same pool of possible
numbers forming a normal distribution to be within such limits, i.e. within
2 s.e.d.m. of each other. If the difference is greater than this, then the
probability is the samples came from different pools of numbers.

It is this last sentence which leads us on to the next chapter, which is our
first real use of statistics in an experiment. There’s something else impor-
tant to say at this stage. So far I’ve talked about the factor of 2 in relation
to standard deviations/standard errors as taking us into the “improbable”
tail areas of the normal distribution. I’ve not wanted to keep repeating that
it is 2 (to be accurate, actually 1.96!) only when we have a very large num-
ber of samples. Since our estimate of the standard deviation/error in small
samples has to be suspect (see page 36 and Fig. 6.2), the factor 2 has to be
enlarged progressively as samples get smaller. This will be explained more
fully in the next chapter.
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Observations Differences

Individual
numbers

Means of
n values

Differences
between  2 numbers

Variance

Standard
deviation or
standard
error

s2 × 2

 ÷n

S   2s2

or s ×  2

s2 × 2/n
or s ×   (2/n)

× 2

Square
root

s 2

n

Multiply by 2

Divide by n Divide by n

2s2

  s 2/n
or s ×   n

√ √ √
√

n
s 2 × 2

 ÷ n  ÷ n

 ÷n

Fig. 7.5 Schematic representation of how the standard error of difference between
means (highlighted by rectangles with a solid outline) may be derived from the variance
of single observations (highlighted by rectangles with a broken outline).
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−3s −2s −1s +1s +2s +3sx–
Standard
deviations’ worths

Egg weight (g)

63

60 61 63 64 656562 65 66 67 68 69

64 65 66 67
Mean weight of 3 eggs (g)

−6 −4 −2 +2 +4 +600

Observations on different scales

Weight difference between
2 eggs (g) 

Weight difference between
means of 3 eggs (g) −3 −2 −1 0 +1 +2 +3 +4

Fig. 7.6 Figure 7.1 of the normal curve for egg weights (showing the proportions of
the observations included in various ranges of the standard deviations/errors worth
scale) completed by the addition of scales for weight differences between 2 eggs and
differences between mean weights of three eggs. Note that all scales have to be at
different “magnifications” in order to fit the standard deviations/errors scale.
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EXECUTIVE SUMMARY 2
Standard error of a difference between two means

We can calculate variance (s2) and standard deviation (s) for any set of
numbers, but in this book s2 and s refer throughout to the values calculated
from individual numbers:

1 For INDIVIDUAL NUMBERS we calculate the variance as the mean
(n − 1) squared deviation from the mean, although on calculators
we use the simpler way to get the same answer = added squares −
correction factor)/(n − 1). We square root the variance (s2) to find
the standard deviation (s). These are, as pointed out above, the s2 and s
referred to in the other expressions below.

2 For numbers which represent the MEAN of several (n) numbers, the
variance of such means is s2/n; standard deviation (for means it is called
STANDARD ERROR) is therefore

√
s2/n which can also be written as

s/
√

n.
3 For numbers which represent the DIFFERENCES BETWEEN TWO

INDIVIDUAL NUMBERS taken at random, variance is 2s2; standard
deviation is therefore

√
2s2 which can also be written as s

√
2.

The combination of (2) and (3) is the VARIANCE OF DIFFERENCES
BETWEEN MEANS of several (n) individual numbers. Rather than differ-
ences between one number and another, we are measuring the variance of
differences between mean values, i.e. the variance of lots of data for the
mean of one set of n numbers subtracted from the mean of another
set of n numbers. The appropriate variance, assuming that the variances
of the two sets of numbers are equal, is the combination of doubling s2 (for
differences) and dividing by n (for means) – i.e. 2s2/n. The square root of
this is the STANDARD ERROR OF DIFFERENCES BETWEEN MEANS
(s.e.d.m.) –

√
2s2/n which can also be written as s

√
2/n.
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Spare-time activities

At this stage, accept any difference as “statistically significant” which is at
least twice as large as the appropriate standard deviation/error.

1 Mean yields of 10 strawberry plants in a uniformity trial were (in grams):
239, 176, 235, 217, 234, 216, 318, 190, 181, and 225.
(a) What is the variance of the yield of individual strawberry plants?
(b) On the opposite side of the tractor path, the mean yield of 10 plants of

the same variety was 240 g. Is there any evidence that the two areas
should not be combined for future experiments?

2 Seven observers were shown, for five seconds per dish, five dishes con-
taining mustard seeds. The observers were asked to estimate the number
in each dish, unaware that there were exactly 161 seeds in every dish!
The mean guesses per observer across all five dishes were: 183.2, 149.0,
154.0, 167.2, 187.2, 158.0, and 143.0.

What is the minimum increased number of seeds that you might expect
a new observer to be able to discriminate from 161 seeds in five guesses?

3 Sampling of a field of leeks shows that the mean weight of 100 individual
plants is 135 g with a variance of 37.4.

What weight in grams can you attach to the following?:
(a) A leek 2 standard deviations greater than the mean.
(b) A mean weight (of 5 leeks) of minus 0.7 standard errors.
(c) A weight difference between two individual leeks of plus 1.4 standard

deviations.
(d) The maximum mean weight of eight leeks significantly lower than the

mean weight of the initial 100 leeks sampled.
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The t -test

Chapter features

Introduction 58
The principle of the t-test 58
The t-test in statistical terms 59
Why t? 60
Tables of the t-distribution 61
The standard t-test 64
t-test for means associated with unequal variances 69
The paired t-test 75

Introduction

The t-test is perhaps the most important statistical test used in relation to
biological variation. In the form described in this chapter, it is a complete
test on original data in its own right. However, since it compares means
with the standard error of differences between means, it is also used in the later
stages of other statistical manipulations of original data (see Chapter 10).

The t-test enables us to determine the probability that two sample means
could have been drawn from the same population of numbers, i.e. the two
sample means are really two estimates of one and the same mean. Only if
that probability is sufficiently low (most biologists use the 5% probability
level, see Chapter 7) do we claim a “statistically significant difference”
between the two means, and that it is therefore unlikely that the two means
could have been sampled from a single population of numbers (Box 8.1),
and therefore are much more likely to be estimates of means which truly
differ in magnitude.

The principle of the t -test

The t-test asks: “Is the difference between the two means large enough, in
relation to the variation in the biological material, that it is reasonable to
conclude that we have estimates of two truly different means?” – or to put
it in the “negative” – “is it likely that the difference between the two means
is just a bad estimate of a zero difference?”
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BOX 8.1

Ten plants in a plot of lettuces, all from the same seed packet (variety), might
weigh 500, 450, 475, 435, 525, 430, 464, 513, 498, and 443 g. If we had
sampled only five lettuces, the mean of the first five weights would be 477.0 g.
Had we sampled only the last five, the mean would have been only 469.6 g, a
difference of 7.4 g. Now in this case we know that both means are estimates
of the same figure, the true mean of the whole plot of lettuces – somewhere
around 473 g. The difference of 7.4 g above has arisen by chance. But what
would be our view if the two means had come from two different lettuce vari-
eties? Could we really claim that the first variety was the better yielder? I don’t
think so, not without an objective statistical test.

Hopefully it reminds you of the last chapter if I point out that we normally,
as in the lettuce example, only have one mean from each variety. Our “yard-
stick” for evaluating the one difference between means that we have is the
standard error of such differences between means. Fortunately we can derive
this s.e.d.m. from the variability of individual lettuces in the sample (from their
variance: doubling it and dividing by the number in the sample, see Chapter 7).

Again a reminder from the previous chapters: We normally accept that a 1
in 20 or less chance (P = or <0.05 where P = 1 is 100% certainty) of drawing
the means from the same pool of numbers constitutes a “significant” difference
between those means.

This level of probability is of course arbitrary. Even double the probability
(the 10% chance, P = 0.1) is clearly a result of interest; we would be arro-
gant to claim that we had established there is no true difference between
the means. Equally we should not take P = 0.05 as a sudden “cut-off.” We
must always remember, when claiming a statistically significant result at
this level of probability, that there is a 1 in 20 chance we have drawn the
wrong conclusion!

The t -test in statistical terms

• We erect the hypothesis (the so-called “null” hypothesis) that there is no
true difference between the two means, i.e. the difference found is a bad
estimate of a true zero difference.

• We use the individual sampled numbers contributing to both means to
obtain a combined (pooled) estimate of the background variability (as
variance) of the biological material.
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• By three simple steps, we convert this pooled estimate of variance to
the standard error of differences between means (or s.e.d.m) of n numbers
drawn from the same population.

• Given that the true average difference of means drawn from the same
population is zero, we assess how many “standard errors worths”
(i.e. s.e.d.m. worths) away from zero the difference between the two
means represents.

• If this yardstick takes us into a range which makes it unlikely (less than a
1 in 20 chance) that the difference between the means is a bad estimate
of zero, we conclude we have disproved the null hypothesis we began
with, i.e. the means really are different.

Why t?

So the t-test boils down to:

Is the difference between the means
s.e.d.m.

big enough?

What is “big enough?” For very large samples (see earlier chapters, par-
ticularly Chapter 7) of perhaps more than 60 numbers each, “big enough”
means >2 (actually >1.96), i.e. >1.96 s.e.d.m. This factor of 1.96 is
because, in the theoretical normal distribution, numbers more than 1.96
standard deviations away from their mean occur with a frequency of less
than 5 %. These limits of mean ± 1.96 standard deviations/errors worths
are known as the “95% confidence limits.”

Now go back to page 53 and to the paragraph which begins “Remember
that, whatever we are measuring . . ..” This paragraph really already
describes the t-test in principle. Can you see this?

Of course, we can set any per cent confidence limits other than 95% that
we like in terms of standard deviations/errors worths. As pointed out at the
end of Chapter 7, we need to amplify this factor of 1.96 for our 95% confi-
dence limits as our samples get smaller to compensate for the increasingly
poor estimate of the true variance (Box 8.2 and Fig. 8.1). It is obvious from
Fig. 8.1, and also intuitively so, that our ability to measure true variance
with any accuracy decreases as true variance increases and/or sample size
decreases. Underestimating true variance could lead us to use too small
a standard error for differences between means, and lead us to claim a
significant difference between two means when the null hypothesis of no
difference is actually true (the jargon for this is a “Type I error”). Over-
estimated variances could lead to the opposite – we fail to reject the null
hypothesis when we should (“Type II error”).



Van Emden: “C008” — 2008/1/31 — 16:18 — PAGE 61 — #4

The t -test 61

BOX 8.2

To illustrate how good or how bad are estimates, based on small samples,
of the true variance of a population of numbers, I generated four theoretical
normal distributions of different variability around the same mean of 115.

The variances of these four distributions were very different at 460, 230, 115,
and 57.5. I then took six random samples from each distribution, at each of
six different sample sizes: 5, 10, 20, 40, 80, and 160 numbers. The variances
of these 36 different samples are plotted against sample size in Fig. 8.1, with
the true variance shown by the broken horizontal line.

Tables of the t -distribution

These amplification factors for different size samples (as measured by
degrees of freedom, i.e. n − 1) can be found in tables of “t” values
(Appendix A2.1). They were compiled early in the 20th century by the
statistician William Gossett, using the pen-name of “Student” – the ampli-
fication factor is thus known as “Student’s t.” The principal of Student’s
t-distribution is that it widens the confidence limits in terms of standard
deviations/errors worths as samples get smaller. These limits widen to
the degree that the per cent of the possible numbers/estimates included
theoretically remains constant regardless of sample size.

The requirement that only 5% of differences between means should fall
outside the boundary is approached by multiplying the standard devia-
tion/error by a different t for P = 0.05 in the table (Appendix A2.1)
as sample size (measured as n − 1) changes. To see this in action, go to
Appendix A2.1, and locate the value of 1.960 at the bottom of the column
headed 0.05 (i.e. P = 0.05). Note that the n − 1 value (in the extreme left
column) applicable to the t of 1.96 is very large – infinity, in fact! Now run
your finger up the column and note how t increases until it reaches the
huge value of 12.7 at the top of the column, where only two samples are
involved (n − 1 = 1).

How t increases as sample size decreases is also illustrated by Fig. 8.2 by
the widening of the shaded areas from right to left (see Box 8.3 for expla-
nation). Widening the s.e.d.m. × t limits for small samples has countered
the danger of underestimating the true variance in Fig. 8.1 and thus the
danger of Type I error (see above). However, there is always a balance, and
overestimation of s.e.d.m. (leading to the danger of Type II errors) applies
to more of the data sets.
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Fig. 8.1 Improved estimate of true variance (dotted horizontal lines) with increasing sample size in four populations with different
variability. Variance = top left, 460; top right, 230; bottom left, 115; bottom right, 57.5.
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Fig. 8.2 95% confidence limits for observations of the most variable distribution in
Fig. 8.1 (i.e. s2 = 460). Three confidence limit calculations are shown. The dotted line
shows the true spread on either side of the mean encompassing 95% of observations
(i.e. true s × 1.96). The solid lines bounding the lighter gray columns for each sample
size show the confidence limit after multiplying the true s by the appropriate tabulated
t-value for the relevant sample size, and the data points show the 36 points of Fig. 8.1
converted to confidence limits by multiplying the observed s for each point by 1.96.

BOX 8.3

Figure 8.2 uses the variance data of the most variable distribution from Fig. 8.1
(where variance = 460) to calculate 95% confidence limits, i.e. (the standard
deviations’ worths which encompass 95% of the observations).

Confidence limits of the sampled data: Each of the 36 sample variances
(s2) from the top left-hand data set in Fig. 8.1 has been square rooted
to calculate the standard deviation (s) and this has then been multiplied
by 1.96 (t which ignores the small size of the samples).

The true confidence limits of the distribuition from which all the sam-
ples were taken: This is of course the same for all sample sizes as√

460 × 1.96, and is shown by the broken horizontal line.
Confidence limits of the sampled data magnified by t for the relevant sample

size: This is obtained by multiplying s by t for P = 0.05 at n − 1 (for the
different sample sizes) degrees of freedom. It is shown by the solid line
bounding the gray area of sampled variances lying within the confidence
limits for that sample size.

You may be underwhelmed by the number of points ouside these s × t
confidence limits, but bear in mind that there is very little of the distribution
beyond these limits. Thus, ignoring the one extreme outlier for samples of 10
observations, the next most aberrant point (arrowed) only represents a further
0.1 s × t worths beyond the solid line for its sample size (approximately a 96%
confidence limit)
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The standard t -test

I refer to this as the “standard” test, as it is probably the one most used; alter-
native versions will follow later in the chapter. This “standard” test is most
appropriate to sample sizes of 30 or less, and also to larger samples where
the variation around the two means being compared is similar. Comparing
a mean of varying numbers with a series of zeros would be stretching
the test well beyond its valid limits (see “t-test for means associated with
unequal variances” below).

The procedure

Figure 8.3 shows the test as a sequence of numbered stages. You may,
however, prefer the version in Box 8.4, where the test is illustrated on
a set of data. Either way, the text which follows picks up on what each
stage is doing, following the white numbers on black circles in Fig. 8.3
and Box 8.4. The typical t-test evaluates the significance of the difference
between two means, each of a number of individual observations. Hence
the two columns (series x and y) of individual observations in Box 8.4.
Often the two means would be based on an equal number of observations,
but I have used unequal numbers in Box 8.4 to show that the standard
t-test can still be used.

❶Some summary numbers

Initially, we compile the simplest of statistics for each column of observa-
tions (x and y), namely (using the x series as the example) their number
(n), their total (

∑
x), and the mean (

∑
x/n = x).

Pooled variance

This computation is the main new concept the t-test introduces. Combining
the variances of the x and y series by adding them together just wouldn’t
give the right answer. Once we have divided by n − 1, variability is no
longer additive (Box 8.5). But one can add sums of squares together.
If you go back to what sums of squares really are (page 15), they are
the sums of numbers, each of which is a squared deviation from the
mean. Each of these squared deviations is added to the ones before –
whether you add them in groups of one, two, three, or four won’t
change the final total (Box 8.5). Grasp this concept – you will find
it essential for understanding the principle of the analysis of variance
(Chapter 10).
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SUMMARY OF t -TEST 

Numbers represent suggested order of calculation 

TREATMENT A TREATMENT B
      -------                                                             --------- 
      -------                                                             --------- 
      -------                                                             --------- 
      -------                                                             --------- 
      -------                                                             --------- 
      -------                                                             --------- 
      -------                                                             --------- 
      -------                                                             --------- 
      -------                                                             --------- 

         ______________                                     __________________ 

MEAN A MEAN B

     Calculate sum of squares
of figures in column A

 Add the two sums of squares together 

 Divide by (n −1)+(n −1) to obtain pooled s 2

 Convert to s.e.d.m. (by doubling, dividing by n and square rooting)

either as   2s2/n or s ×   1/n + 1/n)

 TEST:  is the observed difference between the means divided by s.e.d.m. > t  at 
P = 0.05 and 1/n + 1/n degrees of freedom?

1

5

6 7

8

9

2 3 4      Calculate sum of squares
of figures in column B

2 3 4

1

Fig. 8.3 Summary of the procedure involved in the standard t-test.

❷So we calculate the correction factor (for sums of squares by the quick
method) separately for series x and series y. ❸Similarly we add the squared
numbers separately for x and y and so, after subtracting the appropriate
correction factor for each series, ❹we arrive at a separate figure for the sum
of squares for each series. Note that we have used the two different series
totals in the correction factors for the two series. This is equivalent to using



Van Emden: “C008” — 2008/1/31 — 16:18 — PAGE 66 — #9

66 Chapter 8

BOX 8.4

We have a sample of 12 men and 14 women who have been subjected to the
horror of a statistics examination and want to test whether there is any evidence
that the difference of 2.71% in the mean per cent mark awarded (59.08 for men
as against 61.79 for women) is statistically significant. Examination marks,
especially those between 80% and 20%, can be expected to be normally
distributed, so transformation (which is often necessary with percentages, see
page 40) is not necessary.

The marks and subsequent calculations are as follows:

Men (x series) Women (y series)
75 80
72 76
68 74
66 70
65 68
65 68
60 66
58 65
50 62
48 58
42 56
40 43

40
39

� n 12 14
Total

∑
x 709 865

∑
y

Mean x 59.08 61.79 y

� Correction factor
(∑

x
)2

/n 41,980.08 53,444.64
(∑

y
)2

/n

� Added squares
∑

x 2 43,460.99 55,695.00
∑

y 2

� Sum of squares
∑

x 2 − (∑
x
)2

/n 1480.91 2250.36
∑

y 2 − (∑
y
)2

/n

	 Pooled sum of squares

= ∑
x 2 − (∑

x
)2

/n + ∑
x 2 − (∑

x
)2

/n 3731.26

	 Pooled degrees of freedom
= 11 + 13 24


 Pooled variance 155.47

� Pooled standard deviation 12.47

� s.e.d.m. = s
√

1/n + 1/n
= 12.47

√
1/12 + 1/14 4.91


 t = x and y difference
s.e.d.m.

= 59.08 and 61.79 difference
4.91

= 0.55
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BOX 8.5

To illustrate pooling variance, let’s just take the results for men (x series) from
Box 8.4, and compute the sums of squares by actually using deviations from
the mean (which is 59.08) rather than the quicker added squares – correction
factor method we have got used to by now:

x (x – x) (x – x)2 ∑
(x – x)2

75 15.92 253.45
72 12.92 166.93
68 8.92 79.56
66 6.92 47.88 547.82
65 5.92 35.05
65 5.92 35.05
60 0.92 0.85
58 −1.08 1.17
50 −9.08 82.45
48 −11.08 122.76
42 −17.08 291.72
40 −19.08 364.04 933.09

1480.99 1480.91

Not surprisingly, whether we sum the squared deviations one after the other,
or in two blocks above and below the line (547.82 + 933.09), we get the same
answer (1480.91) and the variance is 1480.91/n −1 = 1480.91/11 = 134.63.

But what happens if we calculate the two variances in the right-hand column
and then add them together?

Above the line variance is 547.82/3 = 182.61, and below the line
933.09/7 = 133.30. This gives a combined variance of 315.91, much larger
than the right answer above. Yes I know the divisors were different, 11 as com-
pared with 3 + 7, but that clearly can’t explain the huge discrepancy between
134.63 and 315.91. No, we have to pool the sums of squares BEFORE we
divide by n − 1.

It makes total sense! The components (182.61 and 133.30) of the larger
answer (315.91) are really estimates, from two small samples, of the variance
of 134.63 estimated from all 12 samples. So we should expect an answer
almost double that 134.63.

two different means if we were to calculate the sums of squares directly
by adding squared deviations from the mean. Using the two different totals
removes from the pooled variance the variability introduced by having two
different treatments, and so we only measure the variation of the biological
material in each column around its respective mean.
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❺The pooled sum of squares is no more complex than the sums of
squares of the two series added together.

❻The pooled degrees of freedom are perhaps less intuitive. However, if
you remind yourself from page 16 that using the sample mean to calculate
sum of squares loses a degree of freedom, and that we have used both
means in calculating our pooled sum of squares, then we also need to pool
two degrees of freedom as (n − 1) + (n − 1) for the two sums of squares
being pooled. So in the example in Box 8.4, with unequal numbers in the
two columns, we pool 11 + 13 = 24.

❼ Remember, variance is sum of squares divided by degrees of
freedom (page 16), so pooled variance is pooled sum of squares divided by
pooled degrees of freedom.

Standard error of differences between means (s.e.d.m.)

This calculation begins with the pooled variance. Remember the mnemonic
on page 52. The s.e.d.m. is “the Square root of the Estimated variance, after
Doubling and Meaning.” In notation this is:

√

2s2

n
.

This is easy if n is the same for both means: we double the pooled variance,
divide by the n shared by both means, and then square root. ❽However
if, as in our example in Box 8.4, the number of observations for each
mean differs, we need to get the pooled standard error (s) obtained by
square rooting the pooled variance. We then develop our calculation for
the s.e.d.m. from the algebraic identity that

√

2s2

n
can also be written as s

√
2
n

.

Hopefully your algebra is still up to this? Although either of these
identities is fine if the two means are based on the same number of
observations, the second one enables us to go one step further where
unequal numbers of observations are involved. The 2/n can be rewrit-
ten as 1/n + 1/n, i.e. the s.e.d.m. can be rewritten as s

√
1/n + 1/n, giving

us the opportunity to insert the two different n values of 12 and 14 (see
step ❽ in Box 8.4). Thus we obtain an s.e.d.m. for the statistics marks
of 4.91.
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❾The actual t -test

To recap from the start of this chapter, the t-test asks:

is the difference between the means
s.e.d.m.

big enough to be statistically significant?

where big enough to be statistically significant is normally taken as the
tabulated value of t at P = 0.05 for the degrees of freedom of the pooled
variance (11 + 13 = 24), i.e.:

is the difference between the means
s.e.d.m.

> t

So for the mean statistics marks of men and women in our Box 8.4
example, the t-test is:

59.08 − 61.79
4.91

= 0.55

You may think it should be –0.55? Well, the sign is immaterial. 0.55 is
the difference between the means; the two means could equally have been
reversed in order. Remember that, but in any case in future we’ll express
a difference like x − y where we use the difference as an absolute value
(i.e. regardless of direction) as “x and y difference.” The value of t in the
tables at P = 0.05 and 24 degrees of freedom is 2.06 (Appendix A2.1). The
difference between the means is only half the s.e.d.m. and nowhere near
the 95% confidence limit for differences between statistics mark means that
a t of 2.06 represents. The difference of about 3 marks is therefore the sort
of difference between two means that would often occur if we sampled the
marks of either gender twice. We have not disproved the “null hypothesis”
(page 59). The difference between the means is negligible in terms of the
variation that occurs between individual students and we have absolutely
no justification for suggesting there is any difference between the statistics
marks of our men and women students. The t value would have had to
reach or exceed 2.06 before we could claim any difference between the
mean marks for the sexes.

t -test for means associated with unequal variances

The “standard t-test” assumes that the two means came from normal
distributions with similar variances. In effect we are testing whether
the two means could have been sampled from the same population of
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numbers. Then, particularly useful with small samples, the numerators of
the variance formula (i.e. the sum of squares of deviations from the mean)
could be combined as a pooled estimate of the variability of the biological
material.

Sometimes, however, we know we are dealing with two distinct popula-
tions of numbers, since the variance of the observations for each mean are
noticeably unequal (for what “noticeably unequal” means, see the F-test
in the next chapter). We may still want to determine whether the means
differ – for example, one apple variety may have a clear advantage over
another in terms of uniformity of fruit size, but we may nevertheless also
want to know that its yield per tree is not inferior. We cannot however
pretend that the biological material shows uniform and thus “poolable”
variation! However, we do need enough observations around both means
to be able to detect this (remind yourself of Fig. 8.1), so the form of the
t-test discussed here tends to involve samples in excess of 30.

The s.e.d.m. when variances are unequal

The standard error for difference between means (s.e.d.m.) is most sim-
ply remembered as “the Square root of the Estimated variance, then
Doubled and Mean-ed” – in notation this is

√
s2 × 2/n. The formula is

however more usually written as
√

2s2/n, and the algebra can be tweaked
further. Although

√
2s2/n is fine for how we use the pooled variance

in the standard t-test with equal numbers of observations for the two
means, now we don’t have a common s2 and the two means may not
be based on equal numbers. However, the notation

√
s2 × 2/n involves

2s2, obtained by doubling one (pooled) variance in the standard test.
With the t-test for unequal variances we have two variances, each of
which we can use once to get 2 × s2, instead of doubling one vari-
ance as in the standard test. Thus the s.e.d.m

√
s2 × 2/n can be written

as
√

s2/n + s2/n, enabling us to insert both our unequal variances and
unequal numbers! (The two s2/n values in this expression are shown
respectively in bold and italics to indicate they refer to the data for different
means).

So the t-test for means associated with unequal variances is still:

is the difference between the means
“s.e.d.m.”

> t

but with the s.e.d.m. in quotation marks because it is modified to take
account of the fact that there are two variances and not one pooled
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variance. So the t-test becomes:

is the difference between the means
√

s2

n + s2

n

> “t”

where bold and italics refer to the different data for the two means. This can
alternatively be written as:

is the difference between the means√
(s2/n + s2/n)

> t

which is the way of expressing division procedures occurring within a
divisor that I tend to use throughout this book.

We again use the P = 0.05 column in the t table, but we need to spend a
bit of time thinking of what are the appropriate degrees of freedom. With a
pooled variance, remember, we used (n – 1) + (n − 1) degrees of freedom
because the variation represented by the variance was assumed to be that
of a pool of n + n observations. In other words, it is as if we had calculated
just one variance from a sample size of n + n. With unequal variances,
each is calculated from the rather smaller sample size of just one “n” – and
t has to express the poorer reliability we can place on estimates from small
samples (Box 8.2 and Fig. 8.1), even though we have two of them.

The magnitude of the s.e.d.m. will be dominated by the variability of the
larger set of numbers (Box 8.6), and the difference between two means is
less likely to be significant as the difference between the variance and/or
number of observations in the two treatments increases. The solution is

BOX 8.6

To show the effect of a differing n in the t -test for means associated with differ-
ent variances, we’ll do the t calculation for two different populations (mean 50
and variance 200 and mean 25 and variance 50) three times. In each case
the two series will be distinguished in bold and italics, and the total number
of observations will be kept constant at 60.

1 Both variances based on 30 numbers:

t = 50 and 25 difference
√

200/30 + 50/30
= 25√

6.67 + 1.66
= 25

2.89
= 8.65

(Continued )
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BOX 8.6 Continued

2 Larger variance based on larger n (e.g. numbers are 50 and 10 to still add
to 60):

t = 50 and 25 difference
√

200/50 + 50/10
= 25√

4 + 5
= 25

3
= 8.33

Note that t is reduced, since the poorer estimate of variability from only 10
samples has raised its s2/n from 1.66 to 5, with relatively little change to
the s2/n for the sample of 50 observations.

3 Larger variance based on smaller n (e.g. numbers are 10 and 50 to still add
to 60):

t = 50 and 25 difference
√

200/10 + 50/50
= 25√

20 + 1
= 25

4.58
= 5.46

Note t is now much reduced because most of the variability comes from the
smaller sample to give a huge s2/n of 20.

The calculations (see page 73) below (using the example in this box and
bold and italic fonts as before) show how d.f. (and therefore the likelihood of a
significant t ) decrease as the numbers of observations in the two treatments
(total kept at 60) differ increasingly in either direction from equal n. High num-
bers of observations in the more variable treatment (in bold) reduce the d.f.
especially strongly. Note that d.f. have been rounded to integer values:

n n s2 s2 d.f.
5 55 200 50 6

10 50 200 50 26
15 45 200 50 49
20 40 200 50 58
25 35 200 50 53
30 30 200 50 43
35 25 200 50 33
40 20 200 50 24
45 15 200 50 16
50 10 200 50 10
55 5 200 50 4
30 30 200 200 58

The last line in the table shows that the calculation gives d.f. of (n – 1) +
(n − 1) if variances and number of observations are both equal.
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to reduce the degrees of freedom from (n – 1) + (n − 1) against which to
look up t in the t table. Box 8.6 therefore gives a calculation which deals
with this problem not by recalculating t, but recalculating the degrees of
freedom against which to look up t (calculated by the standard method)
in the table of t. This of course reduces the significance of any value of t.
The calculation is complex, and I fear my understanding does not stretch
to deriving it for you logically. You may at least be comforted by the result
(see Box 8.6) that d.f. are (n – 1) + (n − 1) if we run the spreadsheet with
both variances and n equal for both treatments.

The starting point is on page 45 or Fig. 7.5, where I pointed out that
the variance of mean values was the variance of individual observations
(s2) divided by the number of observations in the mean (n), i.e. s2/n. The
variance of the means of the two populations (again distinguished by bold
and italic fonts below) in our t-test is the main factor in the calculation we
use for d.f. when these variances are obviously not equal:

d.f. = (variance of mean + variance of mean)2

(variance of mean)2/n – 1 + (variance of mean)2/n − 1

Box 8.6 shows how the degrees of freedom change as the same number of
observations is partitioned differently between two populations of disparate
variance.

A worked example of the t -test for means associated with
unequal variances

The example chosen includes the complication of unequal numbers as well
as unequal variances (Box 8.7) and follows as far as possible the steps for the
“standard” t-test from Fig. 8.3 and Box 8.4. Note in Box 8.7, however, that
at step ❼ variances for the two series are calculated separately and neither
the sums of squares nor the degrees of freedom are pooled as they are in
the standard t-test. The combination (not pooling) of the two variances
happens at step ❽ in Box 8.7, where each variance (s2) is divided by its
own “n” to convert it to a variance of means (s2/n) and then the two are
added together to give us the doubling element required for variances of
differences between means (2 × s2/n). Square rooting then gives us the
standard error of differences between means (the s.e.d.m.). ❾ The actual
t-test: Dividing the difference between the means by the s.e.d.m. gives us a
high observed t of 40.86.

The final calculation in Box 8.7 inserts the real numbers into the
somewhat complex equation given above for calculating the d.f. appro-
priate when the two variances are not equal. (n – 1) + (n − 1) would be
39 + 28 = 67, but our calculation to accommodate unequal variances
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BOX 8.7

40 tubers of the potato variety “Maris Piper” and 29 of “Jupiter” were obtained
as ready-bagged in a supermarket, and weighed individually to test whether
the mean tuber weight differed between the varieties, though it was obvious
that the size of “Maris Piper” tubers varied very much more than “Jupiter”
tubers. As in the text of this chapter, notation for the two populations is distin-
guished where necessary by using bold text for “Maris Piper” and italic text for
“Jupiter.” The calculations are as follows:

“Maris Piper” “Jupiter”
(x series) (y series)

Columns of individual observations not provided in the cause of brevity

� n 40 29
Total

∑
x 4160 2455

∑
y

Mean x 104 85 y

� Correction factor
(∑

x
)2

/n 432,640.00 207,828.44
(∑

y
)2

/n

� Added squares
∑

x2 432,900.14 207,875.70
∑

y 2

�
∑

x2 − (∑
x
)2

/n 260.14 42.26
∑

y 2 − (∑
y
)2

/n


 Degrees of freedom 39 28

� Variance (s2):

=
[∑

x2 − (∑
x
)2

/n
]
/n − 1 6.67 1.46

[∑
y 2−(∑

y
)2

/n
]
/n−1

s2/n = 6.67/40 = 0.166 = 1.46/29 = 0.050

� s.e.d.m. =
√

s2/n for Maris + s2/n for Jupiter

= √
0.166 + 0.050 = 0.465


 t = x and y difference
s.e.d.m.

= 104 and 85 difference
0.465

= 40.86

t needed to reach significance at P = 0.05:

= (s2/n + s2 n)2

(s2/n)2/n – 1 + (s2/n)2/n − 1

= (0.166 + 0.050)2

0.1662/39 + 0.0502/28
= 0.0467

0.000707 + 0.0000892∗ = 58.65 (round to 59)

* Many calculators would show this divisor as 7.07E − 4 + 8.92E − 5 (the E- number

showing how many places the decimal point should be moved to the left).
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reduces this to 59 (Box 8.7). In the example, this actually makes neg-
ligible difference to the outcome. At P = 0.05 for 60 d.f. (close to the
calculated 59) t is 2.000. Clearly our observed t-value of over 40 is highly
significant (t at P = 0.001 is still only 3.460!). We can conclude that the
mean tuber weight of “Maris Piper” is indeed greater than that of “Jupiter.”

The paired t -test

This is a very efficient-test for identifying differences between means, espe-
cially when the material being studied is very variable. The basic principle
of the test is that we calculate the pooled variance, not from the variance
of the individual observations as done previously, but directly from dif-
ferences between pairs of numbers, differences which are the result of
the experimental treatment we are investigating.

A description of this test really has to begin with some suitable data,
for example the dry weight of plants grown in two different field soils
(Box 8.8).

It is obvious from Box 8.8 that there is high variance within each column
stemming from the very different-sized plant species that were used to
test the two soils fully. These variances are pretty similar in the two soils
and so we could (though we would be foolish to do so) ignore that the
data are paired by plant species – and use the standard t-test as described
earlier:

t = x and y difference
s.e. of difference between means of 10 figures

As “n” is the same for both soils, we could use the formula:

tP = 0.05,18 d.f . = x and y difference
√

2s2/n

The pooled variance in the standard t-test (remember we add the sums
of squares before dividing by degrees of freedom) is:

481.39 + 456.06
9 + 9

= 52.08 and t = 9.07 and 8.87 difference
√

2 × 52.08/10
= 0.06.

So that’s the result of using the standard t-test, and we would conclude
that the difference between the means of 0.20 is very small in s.e.d.m. terms
and is therefore a reasonably close estimate of a true difference between the
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BOX 8.8

To evaluate the relative merits of two field soils for container-grown plants in
a nursery, the growth of one specimen of each of 10 different plant species
was measured in each soil. Data recorded were the dry weight in grams of the
aerial parts of the plant when ready for sale.

Species Soil A Soil B
(x series) (y series)

1 5.8 5.7
2 12.4 11.9
3 1.4 1.6
4 3.9 3.8
5 24.4 24.0
6 16.4 15.8
7 9.2 9.0
8 10.4 10.2
9 6.5 6.4
10 0.3 0.3

n 10 10
Total

∑
x 90.7 88.7

∑
y

Mean x 9.07 8.87 y

Correction factor
(∑

x
)2

/n 822.65 786.77
(∑

y
)2

/n

Added squares
∑

x2 1304.03 1242.83
∑

y 2

Sum of squares
∑

x2 − (∑
x
)2

/n 481.38 456.06
∑

y 2 − (∑
y
)2

/n

Degrees of freedom 9 9

Variance (s2):

=
[∑

x2 − (∑
x
)2

/n
]
/n − 1 53.49 50.67

[∑
y 2 − (∑

y
)2

/n
]
/n − 1

means of zero. We would conclude that the two soils are equally suitable
for growing a wide range of plant subjects. Yet if you look at the data in
Box 8.8 again, there does seem to be a very consistent pattern of slightly
poorer growth in Soil B (except for plant species 10, which attains the
same dry weight in both soils and species 3 where growth is a little poorer
in soil A). Surely this pretty regularly occurring superiority of Soil A is
not just chance variation? The trouble with our standard t-test is that the
large variation within the 10 plants in soil A is not paired with the similar
obviously variation between plant species in soil B. In other words, the
standard t-test takes no notice of the fact that each number in the x series
has an obvious y partner. The standard test would give you the same pooled
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BOX 8.9

Species Soil A (x series) Soil B (y series) Difference x − y (z series)

1 5.8 5.7 +0.1
2 12.4 11.9 +0.5
3 1.4 1.6 -0.2
4 3.9 3.8 +0.1
5 24.4 24.0 +0.4
6 16.4 15.8 +0.6
7 9.2 9.0 +0.2
8 10.4 10.2 +0.2
9 6.5 6.4 +0.1
10 0.3 0.3 0

Mean x 9.07 8.87 y

Total
∑

z 2.0
n − 1 9

Correction factor
(∑

z
)2

/n = 42/10 0.4

Added squares
∑

z2 = +12 + 0.52 + (−22) + · · · + 02 0.92

Sum of squares
∑

z2 − (∑
z
)2

/n 0.52

Variance (s2) = Sum of squares/n − 1 = 0.52/9 0.058

variance whether or not – or how many times – you shuffled the numbers
within each series.

In the paired t-test, by contrast, the order of the numbers in each series
is crucial – the partners must be kept together as a pair. Then we are able
to remove the high variability between the plant species by using as the
data the 10 differences between the members of each pair (the difference
caused by the experimental treatment of a different soil). These differences
are shown in Box 8.9.

You will see in Box 8.9 that the 10 differences (x − y) in the individual
pairs are numbers (with a + or − sign) which can be used to generate a
variance (s2) of 0.058. As the 10 numbers are differences, their variance
is already the variance of differences between individual observations (the 2s2

of Fig. 6.2 or double the pooled variance in the standard t-test). In other
words, our calculated 0.058 above is the e(estimated variance of individual
numbers) and the d (doubling for differences) and we then only need the
m (divide by n of the mean) and the s (square root) to calculate the s.e.d.m.
for the t-test.

So our s.e.d.m. is
√

0.058/10 = 0.076.
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The value of t as usual is the difference between the mean of the x
series and that of the y series (i.e. x − y) divided by the s.e.d.m., and so is
0.2/0.076 = 2.262.

As we have used the variability of 10 numbers (the 10 differences rather
than the 20 dry weights) for our variance, degrees of freedom for t are only
9 compared with 18(9 + 9) had we used the standard t-test.

The tabulated value for tP = 0.05 for 9 d.f. is exactly 2.262. Our calculated
t is also 2.262 and so is significant at exactly the 1 in 20 chance of drawing
the wrong conclusion. This is an extremely borderline result for rejecting
the null hypothesis that our two soil types have no effect on plant dry
weight; there is really insufficient evidence either way.

So the comparison of the unpaired and paired t-test of the same data
(Box 8.8) is as follows:

The unpaired test gave a t of 0.060 with 18 d.f. Tabulated t (P = 0.05)
was much higher at 2.101; we accept the null hypothesis and conclude
that plant dry weight in both soils is virtually the same.

The paired test gave a t of 2.262 with 9 d.f. Tabulated t (P = 0.05) is
also 2.262: As pointed out above, this casts considerable doubt on the
conclusion from the unpaired test that plant dry weight does not differ
between the soils.

The paired t-test (in spite of lower degrees of freedom) is clearly far
more sensitive and far more appropriate where data are paired (as in
Box 8.8).

Pair when possible

Experiments involving only two treatments and suitable for analysis by
the t-test can often be improved by building “pairing” into the design.
For example, with experiments where plants are in pots, they can be size-
matched in pairs before the two treatments are applied. Other pairing could
arise from using two leaves per plant, the right and left halves of the same
leaf, two fish in each of several fish tanks, etc. However, pairing does reduce
the degrees of freedom for t (which then has to be larger to reach statistical
significance). It therefore does pay to look for variability worth pairing in
the experiment before deciding whether or not to pair the observations.

In any event, nothing is ever lost by pairing observations when setting
up the experiment, if there is an obvious reason for doing so. This is a rare
instance in statistics where it is “legal” to decide – after the data have been
recorded – whether to analyze those data by one calculation (paired) or
a different one (unpaired). If the paired analysis cannot capitalize on the
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pairing sufficiently to outweigh the higher t required by the loss of degrees
of freedom, then an unpaired test is still perfectly valid. But beware! The
reverse is not true. You cannot set up an experiment as “unpaired” and
then pair the data “after the event,” e.g. by making the largest number in
each series a pair, and so on. Certainly not!
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EXECUTIVE SUMMARY 3
The t-test

By this time, it is assumed that you have “come to terms” with the
concepts:

1 that we measure variability by “variance”;
2 that we can derive variances for numbers which represent means or

difference values – all from the variance of individual values;
3 that standard error (for means or differences between means) is the

square root of the appropriate variance;
4 that if variance of individual values is s2, and the variances of two

populations is equal, then the standard error appropriate for judging
“differences between their means” is

√
2s2/n;

5 that we normally use the admittedly arbitrary convention that any value
which is more than some 2 standard errors different from the mean is
regarded as a significantly “unlikely” event (i.e. having less than a 1 in
20 chance of occurring).

The t-test is the significance test normally used to test differences between
two means in biology. After sampling two experimental treatments, we
finish up with two mean values, one for each treatment. The original
data are the basis for measuring “sampling variation” (i.e. variance of
the individual values). The stages of the test (where variance in the two
treatments can be assumed equal) are as follows:

1 We see if it is possible to reject the hypothesis that there is no real
difference between the means of the two treatments.

2 If this “null” hypothesis were true, then whatever difference we have
found between the means (i.e. the mean A and mean B difference) is
in the range of “likely” differences, i.e. likely to arise by chance sampling
when taking small samples from two populations of numbers whose real
means are identical (i.e. for the whole populations, the mean A and
mean B difference = 0).

3 To test the null hypothesis, we need to know what size differences between
two identical means could reasonably be expected just as a result of
sampling. We can then assess whether the observed difference between
the treatments is large enough for it to be unlikely that sampling
could account for the difference between the two means that we have
observed.

4 We calculate the sum of squares (the top of the variance expres-
sion) separately for each column of figures. This (remember?, although
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we calculate it by added squares minus the correction factor) is really
the summed squared deviations of the numbers from their mean,
and so measures variation around the mean (we have eliminated any
bias for different means in the two columns by theoretically subtract-
ing the mean of its column from each number when we use the
column total in the correction factor). We calculate the combined
(= pooled) variance by adding the two sums of squares (i.e. the two
added squares minus correction factors) and then dividing by the
sum of the two degrees of freedom [(n – 1 for one population) +
(n – 1 for the other population)]. This is the pooled variance (s2) for
both columns of numbers.

5 If the number of observations (n) in the two columns is the same,
we then double s2 (to measure the variance of differences) and then
divide by n (to measure variance of means) to reach 2s2/n, the variance
of the differences we would expect sets of two means of n numbers to
show (because of sampling variation) where there is no real treatment
difference. The square root of this is the standard error of expected
differences between two means on the null hypothesis.

6 If the number of observations in the two columns differs, we first
square root the pooled variance to get the pooled standard deviation.
We now have to multiply this by

√
2/n to get the equivalent of

√
2s2/n

above, and this we do by multiplying s by
√

1/n + 1/n, where the two
n’s are the two different n’s for the two columns.

7 Either way, we have calculated the standard error for the sizes of differ-
ences we would expect to occur between two means (by chance sampling
from two populations) which actually have the same mean (null hypoth-
esis). This standard error (standard error of differences between
means = s.e.d.m.) is the yardstick for judging how inaccurately it is
possible to measure a true difference of zero between the means, the
situation under the null hypothesis. In other words, we know that the
differences between sets of two mean values taken where there is
no true difference between means will have a mean of zero and a
standard error represented by the s.e.d.m. An observed difference greater
than twice the s.e.d.m. is taken to indicate that the null hypothesis is
untrue, i.e. the observed difference between the means is significantly
large.

8 The test is therefore: is the observed difference more than 2 × s.e.d.m.,
i.e. is the observed difference divided by s.e.d.m. > 2?

“2”(actually 1.96) is the criterion for very large samples. For smaller
samples we have to increase the “2” somewhat as given in “t” tables. Here
we look up the column for the 1 in 20 risk (P = 0.05) of drawing the wrong
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conclusion against the row for [(n – 1) + (n − 1)] degrees of freedom. So
the test finishes up as: is the observed difference/s.e.d.m. > t ?

Variations of the test are suitable for situations where variance in the
two treatments clearly differs, or where pairing between samples from the
two treatments is possible. Consult Chapter 8 for the procedures involved.

Spare-time activities

1 The yields (kg per plot) of two varieties of beans were:
Variety A – 3.4, 4.2, 4.8, 3.7, 4.2, 4.3, 3.3, 3.6, 4.2, 3.1, 4.8, 3.7, 4.7, 3.9,

4.8, 4.0, 3.8, 4.9, 4.5

Variety B – 4.6, 4.5, 3.8, 4.0, 4.7, 4.9, 4.3, 5.0, 3.8, 4.1, 5.1, 5.2, 4,9, 4.3,

4.2, 3.9, 4.4, 4.9, 4.6
Does either variety significantly outyield the other ? If so, which variety
and by how much?

2 The number of seeds (out of 50) of Tagetes germinating under two
environmental conditions was:

Bought-in compost 36, 43, 44, 39, 44, 50, 39, 44, 46,

39, 42, 50, 42, 46, 39, 38, 49, 38

Own sterilized soil 28, 31, 25, 28, 28, 27, 32, 24, 33, 33
Has the grower done enough tests with his own soil to be able to decide

which potting medium to use in future ? (ignoring any difference in cost).

3 The distances travelled (cm) by two green chlorophyll extracts applied as
adjacent spots on 13 paper chromatograms were as follows:

Extract Extract Extract
A B A B A B

Sample Sample Sample

1 5.8 4.0 6 6.5 5.1 11 5.1 3.8
2 6.6 6.1 7 5.0 5.2 12 5.6 4.3
3 7.3 4.5 8 4.9 5.2 13 6.2 5.7
4 6.3 4.9 9 5.6 5.4
5 5.9 5.2 10 5.7 5.6

These data are “paired” runs, since such are generally of different
lengths.

Has the experimenter statistical grounds for confidence that the two
green constituents of the two extracts represent different compounds?
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Introduction

Significance tests can be “two-tailed” or “one-tailed.” The difference is
crucial in attaching the correct probabilities to our conclusions from an
experiment, yet many biologists do not think about the distinction at all.
The t-tests described in Chapter 8 all involved two-tailed tests, and I know
colleagues who claim never to have used a one-tailed test. I don’t like to tell
them that they have, every time they have done an analysis of variance!
You will have to wait until the next chapter before we get onto “Analysis
of Variance” in any detail, but let me tell you now that it ends in compar-
ing the variance caused by the intentional treatments designed into the
experiment with the unavoidable background variance of the biological
material. We divide the treatment variance by that of the background to
give the statistic F, otherwise very appropriately known as the variance ratio.

Why is the analysis of variance F -test one-tailed?

In the analysis of variance, we are testing whether the treatment variance is
“significantly” more important compared to background variance (i.e. is
it significantly larger?). Is it outside the critical limit on the PLUS side which
embraces 95% of the variation in background variances that might be
sampled by chance? If it is within this limit, including the whole of the
MINUS side (i.e. F is less than 1), then treatments have had no noticeable
effect. We attach no importance to even an exceptionally small F value
right at the extreme of the minus side – it just means the treatment effect is
exceptionally negligible!
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10% 5% 2.5%

20% 10% 5% 2.5%

2.5% 5% 10%

80%

80%

Areas under the normal curve
Two-tailed test

Areas under the normal curve
One-tailed test 

Fig. 9.1 Areas under the normal curve appropriate to probabilities of 20% (P = 0.2),
10% (P = 0.1), 5% (P = 0.05), and 2.5% (P = 0.025) in a two-tailed (upper curve)
and a one-tailed (lower curve) test. In the upper curve, the per cent figures at the right
tail of the distribution include the equivalent areas at the left (hence the percentages
here are in small type). Thus 80% of the two-tailed distribution lies between the two
10% markers, whereas in the one-tailed distribution 80% is included by the entire area
under the curve to the left of the 20% marker.

So the less than 1 in 20 chance for variance ratios in the analysis of
variance all lies in the tail of ONE half of the F distribution curve (Fig. 9.1).
The whole of the other half of the curve is part of the 95% of the area that
is within the critical limits. This contrasts with how we have considered
95% confidence limits up to now – as excluding 5%, yes, but a 5% made up
of two 2.5% tails at the two opposite ends of the normal distribution (see
Fig. 5.2).

The F-test in the analysis of variance is therefore a one-tailed test and
tables of F are one-tailed tables!

The two-tailed F -test

If our F-test is two-tailed (as in testing for equality/inequality of two vari-
ances, see below) than the P = 0.05 values in the F tables are really at the
higher probability of P = 0.1, and to truly test at P = 0.05 we have to use
the tabulated values for P = 0.025. Not many people seem to know this!
Also, you will need a more comprehensive table of F than provided here in
Appendix A2.3.
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BOX 9.1

The data in Box 8.6 of the individual tuber weight (g) of “Maris Piper” and
“Jupiter” potatoes were used as an example of a t -test for two means with
unequal variances.

The variances were 6.67 for 40 “Maris Piper” potatoes and 1.46 for 29
“Jupiter” potaoes.

Equality/inequality of variances is measured by the ratio of 6.67 (with
39 degrees of freedom) to 1.46 (with 28 d.f.).

This ratio of variances (=F , or variance ratio) is 6.67/1/46 = 4.57.
Since there is no logical reason why “Jupiter” could not have had the greater

variance, the variance for “Maris Piper” is only “on top” in the ratio in order to
give an F greater than 1 to look up in the tables for 39 and 28 d.f. for the
greater and smaller variances respectively, As (see main text) the F tables
are in one-tailed form, we need to look at the figures for P = 0.025 to find the
true F for P = 0.05 in a two-tailed test.

In tables giving F at the 0.025 level of probability, the tabulated value is
2.050. Our variance ratio is larger than this; we can conclude the variances
depart significantly from equality.

You probably don’t remember by now, but go back to page 70 where a
test for equality/inequality of variances is needed to decide which type of
t-test to use. We divide the larger variance by the smaller to get a variance
ratio and check in F tables whether the ratio exceeds the tabulated F value
at the two n − 1 coordinates for the two variances (see Box 9.1). If so, the
variances are sufficiently unequal to justify using the form of t-test that
can accommodate unequal variances. As for t values, the largest values of
F that might arise purely by chance from a single normal distribution are
available in tables. However, the F tables are “2 dimensional” in terms of
degrees of freedom since there are different degrees of freedom associated
with each of the two variances (Appendix A2.3).

But we have to remember that, when we use F tables to test for equality
of variances, the test is a two-tailed one, because we are testing the differ-
ence in magnitude of two variances with no predetermined direction of
difference. Yet the F tables in books are one-tailed (see earlier). So, in the
test for equality of variances, the P = 0.025 figures in the tables are now
the appropriate ones for the P = 0.05 level of probability, the P = 0.05
figures for true P = 0.1, etc.
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How many tails has the t -test?

So far we have discussed one- and two-tailed tests in relation to the F
distribution, which is normally tabulated for one-tailed tests. By contrast,
tables of “t” are usually presented for a two-tailed probability distribution,
and the examples of t-tests in Chapter 8 were all two-tailed tests. Thus, in
comparing the statistics marks of men and women, the weight of potato
tubers of two varieties, or the dry weight of plants in two soils, a result
in either direction (e.g. men higher marks than women or vice versa) were
theoretically possible statistically valid results.

However, this may not always be true with t-tests. For example, we may
wish to test whether a caterpillar feeding on a leaf for only one hour is going
to remove a statistically significant amount of leaf area. There is obviously
no way it can make leaves bigger! So if the mean leaf area of leaves with
a caterpillar is larger than the area of leaves without caterpillars, the most
that can have happened (whatever the size of the difference resulting from
the chances of sampling) is that the caterpillars have not eaten away any
leaf area. The difference (however big) must be a bad estimate of a true zero
difference. Only a leaf area difference “eaten” is less than “uneaten” can be
real! “Uneaten” less than “eaten” has to be a nonsense!

Our data for the paired t-test (Box 8.8) could be from just such an exper-
iment, where we have paired two leaves from each of ten plants – but
now let us imagine that column A is the leaf without caterpillars and B
is the leaf that is eaten to a greater or lesser extent depending on plant
species.

Our calculated t for a two-tailed test for a comparison of Soils A and B
was 2.262 for 9 d.f. at P = 0.05, exactly the same as the tabulated t
(page 78). Had the data been for a one-tailed test (e.g. from the caterpillar
feeding experiment), the same calculated t of 2.262 would have been tested
for significance at P = 0.05 by looking up the tabulated t – still for 9 d.f. –
but now in the P = 0.1 column of the table. Here t for 9 d.f. is lower at
1.833. Our calculated t is clearly greater than this, and we can reject the
null hypothesis of no reduction in leaf area by the feeding of caterpillars
with greater certainty than with the two-tailed test.

The greater likelihood of the one-tailed test showing a significant differ-
ence between means makes it tempting to invoke this test in preference to
the two-tailed test. So can we argue that, with the data in Box 8.3 about
the statistics marks, we were testing whether women gained higher marks
than men? Well, I’m afraid that is just not on! The acid test for the valid-
ity of a one-tailed comparison is that, before the data are collected,
we know we would have to regard a “significant” difference between the
means in one direction as “no difference.” Even if we were trying to show
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that women gained better marks than men, an answer that men gained
more marks than women would have to be accepted, however reluctantly.
Only if that answer were a logical impossibility are we justified in using a
one-tailed test.

The final conclusion on number of tails

The take-home message is – if in any doubt at all, stick with a two-tailed
test!
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Introduction

Analysis of variance allows us to calculate the background variability
(pooled s2) in experiments with more than the two treatments which are
the limit to our calculation of the pooled variance (s2) in the t-test. However,
the pooled s2 so calculated can be doubled, divided by n and square rooted
to the standard error of difference between means (or s.e.d.m. for short) just as
in the t-test. So we finish up the analysis of variance again calculating the
s.e.d.m. for evaluating differences between means by the t-test. Although,
as we go further, you will find we can gain a lot of valuable insights before
we reach the use of t, many statisticians I know argue that the whole
purpose of the analysis of variance is to calculate just one number, the
pooled variance (s2), in order to calculate t for testing differences between
means.

The essential difference between analysis with the t-test and analysis of
variance is as follows: For the t-test, we calculate the background variability
by ADDITION. We add (pool) the sum of squares of the biological mate-
rial calculated separately for the two columns of numbers (page 65). In the
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analysis of variance we use SUBTRACTION. We first calculate the total vari-
ability of the data – including both background and intentional variation
from treatments – and then subtract the variability from various sources
until there is left a remainder (residual) which represents the background
variability of the biological material. From this remainder we calculate a
pooled s2 which has contributions from all the treatments.

Sums of squares in the analysis of variance

The analysis of variance actually relies on partitioning the total variability
into how much has come from the various sources of variability in the
experiment, including the “remainder” referred to above, first as sums of
squares.

You may remember from the t-test (page 64 and Box 8.5) that we could
add squares of deviations from the mean together singly or in groups.
Squared deviations (i.e.

∑
(x − x̄)2) can be added. That, on a calculator,

we use the identity
∑

x2 − (
∑

x)2/n (added squares – correction factor)
doesn’t alter the fact that we are adding individual

∑
(x − x̄)2 values,

though it does rather obscure it!
If we can add squared deviations from the mean before dividing by

degrees of freedom, then obviously they are equally fair game for sub-
traction, the principle distinguishing the analysis of variance (from now
on we’ll usually call it Anova for short) from the t-test.

However, we cannot similarly add or subtract ratios such as variance
(i.e. sum of squares divided by degrees of freedom). That is why the Anova
apportions variability to the various “sources” of variability as sums of
squares before dividing by degrees of freedom.

Some “made-up” variation to analyze by Anova

Usually you have experimental data for Anova, and you have to trust the
analysis to partition the variability between the various sources of vari-
ability correctly. However, there is nothing to stop us putting Anova to
the ultimate test – we can invent numbers representing a combination of
known variabilities and then invite Anova to sort it out. We can then check
how well it has coped. In the process you will encounter SqADS for the first
time, but will also be given the chance (if you wish to take it) to understand
what is actually going on.
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We’ll begin with a table of random numbers (page 106) and pick 16
single digit numbers (i.e. between 0 and 9) for a pattern of four columns
and four rows (Table A).

Table A

2 1 8 4
5 4 0 8
7 7 5 2
5 7 9 5 Total = 79

The variability of these 16 numbers as the sum of
squaresof deviations from the mean (but using the added squares minus correc-
tion factor method of calculation is 22 + 12 + 82 + · · · + 52 − 792/16 =
106.94).

Now let’s add some nonrandom (=“systematic” or “imposed”) variability
and increase the numbers in the columns by a different fixed amount. So
we’ll increase all numbers in column 1 by 2 and the other columns by 4, 6,
and 8 respectively (Table B):

Table B

4 5 14 12
7 8 6 16
9 11 11 10
7 11 15 13 Total = 159

The sum of squares of Table B is 42 +52 +142 +· · ·+132 −1592/16 =
192.94. So our column weightings have increased the sum of squares by
192.94 − 106.94 = 86.00.

Now we’ll add double these column weightings to the four rows, i.e. 4, 8,
12 and 16 respectively (Table C):

Table C

8 9 18 16
15 16 14 24
21 23 23 22
23 27 31 29 Total = 319

The sum of squares of Table C, which is the sum of three sources of
variability (random numbers, column weighting, and row weighting) is
82 + 92 + 182 + · · · + 292 − 3192/16 = 660.94. Therefore the row
weighting has added 660.94 − 192.94 = 468.00 to the total sum of
squares.
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The sum of squares table

We can now draw up a sum of squares table showing how the variation
of the numbers in Table C has been assembled from the three sources of
variation (Table D):

Table D

Source of variation Sum of squares

Column weighting 86.00
Row weighting 468.00
Random 106.94

TOTAL 660.94

Using Anova to sort out the variation in Table C

Having created the confusion of variability represented by the numbers
in Table C, we’ll use Anova to sort it out again into its components. We’ll
divide the process into three phases, Phase 1, Phase 2, and an End Phase.
These three phases apply to most analyses of variance, regardless of their
complexity.

Phase 1

Note: The preliminaries (see start of Chapter 11) to an Analysis of Variance
involve tabulating the data in a form suitable for analysis and setting out a
skeleton Anova table, listing the sources of variation and allocating degrees of
freedom. In this chapter only, however, our table of data is already suitable for
analysis, and it makes more sense to tackle the Anova table later and a bit at
a time.

Phase 1 has three steps:

1 Total both columns and rows, and check horizontally as well as vertically
that both sets of end totals add up to the same Grand Total. This check is
vital; it is so easy to make a mistake! Even a small error in decimal points
could cause you no end of trouble later in the analysis.

2 Use the Grand Total to calculate the correction factor for the sum
of squares of the numbers in the body of the table, and write it
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down! This correction factor will be used repeatedly throughout the
analysis.

3 Calculate the added squares for the numbers in the body of the table,
and subtract the correction factor to obtain the “Total sum of squares”
(of deviations from the Grand Mean, of course).

Doing Phase 1 for Table C gives us Table E. The original data are in italics,
and 319 is the Grand Total:

Table E

Columns

Rows

8 9 18 16 51
15 16 14 24 69
21 23 31 29 89
23 27 31 29 110
67 75 86 91 319

Correction factor (CF) = 3192/16 = 6360.06

Total sum of squares (a calculation we did earlier for Table C) = 82 +
92 + 182 + · · · + 292 − CF = 660.94.

That is the end of Phase 1. Phase 2 is based on the totals at the end of the
columns and rows, and we’ll never need the italicized numbers in the body

of the table again. Remember this last bit – it will help you work
through Anovas smoothly in the future.

Phase 2

The version of Table E that we need for Phase 2 is therefore simplified
to Table F by eliminating the original numbers in the body of the table,
reinforcing the message that Phase 2 involves only the column and row
end totals:

Table F

Columns

Rows

– – – – 51
– – – – 69
– – – – 89
– – – – 110
67 75 86 91 319

Correction factor (CF) = 3192/16 = 6360.06
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In Phase 2, we will use the totals in Table F to work out how much of
our total sum of squares of 660.94 has come from the weightings we gave
columns and rows. Once we know this, the contribution of the original
random numbers will be the “unaccounted for” remainder – i.e. we obtain
it by subtraction.

Remember, once we leave Phase 1 we have no further use for the original
numbers in Table E, and use only totals of numbers in our sum of squares
calculations. For example, the column variation is expressed by the four
totals 67, 75, 86, and 91 (from Table F). We already have the correction
factor (CF) of 6360.06. However, to use our four column end totals for the
“added squares” bit, we have to remember they are totals of four num-
bers and divide the added squares by 4 before we subtract the correction
factor (Box 10.1 explains why we need to do this). You will find that calcu-
lating the variability due to our row and column weightings – simulating
the effect of treatments in biological experiments – is such a simple concept
it is positively cheeky! Anyone, including you, could have invented Anova!

SqADS – an important acronym

It is time to introduce you to SqADS, which stands for SQUARE, ADD,
DIVIDE, and SUBTRACT. This is a useful acronym for calculating sums
of squares in Anova after the end of Phase 1. We SQUARE what are always
totals of original numbers, ADD these squares together, DIVIDE by the
number of numbers producing each of the totals we have squared, and
finally we SUBTRACT always the same correction factor as we calculated
for Phase 1. SQUARE, ADD, DIVIDE, and SUBTRACT. So the sum of
squares from the column weightings in our example is calculated by SqADS
from the column totals as:

672 + 752 + 862 + 912

4
− CF (still 6369.06)

giving the answer 87.69 as the sum of squares for column weighting.

Note: A reminder that the divisor of 4 is the number of numbers contributing to
the column total (therefore actually the number or rows) and NOT the number
of columns! Note also that the number of totals to be squared and added times
the divisor is always the same throughout the analysis and equals the number of
original numbers in the body of the table (16 in our example).

These are two things you should try to remember for all time NOW!
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BOX 10.1

Let’s actually look at what is going on in calculating the sum of squares for
the column weightings. What happens is that we are still going to have 16
numbers adding up the grand total of 319, but they are going to be different
numbers from those in Table E. We are going to pretend that there is no random
variability; also that there is no row variability (all the rows will therefore total
the same). So the only information we are going to use is shown in Table G:

Table G
Columns

Rows

– – – – –
– – – – –
– – – – –
– – – – –

67 75 86 91 319

Correction factor (CF) = 3192/16 = 6360.06

If there is neither random nor row variability, then the four numbers in each
column must surely all be the same, namely the column mean (i.e. the column
total divided by 4 in our example) (Table H):

Table H
Columns

Rows

16.75 18.75 21.50 22.75 79.5
16.75 18.75 21.50 22.75 79.5
16.75 18.75 21.50 22.75 79.5
16.75 18.75 21.50 22.75 79.5
67 75 86 91 319

Correction factor (CF) = 3192/16 = 6360.06

Note the absence of variability between the rows! The sum of squares for
column weightings is the sum of squares of the 16 imaginary numbers (four
each of the different column mean) in the body of Table H. It’s as crude as
that! i.e. 16.752 + 18.752 + 21.502 + · · · + 22.752 − CF = 87.69.

For the row weighting sum of squares, we would similarly insert the row
means in the body of Table I and calculate the sum of squares of these new
16 numbers:

Table I
Columns

Rows

12.75 12.75 12.75 12.75 51
17.25 17.25 17.25 17.25 69
22.25 22.25 22.25 22.25 89
27.50 27.50 27.50 27.50 110
79.75 79.75 79.75 79.75 319

Correction factor (CF) = 3192/16 = 6360.06
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BOX 10.2

SqADS is just a short cut for having to square and add several sets of identical
numbers (e.g. four identical numbers in each column in Table H). For column 1,
our familiar “added squares – correction factor” calculation would begin with
16.752 + 16.752 + 16.752 + 16.752, i.e. four times the square of 16.75.

To derive SqADS, we begin with the fact that 16.75 is also the total of
column 1 divided by 4, i.e. 67/4.

So we can replace 16.752 ×4 by (67/4)2 ×4, and can re-write the latter as:

67
4

× 67
4

× 4

The top 4 cancels out one of the bottom ones, leaving 672/4. That’s the Sq D
bit! When we add the squares for all four columns, we are adding 672/4 +
752/4 + 862/4 + 912/4, which is the same as adding all the squares first
(SqA) and then D (dividing) that total by 4, leaving just the S (subtracting the
correction factor) to complete SqADS.

So for column totals, SqADS is:

672 + 752 + 862 + 912

4
− CF

Statistics is full of computational short cuts which obfuscate what you
are really doing. Box 10.1 shows that the SqADS procedure is derived from
(i) adding squares after replacing the original data being analyzed by several
identical mean values and then (ii) subtracting the correction factor. This
already is one step removed from what it is calculating – the sum of the
squared deviations from the overall mean of the data.

Box 10.2 shows how we derive SqADS for column totals from the familiar
formula for added squares minus CF for the 16 numbers in the body of
Table H of Box 10.1.

To get the sum of squares for row weightings, we similarly SqADS the
row totals in Table F (replacing the squaring and adding of several identical
row means in Table I of Box 10.1). The calculation is:

512 + 692 + 892 + 1102

4
− CF (still 6369.06)

giving the answer 485.69. We have therefore calculated that, of a total
sum of squares for Table C of 660.94, the column and row weight-
ings account for 87.69 and 485.69 respectively. The remainder of 87.56
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(i.e. 660.94 − 87.69 − 485.69) is our estimate of the random number
variation which started it all off in Table A.

Back to the sum of squares table

We are now in a position to compare the variability we put in with what
Anova has dissected out. You’ll see in Table J that we do this at the “sum of
squares” level – I hope you remember why this is so? It’s because we can no
longer add or subtract variability once we have divided sums of squares by
their degrees of freedom (page 64 and Box 8.5).

Table J

Source of
variation

Sum of squares
(ACTUAL − from
Table D)

Sum of squares
(by Anova)

Column weighting 86.00 87.69
Row weighting 468.00 485.69
Random 106.94 by subtraction 87.56

TOTAL 660.94 660.94

How well does the analysis reflect the input?

I suppose that there are two reactions you may have to Table J. Hopefully,
you are amazed how well the sums of squares from the Anova reflect how
the numbers in Table C were set up. Alternatively, you may be scornful that
the match is not exact.

Unfortunately, Anova has no way of knowing what the actual weightings
were – it can only do its best! The random sum of squares is what is left
over when Anova has made its best guess for column and row weightings
based on the only information available to it, namely the column and row
totals. This is the real world we face when using Anova on the results of
our biological experiments: we are never (as here) in the privileged position
of knowing in advance how the variation has been assembled! In Anova
the “systematic variation” (column and row weightings) “capture” a little
of the random variation since the systematic variation is calculated first
(Box 10.3).
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BOX 10.3

To understand how Anova can overestimate the systematically introduced col-
umn and row weightings at the expense of the random variation, just look at
the random variation of the first two rows in Table A. By chance, the rows add
up to different numbers, 15 and 17 in this example.

This random +2 of row 2 is part of the reason why, by the time we reach the
final numbers in Table E, row 2 adds up to 69, 18 more than row 1 at 51.

Anova then guesses the row variation from the row totals alone (Table F) by
assuming that the 18 extra in the row 2 total should be equally distributed at
18/5 = +4.5 in each of the four columns.

However, if you go back to Table C, you’ll note that the true extra weighting
given to row 2 over row 1 was not +4.5, but only +4.0. Anova has no way
of knowing this, and ascribes the extra +0.5 to the sum of squares for rows
instead of the rightful sum of squares, that for random variation.

End Phase

Note: Why not Phase 3? Answer: All Anovas have Phases 1 and 2 and an End
Phase, but in some (see later) there is a Phase 3 to come!

In actual experiments, the columns and rows of Table C would probably
represent, respectively, our experimental treatments and four repeats of
each (called replicates). In the End Phase, we compare the magnitude of
such imposed variation with the random variation in the form of mean
squares (actually variance) rather than sum of squares. We therefore divide
the sums of squares by the appropriate degrees of freedom (see below).

Degrees of freedom in Anova

In Anova, just as the sums of squares for the different sources of variation
add up to the total sum of squares, so also do the degrees of freedom.

Now remind yourself from page 16 that degrees of freedom represent the
“opportunities for variation” given that our calculations are always based
on a sample of a potentially much larger pool of numbers. Using the mean
(or total) of our sample to represent the true mean for our sum of squares
calculations constrains the freedom for variation in our observations. The
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Grand Total of 319 (or Grand Mean of 19.94) is the only constraint on
the freedom for variation among the 16 numbers of Table C. Given any
15 of our 16 numbers in addition to the Grand Total, we know what the
16th number must be! So the Total d.f. are 15, and the d.f. for the three
sources of variation will add up to this number.

What are the constraints on the freedom for variation of the column
weightings? The four column totals in the SqADS procedure reflect that
only four different numbers (apart from the grand total) appear in Table G
in Box 10.1. The first three totals give us 3 d.f. In fact, that’s all the degrees
of freedom there are, since the last total must bring the Grand Total to
319 and so is not a fourth opportunity for variation. Thus the d.f. for four
columns turns out (conveniently to remember) to be 3, i.e. n − 1 for the
number of columns. This is elaborated in Box 10.4.

A similar argument applies to rows, which therefore also have 3 d.f.
So 6 of our 15 total d.f. are accounted for by Columns and Rows, leaving

the remaining 9 for the residual random variation. It is in fact no coincidence
(see Chapter 12) that the d.f. for the residual random variation is 3 × 3,
i.e. the product of the columns × rows d.f. Indeed, I recommend that you
always calculate the residual d.f. as a product rather than by subtraction; it
is a much better check that you have sorted out the degrees of freedom in
an Anova correctly.

BOX 10.4

Here we repeat Table H from Box 10.1, showing how much each degree
of freedom (opportunity for column weighting variation) – and framed in a
black box – completes the 16 spaces in the table together with the Grand
Total (which then accounts for the last four numbers as shown by the dotted
arrow).

Columns

16.75 18.75 21.50 22.75 79.5 

18.75 21.50 22.75 79.5 

Rows 18.75 21.50 22.75 79.5 

16.75

16.75

16.75

18.75 21.50 22.75 79.5 

67 75 86 91 319 
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Thus the analysis table enlarges to:

Source of
variation

Degrees of
freedom

Sum of squares

Column weighting 3 87.69
Row weighting 3 485.69
Random (3 × 3) 9 by subtraction 87.56

TOTAL 15 660.94

The completion of the End Phase

The final Anova table involves the addition of two further columns for
“mean square” and “variance ratio.” I’ll first present the completed table
below and then go on to explain these two additional columns (we do not
need to calculate the values shown as “xx,” since they are not needed).

Source of
variation

Sum of squares

Column
 weighting

3 87.69 29.23

3 485.69 161.90

Random 9 by subtraction 87.56 9.73

TOTAL 15 660.94 xx

Degrees
of freedom

Mean
square

Variance
ratio

3.00

16.64

xx

xx

Row
 weighting

Did you ever learn how to read grid references on a map? It is always hard
to remember that the numbers along the bottom of the map come before
the ones up the side! One way of reminding yourself is the little phrase “You
go along the corridor before you go upstairs!” – It’s got a sort of rhythm to
it that makes it hard to forget (see the arrows on the above table).

So “You go along the corridor” is how we calculate the mean square. We
work horizontally dividing each sum of squares by its degrees of freedom
(e.g. 87.69/3 for columns). So mean square is the sum of squares per degree
of freedom. It’s as simple as that! Much earlier in this book (page 15) that’s
exactly what defined “variance.” So mean squares are really just variances;
hence “analysis of variance.” The mean square for the residual sum of
squares (the original random numbers in our example) – the residual mean
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square – is our s2, equivalent to the pooled variance of the t-test, and from
which we calculate our s.e.d.m. for looking at differences between means.

“You go upstairs” reminds us that the variance ratio involves working
vertically in the table. The variance ratio is calculated, for all the mean
squares relating to sources of systematic/imposed variation, by dividing
them by the residual (random) mean square.

The variance ratio

The variance ratio (F) tells us whether, if at all, our experimental treatments
(“column” and “row” weightings in this chapter) cause variation in the
numbers greater than the chance residual variation. Put crudely – “Can
we hear the effect of our treatments over the background noise?”

An F of less than 1 indicates that the effect of our treatments is even
less than the variation that happens by chance! It is therefore negligible in
biological terms, and only F values well in excess of 1 are worth checking
for significance (a one-tailed test, see Chapter 9). We check the tabulated
values of F (Table A2.3) to see whether our calculated variance ratio (F)
is sufficiently large for us to reject the null hypothesis, i.e. it is unlikely
that we could have obtained such a large value of F by chance sampling of
the material without any imposed variation (e.g. treatments) applied by us
(Box 10.5).

As usual, we use the P = 0.05 values in the table. We find the correct
degrees of freedom for our imposed variation along the top of the table, and

BOX 10.5

Table A in this chapter was 16 random numbers laid out as a 4 × 4 grid. If
analyzed by Anova, chance positioning of larger numbers results in variance
ratios for Columns and Rows; i.e. the analysis does not apportion all the
variation to chance. Admittedly, the variance ratios are very small.

Source of
variation

Degrees of
freedom

Sum of squares Mean
square

Variance
ratio

Column weighting 3 1.69 0.56 0.06
Row weighting 3 17.68 5.90 0.61
Random 9 by subtraction 87.56 9.73 xx

TOTAL 15 106.94 xx xx
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run down the column of tabulated values until we cross with the degrees
of freedom for the residual variation. For both “Columns” and “Rows” in
our example, the tabulated value of FP=0.05 for 3 (along) and 9 (down)
d.f. is 3.86. Our calculated F for “Columns” was only 3.00, so we cannot
reject the null hypothesis that effectively there were no detectable column
weightings. Of course in this example we know we put a systematic column
weighting into the data, but it has just been obscured by the magnitude of
the random variation. By contrast, the F for rows is 16.64, well in excess
of the tabulated 3.86. If we use more stringent probability criteria, we
will find that F for P = 0.001 (decreasing the probability of erroneously
rejecting the null hypothesis from 1 in 20 to 1 in 1000!) is only 13.8. We
can reject the null hypothesis that our F of 16.64 could merely be a chance
result with confidence at P < 0.001. And, of course, the row weightings
I added were twice as large as the column weightings. Anova has detected
this with ease!

The relationship between “t” and “F ”

If you go back to Box 8.4 in Chapter 8 and look at the data for the statistics
test again, you will see that we have two “treatments” (men and women)
and a number of “replicates” of each. In terms of Anova we have two
“columns,” each with a different number of rows (12 and 14 respectively).
The data could therefore be analyzed just as well by Anova. The unequal
number of replicates (rows) is dealt with in SqADS (see page 121) by
Dividing by different numbers the two Squared totals (for men and women)
before we Add (See Box 10.6 for the calculations involved).

Note: In this example, the replicates are not paired (page 75). So the two
replicates in each “row” in the Anova have not finished up in the same
row for any particular reason – there is no systematic row variation. The
data would therefore be analyzed by Anova as for a fully randomized design
(page 117).

Just as with the t-test (where t24 d.f . was only 0.53), the null hypoth-
esis, that there is no difference in the mean mark between the genders,
seems confirmed by the tiny variance ratio (F1 and 24 d.f .) of 0.30. The t
value of 0.53 is close to the square root of the F value (

√
0.30 = 0.55).

Another way of putting this is that t2 = F. The t-test is always between
just two treatments, but you can confirm this relationship between t and F
(Box 10.7) by comparing t values (two-tailed, see Chapter 9) with the first
column (i.e. for 1 d.f.) of F tables (one-tailed).
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BOX 10.6 See Box 8.4 for the “Statistics examination” data

Correction factor (CF) = Total2/n = (709 + 865)2/(12 + 14) = 95,287.54
Total sum of squares = 752 + 722 + 682 + · · · + 392 − CF = 3778.46

SqAD = Squared
D by n

and Added totals = 7092

12
+ 8652

14
= 95,334.73

“Treatment” (=Gender) sum of squares = 95,334.73 − 95,287.44 = 47.29

Anova table:

Source of
variation

Degrees of
freedom

Sum of squares Mean
square

Variance
ratio

2 Genders 1 47.29 47.29 0.30
Residual 24 by subtraction 3,731.17 155.47 xx

TOTAL 25 3,778.46 xx xx
(26 numbers)

BOX 10.7

Degrees of
freedom

Tabulated t
(2-tailed)

t2 Tabulated F
(1-tailed)

P = 0.05 (1 in 20 chance)
4 2.776 7.706 7.71

12 2.179 4.748 4.75
20 2.086 4.351 4.35

P = 0.01 (1 in 100 chance)
4 4.604 21.197 21.20

12 3.055 9.333 9.33
20 2.845 8.094 8.10

P = 0.001 (1 in 1000 chance)
4 8.610 74.132 74.14

12 4.318 18.645 18.64
20 3.850 14.823 14.82
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Fig. 10.1 F values for 4 treatments (n−1 = 3), graphed from tables of F for P = 0.01
and P = 0.05, to illustrate the high values of F at low residual degrees of freedom and
their decline with increasing residual d.f. till they change only little with 16 or more
residual d.f.

Constraints on the analysis of variance

Adequate size of experiment

That we could not detect the column weighting in the size of the variance
ratio is partly due to the few numbers, only 16, in our analysis, giving us
only 9 residual degrees of freedom.

In laying out experiments, we need to give thought to how large the
experiment needs to be. Unless we can get a reasonably good measure of
the chance variation across the experiment, even a large Variance Ratio for
a treatment effect may not exceed the tabulated F. Figure 10.1 shows how
the F needed to reach significance at P = 0.01 and P = 0.05 declines with
increasing residual degrees of freedom. The graph suggests that a good rule
of thumb is to aim at 16 d.f. for the residual sum of squares. I shall often
be using rather less than this in the examples in this book, but this is on
purpose to make the calculations shorter!

Equality of variance between treatments

The residual mean square represents the background variance in the data,
pooled across all “treatments” and replicates. We use it as the divisor for
the mean squares of our imposed treatments, to measure how much larger
the variation due to treatments is than the background variation. It is
also the s2 we use to evaluate differences between means. It is therefore
important that it is a fair and equal measure of variability for all treatments.
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If one treatment has atypically low variability (an extreme would be that
all replicates show a value of zero) then – because the residual averages
the variance across all treatments – we underestimate the variance with
respect to the other treatments. This leads to a falsely inflated variance ratio
(F) for treatments and a falsely small variance (s2) in our significance tests
of differences between means. It is therefore worth calculating, or even just
“eyeballing” if there are few data, the variance of the replicates of each
treatment to check.

Inequality of variances can arise when the spread of variability around
the mean in a normal population differs very markedly between treatments,
or when the data do not follow a normal distribution. In the latter case, it is
usually fairly obvious that large means are associated with larger variances
than small means. The remedy here is transformation (page 38) to normal-
ize the data. If there is a different spread of variability between treatments,
then a statistician should be consulted. If there is just one aberrant treat-
ment, the simplest solution is to omit it from the analysis, but calculate
the confidence limits (page 63) of its mean based on just its own variance.
Then using the confidence limits based on the s2 from the Anova of the
remaining means, it is possible to see if the limits overlap.

Testing the homogeneity of variance

Chapter 9 described the two-tailed variance ratio test for equality/
inequality of variances between the two treatments involved in a t-test.
Once more than two treatments are involved, we are making more than
one test between two variances, so the probabilities (e.g. the 1 in
20 chance) no longer apply. With seven treatments, we are making 21 tests
(see Fig. 10.2 and Box 10.8), so we are likely to find a “1 in 20 chance” sig-
nificant difference where none really exists. The solution is “Bartlett’s test
for homogeneity between variances,” details of which will be found in more
advanced textbooks on statistics. But be warned, it’s a complex calculation!
Fortunately there is a less accurate “rough and ready” method worked out
by the distinguished statistician H.O. Hartley, where the value of the ratio of
variances needed to show significant inequality increases as the number of
treatments increases. The table (Appendix A2.4) is used with the extreme
largest and smallest variances in the experiment.

The element of chance: randomization

Experiments are usually “laid out” in space as a number of replicate
units (e.g. potted plants, field plots, aquaria, Petri dishes) of a number
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Fig. 10.2 The comparison of only seven numbers already involves 21 tests!

BOX 10.8

The number of tests for a given number of treatments is well represented by a
“matrix” table. Say we have eight treatments A–H, the number of tests between
treatment means that is possible is shown by the + symbol in the table below:

A B C D E F G H
A + + + + + + +
B + + + + + +
C + + + + +
D + + + +
E + + +
F + +
G +

Set out like this with 8 columns and 8 − 1 = 7 rows, the number of tests
between means (+) occupies exactly half of a 8 × 7 matrix. A general formula
for the number of tests possible given any number of treatments is therefore:

1
2

(number of treatments × 1 less than the number of treatments)
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of treatments, the latter representing our imposed variation. Such layouts
can follow a number of patterns, and the following chapters explore these
patterns and how they may be analyzed by Anova.

However, the patterns all have one thing in common. This is that there
should be no systematic pattern in the background variability contribut-
ing to the residual mean square of the Anova; systematic patterns are
the prerogative of our imposed treatments or blocking (page 121) of the
replicates (akin to pairing in the t-test)! We zealously preserve random-
ness of the background (residual) variation by letting the final arbiter of
where “events” (i.e. the application of our different treatments) occur be
pure chance. This process of allocating “events” to “locations” is called
randomization.

If we have only a few treatments to randomize, then the easiest approach
is to put the appropriate number of coded “raffle tickets” into a hat and
make a draw!

If there are rather a lot of events we need to allocate, then probably the
only truly random approach is to allocate numbers to “locations” and then
select them randomly using “random numbers.” Numbers which are very
close to random selections can be obtained from computers by accessing
the processor clock at intervals; it is not difficult to write an appropriate pro-
gram for this and most statistical computer packages will already include a
“random number generator.”

Otherwise we seek refuge in published random number tables. These
tend to appear as columns and rows of paired digits between 00 and 99.
The numbers may be used in sequence as singletons (1–10, where 0 is
taken as 10), pairs (01–100, where 00 = 100), threes (001–1000, where
000 = 1000), etc. The sequence followed may be down columns, along
rows, or even diagonally. One may start anywhere in the table (not always at
the beginning!) and the starting point should be chosen haphazardly, if not
strictly by chance. One haphazard approach is to hit a pair of digits blind,
and to use the first digit to identify the column and the second the row in
that column where selections should start. Some folk are so fanatical, they
will have some rule such as making the first digit the column co-ordinate
on odd days of the month and the row co-ordinate on even days!

The process can be very tedious if one is trying to select a limited range
of numbers from a much larger field (e.g. to randomize the numbers 1–17
from a possible 1–100), by leaving out numbers outside the range. It can
take for ever to find the last few! The way round this (using our 17 out
of 100 example) is to work out the highest multiplier of 17 which can be
accommodated within 100; for 17 this would be 17 × 5 = 85. We can
now use all pairs of digits up to 85 (therefore only discarding 86–00) by
subtracting the nearest lower multiple of 17, and using the remainder as
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our random number. Thus the pairs 01–17 give us random numbers 1–17
and so do the ranges 18–34 (subtracting 17), 35–51 (subtracting 34),
52–68 (subtracting 51), and 69–85 (subtracting 68). As just one example,
take the selection 62. The nearest lower multiple of 17 is 51, so our random
number is 62 − 51 = 11.

Comparison between treatment means in the analysis of
variance

At the end of Anova, a significantly high Variance Ratio (F) for a source
of variation (e.g. our experimental treatments) tells us that there is at
least one significant difference to be found between the relevant means.
It certainly does NOT tell us that all means differ from each other! For
example, we may have measured the yield of four varieties of broad beans
and found a significant F for “varieties.” We know a significant difference
lurks somewhere, but it could be that there is one high- or low-yielding
variety, with the other three much of a muchness.

This is where we return to the t-test; It’s a long way back on page 58.
It will probably pay you to read this section of the book again, but for
those given to laziness here is a quick recap. The t-test enables us to decide
how likely a difference we have found between two means of n numbers
could have arisen by chance sampling of the background variation. If that
chance is less than 1 in 20 (the 5% chance, or Probability) = 0.05 where
P = 1 is 100% certainty) we do not accept the null hypothesis that the
difference we have found has arisen by chance and is just a poor estimate of
zero. We can be more rigorous, and most statistical tables of t (and F) also
give values for other levels of probability, e.g. for the 1 in 100 (P = 0.01)
and the 1 in 1000 (P = 0.001) chances.

We regard a difference between means as statistically “significant” if our
calculated value of the statistic “t” exceeds that in the tables for the relevant
degrees of freedom at the chosen level of probability (usually P = 0.05 or
less).

We calculate the value of the statistic “t” from the formula:

Difference between the means
s.e.d.m.

where s.e.d.m. is the standard error of difference between means (see page 45).
Remember the mnemonic on page 52? – s.e.d.m. is the Square root of the
Estimated variance (the background variance of individual observations),
after Doubling it and “Mean-ing” it (i.e. dividing by n).
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In Anova, once we have subtracted the sums of squares for systematic
variation (e.g. treatments) from the total sums of squares, the residual sum
of squares measures the background variation of the individual observa-
tions. Dividing the residual sum of squares by its degrees of freedom gives
us the residual mean square (page 99) and this is the “estimated variance”
we can plug into our calculation of the s.e.d.m.

Let’s leap ahead to page 127, where we have an Anova of an experi-
ment where days to flowering of beans have been measured on four plots
(replicates) per each of three fertilizer treatments:

Source of
variation

Degrees of
freedom

Sum of squares Mean
square

Variance
ratio

3 Fertilizers 2 224.0 112.0 13.7
4 Replicates 3 441.7 147.2 18.0
Residual 6 by subtraction 49.3 8.2

TOTAL (12 plots) 11 715.0

The s.e.d.m. for fertilizer means (each of four plots) is thus:
√

2 × 8.2
4

= √
4.1 = 2.02

The standard t-test (page 69) would then evaluate the difference between
two fertilizer means as:

is
mean A and mean B difference

s.e.d.m. = 2.02
> t

(at P = 0.05 and 6 degrees of freedom)?

where we use 6 degrees of freedom because this is the number of d.f. on
which the residual mean square we have used for calculating the s.e.d.m.
is based.

The least significant difference

With three fertilizers, we would need to make three such t-tests for fertilizers
A–B, A–C, and B–C, and with more treatments still this would become labo-
rious. So the t-test in Anova usually takes the form of re-writing the above
equation to calculate the smallest difference between means (of n numbers)
that would be significant (at P = 0.05 and at the residual degrees of free-
dom). We therefore look up the tabulated t value needed for a difference to
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reach statistical significance, and use this in the equation above to calculate
the size difference needed to reach that t value. This calculated difference is
known as the least significant difference. We normally contract this to LSD,
an acronym introduced long before the hallucinogenic drug bearing the
same initials!

The equation to solve for the LSD is therefore:

LSD = t(P=0.05, residual d.f .) × s.e.d.m.

or

LSD = t(P=0.05, residual d.f .) × √
2 × residual mean square/n.

In our fertilizer experiment, the tabulated t for P = 0.05 at 6 d.f. is 2.447,
so our LSD is 2.447 × the s.e.d.m. of 2.02 = 4.94, and any difference
between two fertilizer means in our experiment as large or larger than 4.94
is “statistically significant” at P ≤ 0.05.

However, how we use the LSD test in experiments with several treatments
is not that simple. Remember Fig. 10.2, and the problem of applying P =
0.05 (the 1 in 20 chance) to several simultaneous tests? Seven fertilizer
means would equally have involved 21 tests as shown in Fig. 10.2, and
the extreme largest and smallest means are likely to show an apparent
significant difference, even if none exists and all seven means are really
estimates of the same true average value. To illustrate the reality of this
danger, we need to go back to page 46 and our several values for the mean
weight of samples of 3 eggs.

If you go back to page 51, you will see that the s.e.d.m. of means of 3 eggs
was 1.3. Since the variance on which this was based was calculated from
100 individual eggs, we look up the tabulated t for P = 0.05 at 99 d.f. and
find it to be 1.98. So the Least Significant Difference for means of 3 eggs is
1.98 × 1.3 = 2.57.

On page 46 you will find lots of means of 3 eggs drawn from the same
normal distribution, i.e. they are all estimates of the same number – the
true mean weight of all the eggs in the distribution. A group of seven
means, in descending order of magnitude, were:

66.33, 65.33, 65.00, 65.00, 64.67, and 63.67.

All 7 means were drawn by chance sampling of one normal distribution
of weights involving just their natural variation with no imposed treat-
ments, yet the largest and smallest means differ by 2.66, greater than our
least significant difference between such means of 2.57. In analyzing an
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experiment where such means represented 7 treatment means we might
well have concluded that the extreme means differ significantly because
of our treatments, yet we have just seen that this “pseudo”-significant dif-
ference has been generated by chance sampling within one population of
numbers.

A caveat about using the LSD

The whole question of using the LSD for significance tests in Anova needs a
chapter to itself. The next chapters look at designs for Analysis of Variance
and how to analyze them. With each design, we shall stop before the stage
of LSD tests. However, we will not dodge the issue, but later (Chapter 16)
return to the data, to show how we might use the LSD to identify the valid
differences between means in each experiment.
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EXECUTIVE SUMMARY 4
The principle of the analysis of variance

In the t-test, we combined the “within treatment” variability as a pooled
variance (s2). From this, we calculated the appropriate standard error
(
√

2s2/n) for judging the “statistical significance” of the difference between
two “treatment” means.

We pooled variances by adding the two sums of . . . squares of deviations
from the mean (i.e. TOP half of variance equation) of the two columns of
numbers BEFORE dividing by the pooled degrees of freedom.

In the analysis of variance, we still aim to calculate a pooled variance
(s2) to represent the inherent variation over which we have no control
(basically sampling or “background” variation), but this time we do it by
first calculating the total variability of the numbers in the experiment,
and then SUBTRACTING rather than adding SUMS OF . . . SQUARES of
deviations (again before dividing by degrees of freedom).

This enables us to cope with more than two treatments, and also to
handle more complicated experimental designs (Chapter 11).

The first stage of the analysis of variance is really analysis of SUMS
OF . . . SQUARES of deviations (= added squares – correction factor).
We first calculate the total variability (as sum of squares) of the data. We
then calculate (it is possible!) the variabilities (again as sums of squares)
arising from the sources of variability designed into the experiment (i.e.
usually the columns and rows of the data table). That part of the total
variability we cannot account for by our experimental design remains as
the “residual sum of squares” which, when divided by the appropriate
degrees of freedom, becomes our variance (s2).

Thus we visualize the number sampled from any one plot to have been
influenced by three factors. Let’s take just one number, the number in
row A and column 1 of, say, 79. If the overall average per plot of the whole
experiment is 50, this number contributes (79 − 50)2 = 292 to the total
sum of squares.

This deviation from the overall mean of 292 is:

partly an effect of column A – how much we can calculate;
partly because it is in row 1 – how much we can calculate;
for unknown reasons – this is the residual variation.

The procedure is as follows

1 Make a table of the results with columns and rows; then total rows and
columns; then calculate the grand total, checking that both row and
column totals add up to it.
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2 Calculate the correction factor = grand total2/number of plots.
3 Calculate total variability as the sum of squares of the plot results

(added squares – correction factor). YOU NOW NEVER AGAIN NEED
THE ORIGINAL DATA, AND MOVE ON TO USE THE END TOTALS
OF ROWS AND COLUMNS.

4 Calculate column variability by SqADS using the column totals (see
below). This is equivalent to calculating the sum of squares of a new
table, where each plot result is theoretically replaced by the mean value
for the column it is in, i.e. we apportion the grand total in such a way that
the ONLY variability is that between columns (i.e. there is no variation
within any one column and there is no experimental error).

5 Calculate row variability by SqADS of the row totals, this being equiv-
alent to calculating the sum of squares of another new table, where
each plot result is replaced by the mean value for the row it is in, i.e. we
apportion the grand total in such a way that the ONLY variability is that
between replicates.

6 We subtract (4) + (5) from (3) to find out how much variability is “left
over” = residual sum of squares (6).

7 We convert sums of squares to variance (= mean square) by dividing
(4), (5), and (6) by the appropriate degrees of freedom:
(a) total degrees of freedom are (number of plots – (1));
(b) treatment degrees of freedom are (number of treatment means used

in table (4) – (1));
(c) replicate degrees of freedom are similarly (number of replicate

means used in table (5) – (1));
(d) residual degrees of freedom are (a) – (b + c) OR also (b) × (c).

8 F (variance ratio) is how much bigger the effect of treatments and repli-
cates is than residual variation (i.e. the variance ratio for treatments and
replicates is their mean squares divided by the residual mean square).

SqADS in the analysis of variance

After calculating the TOTAL sum of squares of deviations, we replace all the
figures by the means for treatments or replicates based on totals. We can
replace this procedure more quickly by SqADS.

1 Square each figure and Add the squares together.
2 Divide by the number of figures contributing to each total.
3 Subtract the correction factor.
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Thus for three totals – 44, 36, 23 – each of four figures:

1 442 + 362 + 232

2
442 + 362 + 232

4

Note there are three totals divided by 4 · · · 3 × 4 = 12 (the number of
original data)

3
442 + 362 + 232

4
− 1032

12

Note 3 × 4 is also the divisor of the correction factor.

Sums of squares of deviations – how far we have come since
Chapter 3!

The concept of VARIANCE is based on averaging (but by n − 1 and not
simply n) the sum of all the squared differences between numbers in a set
of data and their mean value. This sum is called the SUM OF SQUARES OF
DEVIATIONS, and very commonly just SUM OF SQUARES.

For our example, we’ll use the five numbers 5.4, 7.3, 6.2, 5.3, and 6.8,
which have a total of 31 and a mean of 6.2.

The five numbers have respective deviations from the mean of −0.8, 1.1,
0, −0.9, and 0.6.

However we calculate this, the answer we are looking for is the sum of
the squared deviations from the mean, i.e. 0.82 +1.12 +02 +0.92 +0.62 =
0.64 + 1.21 + 0 + 0.81 + 0.36. These squared totals add up to 3.02, and
this is the SUM OF SQUARES OF DEVIATIONS.

It is easy to forget this basic concept, because we use different ways of
calculating the same result.

Our first change was to FORGET about deviations, and use the actual
numbers instead (“added squares”)!

This is 5.42 +7.32 +6.22 +5.32 +6.82 = 195.22. A large figure, which
now needs the subtraction of a CORRECTION FACTOR for having used
the numbers instead of their differences from their mean. The correction
factor is the mean of the squared total of our numbers, i.e. 312 divided by
5 = 961/5 = 192.20. Our corrected sum of squares of deviations is now
correct at 195.22 minus 192.20 = 3.02 again.



Van Emden: “C010” — 2008/1/31 — 10:22 — PAGE 114 — #27

114 Chapter 10

Our second change was the further step of simplifying the calculation
of the ADDED squares in the situation when a group of numbers was
identical, e.g. 5.4, 5.4, 5.4, and 5.4.

Instead of calculating 5.42 + 5.42 + 5.42 + 5.42 as 29.16 + 29.16 +
29.16 + 29.16 = 116.64, we begin with the total of (4 × 5.4) = 21.6.

We can get our ADDED SQUARES by squaring this total and dividing
by 4, i.e. we SQUARE (totals), ADD (them together), and DIVIDE (by the
number of identical numbers forming the total). 21.62 divided by 4 is
again 116.64. This is the ADDED squares ONLY, i.e. it has not been
CORRECTED by subtracting a correction factor. This subtraction
is the final S of SqADS.



Van Emden: “C011” — 2008/1/31 — 16:19 — PAGE 115 — #1

11

Experimental designs for
analysis of variance

Chapter features

Introduction 115
Fully randomized 116
Randomized blocks 121
Incomplete blocks 127
Latin square 130
Split plot 137

Introduction

When I first came to Reading University in 1961, Professor Heath was
growing seven species of alpine plants in hexagonal plots on a hemispher-
ical mound (like a half football with hexagonal panels) so that every plant
species was competing with each of the others on one of the sides of the
plot. The experiment was a novel design for analysis of variance, though
it proved impractical and was never published. This is a good example of
what has recently been pointed out to me: that it was the development of the
technique of analysis of variance by R.A. Fisher in the 1920s which stimu-
lated researchers to develop a variety of experimental designs exploiting the
flexibility and elegance of the statistical technique. This chapter describes
some of the most common of these designs. In those designs dealt with in
greater detail, the format will be as follows:

• Feature of the design.
• A sample layout showing randomization of treatments.
• An example of data from such a layout; followed by the analysis in

“Phases”:
◦ Prelims (see Chapter 10, page 91) – (1) Unscrambling the randomiza-

tion (i.e. arranging the table of data for the analysis). (2) Establishing
the “lead line.” (3) Setting out the skeleton analysis table with
allocation of degrees of freedom.
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◦ Phase 1 (see Chapter 10, page 91) – (1) Total both columns and rows,
and check addition to the Grand Total both ways. (2) Calculate the
Correction Factor (Grand Total2/n). (3) Calculate the added squares
for the body of the table and subtract the Correction Factor (CF) to
obtain the Total Sum of Squares. Remember, the data in the body of
the table will not be used again.

◦ Phase 2 (see Chapter 10, page 92) – Use only end totals. To
obtain the sum of squares for the systematic imposed sources
of variation which end totals represent, SqADS the appropri-
ate end totals. Remember Squarethe end totals, Addthese squares together,
then Divideby the number of data contributing to each end total, and finally
Subtractthe Correction Factor.

◦ End Phase (see Chapter 10, page 97) – (1) Work horizontally in the
analysis table, dividing the sum of squares for each source of varia-
tion by the relevant degrees of freedom to obtain the mean squares.
(2) Work vertically, dividing each mean square for systematic varia-
tion by the residual mean square to obtain the variance ratios (F).
(3) Look up tabulated values for each variance ratio greater than 1, to
determine the probability (P value) of an F of such magnitude arising
by chance.

Fully randomized

This simple design has many advantages, but it is often ignored even where
it would be appropriate and advantageous to use it. Imagine we wish to
compare the time to flowering of broad beans treated with three different
fertilizers (A, B, and C) and that we plan to sow four replicate plots for each
fertilizer treatment. We simply let chance decide (perhaps by writing 4 As,
4 Bs, and 4Cs on pieces of paper and drawing them out of a hat) which plots
receive which fertilizer. With a rectangular plot and with the hat yielding
in order B, A, C, B, A, B, . . . A, the plan might be as in Fig. 11.1.

An advantage of this kind of design is that all but the 2 degrees of
freedom for the three fertilizers are retained for the residual sum of squares.
The layout can be any shape and need not even contain an equal number of
plots for each fertilizer. Things do go wrong in experiments, and you might
not be able to record data from the bottom right A plot if, for example, a
passing elephant had sat on it!

The main problem with a fully randomized layout is that the area may
not be sufficiently uniform. In the above example, chance has caused three
C plots to be rather strongly clustered top right. If, for example, the soil
is better in that part of the field, then the earlier flowering there would



Van Emden: “C011” — 2008/1/31 — 16:19 — PAGE 117 — #3

Experimental designs for analysis of variance 117

B A C B

A B C C

C B A A

Fig. 11.1 Fully randomized design: An example of how four repeats of three treatments
might be randomly allocated to the 12 plots.

B 

43

 A

 35

C 

29

B 

38

A

38
B

40

C

31

C

30

C

38

B

39

A

42

A

40

Fig. 11.2 Fully randomized design: The layout of Fig. 11.1 with data added (days to
flowering of half the broad bean plants per plot).

contribute a spurious superiority to fertilizer C. If our plots are not fixed
(e.g. potted plants in a greenhouse or Petri dishes in the lab.), we can
get round this problem by re-randomizing and repositioning the units at
perhaps weekly intervals.

Data for analysis of a fully randomized experiment

The data in Fig. 11.2 are days to flowering of 50% of broad bean plants
per plot.

Prelims

Unscramble the randomization so that each plot per fertilizer A, B, and C is
in the same column (or row if you prefer). From now on, we shall be adding
subscripts to the end totals for systematic sources of variation, to remind



Van Emden: “C011” — 2008/1/31 — 16:19 — PAGE 118 — #4

118 Chapter 11

us how many data contribute to each total. This becomes increasingly
helpful with more complicated designs, and identifies the divisor (D) in
SqADS.

A B C
35 43 29 107

38 38 31 107

42 40 30 112

40 39 33 112

1554 1604 1234 GT = 43812

Now a second addition is the “lead line.” Again this becomes more useful
later, but it’s a good habit to get into now. The “lead line” identifies the
components of the experiment and here it is:

3 Fertilizers × 4 replicates = 12 plots

We use the lead line to produce the skeleton analysis table with degrees
of freedom (n − 1). Thus 12 data (the plots) have 11 d.f. of which three
fertilizers account for 2 d.f. As the four replicates are located at random, all
remaining d.f. (11–2) are attributed to residual variation:

Source of variation Degrees Sum of squares Mean Variance P
of freedom square ratio

3 Fertilizers 2
Residual (11 − 2 =)9

TOTAL (12 plots) 11

Phase 1

The Correction Factor (Grand Total2/n) is 4382/12 = 15, 987
Added squares in the body of the table are 432 +352 +292 +· · ·+402 =

16, 238
Therefore Total Sum of Squares = 16, 238 − CF = 251

Phase 2

There is only one systematic (“treatment”) source of variation, and there-
fore only one set of end totals to SqADS to calculate the sum of squares.
Hence only the column totals in the data table are in large type, and have
subscripts to indicate that the divisor for the squared and added column
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end totals is 4. Remember again, the divisor is the number of data in the
table contributing to each end total. So the calculation is:

SqA1552 + 1602 + 1232 = 64, 754 Dby464754/4 = 16, 188.5

SCF16, 188.5 − 15, 987 = 201.5

You may wish to remind yourself at this point of what we are actually
doing in this calculation (Box 11.1).

BOX 11.1

The sum of squaresof deviations from the mean (remember page 15 and the nota-
tion

∑
(x − x )2) for fertilizers can be obtained directly from the table below.

Here each datum in the body of the table has been replaced by the mean days
to flowering for plants given that fertilizer:

A B C

38.75 40.0 30.75
38.75 40.0 30.75
38.75 40.0 30.75
38.75 40.0 30.75

GT = 43812
1554 1604 1234 Mean = 36.5

The sum of squares as squared deviations from the mean is (36.5 −
38.75)2 + (36.5−40.0)2 + (36.5−30.75)2 +· · ·+ (36.5−30.75)2, and needs
no correction factor!

We normally replace this rather laborious calculation with the “added

squares – Correction Factor” identity (
∑

x2 − (∑
x
)2

/n in notation) and
therefore calculate:

38.752 + 40.02 + 30.752 + · · · + 30.752 − 4382/12

SqADS is basically the same calculation, but replaces each squared mean
value with the squared totals added and divided by 4 (the number of data
contributing to each total), finally subtracting the same correction factor, i.e.

1552 + 1602 + 1232

4
− 4382

12

The same answer (201.5) will be obtained by each of the three calculation
procedures. Why not check this out?
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The sums of squares are therefore partitioned as:

Lead line: 3 Fertilizers × 3 plots of each = 12 plots
Correction factor: 15,987
Source of variation Degrees Sum of squares Mean Variance P

of freedom square ratio

3 Fertilizers 2 201.5
Residual (11 − 2 =)9 by substraction 49.5

TOTAL (12 plots) 11 251.0

End Phase

Horizontally in the table, we divide the sums of squares for Fertilizers and
the Residual by their degrees of freedom and then, vertically, we obtain the
variance ratio (F) for Fertilizers by dividing the mean square for Fertilizers
by the residual mean square:

Source of variation Degrees
of freedom

Sum of squares Mean 
square

Variance 
ratio

P

3 Fertilizers 2 201.5 100.75 18.32 = 0.001
Residual (11–2 =) 9 by subtraction 49.5 5.50

TOTAL (12 plots)  11 251.0

Lead line: 3 Fertilizers × 3 plots of each = 12 plots
Correction factor: 15,987 

The tabulated value (Appendix 2, Table A2.3) for F for 2 (for Fertilizers –
along the top) and 9 (for Residual – down the side) degrees of freedom at
P = 0.05 is 4.26 and even at P = 0.001 it is only 16.41, still lower than
our calculated F for Fertilizers. P is therefore <0.001, i.e. an F as large as
18.32 would occur well less than once in 1000 times if fertilizers had had
no effect and our plot data were all merely samples of the same background
variation.

We can therefore be pretty sure that the time to flowering of the beans
is different with different fertilizers, but of course it could be that just one
has made a difference compared with the other two (with no difference
between them). The further tests needed to interpret the experiment fully
are detailed in Chapter 16, page 226.

Had the bottom right-hand corner been sat on by my hypothetical ele-
phant, the data would still be easily analyzable. Total degrees of freedom
would reduce to 10 (only 11 plots remain). There are still three Fertilizers,
so d.f. for that source of variation remain at 2, and the d.f. for the Resid-
ual would reduce to 8. The data of the remaining 11 plots (now totaling
only 398) would be used to calculate the total sum of squares. The Fer-
tilizer sum of squares would merely use a different divisor for Fertilizer A
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(with only three replicate plots remaining):

1352

3
+ 1602 + 1232

4
− 3982

11
= 190.22

Note that this sum of squares of 190.22 is very similar to that of 201.5
for Fertilizers in the complete experiment.

Randomized blocks

As hinted under the fully randomized design above, soil, temperature and
light conditions often lead to gradients in the greenhouse or field which
may themselves affect the experimental variable (e.g. yield of a crop) that
we are recording.

In our “made-up” analysis of variance in Chapter 10, we not only
measured the variation due to column weighting (equivalent to fertilizer
treatment in the fully-randomized experiment above), but we were also able
to separate from the residual variation any systematic row weighting.

Therefore, if we know the direction of any problem gradient in our
experimental area, we can arrange our experiment in such a way that
the gradient becomes part of the systematic sources of variation designed
into the experiment. Any systematic variation can be separated from the
residual variation by Anova. Making the gradient a systematic source of
variation is done by grouping the replicates of each treatment into blocks
in different positions along the gradient (Fig. 11.3).

So back to the experiment above comparing the date of flowering of
broad beans treated with three different fertilizers (A, B, and C) with four
replicate plots for each fertilizer treatment. To change this experiment from
a fully-randomized to a randomized block design we put only one paper
with A, B, or C into the hat, but now draw them by chance four times,
returning them to the hat after each draw. Each draw provides a chance
allocation of A, B, and C within one replicate block of the experiment. This

B

A

C

A

C

B

B

C

A

C

A

B

Block 1 Block 2 Block 3 Block 4

Fig. 11.3 Randomized block design: A possible randomization of three treatments to
four blocks at right angles to a known gradient.
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Direction of
gradient

Block 1

Block 2

Block 3

Block 4

Fig. 11.4 Randomized block design: How not to do it! Four blocks of ten treatments
aligned to make best use of a rectangular piece of land, but parallel with a gradient as
a result.

gives a layout as shown in Fig. 11.3. Note that every treatment occurs once
in each block. Thus blocks become replicate “experiments” of the same
three treatments. The blocks are separated in Fig. 11.3 for clarity; there is
no reason why blocks should not be contiguous if preferred.

The blocks can be any size or shape. The important thing is that they are
laid out at right angles to the gradient that we suspect may influence the
results. However, I have seen the same piece of land used in consecutive
years with a layout like Fig. 11.3 in the first year then reversed to Fig. 11.4
in the second year accommodate more treatments.

This shows total ignorance of why blocking is used! If we are going to
ignore real gradients, or don’t know in which direction they go, there is
no point in using this design. It is probably used so often without thinking
because randomized blocks turn up in textbooks and research papers so
frequently.

One of the real advantages of randomized blocks is that we can use the
concept of “blocks” to separate out sums of squares for nonbackground
variation other than field gradients. For example, with potted plants in
greenhouses, it may pay us to “block for uniformity,” putting all the largest
plants into one block and so on to a block with all the smallest plants. Thus
any size effect which might influence the results will be taken out in the
block sum of squares. If space or time are limiting, we can use the block
design to build up the required number of replicates by using several areas
or completing several blocks at different times – again the space or time
effect will go into the block sum of squares.

Now that each plot is subject to more than one systematic source of
variation (treatment and block), the failure of one plot to yield a result
cannot be ignored as it can with the randomized block design. If the number
of blocks is large enough, a whole block can be “written off ” even if only one
plot fails, but it is usually more efficient to use a “missing plot” calculation.
This calculation is outside the scope of this elementary book, but will be
found in most larger texts; the principle is that a “best guess” is made of the
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35

Block 1 Block 2 Block 3 Block 4

35 42 41

30 22 32 42

23 33 43 48

B

A

C

A

C

B

B

C

A

C

A

B

Fig. 11.5 Randomized block design: The layout of Fig. 11.3 with data added (days to
flowering of half the broad bean plants per plot).

likely data that would have been recorded from one or two missing plots,
with the sacrifice of some residual degrees of freedom in the Anova.

Data for analysis of a randomized block experiment

The data (Fig. 11.5) are again days to flowering of 50% of broad bean
plants per plot.

Prelims

Unscramble the randomization so that each plot per fertilizer is in the same
column (or row if you prefer). Note the subscripts added to the end totals
for what are TWO systematic sources of variation in this design, subscripts
are there to remind us how many data contribute to each total.

A B C
Block 1 30 35 23 883
Block 2 35 33 22 903
Block 3 43 42 32 1173
Block 4 42 48 41 1313

1504 1584 1184 GT = 42612

Note: The row (block) totals increase down the table, suggesting there is a real
gradient to make the use of this design worthwhile.

The “lead line” now uses the words “Blocks” rather than replicates to
remind us that the replicates are now purposefully in “block” form, and is:

3 Fertilizers × 4 Blocks = 12 plots
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We use the lead line to produce the skeleton analysis table with degrees
of freedom (n − 1):

Lead line: 3 Fertilizers × 4 Blocks = 12 plots
Source of variation Degrees Sum of squares Mean Variance P

of freedom square ratio

3 Fertilizers 2
4 Blocks 3
Residual (2 × 3 =)6

TOTAL (12 plots) 11

Compared with the fully randomized design for 12 plots analyzed earlier,
you will see that 3 degrees of freedom have been lost from the residual
and allocated to “Blocks.” This reduces the divisor for the residual mean
square, but this disadvantage of the randomized block design is more than
compensated if the variance between blocks is considerably greater than
the residual variation.

A second point on the table is how I have calculated the degrees of
freedom for the residual variation. Although 6 d.f. could have been found
by subtraction (11 − 2 − 3 = 6), I have preferred (page 98) to multiply the
d.f. for Fertilizers and Blocks. This is another way of arriving at the correct
d.f. for the residual sum of squares, and has the advantage of being a much
better check that we have allocated the other d.f. correctly.

It is no coincidence that multiplying the d.f. for Fertilizers and Blocks
gives the correct residual d.f., because the residual variation represents
what we call the interaction of fertilizers and blocks (which would often be
written as the “Fertilizer × Block” interaction). You will hear a lot more
about interaction in Chapter 12, where we become involved with interac-
tions between different components of experimental treatments. Here, the
interaction between Fertilizers and Blocks takes the form that sampling is
unlikely to give data where the three different Fertilizers will each give the
absolutely identical time to flowering of the beans in all four Blocks. This is
described more fully in Box 11.2, but the point can also be made from the
table of data (reproduced again below):

A B C
Block 1 30 35 23
Block 2 35 33 22
Block 3 43 42 32
Block 4 42 48 41

You will see, for example, that in Block 2 Fertilizer C has advanced the
date of flowering of the plants by 40% compared with Fertilizer A (shaded
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BOX 11.2

If there were no interaction between Fertilizers and Blocks in our randomized
block experiment. Then all three Fertilizer totals would have been partitioned
between blocks 1–4 in the ratio 88:90:117:131 (i.e. according to the block
totals). Thus the datum for Fertilizer A in Block 1 would not have been 30, but
150 × 88/426 = 31 (see bottom of this box∗). The table where fertilizers are
having a fully consistent effect in all blocks is then completed as:

A B C
Block 1 31.0 32.6 24.4 883
Block 2 31.7 33.4 24.9 903
Block 3 41.2 43.4 32.4 1173
Block 4 46.1 48.6 36.3 1313

1504 1584 1184 GT = 42612

The added squares of these data come to 15,795.2. The total is still 426
giving us the same correction factor as on page 126 of 15,123.0 and therefore
a total sum of squares of 15,795.2 − 15,123.0 = 672.2.

Since the end totals have not changed, the Fertilizer and Block sums of
squares are as for the original data (page 126) , 224.0 and 441.7 respectively.
The sum of these, 665.7, leaves almost nothing (only 6.5) for the Residual sum
of squares; it is the inconsistency in the original data in how the Fertilizers have
performed relative to each other in the different Blocks (the “Fertilizer × Block
interaction”) which produced over 40 for the residual sum of squares in the
original analysis. We should in fact have a residual of zero in the interaction-
free analysis; the 6.5 comes from an accumulation of rounding up decimal
places. For example, I have put the datum for Fertilizer A in Block 1 as 31.0
above, when the true answer is only 30.985915492958 . . .!

∗Expected values with no inconsistency (interaction) are obtained from column total ×
row total ÷ grand total. If you need convincing that this is sensible, imagine that all 12
numbers in the table above are identical at the overall mean of 426/12 = 35.5. Then all
column totals would be 35.5 × 4 = 142, and all row totals 35.5 × 3 = 106.5. Then every
expected value would be 142 × 106.5 ÷ 426 = 35.5 ! . . . Yes!

numbers), yet in Block 4 (boxed numbers) the difference is negligible, only 1
day! So in a randomized block experiment, it is such inconsistencies which
form our residual variation.

Phase 1

The Correction Factor (Grand Total2/n) is 4262/12 = 15, 123
Added squares in the body of the table are 302 +352 +232 +· · ·+412 =

15, 838
Therefore Total Sum of Squares = 15, 838.00 − CF = 715
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BOX 11.3

Phase 2 sum of squares calculations using the column and row totals together
with the correction factor already calculated in Phase 1.

Fertilizer (columns) sum of squares = 1502 + 1582 + 1182

4
− 15,123 = 224

Blocks (rows) sum of squares = 882 + 902 + 1172 + 1312

3
− 15,123 = 441.7

Note that in both cases the number of totals squared and added × the
divisor = 12, the number of plots in the experiment.

Phase 2

I hope you remember that, having calculated the total variability of the 12
numbers in the body of the table, we have now finished with those numbers
and Phase 2 uses only the column and row end totals in its calculations.
Hopefully, by now, you are also familiar with the SqADS procedure for
calculating the sums of square for Fertilizers (columns) and Blocks (rows).
Therefore, only a reminder follows below, but – for those who would still
find it helpful – the full numerical calculations are given in Box 11.3:

Sum of squares for Fertilizers = SqA3 Fertilizer totals Dby 4 SCorrection Factor = 224

Sum of squares for Blocks = SqA4 Block totals Dby 3 SCorrection Factor = 441.7

Reminder: The number of totals squared and added times the divisor = the total
number of “plots” (=12).

Thus the sums of squares are partitioned as:

Lead line: 3 Fertilizers × 4 Blocks = 12 plots
Correction Factor = 15,123
Source of variation Degrees Sum of squares Mean Variance P

of freedom square ratio

3 Fertilizers 2 224.0
4 Blocks 3 441.7
Residual (2 × 3 =)6 by subtraction 49.3

TOTAL (12 plots) 11 715.0
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End Phase

Finally, we divide the sums of squares for Fertilizers, Blocks, and the Resid-
ual by their degrees of freedom and then obtain the variance ratios (F) for
Fertilizers and Blocks by dividing their mean square by the residual mean
square. The last step is to look up the P (probability) value for the two vari-
ance ratios in tables of F (with d.f. for Fertilizers [2]or Blocks [3]across the
top and the 6 Residual d.f. down the side):

Source of variation Degrees
of freedom

Sum of squares Mean 
square

Variance 
ratio

P

3 Fertilizers 2 224.0 112.1 13.7 = 0.01
4 Blocks 3 441.7 147.2 18.0 = 0.01
Residual (2 × 3=) 6 by subtraction 49.3 8.2

TOTAL (12 plots) 11 715.0

Lead line: 3 Fertilizers × 4 Blocks = 12 plots
Correction Factor = 15,123

Both calculated variance ratios are so large that they would occur well
less than once in 100 times (P < 0.01) if we were merely sampling the
background variation.

The further tests on the means needed to interpret the experiment fully
are detailed later in Chapter 16, page 227.

Incomplete blocks

The number of treatments we wish to include in an experiment may be very
large, particularly if it is a complex factorial experiment (see Chapter 12),
where a number of treatments are each applied at several different levels
(e.g. three fertilizers each applied at two rates on three varieties each grown
in two different composts – giving 3 × 2 × 3 × 2 = 36 treatments!). Not
only may there be insufficient space to accommodate several blocks of so
many treatments, but the recording of the data may be too large a task.
Moreover, the larger the area occupied by an experiment, the greater the
variation in environmental conditions at the extremes of each block and
therefore the larger the residual sum of squares in comparison to treatment
effects.

Thought needs to be given to avoiding too many treatments, and it may be
possible to define the aims of the experiment more clearly and eliminate
some of the proposed treatments. Using a split-plot design (see later and
Chapter 15) may also reduce the area needed for the experiment.

If there really is no alternative, then refuge can be taken in Incom-
plete Randomized Block or Lattice designs. Complex analyses are the
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Fig. 11.6 Incomplete randomized block design: A possible layout of seven treatments in
blocks of only three plots. Treatment A occurs three times (dark shading), as do all other
treatments. All pairs in the same block (e.g. G and F in the first block) also occur the
same number of times (just once in this layout).

consequence of choosing such designs, and such analyses are outside the
scope of this book. Further advice should be sought; they are introduced
here to make you aware that solutions to accommodating a large number
of treatments are available.

Figure 11.6 shows an Incomplete Randomized Block layout, each of only
three plots but accommodating seven treatments. The 21 plots involved
could of course have been three blocks of the seven treatments, but using
seven blocks gives more efficient control of residual variation. The criteria
required for analyzing such a design is that each treatment appears the
same number of times (three in our example – Fig. 11.6 , e.g. A) and that
so does each pair found together in the same block (here just once, e.g.
G and F). The treatments assigned to each block by these criteria are then
randomized within the blocks.

Lattice designs have different criteria and are applicable to large factorial
(see later) experiments involving many interactions between treatments.
One particular difference from incomplete randomized blocks is that a pair
of treatments appearing together in the same block shall not coincide in
other blocks. A typical lattice design for nine treatments, with four repli-
cates (there should be an even number), is shown in Fig. 11.7. Note that
each replicate itself has three treatments in two dimensions, as columns
and rows (the blocks), and these dimensions feature in the complex anal-
ysis. The treatments are allocated to the first replicate at random. In the
second replicate, the rows become the columns, and this fulfills the criteria.
Thus two replicates (replicates 1 and 2 below) accommodate six blocks of
the nine treatments in 18 plots compared with the 54 plots which would be
needed in a complete randomized block design. Further replicates (e.g. repli-
cates 3 and 4 below) can be created by imagining the lattice ever repeating
in both dimensions, and using diagonals starting at different points. You
will see the diagonal G, H, and E of replicate 1 appearing as the first block
of replicate 3; B, I, and D is the next diagonal transferred from replicate 1 to
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Fig. 11.7 Lattice design of incomplete blocks: Here pairs in a block (e.g. G and F or E
and I in Block 1) do not coincide in another block. Replicate 2 is replicate 1 with the
blocks now used as columns. Replicate 3 uses the G-H-E diagonal as the first block, then
B-I-D from a second diagonal of replicate 1 assuming a continuously repeating pattern,
and the third block is the next diagonal (A-F-C of block 1). The blocks of replicate 4 use
diagonals from replicate 3.

a block in replicate 3. In the plan below, the pairs G and F, also I and E, are
shaded to illustrate the principle of nonrepeating pairings in the different
blocks.

Note: Had the fertilizer treatment been three increasing levels rather than three
different fertilizers, there is a more advanced approach to analyzing the data based
on the presumption that the means will follow (either positively or negatively)
the increase in fertilizer applied. This is outside the scope of this book, but details
can be found in more advanced texts. The approach is to calculate what proportion
of the treatment variability (as sum of squares) can be apportioned to single
degrees of freedom associated with fitting linear or defined nonlinear functions
to the sequence of means. These functions are mentioned briefly on page 269 in
Chapter 17. The advantage of this different approach is that, if the means do
follow such directional changes the degrees of freedom used to calculate the mean
square are reduced and there is therefore a greater chance of detecting the effect
of fertilizer as statistically significant.
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Latin square

When introducing the randomized block design, I pointed out that it was
appropriate to an arena with a single major environmental or other gra-
dient. The Latin square design enables variation along two gradients at
right angles to be separated out from the residual variation, but with the
penalty of reducing the residual degrees of freedom still further from the
randomized block design. This penalty may be too heavy for comfort in
many cases! However, it clearly has intuitive appeal where the direction of
any important gradients is unknown or unpredictable.

As the name implies, a Latin square is a square design in that it consists
of the same number of plots (though these don’t have to be square) in two
dimensions, i.e. 4 × 4, 5 × 5, 6 × 6, etc. The “dimension” of the square is
the number of treatments in the experiment.

We’ll take as our example a Latin square with four treatments (A, B, C,
and D) – i.e. a 4 × 4 (16 plot) square. To be able to separate out variation in
the two gradients at right angles, we visualize the 16 plots as being “blocks”
of the four treatments both vertically (columns) and horizontally (rows),
with each treatment occurring just once in each column and also only
once in each row. Apart from that restriction, treatments can be allocated
to plots at random. The layout might therefore be as in Fig. 11.8a (the
process of randomization is described in Box 11.4): Note that the design
results in “blocks” in two directions (Fig. 11.8b).

C B A D

D C B A

B A D C

A D C B

(a)

(b)
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C  B  A  D

D   C  B  A
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Fig. 11.8 Latin square design: (a) A possible layout for four treatments; (b) how these
could be either vertical or horizontal blocks of a randomized block design – in either
case, each treatment would appear once in each block.
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BOX 11.4

We begin with a randomization in one direction:

C B A D

Since C occupies the top left corner, we just have A, B, and D to randomize
for the vertical dimension:

C B A D
D
B
A

The next row (following D) leaves A, B, and C to randomize, with the con-
straint that the letter must be different from the one above it in the first row: So
a randomization of C, A, and B had to be changed to C B A

C B A D
D C B A
B
A

The next row beginning with B involves randomizing A, C, and D, again so
that no letter in a column is repeated. What came up was A D C, which is fine

C B A D
D C B A
B A D C
A

The final row completes the missing letter in each column

C B A D
D C B A
B A D C
A D C B

Data for the analysis of a Latin square

The arrival of winged aphids on a crop is usually very directional, but the
direction varies from season to season. A Latin square design was therefore
deemed appropriate for a trial on the suitability of four varieties of cabbage
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Fig. 11.9 Latin square design: The layout of Fig. 11.8a with data added. The experi-
ment measured the number of winged migrants of cabbage aphid remaining on four
cabbage varieties the morning after a migration which most years comes in at the top
left corner of the field (see text).

to arriving cabbage aphids (aphids tend to alight equally on the varieties
in the evening, but show their preference by whether or not they take
off again the next morning). The data (Fig. 11.9) are therefore the total
number of winged cabbage aphids found on 20 plants of four cabbage
varieties (A, B, C and D) at 11 a.m. after water dishes among the plants had
shown an arrival flight had occurred.

Prelims

We will need column and row totals – the tabulated numbers to the left
below (check the grand total both ways from the end totals); but we will
also need to unscramble the randomization to obtain the treatment end
totals – the tabulated numbers on the right. Note again the use of subscripts
with the totals we will need to SqADS, to denote how many data have been
totaled (remember, this subscript becomes the divisor of the added squared
totals in SqADS).

A B C D

69 58 73 91 2914 73 58 69 91
114 59 44 52 2694 52 44 59 114

34 46 75 18 1734 46 34 18 75
34 62 11 4 1114 34 4 11 62

2514 2254 2034 1654 GT = 84416 2054 1404 1574 3424 GT = 84416
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Note: The end totals of the original data show a diagonal decline from the top left
corner, suggesting that the aphid flight came from this direction.

What is the lead line? It cannot be “4 varieties × 4 columns × 4 rows =
16 plots,” since 4×4×4 = 64, not 16! With a Latin square design, there is
clearly one “×4” too many! We are used to analyzing a table like the one on
the left above (4 columns ×4 rows = 16 plots) according to the table below
(shown in small type only, because it is NOT the final table appropriate for
a Latin square design):

Lead line: 4 Columns × 4 Rows = 16 plots
Source of variation Degrees Sum of squares Mean Variance P

of freedom square ratio

4 Columns 3
4 Rows 3
Residual (3 × 3 =) 9

TOTAL (16 plots) 15

and the degrees of freedom add up OK. But where are the Varieties in the
above skeleton analysis table? They are there, I promise you. Believe it or
not, they are in the Residual! Look back at the section on randomized Blocks
and particularly Box 11.2. Here the point was made that the residual rep-
resented the inconsistency (or interaction) between Treatments and Blocks
(= Columns and Rows in a Latin square), i.e. the failure of plots to yield
data consistent with the overall effect of their Treatment and Block totals
(= Column and Row). Now that’s exactly what the Varieties are doing.
They are adding a Variety “weighting” to the random residual variation of
each plot. So both the degrees of freedom and sum of squares for the varia-
tion caused by having four different Varieties in our Latin square have to be
separated out from the residual, which therefore loses 3 degrees of freedom
for the four Varieties.

The correct analysis of variance table is therefore:

Source of variation  Degrees  
of freedom  

Sum of squares 
 

Mean 
square  

Variance 
ratio  

P 

4 Varieties 3 
4 Columns 3 
4 Rows 3
Residual (3 × 3 − 3 =)  6 

TOTAL (16 plots) 15

Lead line: 4 Columns × 4 Rows  = 16 plots of 4 Varieties 
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Phase 1

The Correction Factor (Grand Total2/n) is 8442/16 = 44, 521
Added squares in the body of the table are 692 + 582 + 732 +· · ·+ 42 =

57, 210
Therefore Total Sum of Squares = 57, 210 − CF = 12, 689

Phase 2

This phase uses only end totals (the totals with subscripts in the two adja-
cent tables on page 133) in the calculations). For each systematic source of
variation (Varieties, Columns, and Rows in our example here) we use the
SqADS procedure on the appropriate totals from the two tables, remember-
ing that the divisor (D) is the subscript indicating how many data contribute
to the total, and that the number of totals we square and add (SqA)
multiplied by the divisor = the total number of plots (16 in our example).

So sum of squares for Varieties = SqA4 Variety totals Dby 4 SCorrection Factor =
6288.50

Sum of squares for Columns = SqA4 Column totalsDby 4 SCorrection Factor =
994.00

and sum of squares for Rows = SqA4 Row totals Dby 4 SCorrection Factor =
5302.00

Once again, for those who prefer it, the calculations are repeated with
actual numbers in Box 11.5.

BOX 11.5

Phase 2 sum of squares calculations using the Variety, Column, and Row
totals from the two adjacent tables on page 133, together with the correction
factor already calculated in Phase 1.

Varieties sum of squares = 2052 + 1402 + 1572 + 3422

4
− 44521 = 6288.50

Columns sum of squares = 2512 + 2252 + 2032 + 1652

4
− 44521 = 994.00

Rows sum of squares = 2912 + 2692 + 1732 + 1112

4
− 44521 = 5302.00

Note that in both cases the number of totals squared and added × the
divisor = 16, the number of plots in the experiment.
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These calculations are inserted into the analysis table:

Lead line: 4 Columns × 4 Rows = 16 plots of 4 Varieties
Correction Factor: 44,521
Source of variation Degrees Sum of squares Mean Variance P

of freedom square ratio

4 Varieties 3 6288.50
4 Columns 3 994.00
4 Rows 3 5302.00
Residual (3 × 3 − 3 =) 6 104.50

TOTAL (16 plots) 15 12,689.00

End Phase

The last phase is to calculate mean squares by dividing the sums of squares
by their degrees of freedom and then dividing all the other mean squares by
the residual mean square to give the variance ratios. The phase concludes
with checking tables of F for the P (probability value) of the variance ratios.
The value in the table will be the same for all the variance ratios calculated,
since in each case it will be at the intersection of 4 d.f. across the top of the
F table and 6 Residual d.f. down the side:

Source of variation Degrees
of freedom

Sum of squares Mean 
square

Variance 
ratio

 4 Varieties 3 6,288.50 2096.17 120.35 <0.001
 4 Columns 3 994.00 331.33 19.02 <0.01
 4 Rows 3 5,302.00 1767.33 101.47 <0.001
 Residual (3 × 3 − 3 =) 6 104.50 17.42

TOTAL (16 plots) 15 12,689.00

P

Lead line: 4 Columns  × 4 Rows = 16 plots of 4 Varieties
Correction Factor: 44,521

All three variance ratios are so large that the chance of them being
calculated in the absence of variation from the sources involved is less
than once in 1000 for Varieties and Rows and once in 100 for Columns.
The Latin square design has succeeded in keeping the residual varia-
tion restricted to background interplot variability and has separated out
both the strong column and row gradients associated with the directional
arrival of the aphids from the top left hand corner of the field (page 133).
The variance ratio for Varieties would have been reduced if it had not
been laid out as a Latin square, since either the Column or Row sum of
squares would have been included in the residual variation (though with
increased degrees of freedom). The relevant analysis tables are shown in
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BOX 11.6

Analysis if Columns had been the randomized blocks:

Source of variation Degrees Sum of squares Mean Variance P
of freedom square ratio

4 Varieties 3 6288.50 2096.17 0.35 n.s
4 Columns 3 994.00 331.30 0.06 n.s
Residual (3 × 3 =)9 54,065.50 6007.28

TOTAL (16 plots) 15 12,689.00

Varieties would have shown a negligible variance ratio of only 0.35, likely to
arise very commonly by chance in the absence of any Variety effect.

Analysis if Rows had been the randomized blocks:

Source of variation Degrees Sum of squares Mean Variance P
of freedom square ratio

4 Varieties 3 6288.50 2096.17 17.17 <0.01
4 Rows 3 5302.00 1767.33 14.48 <0.01
Residual (3 × 3 =)9 1098.50 122.05

TOTAL (16 plots) 15 12,689.00

The Variance ratio for Varieties would still have been significantly high, but
with the probability of it occurring by chance increased. It is also possible that
statistical discrimination between the varieties might have been reduced (see
Chapter 16).

Box 11.6 – showing a reduction in F for Varieties from the 120.35 above
to 17.17 if Rows had been the blocks and only 0.35 if it had been the
Columns.

The further tests on the Variety means needed to interpret the experiment
fully will be presented later in Chapter 16, page 229.

Further comments on the Latin square design

Since Latin squares use up so many degrees of freedom for systematic
variation (Treatments, Rows, and also Columns) at the expense of degrees
of freedom for the residual, they are rather inefficient at measuring the
latter accurately, However, it is clear from our aphid example above that
they have great value if a strong gradient is expected but its direction is
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Fig. 11.10 Latin square designs: A possible randomization of four treatments in two
replicate 4 × 4 Latin squares. Each square has a fresh independent randomization.

variable or unknown. That gradients are often unknown makes it profitable
to try a Latin square as a pilot experiment in a new environment. The results
will make it clear whether a Latin square is necessary or whether there is
just one gradient which necessitates blocking in the right direction. Of
course, if no gradient is detectable, then a fully randomized experiment
may well be the best policy following the pilot experiment.

However, what can be done to increase the residual degrees of free-
dom without adding more treatments if it appears a Latin square is the
right design for the situation? As demonstrated in the aphid example,
experiments with wind-dispersing pests, diseases, or weeds are all likely
candidates. The answer is that residual degrees of freedom can be increased
easily by setting up more than one replicate Latin square (with different
randomizations of course) as in Fig. 11.10.

How such multiple Latin squares are analyzed is a bit advanced for a
book at this level, but I wasn’t able to find out how to do it in any of the
larger higher-level textbooks I consulted. Having worked out how to do
it, I realized that the allocation of degrees of freedom and the calculation
of some of the sums of squares are a little idiosyncratic. I have therefore
provided guidelines in Box 11.7, though you are probably best advised to
skip over this until the day comes when you need it!

Split plot

This design is added here just as a heading (for completing the range of
common experimental designs). It has some resonance of the multiple
Latin square, in that an experiment of large plots (like replicate entire Latin
squares) has another experiment of smaller plots going on inside it (like the
columns within each replicate Latin square).
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BOX 11.7

For the allocation of degrees of freedom and calculation of sums of squares for
a multiple Latin square, we’ll use the example of two 4 × 4 squares illustrated
in Fig. 11.10 on page 137.

This is the one type of analysis of variance where we depart from the rule
stated on page 93 that we use the same correction factor throughout! This
complication arises with the sums of squares for the Columns and Rows
sources of positional variation, since some of this variation is the same (posi-
tional) variation as already included in the sum of squares for variation shown
by the totals of the two replicate Latin squares (∗ in the table below).

We deal with this by calculating a pooled sum of squares as for the t-test
(page 68), where we work out the sum of squares for each replicate square
separately (using the appropriate replicate square total for the Correction
Factor, not the combined Grand Total (GT)). Similarly we also pool the two
separate degrees of freedom for the two squares as the divisor for calculating
the mean squares for Columns and Rows:

Source of variation Degrees Sum of squares
of freedom

4 Treatments (A–D) 3 SqA4 Treatment totals Dby 4

SGTsquared/32

∗2 Replicate squares 1 SqA2 Square totals Dby 16

SGTsquared/32

Twice 4 Rows (2 × 4 − 1) 6 SqA4 Rep.1 Row totals Dby 4

SRep.1 total(squared)/16 plus
SqA4 Rep.2 Row totals Dby 4

SRep.2 total(squared)/16

Twice 4 Columns (2 × 4 − 1) 6 SqA4 Rep.1 Row totals Dby 4

SRep.1 total(squared)/16 plus
SqA4 Rep.2 Row totals Dby 4

SRep.2 total (squared)/16

Residual by subtraction 15 by subtraction

TOTAL (32 plots) 31 SqA32 data SGTsquared/32

It is therefore a design for more than a single series of treatments and
appropriate only for factorial experiments (see Chapters 12–14) where
the “treatments” are combinations of at least two factors (e.g. six “treat-
ments” might represent two crop types, each given one of three levels of
fertilizer).

The split plot design will be allocated its own chapter (Chapter 15), after
“nonsplit” factorial experiments have been described.
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EXECUTIVE SUMMARY 5
Analysis of a randomized block experiment

If necessary, convert the data to a table with the randomization of
treatments “unscrambled.”

Phase 1

1 Total rows and columns, and check Grand total by adding both row and
column totals.

2 Calculate correction factor for experiment = Grand total2/number
plots.

3 Calculate TOTAL sum of squares (added squares – correction
factor!).

YOU HAVE NOW NO FURTHER USE FOR THE PLOT RESULT DATA

Phase 2

4 Construct the analysis of variance table with the headings: Source of
variation, d.f., Sum of squares, Mean square, F, and P.

5 Insert sources of variation as Treatments, Blocks, Residual, and Total.
6 Allocate degrees of freedom as n − 1 for number of Treatments and

Replicates, and the product of these two d.f. for the Residual. Check that
the three d.f.’s add up to n − 1 for the Total (i.e. one less than the number
of data in the experiment).

7 SqADS the TREATMENT totals to obtain the Treatments sum of
squaresof deviations.

8 SqADS the REPLICATE totals to obtain the Replicates sum of
squaresof deviations.

9 The “Residual” sum of squaresof deviations is the remainder of the “total”
sum of squaresof deviations.

YOU HAVE NOW USED ALL THE COLUMN AND ROW TOTALS

End Phase

10 Calculate mean square for “treatments,” “replicates,” and “residual” by
dividing each sum of squaresof deviations by its own degrees of freedom.
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11 Calculate F for “treatments” and “replicates” by dividing their mean
squares by that for the residual.

12 Check P (= probability of finding as large an F by chance) for
“treatments” and “replicates” in tables of F values.

s.e.d.m. = standard error of difference between 2 means =√
2s2/nof the mean. The t-test calculates whether a difference (between two

means) divided by the s.e.d.m. is greater than the tabulated value of t (for
P = 0.05 and for the “residual” degrees of freedom).

This is the same as accepting any difference between two means greater
than t × s.e.d.m. as statistically significant. “t × s.e.d.m.” is therefore called
the “LEAST SIGNIFICANT DIFFERENCE.”

s2 for calculating
√

2s2/nof the mean for the experiment after an analysis
of variance is the “residual mean square.” Double it, then divide by the
number of plots contributing to each treatment mean. Square root the
result, and this is your s.e.d.m. to multiply by “t” for “least significant
difference” tests (but see Chapter 16).
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Spare-time activities

1 The data are yields (kg dry matter/plot) of sweet corn grown at five different
plant densities in five replicates.

Replicates Plants/m2

20 25 30 35 40

1 21.1 26.8 30.4 28.4 27.6
2 16.7 23.8 25.5 28.2 24.5
3 14.9 21.4 27.1 25.3 26.5
4 15.5 22.6 26.3 26.5 27.0
5 19.7 23.6 26.6 32.6 30.1

What design is this? Complete the appropriate analysis of variance.
Use the LSD (page 109) for differences between adjacent means to

identify which increases in spacing significantly change the yield.

2 In a comparison of four wild species of potato (A, B, C, and D), one of the
characters the plant breeder measured was the number of insect repellent
glandular hairs/mm2on 10 plants of each species:

A B C D

1.1 3.7 4.9 6.4
1.8 4.8 9.4 15.2
1.0 1.6 2.9 10.5
1.5 3.1 5.4 11.2
1.3 5.1 3.8 8.4
0.0 5.2 6.1 6.5
1.7 7.5 5.9 7.4
1.3 6.5 5.4 14.6
1.6 6.7 6.8 7.8
1.7 6.9 5.9 11.1

What design is this? Complete the appropriate analysis of variance.
Use the LSD test (page 109) to identify which varieties have a hair-

density significantly different from the normal commercial variety, which is
variety B.

3 Six lettuce varieties (identified in the table below by code letters) were
grown in small plots by each of eight students. Lettuces put on most of their
fresh weight in a short period just before maturity, so all the data were taken
at harvest of the varieties for marketing, and not on the same calendar
date. Even so, variances of the different varieties were very unequal, and
so the data were transformed to log10 before statistical analysis (page 38).
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The data are therefore the logarithm10 of the mean weight in grams per
plant based on five or six plants taken from each plot.

Student Lettuce variety

B D AV G L V

J. Blogg 2.55 2.48 2.74 3.01 2.79 2.93
P. Ellis 2.39 2.41 2.60 2.92 2.63 2.85
A. Norris 2.44 2.37 2.64 2.86 2.69 3.01
F. Newton 2.46 2.43 2.73 2.93 2.79 2.95
J. Skeete 2.55 2.44 2.66 2.86 2.81 2.92
D. Taylor 2.51 2.39 2.74 2.98 2.67 2.92
J. Taylor 2.50 2.51 2.77 3.01 2.80 2.80
A. Tinsley 2.54 2.46 2.71 2.95 2.70 2.93

Is there good evidence that students can have a bigger effect on lettuce
yields than seed packets?

4 Two growth promoters coded P-1049 and P-2711 were applied to Zinnia
plants, and the day from sowing to flowering of the individual plants was
recorded. Unfortunately, P-1049 showed some toxicity to the seedlings and
some of the plants died before flowering.

No treatment P-1049 P-2711

64 107 70
78 74 74
93 83 86
80 65 79
89 72 84
79 68 75
91 69 87
102 68 99
71 70
106 83

Do either of the growth promoters also speed up flowering? Use the LSD
test (page 109) if the variance ratio for treatments is significant at P = 0.05.
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What is a factorial experiment?

In Chapter 11, I described a number of experimental designs in which each
“plot” (e.g. part of a field or a Petri dish in an incubator) was assigned to
one of the experimental treatments. Such treatments were variations of a
single factor – different varieties of crop plant, different fertilizers, different
application rates of the same fertilizer, etc. These variations of one factor
are called “levels.”

A factorial experiment is one where the treatments allocated to the exper-
imental plots are combinations of two or more factors (hence the term
“factorial”). For example, we might wish to test the effect on some mea-
surement of a NUMBER of different fertilizers on MORE THAN ONE plant
variety. Each plot would then be allocated the combination of one “level”
of fertilizer (one of the fertilizers) applied to one “level” of variety (one of
the varieties).

So we’ll use the above experiment as our example, using three fertilizers
(A, B, and C) applied to two plant varieties (Y and Z). Three levels of fertilizer
× two levels of variety = six combinations, which are AY, BY, CY, AZ, BZ,
and CZ. A single replicate of the experiment thus requires six plots, one for
each “treatment,” with each treatment being a different combination of
levels of the two factors. These replicates of six treatments can be laid out
as any of the designs described in Chapter 11, and Fig. 12.1 shows these
same six treatments laid out as fully randomized, randomized block, and a
Latin square designs.
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AZ CY BZ CY CZ AY

BZ BY CY AZ BY CZ

BY AY AY BZ AZ CZ

(a)

BZ AY AZ CZ BY CY

CY AZ CZ BZ BY AY

BY CZ BZ AY CY AZ

(b)

BZ AY AZ CZ BY CY 

AZ CY AY BY CZ BZ 

CY CZ BY BZ AY AZ 

AY BZ CZ AZ CY BY 

CZ BY BZ CY AZ CZ 

BY AZ CY AY BZ CZ 

(c)

Block 1

Block 2

Block 3

Fig. 12.1 The same six factorial combinations of two factors laid out as: (a) a fully
randomized design of three plots per treatment; (b) three randomized blocks; (c) a 6 ×
6 Latin square.

Instead of applying three fertilizers to our two varieties (Y and Z),
we might wish to apply just one fertilizer, but at THREE rates (High,
Medium, and Low). This is still a 3 level × 2 level factorial, again with
six combinations (or plots per replicate), viz. YH, YM, YL, ZH, ZM, and ZL.

Another 3 level × 2 level factorial might again involve one fertilizer but
at the three rates (H, M, and L) applied at two different times (Early and
Delayed) in the season. This would again give six “treatments”: HE, HD,
ME, MD, LE, LD.

We might even get more complicated still, and bring back our two plant
varieties (Y and Z) into the last (rates × timings) factorial, now giving us
a three-factor experiment of 3 fertilizer levels × 2 fertilizer timings × 2
varieties = 12 “treatments”: HEY, HEZ, HDY, HDZ, MEY, MEZ, MDY, MDZ,
LEY, LEZ, LDY, and LDZ.

Note: When the data come from increasing or decreasing levels of the same factor
(e.g. Low, Medium, and High fertilizer levels in the above examples), the “note”
on page 130 applies. In this chapter we shall treat these three levels of fertilizer as
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if they were not in an ascending series and could equally have been three different
fertilizers. So we will calculate a sum of squares for these three levels of fertilizer
to 2 degrees of freedom. But be aware of the possibility outside the scope of this
book but mentioned on page 130 of increasing the F value by fitting linear or
nonlinear functions to the sequence of means.

Interaction

I have found that the concept of interaction is a real hurdle for biologists.
Strangely it is not the computational procedures which seem to be the
problem, but the explanation of the interaction in plain English, i.e. what
“biological” phenomenon the interaction reveals! Before looking at inter-
action in biological experiments, I want to use a rather silly set of data, the
time taken for a person walking, a cyclist, and a car to cover three differ-
ent distances (a 3 transport levels × 3 distance levels factorial = 9 data).
The table of data is shown in Fig. 12.2a, with only the end totals of rows
(distances) and columns (modes of transport) provided.

Rather predictably, the totals for the three levels of the transport factor
show the longest total time over the three distances for the walker and the
shortest for the car, with the bike in the middle! Surprise, surprise, the total
times over the three transport levels show it takes longer to travel 2000 m
than 500 m, with 1000 m in the middle.

The possibility of interaction arises because an identical set of end totals
can arise from many different sets of data in the body of the table.

If there is no interaction, then the two factors are acting independently
in an additive way. The concepts of “additivity” and “nonadditivity” are
frequently encountered when shopping! A certain computer may be £700
and a particular model of digital camera might be £250. How much would
it cost to buy both? Well, with no special offer, the prices would be “additive”
and we would have to fork out £950. But there might be a special offer
(=nonadditivity) of the job lot for only £800! Now let’s go back to our
“mode of transport × distance” example of a factorial.

If there is no interaction

No interaction between the two factors would mean that the time increases
shown by the row totals with longer distances apply equally to all modes
of transport. So the bike would take 1.26 times longer than the car at all
distances, and the walker 8 times longer than the bike. Equally all modes of
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Fig. 12.2 Time in seconds taken by a walker, a bike, and a car to cover 500, 1000, and 2000 m. (a) The row and column totals without
the data in the body of the table; (b–d) three different sets of data which add up to the same row and column totals as in (a). (b) Data with no
interaction between mode of transport and distance and (c,d) two different data sets, both showing interaction (see text).
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transport would take the same roughly four times longer to travel 1000 m
than 500 m and then double the 1000 m time to cover 2000 m.

There is only one set of numbers for the body of the table which would
fit these criteria – after all, there is no further information to add that is
not already provided by the row and column totals. This unique set of
numbers is shown in Fig. 12.2b. How did I calculate them? Well, this was
explained in Box 11.3, where I tackled the identical exercise of calculating
plot data from the replicate (row) and treatment (column) end totals with
the assumption that the treatments behaved identically relative to each
other in all replicates. Check out for yourself that the numbers in Fig. 12.2b
show the same incremental steps as the end totals.

What if there is interaction?

Such consistent relationships between the modes of transport may not hold
if the traffic is very heavy, and it is possible that a short distance might then
be faster by bike than by car. Figure 12.2c shows this situation at 500 m,
where the bike has halved the time it takes by car. The rows and columns
still add up to the same end totals with the overall time taken by the bicycle
over all three distances still just as much more as before than the time taken
by the car in spite of its shorter time at the one distance of 500 m.

The ranking of the three modes of transport at the three distances has
become inconsistent. This inconsistency is an interaction – and here repre-
sents the “transport × distance interaction.” It would clearly be misleading
to rely on end totals and state “the car takes less time than the cycle,” since
at 500 m this is palpably untrue!

A different interaction, yet still with the same row and column end
totals (Fig. 12.2d)

Another way the interaction might show is when the roads are even busier,
so that the cycle is slowed by the heavy traffic as much as the car for
distances up to 1000 m.

It would again be wrong to base our conclusions on the end totals, and
claim that the car is faster than the bike, because such a claim is only true
for a distance of 2000 m; there is no difference at all for 1000 or 500 m.

Recap on Fig. 12.2

All four tables in Fig. 12.2 share the same end totals, which therefore
indicate the same differences in all the tables in (i) the speed between the
modes of transport and (ii) the times taken to cover the three distances.
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However, that interpretation is only valid in respect of the Fig. 12.2b. In
Fig. 12.2c that interpretation is not valid, because over 500 m the bike is
faster than the car and in Fig. 12.2d there is no difference between these
two modes of transport, except at just one (the longest) distance.

Figures 12.2c and 12.2d are examples of interaction between the two fac-
tors (mode of transport and distance) which cannot be predicted from the
row and column end totals, as they could be if interaction is not occurring
(Fig. 12.2b).

How about a biological example?

For those who would find a second example of interaction helpful, a table
of plant yields in a factorial experiment of three fertilizers applied to two
crop varieties is given in Box 12.1. I suggest you look at the numbers only,
and try and deduce for yourself whether there is interaction and how you
would explain any interaction you spot in biological terms.

Measuring any interaction between factors is often the
main/only purpose of an experiment

To make the point, I can recall an experiment in my research group which
looked at the resistance to a pest (the diamond-back moth) of four crop
Brassica species. But we were already pretty sure of the resistance ranking
of the brassicas from published glasshouse experiments, and also knew
(from previous work in the group) that plants grown outdoors have higher
concentrations of chemicals which are distasteful or toxic to plant-feeding
insects than plants grown in the glasshouse. So, when we tested the success
of diamond-back moth caterpillars feeding in the lab on leaves of the four
brassicas (factor 1) grown under both outdoor and glasshouse conditions
(factor 2), we were already pretty certain what the overall effect of brassicas
and of location would be (i.e. even before the experiment, we could predict
the row and column end totals of a table such as Fig. 12.2a). The only
reason for doing the experiment was what the numbers in the body of the
table would be! Would they show interaction between the two factors. That
is, would the order of resistance of the four brassicas be different in the
glasshouse from what it was outdoors? Of course, it was!

Very often, at least one of the factors in a factorial experiment is only
included because of the interest in what interaction it might have with
another, yet so often I”ve seen student project reports describing the results
of a factorial experiment only with reference to the “main effects” of the
factors (i.e. only the column and row end totals have been discussed and
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BOX 12.1

For this example of potential interaction, here are possible data from the first
3×2 level factorial mentioned in this chapter – 3 fertilizers (A, B, and C) applied
to two crop varieties (Y and Z). The data are yield (kg/plot), averaged across
replicates.

First data set

A B C Mean
Y 37 39 29 35.0
Z 25 27 18 23.3
Mean 31.0 33.0 23.5

Interaction: Very little. Variety Y outyields variety Z with all three fertilizers,
though to varying degrees (42, 44, and 55%).
Variety overall: Y consistently outyields Z.
Fertilizer overall: Yields with A and B are very similar and higher than with C.

Second data set

A B C Mean

Y 37 39 20 32.0
Z 25 27 35 29.0
Mean 31.0 33.0 27.5

Interaction: Important. The effect of fertilizer C on the varieties (Z outyields
Y) is the reverse of A and B.
Variety overall: Y outyields Z – WRONG! Does not apply to fertilizer C.
Fertilizer overall: Yields with A and B are very similar and higher than with C. –
WRONG! With variety Z, C gives a yield higher than A or B.

Third data set

A B C Mean

Y 37 39 20 32.0
Z 25 27 25 29.0
Mean 31.0 33.0 23.5

Interaction: Important. Z does not seem to respond differently to the
3 fertilizers.
Variety overall: Y outyields Z – WRONG! Does not apply to fertilizer C.
Fertilizer overall: Yields with A and B are very similar and higher than with
C. – WRONG! This only applies to variety Y; Z shows no clear differences.
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compared). The most interesting result of the experiment is then summar-
ily dismissed with the brief phrase “The interaction was also significant
(P < 0.001).” Of course, there’s no “also” about it – IF the interaction is
statistically significant then that it is very likely the most important result
of the experiment, and certainly should be reported properly in biological
(and not merely statistical) terms. Moreover, great care needs to be taken in
making any statements, if any at all are worth making, about the ranking
of the end totals. This is because such totals average what may be incon-
sistent rankings of means across treatments, as in the earlier “transport”
example where which mode of transport is fastest cannot be deduced from
the end totals; it all depends on which distance is involved!

How does a factorial experiment change the form of the
analysis of variance?

Degrees of freedom for interactions

We’ll use the example given earlier in this chapter and in Fig. 12.1b
of 3 levels of fertilizer × 2 levels of plant variety (=6 combinations or
“treatments”) laid out in 3 randomized blocks (replicates). There would be
6 × 3 = 18 plots in the experiment.

There is no change to Phase 2 of the analysis of variance (see page 118) –
we still have 6 “treatments” and 3 replicates with degrees of freedom as:

Source of variation Degrees of freedom

6 Treatments 5(=6 − 1)

3 Replicates 2(=4 − 1)

Residual 10(5 × 2 or 17 − (5 + 2))

Total (18 plots) 17

The “treatments” in this experiment are now combinations of lev-
els of two factors, so it is possible for there to be interaction between
them. The treatment variation is therefore the sum of three different
sources of variation: the fertilizer factor, the variety factor, and the possible
interaction.

For sorting out how much variation to ascribe to each of these three
components of the variation due to the six “treatments,” the analysis of
a factorial experiment has to include a new Phase 3 inserted before the
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End Phase of Anova. Just as Phase 2 partitions the sum of squares for
the “Total” variation into three components (treatments, replicates, and
residual) so Phase 3 of a two-factor factorial partitions the “Treatments”
into factor 1, factor 2, and their interaction as (just check the similarity of
thinking):

Source of variation Degrees of freedom

Phase 3 3 Fertilizers 2(=3 − 1)

2 Varieties 1(=2 − 1)

Interaction 2(2 × 1 or 5 − (2 + 1))

From Phase 2 6 Treatments 5

The way d.f. for Fertilizers and Varieties are allocated should by now
be familiar – but isn’t there also something familiar about the d.f. for the
interaction? Just as for the residual in Phase 2, we multiply the degrees
of freedom for the two components of the interaction (in this case
the fertilizer × variety interaction). Is this a coincidence?

The similarity between the “residual” in Phase 2 and the
“interaction” in Phase 3

How long ago did you read page 124? Perhaps you should now read it
again before going on with this chapter. The interaction is a residual part
of the total “treatment” variation. Indeed, note above that we find the d.f.
by subtracting the d.f. for the main factor effects from the d.f. for treatments.
Equally, the residual in Phase 2 is an interaction (between treatments and
replicates).

Earlier in this chapter I tried to ram home what interaction means – that
it is the degree to which the data for combinations of factor levels differ
from what one would predict from the effect of the factor levels in isolation
(the row and column totals or means (as in Box 12.1)).

Another way of putting this is: how inconsistent are the effects of factor 1
at different levels of factor 2? In just the same way: how inconsistent are the
effects of the treatments in the different replicates? Both “interaction” and
the “residual” variation measure the degree to which the plot data cannot
be predicted from the row and column end totals. I hope the similarity of
interactions in our new Phase 3 with the residual in Phase 2 is now clear?
Perhaps Box 12.2 can help.
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BOX 12.2

Equivalence of the interaction (in italics) and residual (in bold) sums of squares
can be illustrated in a table:

Source of variation Degrees of Sum of squares
freedom

Factor 1 or Treatments a Can be computed from the data
Factor 2 or Replicates b Can be computed from the data
Interaction or Residual a × b Can ONLY be found as a

remainder (i.e.) by subtraction

Treatments or TOTAL a + b + (a × b) Can be computed from the data

Sums of squares for interactions

If the philosophy of an interaction in Phase 3 is akin to that of the residual
in Phase 2, we already know how to calculate its sum of squares. It will be
a remainder found by subtraction (see Box 12.2). It will be what is left
of the treatment sum of squares from Phase 2 when we have subtracted
the sums of squares calculated for the two factors (Fertilizer and Variety in
our example).

The big difference between residual and interaction sums of squares lies
in the purpose behind calculating them! The interaction sum of squares
measures variability which is part of the systematic design of the experi-
ment and therefore it has its mean square and variance ratio (see page 162)
tested in just the same way as the individual factors that may be interacting.
The residual sum of squares has its mean square calculated as the yard-
stick with which we compare the other mean squares (as variance ratios),
including the mean square for interaction. The latter is NOT some other
measure of “experimental error.” The way people ignore interactions often
makes me wonder whether they think it is!

Like the residual sum of squares, interaction sums of squares are always
calculated by subtraction, i.e. as remainders. I find this is something that
people tend to forget, so do try and remember it! To calculate the interaction
sum of squares (described in the next chapter) we have first to SqADS the
totals representing the combined variation due to the interaction and the
factors that are interacting. After Scorrection factor we haven’t finished. We
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still have to subtract the sums of squares for the factors that are interacting
to find that elusive remainder which measures the variability caused by the
interaction.

So it can’t be repeated too often – INTERACTION SUMS OF
SQUARES ARE ALWAYS REMAINDERS.
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Introduction

With factorial experiments, the value of having the lead line and using
subscripts to track the number of data contributing to totals will become
more evident. But this chapter also includes three new ideas, the introduc-
tion of a Phase 3 into the analysis (already introduced in Chapter 12), the
combining of “treatment” totals into supertotals and adding a column to
the Anova table for the divisor appropriate to each SqADS calculation for
sums of squares. As in previous chapters, some new ideas introduced may
seem unnecessary, but they will prove their worth in more complex facto-
rial experiments (Chapter 14) and are best introduced in a simpler situation
while they still appear “easy.”

An example of a 2-factor experiment

We’ll add some data (Fig. 13.1) to the example of a randomized block design
of the 2-factor experiment with which we introduced Chapter 12. The data
are yield (kg/plot) of two strawberry varieties (Y and Z) treated with three
different fertilizers (A, B, and C).
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Fig. 13.1 A 2-factor randomized block experiment with three blocks applying three
different fertilizers (A, B, and C) to two strawberry varieties (Y and Z). Data are fruit
yield as kg/plot.

Analysis of the 2-factor experiment

We can begin with what is hopefully by now very familiar territory and
treat this like any other randomized block experiment with six treatments
and three replicates – through prelims and Phase 1 right up to the end phase
of Phase 2 before drawing breath!

Prelims

Unscramble the randomization so that each plot of each of the six treat-
ments is in the same column (or row if you prefer). Note the subscripts
that have again been added to the end totals to remind us how many data
contribute to each total.

AY BY CY AZ BZ CZ
Block 1 29 37 16 17 21 17 1376
Block 2 36 36 17 27 28 29 1736
Block 3 45 43 27 30 30 29 2046

1103 1163 603 743 793 753 GT = 51418

The row (block) totals suggest a gradient of increasing yield down the
table; the correct alignment of the blocks appears to have been used
(page 122).

The lead line is added and used to produce the skeleton analysis table (at
this stage just for the six “treatments” ignoring their factorial nature) with
degrees of freedom (n − 1). Note the new column headed “Divisor,” this
provides the D in SqADS and, when multiplied by the number of totals to be
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Squared and Added, will always give the number of plots in the experiment
(18 in this example).

Lead line: 3 Fertilizers × 2 Varieties (= 6 treatments) × 3 Blocks = 18 plots

Source of
variation

Divisor Degrees of
freedom

Sum of
squares

Mean
square

Variance
ratio

P

6 Treatments 18/6 = 3 5
3 Blocks 18/3 = 6 2
Residual (5 × 2 =)10

TOTAL 17
(18 plots)

Phase 1

The Correction Factor (Grand Total2/n) is 5142/18 = 14,677.6
Added squares of the 18 numbers in the body of the table = 15,964.0
Therefore Total Sum of Squares = 15,964.0 − CF = 1286.4

Phase 2

Remember that, having calculated the total variability, we have now fin-
ished with the original data, and that Phase 2 uses only the column
(Treatment) and row (Block) end totals in its calculations. These are used to
calculate the sum of squares (SqADS) for Treatments and Blocks as follows
below (for those who find it helpful – the full numerical calculations are
given in Box 13.1). Note in SqADS that the number of totals to be squared
and added as well as the divisor can now both be found respectively
in the “Source of variation” and “Divisor” columns of our Anova table,
and here will always multiply to the number of plots in the experiment,
i.e. 18.

Sum of squares for Treatments = SqA6 Treatment totals Dby 3 SCorrection Factor

= 821.7

Sum of squares for Blocks = SqA3 Block totals Dby 6 SCorrection Factor =374.7
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BOX 13.1

Phase 2 sum of squares calculations using the Treatment (column) and Blocks
(rows) totals together with the correction factor already calculated in Phase 1:

Treatment (columns) sum of squares

= 1102 + 1162 + 602 + 742 + 792 + 752

3
− 14,677.6 = 821.7

Blocks (rows) sum of squares = 1372 + 1732 + 2042

6
− 14,677.6 = 374.7

Note that in both cases the two essential pieces of information (i.e. the
number of totals to be squared and added and the divisor) can be found
respectively in columns 1 and 2 of the Anova table on page 156, and that –
when multiplied together – these two numbers give 18, the number of plots in
the experiment.

Thus the sums of squares are partitioned as:

Lead line: 3 Fertilizers × 2 Varieties (= 6 treatments) × 3 Blocks = 18 plots
Correction factor: 14,677.6

Source of
variation

Divisor Degrees of
freedom

Sum of squares Mean
square

Variance
ratio

P

6 Treatments 18/6 = 3 5 821.7
3 Blocks 18/3 = 6 2 374.7
Residual (5 × 2 =)10 (by subtraction)

90.0

TOTAL 17 1286.4
(18 plots)

End Phase (of Phase 2)

At this point we need to complete the End Phase for Phase 2, since there is
no point at all spending time moving on to Phase 3 if the Variance Ratio
(F) for Treatments in Phase 2 does not attain significance. However, if a
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Phase 3 is warranted, we will later need to complete the End Phase for the
Phase 3 part of the Table (on page 160).

So (see page 99 if you need reminding) we now “go along the corridor”
(to calculate Mean Squares) before “we go upstairs,” using the residual
mean square as the divisor to obtain Variance Ratios (F):

Lead line: 3 Fertilizers × 2 Varieties (= 6 treatments) × 3 Blocks = 18 plots
Correction factor: 14,677.6

Source of 
variation

Divisor Degrees of 
freedom

Sum of squares Mean square Variance ratio P

6 Treatments 18/6 = 3 5 821.7 18.3 <0.001
3 Blocks 18/3 =  6 2 374.7 20.8 <0.001
Residual (5 × 2 =)10 (by subtraction) 

90.0

164.3
187.4

9.0

TOTAL (18 plots) 17 1286.4

Even at P = 0.001, the Variance Ratio for Treatments exceeds the tabu-
lated F of 10.48 for 5 (along the top of the table) and 10 (down the side)
degrees of freedom, and clearly Phase 3 is warranted.

Phase 3

This is the new Phase (together with its own End Phase). Instead of splitting
up the Total sum of squares into its components as we do in Phase 2, we
split theTreatment sum of squares into its factorial components, Fertilizers,
Varieties, and the Fertilizer × Variety interaction. As this means splitting
up the Treatment sum of squares (calculated by SqADS of the six treatment
totals), everything that we do in Phase 3 is based on these six totals. Just
as we could throw away the 18 original plot data at the end of Phase 1, so
we can now throw away the Block totals at the end of Phase 2, and are left
with just the numbers below for Phase 3:

AY BY CY AZ BZ CZ
Block 1
Block 2
Block 3

1103 1163 603 743 793 753 GT = 51418

If we now make these numbers the data in the “body” of a new table of
three Fertilizer columns by two Variety rows, we get all the numbers needed
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for the Phase 3 calculations:

A B C

Y 1103 1163 603 2869

Z 743 793 753 2289

1846 1956 1356 GT = 51418

Varieties

Fertilizers

This is where it really does pay to keep track of the number of data
contributing to a total. In the body of the table are totals of three blocks,
and now the “column” and “row” totals (outside the black frame) are
SUPERTOTALS of multiples of 3. Hence the respective subscripts 6 and 9.

Allocation of degrees of freedom in Phase 3, the factorial part of the
analysis

So now in Phase 3 we are going to “factorialize” a total variation in the form
of the Treatment sum of squares into its components parts (Fertilizers,
Varieties, and their Interaction), just as we did in Phase 2 for the Total
variation of the whole experiment (into Treatments, Replicates, and their
Interaction that we called the “Residual”):

Lead line: 3 Fertilizers × 2 Varieties (=6 treatments) × 3 Blocks = 18 plots
Correction factor: 14,677.6

Source of
variation

Divisor Degrees of
freedom

Sum of squares Mean
square

Variance
ratio

P

6 Treatments 18/6 = 3 5 821.7

From our lead line, we see that two factors, Fertilizer and Variety, con-
tribute to the variation in yield of our six treatments, so that these are the
“sources of variation” which now replace “Treatments” and “Blocks” of
Phase 2 in our Phase 3 Anova table. The degrees of freedom and “divisors”
are based on information in the leadline, including 18 as the number of
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plots in the experiment: The Fertilizer × Variety interaction is analagous to
the “residual” (see page 152 and Box 12.2).

Lead line: 3 Fertilizers × 2 Varieties (= 6 treatments) × 3 Blocks = 18 plots
Correction factor: 14,677.6

Source of
variation

Divisor Degrees of
freedom

Sum of squares Mean
square

Variance
ratio

P

3 Fertilizers 18/3 = 6 3 − 1 = 2 We can calculate
2 Varieties 18/2 = 9 2 − 1 = 1 We can calculate
Fert. × Var. 2 × 1 = 2 By subtraction

6 Treatments 18/6 = 3 5 821.7

Just as the sum of squares will add up to the “Treatment” sum of squares
(821.7), so our d.f. in the Phase 3 table add up to the “Treatment” d.f. (5) –
remind yourself from Box 12.2.

Sums of squares in Phase 3, the factorial part of the analysis

As we are factorializing the sum of squares of the six “Treatment” totals,
these are the totals we use but (see earlier) but grouped into larger units I
call supertotals. Below is repeated the table of the six treatment totals within
the black frame, totalled as both columns and rows to form the supertotals
we need for the Phase 3 calculations.

A B C

Y 1103 1163 603 2869

Z 743 793 753 2289

1846 1956 1356 GT = 51418

Varieties

Fertilizers

The Fertilizer line in the Anova table says “3 Fertilizers” with a divisor
of 6. To calculate the sum of squares for Fertilizers we have to Square and
Add 3 totals and Divide by 6 before Subtracting the Correction Factor. I guess
(if you look at the subscripts) the three totals we need from the table above
are fairly obvious as 184, 195, and 135 – being the totals for fertilizers A,
B, and C respectively and each being totals of six plots.

Similarly the line in the Anover table for Varieties indicates two totals
with the subscript (=divisor) of 9, and 286 and 228 are easily identified as
the appropriate totals of nine plots for varieties Y and Z.
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BOX 13.2

The sum of squares for Fertilizers involves SqADS of the three totals, each of
six numbers, along the bottom of the interaction totals table on page 160

= 1842 + 1952 + 1352

6
− 14,677.6 = 340.1

The sum of squares for Varieties involves SqADS of the two totals, each of
nine numbers, down the side of the interaction totals table.

= 2862 + 2282

9
− 14,677.6 = 186.8

Note that in both cases the two essential pieces of information (i.e. the
number of totals to be squared and added and the divisor) can be found
respectively in columns 1 and 2 of the Anova table on page 160, and that –
when multiplied together – these two numbers give 18, the number of plots in
the experiment.

The two sums of squares for Fertilizers and Varieties are thus calculated
by SqADS and entered in the Anova table (Box 13.2 details the calcula-
tions). These two sums of squares added together account for 526.7 of the
Treatment sum of squares of 821.7, leaving a remainder of 294.8 for the
Fertilizer × Variety interaction.

Lead line: 3 Fertilizers × 2 Varieties (= 6 treatments) × 3 Blocks = 18 plots
Correction factor: 14,677.6

Source of
variation

Divisor Degrees of
freedom

Sum of squares Mean
square

Variance
ratio

P

3 Fertilizers 18/3 = 6 3 − 1 = 2 340.1
2 Varieties 18/2 = 9 2 − 1 = 1 186.8
Fert. × Var. 2 × 1 = 2 294.8

6 Treatments 18/6 = 3 5 821.7

Having filled in the three factorial sums of squares which make up the
Treatment sum of squares, it is normal to place this table on top of the
Phase 2 table. Most people in fact leave out the “Treatment” line, but I find
it helpful to leave it in. However, I have put it in smaller type and italics to
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make it clear it has to be omitted in the addition down the Table of degrees
of freedom and sums of squares to the “Total”:

Lead line: 3 Fertilizers × 2 Varieties (= 6 treatments) × 3 Blocks = 18 plots
Correction factor: 14,677.6

Source of 
variation

Divisor Degrees of 
freedom

Sum of squares Mean square Variance ratio P

3 Fertilizers 18/3 = 6 3 – 1 = 2 340.1
2 Varieties 18/2 = 9 2 – 1 = 1 186.8
 Fert. × Var. 2 × 1 = 2 (by subtraction)

294.8

6 Treatments 18/6 =3 5 821.7 164.3 18.3 <0.001
3 Blocks 18/3 = 6 2 374.7 187.4 20.8 <0.001
Residual (5 × 2 =)

10
(by subtraction)

90.0 9.0

TOTAL (18 plots) 17 1286.4

End Phase (of Phase 3)

As for Phase 2, we divide each sum of squares in the factorial part of
the table by the appropriate degrees of freedom. The important thing to
remember relates to how we calculate the variance ratios (F). Although the
Fertilizer × Variety interaction was calculated like the residual in Phase 2
(as a remainder), it is part of the systematically designed experiment and

is NOT a residual term for calculating mean squares. Never forget:
The Residual mean square from Phase 2 remains the appropriate divisor
for ALL the other mean squares, whether calculated in Phase 2 or Phase 3.

Lead line: 3 Fertilizers × 2 Varieties (= 6 treatments) × 3 Blocks = 18 plots
Correction factor: 14,677.6

Source of 
variation

Divisor Degrees of 
freedom

Sum of squares Mean square P

3 Fertilizers 18/3 = 6 3 – 1 = 2 340.1 340.1 <0.001
2 Varieties 18/2 = 9 2 – 1 = 1 186.8 186.8 <0.001
Fert. × Var. 2 × 1 = 2 (by subtraction)

294.8 147.4 <0.001

6 Treatments 18/6 = 3 5 821.7 164.3 <0.001
3 Blocks 18/3 = 6 2 374.7 187.4 <0.001
Residual  (5 × 2 =)

10

(by subtraction) 
90.0 9.0

TOTAL (18 plots) 17 1286.4

Variance
ratio

18.9
20.8

16.4

18.3
20.8
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Although the effects of both Fertilizers and Varieties are highly signif-
icant at less than the 1 in 1000 chance of being an artifict of sampling,
the interaction between them is similarly highly significant. Of course we
still need the further tests (described on page 230 in Chapter 16) on the
six “treatment” means to interpret this experiment fully, but inspection of
the table of interaction totals suggests that Variety Y only outyields Z if
fertilizers A or B are used, and not with fertilizer C.

Two important things to remember about factorials before
tackling the next chapter

1 In my form of Anova table (unlike that in most books or in the print-
out from most computer programs), the “Treatment” sum of squares
actually appears twice. It appears once as itself in Phase 2 and again
in Phase 3 split up into three parts – the two factors and their interac-
tion. This is useful when doing Anovas “manually,” as there is no point
in bothering with Phase 3 if the variance ratio (F) for “Treatments” in
Phase 2 fails to attain significance.

2 The residual mean square is the divisor for calculating variance ratios
for both Phase 2 and Phase 3 mean squares. Many beginners fall into
the trap of identifying the Phase 3 interaction as a “sort of residual”
since it is found by subtraction, and use its mean square as the divisor for
the other Phase 3 sources of variation. You will, however, note that in
my Fertilizer × Variety example in this chapter, the interaction is highly
significant and clearly a result of considerable interest – indeed, it has to
dominate our biological interpretation of the experiment. It is certainly
not a measure of residual variation!

Analysis of factorial experiments with unequal replication

One would rarely choose to set up an experiment with this complication, but
the situation can often arise that some replicates fail to produce data. I have
previously raised this issue (page 116) describing the fully randomized
design for analysis of variance, giving the tongue-in-cheek example of
an elephant flattening one of the plots in a field experiment. I have not
seen the problem of unequal replication in factorial experiments tackled in
other textbooks, but I have often seen it solved in practice by the dubious
procedure of discarding data until all treatments have the same number of
replicates.



Van Emden: “C013” — 2008/1/31 — 10:22 — PAGE 164 — #11

164 Chapter 13

On page 120 I showed how the problem could be solved for completely
randomized designs by abandoning the single divisor for the squared and
added totals in the SqADS expression, and instead dividing each squared
total by its own number of replicates before A-dding. Only one treatment
had fewer replicates in that example, so I expressed the sum of squares
calculation on page 121 as:

1352

3
+ 1602 + 1232

4
− 3982

11
= 190.22

Of course, this could equally be written with a separate divisor for each
treatment as:

1352

3
+ 1602

4
+ 1232

4
− 3982

11
= 190.22

So now let’s apply this to a factorial experiment as far as necessary
to illustrate the principle. The data I’ll use have kindly been supplied by
C. Dawson, and concern the number of offspring produced per female bean
weevil from six different locations (A–F) and reared either in uncrowded (u)
or crowded (c) conditions on cowpeas. Unequal replication (15 replicates
were set up) resulted because of the failure of any offspring to appear
in some replicates, particularly under crowded conditions. Expressing the
treatment totals in an interaction table as I did earlier in this chapter for
the Fertilizer × Variety experiment (page 159) is particularly helpful for the
current exercise, since the little subscripts keep excellent track of variation
in the number of replicates as treatment totals and then column and row
totals are combined into supertotals.

A B C

Location

Rearing
condition

D E F

u 982.112 1121.714 637.912 1283.115 56012 1081.915 5702.780

c 363.310 501.113 309.710 328.910 297.912 513.612 2314.567

1345.422 1622.827 983.622 1612.025 857.924 1595.527  GT = 8017.2147

This table gives us all the numbers we need for Phases 2 and 3 of the
factorial analysis of variance. The penalty of using all the data, of course,
is that we have to regard the treatments as “fully randomized” even if they
are not, and then forego the ability of blocked designs that block variation
can be separated from the residual variation.

Phase 1 is unaffected. Total sum of squares = all data squared and
added, minus the correction factor (8017.22/147).
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Phase 2 – the treatment sum of squares comes from the numbers within
the thick black frame, allowing for the unequal replication with individual
divisors as:

982.12

12
+ 1121.72

14
+ 637.92

12
+ · · · + 513.62

12
− Correction factor

Phase 3 – this treatment sum of squares to 11 d.f. (for 12 treatments)
can then be factorialized from the end totals of the table as:

Locations (5 d.f.): = 135.42

22
+ 1622.82

27
+ 983.62

12
+ · · ·

+ 1595.52

27
− Correction factor

Rearing condition (1 d.f.): = 5702.72

80
+ 2314.52

67
− Correction factor

Interaction (5 d.f.): Treatment sum of squares minus Location
sum of squares minus Rearing condition sum of squares.

In Chapter 16 (page 214), I go on to explain how to judge differences
between two means with different replication, but if you go back to page 68
and the t-test, you’ll already find the answer there!
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EXECUTIVE SUMMARY 6
Analysis of a 2-factor randomized block experiment

In a factorial experiment, the “treatments” are combinations of more than
one experimental variable, e.g. 12 “treatments” might result from all com-
binations of four varieties and three spacings. This is a very common form
of design, and (in the example just given) interest centers not only on
how the varieties perform and the overall effect of spacing, but also on the
INTERACTION of varieties × spacing – i.e. do all the varieties react to the
different spacings in the same way and to the same degree? If not, then we
have INTERACTION.

Phases 1 and 2 (see Executive Summary 5, page 139)

PHASE 1 is the phase of original data. We first use the original data
(i.e. the figures in the body of the table) to obtain the total sum of
squareof deviations (=added squares − correction factor).

PHASE 2 is the phase of treatment and replicate totals. We use the
end totals of rows and columns – first the treatment, then the replicate
totals (remember SqADS) to calculate the treatment and replicate sums
of . . . squaresof deviations. The residual sum of . . . squaresof deviations is then
found by subtracting these two sums of squares from the total sum of . . .

squaresof deviations.
We then complete this part of the analysis with the “end phase”: IT

IS NOT WORTH GOING ON TO PHASE 3 UNLESS THE “F” VALUE FOR
TREATMENTS IS SIGNIFICANT.

Phase 3 (a new phase!) – The phase of treatment
“supertotals”

This phase involves subdividing the “treatment” sum of squaresof deviations
into its components. All the work in this phase uses just the TREATMENT
TOTALS, NOT INDIVIDUALLY – BUT ADDED TOGETHER IN VARIOUS
COMBINATIONS into SUPERTOTALS. In the simple 2-variable experiment
given as an example above, these components (imagining 3 replicates of
the 12 treatments and therefore 36 plots) would be as follows (with the
thinking involved and the calculation procedure).

It is useful to set out the treatment totals as a grid of one factor against
the other, the column and row totals will now give us the supertotals we
need for SqADS. If we also put in the number of plots involved in each
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total as subscripts, beginning with 3 (=the number of replicates) for the
treatment totals used in Phase 2, then we can also sum these and keep our
eye on the correct divisor in SqADS!

V1 V2 V3 V4
Spacing 1 Tot3 Tot3 Tot3 Tot3 Supertot12
Spacing 2 Tot3 Tot3 Tot3 Tot3 Supertot12
Spacing 3 Tot3 Tot3 Tot3 Tot3 Supertot12

Supertot9 Supertot9 Supertot9 Supertot9

4 varieties (4 supertotals to SqA, D by 9∗, S the correction factor.
Degrees of freedom will be number varieties − 1 = 3).

∗D by 9: Each variety supertotal is the total of nine original plot figures –
see subscripts (with three replicates this means the supertotal of three
“treatment” totals. Check: 4 supertotals × 9 = 36.)

CALCULATION: 4 supertotals to SqA − D(by 9) − S(correction fac-
tor), i.e.:

( )2 + ( )2 + ( )2 + ( )2

9
− Correction factor

where each set of brackets contains the supertotal for a different variety,
i.e. the sum of the three treatment totals which involve that particular
variety.

3 spacings (3 supertotals to SqA, D by 12*, S the correction factor.
Degrees of freedom will be number spacings − 1 = 2).

∗D by 12: Each spacing supertotal is the total of 12 original plot figures –
see subscripts (with three replicates this means the supertotal of four
“treatment” totals. Check: 3 supertotals × 12 = 36).

CALCULATION: 3 supertotals to SqA − D(by 12) − S(correction
factor), i.e.:

( )2 + ( )2 + ( )2

12
− Correction factor

where each set of brackets contains the supertotal for a different spac-
ing, i.e. the sum of the four treatment totals which involve that particular
spacing.

4 variety × 3 spacings interaction: Sum of squares of deviations
obtained by subtracting variety and spacing sums of squares of deviations
from the TREATMENT sum of squares of deviations (NB: INTERACTIONS
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ARE ALWAYS “REMAINDERS”). Degrees of freedom are (d.f. for vari-
eties) × (d.f. for spacing) = 3 × 2 = 6: check: Degrees of freedom for
varieties, spacings, and interaction add up to treatment degrees of freedom.

End Phase

1 Calculate variance (=mean square) by working HORIZONTALLY
across the analysis of variance table to divide each sum of squares by its
own degrees of freedom.

2 Calculate variance ratio (F) by working VERTICALLY upwards in the
mean square column, dividing ALL mean squares by the “residual mean
square” calculated in PHASE 2.

3 Check the significance of the F values with statistical tables.
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Spare-time activity

The yields of four white grape varieties (Müller–Thurgau, Semillon, Pinot
Blanc, and Huchselrebe) were compared, using traditional training and the
high-wire system for each variety. There were five replicates (I–V) of the
experiment. The yields (tonnes/ha) were as follows:

Müller-Th. Semillon Pinot B. Huchselr.

I Traditional 4.73 4.65 8.70 10.78
High-wire 3.36 6.02 9.29 13.13

II Traditional 3.23 6.29 8.69 6.95
High-wire 2.10 5.92 8.42 10.09

III Traditional 4.69 6.12 7.41 8.91
High-wire 6.99 8.33 8.52 11.21

IV Traditional 5.21 6.48 9.64 9.04
High-wire 4.78 9.52 10.11 11.53

V Traditional 4.92 7.42 10.16 6.16
High-wire 3.21 9.01 10.61 9.06

Carry out an analysis of variance. Is there statistical validity in the idea the
table suggests that different varieties do better on each of the two training
systems?

Keep your calculations. A further exercise in the interpretation of this exper-
iment will be found in the “spare-time activities” following Chapter 16, which
explains how differences between means should be evaluated in a factorial
analysis.
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Factorial experiments with
more than two factors –
leave this out if you wish!

Chapter features

Introduction 170
Different “orders” of interaction 171
Example of a 4-factor experiment 172

Introduction

The previous chapter developed the analysis of a factorial experiment with
just two factors, using an example of fertilizers and varieties. With two
factors, only one interaction is possible, and we were able to calculate this as
a remainder from the overall “Treatment” sum of squares in Phase 3. This
introduced the important principle that we calculate the sum of squares for
interactions as a remainder from a larger sum of squares which includes
it as well as the sums of squares of the sources of variation that are inter-
acting. However, Chapter 13 did not equip us to handle the calculation of
interaction sums of squares in more complex factorial experiments which
may include several or even many interactions.

We will jump straight to an example of a factorial experiment with four
factors. If you can handle that, you can probably handle any factorial!
You may wish to stop reading now and go straight to Chapter 15 – for
practical reasons very few people ever do 4-factor experiments. It might
even be unwise, seeing that my example has 36 treatments per replicate.
This (see Chapter 11) is asking for trouble in terms of residual variation
across the experiment, and one of the incomplete designs or a split-plot
design (see next chapter) might well be preferable.

However, it is worth understanding how to calculate interaction sums
of squares (still always as remainders from a larger figure) in such exper-
iments. To stop things becoming too tedious for you, I will try to cope
with the principles with an example or two of the calculation procedures
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involved, and relegate the rest of the calculations to the optional addendum
at the end of the chapter.

Different “orders” of interaction

The main factors, e.g. A, B, C, are called just that – main factors.
Interactions of two factors, e.g. A × B or A × D, are called – first order

interactions.
Interactions of three factors, e.g. A × B × C or B × C × D, are called –

second order interactions.
Interactions of four factors, e.g. A × B × C × D or B × C × D × E, are

called – third order interactions.

Do I need to go on?
It is quite useful to be able to work out how many interactions of each

“order” will feature in a complex experiment. Then we can be sure we have
identified them all. This topic is covered in Box 14.1.

It is only the sum of squares for the highest order of interaction pos-
sible in an experiment that is finally obtained as a remainder from the
overall “Treatment” sum of squares; the other interaction sums of squares
are still calculated as remainders, and the skill of analyzing a complex

BOX 14.1 The interactions involved in factorial experiments

Working this out involves the formula for “combinations,” a permutation to be
found in many statistical or mathematical textbooks.

First you need to understand what the mathematical (not the statistical) term
“factorial” of a number means. In mathematics, it is the product of a descending
series of numbers – e.g. factorial 7 is 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5040. The
standard notation is an exclamation mark, e.g. factorial 7 is represented by 7!

Secondly, we need to distinguish between the total number of factors in the
entire experiment (I’ll term this “total factors”) and the number of factors in
any order of interaction (I’ll term this “set size” – e.g. this would be three for
second order interactions such as A × B × C).

With these two definitions, the number of possible combinations for any
order of interaction (set size) is:

“factorial” of total factors
“factorial” of set size × “factorial” of (total factors – set size)

(Continued)
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BOX 14.1 Continued

This formula is provided in case you should ever need it! To make that
extremely unlikely, I have worked out for you all the combinations for up to eight
factors, and I don’t think I’ve ever encountered an experiment with that many!

Order of interaction
Number of 1st 2nd 3rd 4th 5th 6th 7th
factors
2 1
3 3 1
4 6 4 1
5 10 10 5 1
6 15 20 15 6 1
7 21 35 35 21 7 1
8 28 56 70 56 28 8 1

factorial experiment is to work out of which sum of squares they are the
remainder!

Example of a 4-factor experiment

The experiment which forms the example for this chapter is about leeks.
Varieties and fertilizers are again involved, but the added factors are plant-
ing leeks with the leaf fan along the row or at right angles and trimming
or not trimming the roots and leaves before planting. These last two factors
are testing gardening “folk lore.” The data are marketable yield (kg per plot)
and the factors and their levels (with code to be used subsequently) are as
follows:

Varieties (3 levels) : A, B and C
Fertilizer (2 levels): A high nitrogen fertilizer applied as a top dressing

once (1) or twice as a split dose (2)
Planting alignment (2 levels): Parallel (P) or at right angles (Q) to the

row. Folk lore suggests that leek leaf fans facing the sun (alignment P in this
trial) will produce higher yields than leeks with their fans at right angles to
the sun (Q).

Trimming (3 levels): Roots (R) or leaves (L) or both roots and leaves (T)
trimmed. Folk lore suggests that trimming both the tops and roots of leeks
at planting raises yields.
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The experiment was planted as a 3 × 2 × 2 × 3 factorial (i.e. 36 plots)
at three sites (representing randomized blocks), making 108 plots
in all.

Prelims

The data from the randomization are not presented; I have already
unscrambled it in preparation for Phases 1 and 2, with subscripts to
show the number of plots contributing to each total. But take special
notice – because of the large number of treatments, for the first time in
the book (in order to fit the page format) the treatments this time are the
rows in the table below, with the few blocks the columns. Previously the
tables of data have been presented with the treatments as the columns
(e.g. page 155).

Blocks

Var Fert Align Trim 1 2 3 Total
A 1 P R 8.3 7.4 9.8 25.53
A 1 P L 7.1 6.2 9.2 22.53
A 1 P T 9.4 7.8 9.8 27.03

A 1 Q R 6.9 6.8 9.1 22.83
A 1 Q L 6.9 5.7 8.4 21.03
A 1 Q T 7.0 5.9 8.7 21.63

A 2 P R 7.9 7.5 11.6 27.03
A 2 P L 7.5 6.5 9.4 23.43
A 2 P T 8.9 7.6 11.1 27.63

A 2 Q R 7.2 6.2 9.1 22.53
A 2 Q L 6.9 6.0 8.7 21.63
A 2 Q T 7.8 6.4 8.7 22.93

B 1 P R 7.8 7.1 11.3 26.23
B 1 P L 8.2 7.1 10.3 25.63
B 1 P T 8.5 7.3 10.6 26.43

B 1 Q R 5.8 5.0 7.2 18.03
B 1 Q L 5.5 4.7 6.9 17.13
B 1 Q T 5.4 5.2 7.4 18.03

(Continued)
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Continued

Blocks
Var Fert Align Trim 1 2 3 Total
B 2 P R 9.5 7.9 10.2 27.63
B 2 P L 9.2 9.2 10.1 28.53
B 2 P T 9.0 8.9 10.5 28.43

B 2 Q R 5.5 5.4 7.7 18.63
B 2 Q L 6.0 6.0 5.9 17.93
B 2 Q T 6.6 5.2 7.4 19.23

C 1 P R 9.3 8.6 9.1 27.03
C 1 P L 8.6 7.2 10.0 25.83
C 1 P T 9.0 8.8 9.9 27.73

C 1 Q R 8.9 8.4 9.6 26.93
C 1 Q L 6.9 6.7 11.9 25.53
C 1 Q T 9.4 8.6 9.5 27.53

C 2 P R 9.9 8.5 10.4 28.83
C 2 P L 8.7 7.6 10.7 27.03
C 2 P T 10.0 8.4 10.3 28.73

C 2 Q R 7.8 7.6 12.8 28.23
C 2 Q L 9.4 9.2 8.4 27.03
C 2 Q T 9.6 8.2 10.8 28.63

Block totals 286.336 256.836 342.536 GT = 885.6108

Next we compose the lead line and the skeleton analysis table (at this
stage just for the 36 “treatments” ignoring their factorial nature) with
degrees of freedom (n − 1). The “divisor” for SqADS, multiplied by the
number of totals to be Squared and Added (written in the table below in
front of the “source of variation”), always gives the number of plots in the
experiment (108 in this example).

Lead line: 3 Varieties × 2 Fertilizer levels × 2 Alignments × 3 Trimmings (= 36 treatments)
× 3 Blocks = 108 plots
Source of Divisor Degrees of Sum of Mean Variance P
variation freedom squares square ratio

36 Treatments 108/36 = 3 35
3 Blocks 108/3 = 36 2
Residual (35 × 2 =) 70

TOTAL (108 plots) 107
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Phase 1

The Correction Factor (Grand Total2/n) is 885.62/108 = 7261.92
All the 108 numbers in the body of the table squared and added together

= 7565.84
Therefore Total Sum of Squares = 7565.84 − CF = 303.92

Phase 2

By now, you will probably not need a further reminder about SqADS for the
36 Treatments and 3 Blocks, so I will move straight on to the Phase 2 anal-
ysis of variance table, complete with the End Phase for Phase 2 (i.e. mean
squares and variance ratios). If I am being optimistic, then Box 14.2 covers
the SqADS bit.

Lead line: 3 Varieties × 2 Fertilizer levels × 2 Alignments × 3 Trimmings (= 36 treatments) × 3
Blocks = 108 plots
Correction factor = 7261.92

Source of 
variation

Divisor Degrees of
freedom

Sum of squares Mean square Variance
ratio

P

36 Treatments 108/36 = 3 35 157.93 4.51 7.70 <0.001
3 Blocks 108/3 = 36 2 105.31 52.65 90.63 <0.001
Residual (35 × 2 =) 70 40.68

TOTAL (108 plots) 107 303.92

0.58

BOX 14.2

Phase 2 uses only the row (Treatment in this example) and column (Blocks)
end totals. These are used to calculate the sum of squares (SqADS) for
Treatments and Blocks as follows:

Sum of squares for Treatments = SqA36 Treatment totalsDby 3SCorrection Factor

= 25.52 + 22.52 + 27.02 + 22.82 + 21.02 + · · · + 28.62

3
− 7261.92 = 157.93

Sum of squares for Blocks = SqA3 Block totalsDby 36SCorrection Factor

= 286.32 + 256.82 + 342.52

36
− 7261.92 = 105.31
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Phase 3

We now come to the meat of this chapter – dealing with the mani-
fold interactions between the main factors – Varieties (V), Fertilizers (F),
Alignments (A), and Trimmings (T) – in this complex factorial experiment.

The sources of variation in Phase 3

Now we list the factorial sources of variation in preparation for the factorial
part of the analysis of variance table. Each line begins with the number of
the supertotals we will need to identify.

Main effects.

Source of variationNumber of
“levels” of
the factor

Divisor Degrees of freedom
3 Varieties (V) 108/3 = 36 2
2 Fertilizers (F) 108/2 = 54 1
2 Alignments (A) 108/2 = 54 1
3 Trimmings (T) 108/3 = 36 2

First order interactions. Each of the four main effects above can interact
with each of the three others (Variety × Fertilizer, Fertilizer × Trimmings,
etc.). The number of supertotals we will need for each interaction table
is found by multiplying the number for the two factors (we’ll just use the
letter code from the table immediately above) involved in the interaction.
Reminder – the d.f. are similarly found by multiplying the degrees of free-
dom for the factors interacting. Again the divisor (for SqADS) is obtained
by dividing the total number of plots in the experiment (108) by that num-
ber of totals, and that divisor (remember?) is also the number of plots
contributing to each supertotal.

The table below gives all the possible pairings of three factors:

Source of variation 

 

 

Divisor Degrees of freedom
3 × 2  V × F 108/6 = 18 (3 – 1) × (2 – 1) = 2 
3 × 2  V × A 108/6 = 18 (3 – 1) × (2 – 1) = 2 
3 × 3  V × T 108/9 = 12 (3 – 1) × (3 – 1) = 4 
2 × 2  F × A 108/4 = 27 (2 – 1) × (2 – 1) = 1 
2 × 3  F × T  108/6 = 18 (2 – 1) × (3 – 1) = 2 
2 × 3  A × T 108/6 = 18 (2 – 1) × (3 – 1) = 2 

Number 
of levels 

Note the systematic way in which the interactions are listed, to make
sure we miss none! We begin with all interactions with Variety, then with
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Fertilizer (other than F × V, which would repeat V × F) and finally the only
nonrepeat with Alignment is A × T.

Second order interactions. These are interactions between three main fac-
tors, and the process for working out the number of supertotals, the divisor,
and the d.f. remains the same. With four factors (see Box 14.1) there are
just four different combinations of any three factors:

Source of variation Divisor Degrees of freedom 

3 × 2 × 2  V × F × A 108/12 = 9 (3 – 1) × (2 – 1) × (2 – 1) = 2
3 × 2 × 3  V × F × T 108/18 = 6 (3 – 1) × (2 – 1) × (3 – 1) = 4
3 × 2 × 3  V × A × T 108/18 = 6 (3 – 1) × (2 – 1) × (3 – 1) = 4
2 × 2 × 3  F × A × T 108/12 = 9 (2 – 1) × (2 – 1) × (3 – 1) = 2

Number 
of levels 

Third order interaction. There is only one third order interaction possible
between four factors −V × F × A × T. This involves 3 × 2 × 2 × 3 = 36
supertotals, each of 108/36 = 3 plots and with (3−1)×(2−1)×(2−1)×
(3 − 1) = 4 d.f. Does 36 totals of three numbers ring a bell? It should do.
These are the 36 row treatment totals (each the sum of three replicates) we
have alresady used for SqADS to calculate the “Treatment sum of squares”
in Phase 2 (page 175), leaving the four factor interaction as the ultimate
remainder!

Factorial part of the analysis table

We can therefore now construct the full factorial part of the Anova table, by
putting together the main factors and all the different interactions we have
just identified, together with the number of levels for each, the divisors for
the D in SqADS, and the respective degrees of freedom. You will see that
all the d.f. add up to 35, the d.f. for Treatments in the Phase 2 analysis table
(page 175):

Lead line: 3 Varieties × 2 Fertilizer levels × 2 Alignments × 3 Trimmings
(= 36 treatments) × 3 Blocks = 108 plots
Correction factor = 7261.92
Source of Divisor Degrees of Sum of Mean Variance P
variation freedom squares square ratio
Main effects
3 Varieties (V) 108/3 = 36 2
2 Fertilizers (F) 108/2 = 54 1
2 Align (A) 108/2 = 54 1
3 Trim (T) 108/3 = 36 2

(Continued)
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Continued

Source of Divisor Degrees of Sum of Mean Variance P
variation freedom squares square ratio
1st order interactions
3 × 2 V × F 108/6 = 18 2
3 × 2 V × A 108/6 = 18 2
3 × 3 V × T 108/9 = 12 4
2 × 2 F × A 108/4 = 27 1
2 × 3 F × T 108/6 = 18 2
2 × 3 A × T 108/6 = 18 2

2nd order interactions
3 × 2 × 2 V × F × A 108/12 = 9 2
3 × 2 × 3 V × F × T 108/18 = 6 4
3 × 2 × 3 V × A × T 108/18 = 6 4
2 × 2 × 3 F × A × T 108/12 = 9 2

3rd order interaction
V × F × A × T 4

36 Treatments 108/36 = 3 35 157.93 4.51 7.70 <0.001

Note: The bottom line here repeats the top line of the Phase 2 analysis table
(page 175).

The sums of squares in the factorial part of the analysis

This job can be tackled in a variety of ways, but paradoxically I recommend
not beginning at the top, but with the first order interactions.This is because
the supertotals for SqADS for the main factors will be calculated as part of
this process (see diagram below), so basically we are doing main effects and
first order interactions at the same time! It is actually even more efficient to
begin with 2nd order interactions, but in the cause of your sanity I advise
against it!

Two important reminders:

1 Phase 3 uses only the 36 treatment totals (the Row totals here),
combined into various supertotals before SqADS.

2 The supertotals we will need to calculate sums of squares for first order
interactions are set up as interaction tables (e.g. page 180). The body
of the table provides the total sum of squares of these interaction
totals, while the row and column totals provide component sums of
squares to be deducted from the total to leave the first order inter-
action sum of squares as a remainder. This is illustrated graphically
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below (cf. also page 152); for higher order interactions I fear still further
steps are necessary (see later).

Source of variation Sum of squares

Columns by SqADS
Rows by SqADS
Interaction by subtraction
Totals of table body by SqADS

Supertotals in body
of table

RowRow
supertotalssupertotals

Column
supertotals

Row
supertotals

It’s probably a good idea to tabulate the treatment totals from the table
of data under “Prelims” (page 173) in a more convenient way than 36 row
end totals. The table below is so arranged that all matching levels of Variety
(A, B, or C) and Fertilizer (1 or 2) are in the same vertical column (e.g.
all A1s on the far left) and all matching levels of Alignments (P or Q) and
Trimmings (R, L or T) are along the same row (e.g. PR in the top row):

A1PR 25.53 A2PR 27.03 B1PR 26.23 B2PR 27.63 C1PR 27.03 C2PR 28.83

A1PL 22.53 A2PL 23.43 B1PL 25.63 B2PL 28.53 C1PL 25.83 C2PL 27.03

A1PT 27.03 A2PT 27.63 B1PT 26.43 B2PT 28.43 C1PT 27.73 C2PT 28.73

A1Q 22.83 A2Q 22.53 B1QR 18.03 B2QR 18.63 C1QR 26.93 C2QR 28.23

A1QL 21.03 A2QL 21.63 B1QL 17.13 B2QL 17.93 C1QL 25.53 C2QL 27.03

A1QT 21.63 A2QT 22.93 B1QT 18.03 B2QT 19.23 C1QT 27.53 C2QT 28.63

Sum of squares for first order interactions and main effects

Let’s therefore begin with the interaction Varieties (V) × Fertilizers (F). Our
Anova table tells us this is an interaction of 3 × 2 levels, meaning we set up
our interaction table as 3 columns (varieties) × 2 rows (fertilizers).

Variety A Variety B Variety C

Fertilizer 1

Fertilizer 2

885.6108
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With six “boxes” in the body of the table and 108 plots in total, each box
will contain a total of 108/6 = 18 plots (each total will be the supertotal
of the three replicates for each of six treatments) and will have added the
subscript 18 (see next table). You will already find this divisor identified
in the Anova table (page 178). Therefore the total for box A × 1 in our
interaction table will have the supertotal of the six treatments which
share the codes A and 1, i.e. the total of the left hand column in our new
“treatment” table total (shaded below). The other five supertotals of six
treatment totals (A2, B1, B2, etc.) are fairly obviously the totals of the
other five vertical columns:

A1PR 25.53 A2PR 27.03 B1PR 

 

 

 

 

 

26.23 B2PR 27.63 C1PR 27.03 C2PR 28.83 

A1PL 22.53 A2PL 23.43 B1PL 25.63 B2PL 28.53 C1PL 25.83 C2PL 27.03 

A1PT 27.03 A2PT 27.63 B1PT 26.43 B2PT 28.43 C1PT 27.73 C2PT 28.73 

A1Q  22.83 A2Q  22.53 B1QR 18.03 B2QR 18.63 C1QR 26.93 C2QR 28.23 

A1QL 21.03 A2QL 21.63 B1QL 17.13 B2QL 17.93 C1QL 25.53 C2QL 27.03 

A1QT 21.63 A2QT 22.93 B1QT 18.03 B2QT 19.23 C1QT 27.53 C2QT 28.63 

So our interaction table becomes:

Variety A

Fertilizer 1 140.418 131.318 160.418 432.154

Fertilizer 2 145.018 140.218 168.318 453.554

285.436 271.536 328.736 885.6108

Variety B Variety C

We can now SqAthe appropriate supertotals in the table Dby the subscript value

Sthe Correction Factor the six supertotals(each of 18 plots) in the body of
the table to obtain 53.96 as the sum of squares for the table – a combination
of the sums of squares for Varieties plus Fertilizers plus their Interac-
tion (the interaction component will finally be found as a remainder by
subtraction).

Now we see the advantage of starting with a 2-factor interaction. In
the end totals of this little table we already have (in our column and row
totals respectively) the three supertotals of 36 plots (285.4, 271.5, and
328.7) that our Amovar table tells us that we need to SqADS for the sum
of squares for the Varieties main effect, and also the two supertotals of
54 plots (432.1 and 455.3) that we need for the sums of squares for the
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Fertilizers main effect:

Correction factor = 7261.92
Source of variation Sum of squares

Columns by SqADS
Rows by SqADS

Interaction by subtraction

Totals of table body by SqADS

Source of variation Sum of squares

Varieties
Fertilizer

Interaction

Totals of table body

49.44
4.24

0.28

53.96

To save being repetitive, the working for the sums of squares for most of
the remaining first order interactions is given in the Addendum at the end
of this chapter, but it is probably worth elaborating a second example of
first order interaction (F × A) below, but condensed into note form based
on our first example.

Interaction table: 2 columns (Fertilizer levels) × 2 rows (Alignment
levels) = 4 supertotals

Divisor (number of plots per supertotal in body of table): 108/4 =
27

Number of treatment totals3 per supertotal in body of table:
27/3 = 9

Identification of first such supertotal: Pick one Fertilizer and one
Alignment, say Fertilizer1 and Alignment P. Treatments sharing 1 and
P are dark shaded in table below. If we also shade (lighter) the totals
sharing 2 and Q, it is clear how the 36 treatment totals divide into the
four supertotals of nine treatment totals we need. Each supertotal
involves summing the totals in three blocks of three totals in the table
below:

A1PR 25.53 A2PR 27.03 B1PR 26.23 B2PR 27.63 C1PR 27.03 C2PR 28.83

A1PL 22.53 A2PL 23.43 B1PL 25.63 B2PL 28.53 C1PL 25.83 C2PL 27.03

A1PT 27.03 A2PT 27.63 B1PT 26.43 B2PT 28.43 C1PT 27.73 C2PT 28.73

A1QR 22.83 A2QR 22.53 B1QR 18.03 B2QR 18.63 C1QR 26.93 C2QR 28.23

A1QL 21.03 A2QL 21.63 B1QL 17.13 B2QL 17.93 C1QL 25.53 C2QL 27.03

A1QT 21.63 A2QT 22.93 B1QT 18.03 B2QT 19.23 C1QT 27.53 C2QT 28.63

Supertotals in interaction table:

Fertilizer 1 Fertilizer 2

Alignment P 233.727 247.027 480.754

Alignment Q 198.427 206.527 404.954

432.154 453.554 885.6108
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Table of sum of squares (SqADS):

Correction factor = 7261.92
Source of variation Sum of squares

Columns (Fertilizer) 

Rows (Alignment) 
Interaction 

Totals of table body

Already 
calculated for 

earlier table
by SqADS

by subtraction

by SqADS

Source of variation Sum of squares

Fertilizer 

Alignment 
Interaction 

Totals of table body

4.24 

53.20 
0.25 

57.69

Sums of squares for second order interactions

We will begin (taking the 3-factor interactions in order from the table on
page 178) with the interaction V × F × A between Variety (three levels),
Fertilizer (two levels), and Alignment (two levels). Our interaction table
now looks rather more complex, as three factors are involved:

Variety A Variety B Variety C

Fert. 1 Fert. 2 Fert. 1 Fert. 2 Fert. 1 Fert. 2

Alignment P

Alignment Q

885.6108

Inside the black frame are the spaces for the 3×2×2 = 12 supertotals we
will need to SqADS. The 12 totals from 108 data and the analysis table on
page 178 remind us the divisor is 108/12 = 9 (i.e. each supertotal is made
up of 9/3 = 3 treatment totals, since each treatment total is already a total
of 3 plots). We start by identifying the three treatment totals which make
up the 12 supertotals we are looking for by dark shading the treatments
which share A, 1, and P in the table below. If we also light shade those that
share A, 2, and Q, it is clear that each column of the table below provides
two supertotals.

A1PR 25.53 A2PR 27.03 B1PR 

 

 

 

 

 

26.23 B2PR 27.63 C1PR 27.03 C2PR 28.83 

A1PL 22.53 A2PL 23.43 B1PL 25.63 B2PL 28.53 C1PL 25.83 C2PL 27.03 

A1PT 27.03 A2PT 27.63 B1PT 26.43 B2PT 28.43 C1PT 27.73 C2PT 28.73 

A1QR 22.83 A2QR 22.53 B1QR 18.03 B2QR 18.63 C1QR 26.93 C2QR 28.23 

A1QL 21.03 A2QL 21.63 B1QL 17.13 B2QL 17.93 C1QL 25.53 C2QL 27.03 

A1QT 21.63 A2QT 22.93 B1QT 18.03 B2QT 19.23 C1QT 27.53 C2QT 28.63

We can now do the addition and complete the table of supertotals:

Variety A Variety B Variety C

Fert. 1 Fert. 2 Fert. 1 Fert. 2 Fert. 1 Fert. 2

Alignment P 75.09 78.09 78.29 84.59 80.59 84.59 480.754

Alignment Q 65.49 67.09 53.19 55.79 79.99 83.89 404.954

140.418 145.018 131.318 140.218 160.418 168.318 885.6108
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If we SqADS the supertotals in the body of the table, we get a sum of
squares of 146.94. This is a large proportion of the entire Treatment sum
of squares of 157.93 we calculated in Phase 2, and of course only a small
remainder of the 146.94 is attributable to the interaction between all
three factors. Most of the variation of the supertotals in the body of the
table comes from variation we have already calculated, the main effects of
the three factors involved, and that of all first order interactions (between
any two of the three factors). So, unfortunately we have to abandon our
easy way of getting at the interaction remainder (based on row and column
totals of the above interaction table), and instead list all the components
contributing to our sum of squares of 146.94, together with their sum of
squares as already calculated:

Source of variation Sum of squares
Variety 49.44
Fertilizer 4.24
Alignment 53.20
V × F (remainder) 0.28
F × A (remainder) 0.25
V × A (remainder) 39.34
Interaction by subtraction = 0.19

Totals of table body 146.94

Subtracting all the main factor and first order interaction components
from 146.94 leaves a small remainder (as predicted above) of 0.19 for the
V × F × A interaction.

To avoid tedious repetition for those who don’t need it, the workings for
the other three second order interactions is relegated to the addendum to
this chapter.

To the End Phase

Once we have completed all the calculations, we can:

• Combine the Phase 2 and Phase 3 Anova tables and fill in all the
calculated sums of squares.

• Find the missing sum of squares for the third order interaction of all
four factors by subtracting all the Main Effect and Interaction sum of
squares calculated in Phase 3 from the “Treatment sum of squares”
from Phase 2. Note that I have again put the latter in small type to
avoid the impression of “double accounting” since its sums of squares
and its degrees of freedom re-appear as the main effect and interactions
above it.
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• Divide each sum of squares by its degrees of freedom to obtain the mean
squares

• Find the Variance Ratios (F) by dividing all mean squares by the Resid-
ual mean square (= 0.58) in the Phase 2 part of the analysis

table. The Residual mean square from Phase 2 is used through-
out; even the third order interaction is a component of the experimental
treatments and might be important.

• Check the significance of the size of the variance ratios in F tables with
70 as the residual d.f.

So here is the completed Anova table for this 4-factor experiment
(ns = not significant at P = 0.05).

Lead line: 3 Varieties × 2 Fertilizer levels × 2 Alignments × 3 Trimmings (= 36 treatments) × 3
Blocks = 108 plots

Correction factor = 7261.92
Source of variation Divisor Degrees of 

freedom
Sum of Squares Mean square Variance 

ratio
P

Main effects
3 Varieties (V) 108/3 = 36 2
2 Fertilizers (F) 108/2 = 54 1
2 Alignments (A) 108/2 = 54 1
3 Trimmings (T) 108/3 = 36 2

1st order interactions
108/6 = 18 2

108/6 = 18 2

108/9 = 12 4

108/4 = 27 1

108/6 = 18 2

3 ×  2 V × F 

3 ×  2 V × A

3 × 3 V × T

2 × 2 F × A

2 × 3 F × T

2 ×  3 A × T 108/6 = 18 2

2nd order interactions
108/12 = 9 2

108/18 = 6 4

108/18 = 6 4

3 ×  2 ×  2 V × F× A

3 ×  2 ×  3 V × F× T

3 × 2 × 3 V × A × T

2 ×  2 ×  3 F × A× T 108/12 = 9 2

3rd order interaction
V × F × A × T 4

36 Treatments 35
3 Blocks 2

42.62
7.31

91.72
5.69

0.93

33.91

0.74

0.43

0.03

0.34

0.17

0.07

0.74

0.12

0.10

7.70
90.63

<0.001
<0.01

<0.001
<0.01

ns

<0.001

ns

ns

ns

ns

ns
ns

ns

ns

ns

ns

<0.001
<0.001

Residual  (35 × 2 =)

24.72
4.24

53.20
3.30

0.14

19.67

0.43

0.25

0.02

0.20

0.10

0.04

0.43

0.07

0.06

4.51
52.65

0.58

TOTAL (108 plots) 107

49.44
4.24

53.20
6.59

0.28

39.34

1.72

0.25

0.03

0.39

0.19

0.16

1.72

0.14

by subtraction
0.24

157.93
105.31

40.68

303.92

Used as divisor
for all variance ratios70

108/36 = 3
108/3 = 36

We still need to make further tests (described in Chapter 16) in order to
identify exactly how the yield of our leeks has been affected by our factorial
treatment combinations; this chapter – like the others before it concerning
analysis of variance – restricts itself to the analysis of variance procedure.

However, it is perhaps worthwhile just to look at the likely interpreta-
tion of the interaction table for the one significant first order interaction,



Van Emden: “C014” — 2008/1/31 — 10:23 — PAGE 185 — #16

Factorial experiments with more than two factors 185

Varieties × Alignment. This time, the supertotals have been converted to
their mean values as kg/plot, with a superscript showing how many plots
have been averaged:

Variety A Variety B Variety C

Alignment P 8.5018 9.0418 9.1718 8.9054

Alignment Q 7.3618 6.0418 9.0918 7.5054

7.9336 7.5436 9.1336 8.20108

Both main effects in this interaction had significantly high variance
ratios, suggesting that the varieties gave different yields (though a signifi-
cant F does not mean that all three varieties differ from each other, hence
the further t-tests we need, see Chapter 16), and that you get a higher leek
yield by planting with the leaf fan parallel to rather than across the direc-
tion of the row. But we are warned against accepting such interpretations
by the significant interaction! If you look within the black frame, you will
see that, although variety C is the best yielder at both alignments, varieties
A and B show the reverse superiority in yield in the two alignments. So
which alignment the grower should pick is not clear-cut in the way the end
totals would suggest; it depends on the variety chosen.

Before we leave this experiment and move on to Chapter 15, it is a long
time since I’ve reminded you of what we are doing in using SqADS to
calculate sums of squares. You may need to go back to page 95 to recall
that SqADS is just a quick way on a calculator to sum all the squared
differences between the data and the overall grand mean. So let’s apply this
thinking to the table of means for Variety × Alignment above.

In calculating the sum of squares for the figures in the body of the table,
we assume that all 18 plots (3 replicates × 2 Fertilizers × 3 Trimmings)
represented by each of the six means in the body of the table are iden-
tical. This gives us different 108 plot data from those actually obtained
in the experiment (shown in the table at the start of this chapter). Our
new table of 108 numbers assumes that all replicates per V × A mean
have yielded the same, and that neither Fertilizers or Trimmings have had
any effect whatsoever! So of our 108 numbers, 18 are all 8.50, another
18 are all 9.04, 18 are 9.17, and so on. Our sum of squares (remember
page 15 that this is an abbreviation for sum of squares of deviations from
the mean) of these 108 new figures is their squares added together of the
difference between each figure and 8.20 (the overall mean). On a calculator
(page 21) it is quicker to add the squared numbers (rather than their differ-
ence from 8.30) and subtract a correction factor based on the grand total
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(see page 22) – and SqADS of the 18-plot totals just gives us the same
answer a lot more rapidly, by saving us repeatedly squaring the same
numbers 18 times!

Addendum – additional working of sums of squares calculations

Variety × Alignment (V × A)

Interaction table for Variety × Alignment: 3 columns (Variety levels) × 2
rows (Alignment levels) = 6 supertotals

Divisor (number of plots per supertotal in body of table): 18
Number of treatment totals3 per supertotal in body of table: 18/3 = 6
Identification of first such supertotal: Treatments sharing A and P (dark

shaded in table below). If we also shade (lighter) the totals contributing to
the BQ and CP supertotals it is clear how the 36 treatment totals divide
into the six supertotals of six figures we need.

A1PR 25.53 A2PR 27.03 B1PR 26.23 B2PR 27.63 C1PR 27.03 C2PR 28.83

A1PL 22.53 A2PL 23.43 B1PL 25.63 B2PL 28.53 C1PL 25.83 C2PL 27.03

A1PT 27.03 A2PT 27.63 B1PT 26.43 B2PT 28.43 C1PT 27.73 C2PT 28.73

A1Q 22.83 A2Q 22.53 B1QR 18.03 B2QR 18.63 C1QR 26.93 C2QR 28.23

A1QL 21.03 A2QL 21.63 B1QL 17.13 B2QL 17.93 C1QL 25.53 C2QL 27.03

A1QT 21.63 A2QT 22.93 B1QT 18.03 B2QT 19.23 C1QT 27.53 C2QT 28.63

Supertotals in interaction table:

Variety A Variety B Variety C

Alignment P 153.018 162.718 165.018 480.754

Alignment Q 132.418 108.818 163.718 404.954

285.436 271.536 328.736 885.6108

Table of sum of squares (SqADS):

Correction factor = 7261.92
Source of variation Sum of squares

Columns (Variety) From earlier table
Rows (Alignment) From earlier table
Interaction by subtraction

Totals of table body by SqADS

Source of variation Sum of squares

Variety
Alignment
Interaction

Totals of table body

49.44
53.20
39.34

141.98
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Variety × Trimming (V × T)

Interaction table for Variety × Trimming: 3 columns (Variety levels) × 3
rows (Trimming levels) = 9 supertotals

Divisor (number of plots per supertotal in body of table): 12
Number of treatment totals3 per supertotal in body of table: 12/3 = 4
Identification of first such supertotal: Treatments sharing A and R (dark

shaded in table below). If we also shade (lighter) the totals contributing to
the AL and CT supertotals it is clear how the 36 treatment totals divide
into the nine supertotals of four treatment totals we need (three coming
from each third of the table):

A1PR 25.53 A2PR 27.03 B1PR 26.23 B2PR 27.63 C1PR 27.03 C2PR 28.83

A1PL 22.53 A2PL 23.43 B1PL 25.63 B2PL 28.53 C1PL 25.83 C2PL 27.03

A1PT 27.0
3

A2PT 27.6
3

B1PT 26.4
3

B2PT 28.4
3

C1PT 27.7
3

C2PT 28.7
3

A1QR 22.83 A2QR 22.53 B1QR 18.03 B2QR 18.63 C1QR 26.93 C2QR 28.23

A1QL 21.03 A2QL 21.63 B1QL 17.1
3

B2QL 17.9
3

C1QL 25.5
3

C2QL 27.0
3

A1QT 21.63 A2QT 22.93 B1QT 18.03 B2QT 19.23 C1QT 27.53 C2QT 28.63

Supertotals in interaction table:

Variety A Variety B Variety C

Trimming R 97.812 90.412 110.912 299.136

Trimming L 88.512 89.112 105.312 282.936

Trimming T 99.112 92.012 112.512 303.636

285.436 271.536 328.736 885.6108

Table of sum of squares (SqADS):

Correction factor = 7261.92
Source of variation Sum of squares

Columns (Variety) From earlier table
Rows (Trimming) by SqADS
Interaction by subtraction

Totals of table body by SqADS

Source of variation Sum of squares

Variety
Trimming
Interaction

Totals of table body

49.44
6.59
1.72

57.75

Fertilizer × Trimming (F × T)

Interaction table for Variety × Trimming: 2 columns (Fertilizer levels) × 3
rows (Trimming levels) = 6 supertotals

Divisor (number of plots per supertotal in body of table): 18
Number of treatment totals3 per supertotal in body of table: 18/3 = 6
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Identification of first such supertotal: Treatments sharing 1 and R (dark
shaded in table below). If we also shade (lighter) the totals contributing
to the 2L supertotals the pattern emerges of how the 36 treatment totals
divide into the six supertotals of six treatment totals we need.

A1PR 25.53 A2PR 27.03 B1PR 26.23 B2PR 27.63 C1PR 27.03 C2PR 28.83

A1PL 22.53 A2PL 23.43 B1PL 25.63 B2PL 28.53 C1PL 25.83 C2PL 27.03

A1PT 27.03 A2PT 27.63 B1PT 26.43 B2PT 28.43 C1PT 27.73 C2PT 28.73

A1QR 22.83 A2QR 22.53 B1QR 18.03 B2QR 18.63 C1QR 26.93 C2QR 28.23

A1QL 21.03 A2QL 21.63 B1QL 17.13 B2QL 17.93 C1QL 25.53 C2QL 27.03

A1QT 21.63 A2QT 22.93 B1QT 18.03 B2QT 19.23 C1QT 27.53 C2QT 28.63

Supertotals in interaction table:

Fertilizer 1 Fertilizer 2

Trimming R 146.418 152.718 299.136

Trimming L 137.518 145.418 282.936

Trimming T 148.218 155.418 303.636

432.154 453.554 885.6108

Table of sum of squares (SqADS):

Correction factor = 7261.92
Source of variation Sum of squares

Columns (Fertilizer) From earlier table
Rows (Trimming) From earlier table
Interaction by subtraction

Totals of table body by SqADS

Source of variation Sum of squares

Fertilizer
Trimming
Interaction

Totals of table body

4.24
6.59
0.03

10.86

Alignment × Trimming (A × T)

Interaction table for Alignment × Trimming: 2 columns (Aligment levels)
× 3 rows (Trimming levels) = 6 supertotals

Divisor (number of plots per supertotal in body of table): 18
Number of treatment totals3 per supertotal in body of table: 18/3 = 6
Identification of first such supertotal: Treatments sharing P and R (dark

shaded in table below). It is clear that the six supertotals of six treatment
totals we need are the sum of each of the six horizontal lines of the table:

A1PR 25.53 A2PR 27.03 B1PR 26.23 B2PR 27.63 C1PR 27.03 C2PR 28.83

A1PL 22.53 A2PL 23.43 B1PL 25.63 B2PL 28.53 C1PL 25.83 C2PL 27.03

A1PT 27.03 A2PT 27 .63 B1PT 26.43 B2PT 28.43 C1PT 27.73 C2PT 28.73

A1QR 22.83 A2QR 22.53 B1QR 18.03 B2QR 18.63 C1QR 26.93 C2QR 28.23

A1QL 21.03 A2QL 21.63 B1QL 17.13 B2QL 17.93 C1QL 25.53 C2QL 27.03

A1QT 21.63 A2QT 22.93 B1QT 18.03 B2QT 19.23 C1QT 27.53 C2QT 28.63
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Supertotals in interaction table:

Alignment P Alignment Q

Trimming R 162.118 137.018 299.136

Trimming L 152.818 130.118 282.936

Trimming T 165.818 137.818 303.636

480.754 404.954 885.6108

Table of sum of squares (SqADS):

Correction factor = 7261.92
Source of variation Sum of squares 

Columns From earlier table 
Rows (Trimming) From earlier table 
Interaction by subtraction

Totals of table body by SqADS 

Source of variation  

Alignment 
Trimming 
Interaction

Totals of table body 

Sum of squares

53.20
6.59
0.39

60.18

Variety × Fertilizer × Trimming (V × F × T)

Interaction table for Variety × Fertilizer × Trimming: 3 columns (Vari-
ety levels) split into 2 (Fertilizer levels) × 3 rows (Trimming levels) = 18
supertotals

Divisor (number of plots per supertotal in body of table): 108/18 = 6
Number of treatment totals3 per supertotal in body of table: 6/3 = 2
Identification of first such supertotal: Treatments sharing A, 1, and R

(dark shaded in table below). By light shading A, 2, and L, and then B, 1,
and T, we can see the pattern (three in each column) for locating the 18
supertotals of two treatment totals we need.

A1PR 25.53 A2PR 27.03 B1PR 26.23 B2PR 27.63 C1PR 27.03 C2PR 28.83

A1PL 22.53 A2PL 23.43 B1PL 25.63 B2PL 28.53 C1PL 25.83 C2PL 27.03

A1PT 27.03 A2PT 27.63 B1PT 26.43 B2PT 28.43 C1PT 27.73 C2PT 28.73

A1QR 22.83 A2QR 22.53 B1QR 18.03 B2QR 18.63 C1QR 26.93 C2QR 28.23

A1QL 21.03 A2QL 21.63 B1QL 17.13 B2QL 17.93 C1QL 25.53 C2QL 27.03

A1QT 21.63 A2QT 22.93 B1QT 18.03 B2QT 19.23 C1QT 27.53 C2QT 28.63

Supertotals in interaction table:

Variety A Variety B Variety C

Fert. 1 Fert. 2 Fert. 1 Fert. 2 Fert. 1 Fert. 2

Trimming R 48.36 49.56 44.26 46.26 53.96 57.06 299.136

Trimming L 43.59 45.09 42.76 46.46 51.36 54.06 282.936

Trimming T 48.69 50.59 44.46 47.66 55.26 57.36 303.636

140.418 145.018 131.318 140.218 160.418 168.318 885.6108
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Table of sum of squares (SqADS):

Correction factor = 7261.92
Source of variation Sum of squares
Variety 49.44
Fertilizer 4.24
Trimming 6.59
V × F (remainder) 0.28
V × T (remainder) 1.72
F × T (remainder) 0.03
Interaction 0.16

Totals of table body 62.46

Variety × Alignment × Trimming (V × A × T)

Interaction table for Variety × Alignment × Trimming: 3 columns (Variety
levels) split into 2 (Alignment levels) × 3 rows (Trimming levels) = 18
supertotals

Divisor (number of plots per supertotal in body of table): 108/18 = 6
Number of treatment totals3 per supertotal in body of table: 6/3 = 2
Identification of first such supertotal: Treatments sharing A, P, and R

(dark shaded in table below). By light shading A, P, and T, and then A, Q,
and L, we can see the pattern (alternate rows across a pair of columns)
for locating the 18 supertotals of two treatment totals we need.

A1PR 25.53 A2PR 27.03 B1PR 26.23 B2PR 27.63 C1PR 27.03 C2PR 28.83

A1PL 22.53 A2PL 23.43 B1PL 25.63 B2PL 28.53 C1PL 25.83 C2PL 27.03

A1PT 27.03 A2PT 27.63 B1PT 26.43 B2PT 28.43 C1PT 27.73 C2PT 28.73

A1QR 22.83 A2QR 22.53 B1QR 18.03 B2QR 18.63 C1QR 26.93 C2QR 28.23

A1QL 21.03 A2QL 21.63 B1QL 17.13 B2QL 17.93 C1QL 25.53 C2QL 27.03

A1QT 21.63 A2QT 22.93 B1QT 18.03 B2QT 19.23 C1QT 27.53 C2QT 28.63

Supertotals in interaction table:

Variety A Variety B Variety C

Align. P Align. Q Align. P Align. Q Align. P Align. Q

Trimming R 52.56 45.36 53.86 36.66 55.86 55.16 299.136

Trimming L 45.99 42.69 54.16 35.06 52.86 52.56 282.936

Trimming T 54.69 44.59 54.86 37.26 56.46 56.16 303.636

153.018 132.418 162.718 108.818 165.018 163.718 885.610

8
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Table of sum of squares (SqADS):

Correction factor = 7261.92
Source of variation Sum of squares
Variety 49.44
Alignment 53.20
Trimming 6.59
F × A (remainder) 39.34
F × T (remainder) 1.72
A × T (remainder) 0.39
Interaction 1.72

Totals of table body 152.40

Fertilizer × Alignment × Trimming (F × A × T)

• Interaction table for Fertilizer × Alignment × Trimming: 2 columns
(Fertilizer levels) split into 2 (Alignment levels) × 3 rows (Trimming levels) =
12 supertotals

• Divisor (number of plots per supertotal in body of table): 108/12 = 9
• Number of treatment totals3 per supertotal in body of table: 6/3 = 3
• Identification of first such supertotal: Treatments sharing 1, P, and R

(dark shaded in table below). By light shading 2, P, and L, and then 1, P, and
T, we can see the somewhat complicated pattern (alternate triplets along
the rows) for locating the 12 supertotals of three treatment totals we need.

A1PR 25.53 A2PR 27.03 B1PR 26.23 B2PR 27.63 C1PR 27.03 C2PR 28.83

A1PL 22.53 A2PL 23.43 B1PL 25.63 B2PL 28.53 C1PL 25.83 C2PL 27.03

A1PT 27.03 A2PT 27.63 B1PT 26.43 B2PT 28.43 C1PT 27.73 C2PT 28.73

A1QR 22.83 A2QR 22.53 B1QR 18.03 B2QR 18.63 C1QR 26.93 C2QR 28.23

A1QL 21.03 A2QL 21.63 B1QL 17.13 B2QL 17.93 C1QL 25.53 C2QL 27.03

A1QT 21.63 A2QT 22.93 B1QT 18.03 B2QT 19.23 C1QT 27.53 C2QT 28.63

Supertotals in interaction table:

Fertilizer 1 Fertilizer 2

Align. P Align. Q Align. P Align. Q

Trimming R 78.79 67.79 83.49 69.39 299.136

Trimming L 73.99 63.69 78.99 66.59 282.936

Trimming T 81.19 67.19 84.79 70.79 303.636

233.727 198.427 247.027 206.527 885.6108
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Table of sum of squares (SqADS):

Correction factor = 7261.92
Source of variation Sum of squares
Fertilizer 4.24
Alignment 53.20
Trimming 6.59
F × A (remainder) 0.25
F × T (remainder) 0.03
A × T (remainder) 0.39
Interaction 0.14

Totals of table body 64.84

Spare-time activity

The data relate to an experiment where three plant species were germinated
with and without a fungicidal seed dressing in three soil types (there were
three blocks). Per cent emergence was recorded.

The data would take up a lot of space and moreover I want to save you time
on repetitive work. I’ve therefore done Phase 1 and 2 of the analysis for you,
and this saves giving you the data for each block:

Source of variation d.f. sum of squares

Treatments 17 32,041.50
Blocks 2 356.77
Residual 34 3,199.40

TOTAL 53 35,597.67

Correction factor: = 264,180.17
Your assignment is to factorialize the 32,041.50 sum of squares and the 17

degrees of freedom for “Treatments.” The table below is therefore a table of
treatment totals, i.e. the sum of the three blocks for each treatment (hence the
subscript 3) – who ever heard of 266% germination, anyway (!), for combining
into supertotals.

Silt loam Sand Clay
Petunia
Untreated 2663 2863 663
Fungicide 2763 2713 2153

Godetia
Untreated 2523 2893 1673
Fungicide 2753 2923 2033

Clarkia
Untreated 1523 1973 523
Fungicide 1783 2193 1213
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Then calculate mean squares and variance ratios. Just one of the 2-factor
interactions is statistically significant. Which is it?

Keep your calculations. A further exercise in the interpretation of this exper-
iment will be found in the “spare time activities” following Chapter 16, which
explains how differences between means should be evaluated in a factorial
analysis.
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Introduction

The split plot design for factorials has special advantages for certain types
of work. I will discuss later where these advantages stem from, but for the
time being we can list the two most important as:

• When the application of one of the factors in the factorial would be
impracticable on small plots – aerial spraying of herbicide would be a
dramatic example!

• When one factor is only included because the interest of the experiment
is in the interaction of that factor with a second factor. Here a good exam-
ple is the use of insecticide to measure host plant resistance to a pest. We
do not need to use the experiment to show that insecticides raise yields.
A randomized block design would do this better; as will be made clear
later, a split plot design involves a penalty in detecting the effect of one
of the factors. In this experiment, the most resistant varieties will have
few aphids, and so little or no protection with insecticide – therefore, the
yields of sprayed and unsprayed plots will be similar. Therefore what is of
interest in this experiment is not whether insecticides kill aphids, but how
far sprayed and unsprayed plots differ in yield – in other words, the vari-
ety × insecticide interaction. That it would be hard to spray small plots
without insecticide drifting where it is not wanted (see first advantage)
makes a split plot design even more appropriate in this example!
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Deriving the split plot design from the randomized
block design

To derive the split plot design we’ll begin with the kind of factorial experi-
ment with which we are already familiar, i.e. laid out as randomized blocks.
For our example, we’ll use the experiment just mentioned – an aphid plant
resistance trial of three Brussels sprout varieties (A, B, and C), sprayed
(S) and unsprayed (U) with insecticide to detect the aphid-resistant vari-
ety, i.e. the one showing the smallest yield improvement when protected
against aphid damage by spraying. Figure 15.1a shows how four replica-
tions of 3 varieties × 2 sprayings (=6 treatments per replicate) might be
laid out as randomized blocks with 24 plots in total.

We can sacrifice detecting the obvious – that the insecticide will kill
aphids on all varieties (as measured by yield) – if the benefit of doing this
is that we get a more accurate discrimination of the interaction, i.e. how
the effect of insecticide differs on the three varieties. Look at the left hand
replicate. If the soil, or anything else affecting yield, varies within the repli-
cate, such variation will probably interfere less with the contrast between
adjacent plots (e.g. AU and AS) caused by the designed treatments than
with the contrast between the more widely separated AU and CU. It usually
works out in practice that (in the absence of any experimental treatments
to make them different) adjacent plots are more similar than those further
apart! Moreover, it would be hard to spray AS without insecticide drifting
onto the adjacent unsprayed plots AU and BU.

To turn these 24 plots into a split plot design by easy stages, let’s forget
about spraying altogether and think how we would use the same plots
for a straight comparison of the yield of three sprout varieties. Well, with
24 plots and three varieties, we could obviously step up the replication
from 4 to 8, making it a much better variety experiment (Fig. 15.1b).

The allocation of degrees of freedom would be:

3 Varieties 2
8 Blocks 7
Residual 2 × 7 = 14

Total (24 plots) 23

Now let’s forget about varieties, and use the same area of land for just
one variety, sprayed (S) and unsprayed (U) with insecticide, as four repli-
cates of larger plots. We might well lay out the four replicates as shown in
Fig. 15.1c.
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Fig. 15.1 Relationship between a randomized and a split plot design: (a) How the six
factorial treatments of three Brussels sprout varieties (A, B, and C) either sprayed (S)
or unsprayed (U) with insecticide might be allocated to four blocks. (b) How the same
land area might be used for eight randomized blocks of just the three Brussels sprout
varieties. (c) How the same land area might be used for four larger randomized blocks
(arranged left to right across the diagram of the sprayed and unsprayed comparison.
(d)The split plot design: each plot in design (c) – half a replicate of the sprayed/unsprayed
comparison – is divided into three subplots as a full replicate of the variety comparison
of design (b) by superimposing plans (b) and (c) on each other.
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The allocation of degrees of freedom would be:

2 Sprayings 1
4 Blocks 3
Residual 1 × 3 = 3

Total (8 plots) 7

Note that the insecticide experiment is less precise than the variety
experiment for two reasons.

1 There are fewer replicates (blocks) contributing to fewer degrees of
freedom as the divisor for residual variation.

2 The residual variation in the comparison of Sprayed and Unsprayed will
anyway be larger as the distance on the ground within the replicates
is greater than that within the replicates of the eight-replicate (block)
variety layout.

We now have two experimental plans for the same site involving two exper-
iments of different sizes – a four-replicate spraying experiment and an
eight-replicate variety experiment.

The split plot experiment is nothing more complicated than doing both
experiments on the same piece of land at the same time! In the plan
(Fig. 15.1d), shaded plots are the ones that are sprayed (S).

You should perhaps now go back to the randomized block plan for this
variety × insecticide experiment (Fig. 15.1a) and compare it with Fig. 15.1d
to make sure you are clear how the split plot design differs.The basic concept
is that the smaller plots of one factor (variety in this example) are “nested”
within the larger plots of the other factor (insecticide). Indeed in the USA,
split plot designs are usually known as “nested” designs – which I think is
a better, more descriptive term than ‘split plot.”

Indeed, you can “nest” more than two factors. With three factors you
would have not only “main plots” and “sub-plots,” but also “sub-sub-plots”!
This is akin to doing three experiments at the same time on the same plot
of land. I think I’ll leave it at that, though of course you could nest even
more factors. Trying to sort out the analysis and degrees of freedom for a
4-factor split plot experiment is the sort of thing you can pass the time with
if you’re ever stuck at an airport for hours on end!

In the randomized block plan, the unit of area sprayed or unsprayed
was the same size as the unit of area planted to a variety; therefore
both treatments were replicated equally and the same residual sum of
squares is appropriate for obtaining the variance ratio for both compar-
isons. The whole purpose of randomization is that positional variation
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between the plots in any one replicate should equally affect both spraying
and variety comparisons.

In the split plot design, by contrast, we actually want a different residual
mean square for each factorialized treatment. The sprayed/unsprayed com-
parison will probably have a larger residual sum of squares since the unit
of area treated is larger and thus encompasses more positional variabil-
ity. Furthermore, the fewer replicates for spraying than for varieties means
that the residual sum of squares will then have a smaller divisor (the fewer
degrees of freedom). Thus a split plot analysis of variance involves calcu-
lating two residual sums of squares, one for the four-replicate spraying
experiment and a different one for the eight-replicate variety experiment.

What about the spraying × variety interaction, the real purpose of the
experiment? Well, the beauty of the split plot design is that the interaction
involves the eight-replicate experiment and will therefore be tested against
the potentially smaller residual mean square, thus raising the chances of
detecting the interaction with a higher variance ratio (F value).

Degrees of freedom in a split plot analysis

Main plots

Potential confusion here! The term “main plots” refers to the larger plots
(for the sprayed/unsprayed comparison in our example) which are split into
“sub-plots” for the second factor (varieties). Yet in terms of what we hope
for from the experiment, it is the sub-plot comparisons which are of “main”
importance, particularly the spraying × variety interaction which the sub-
plot part of the analysis includes. So the “main” plots paradoxically carry
the minor interest!

We have already (page 197) set out the degrees of freedom for the main
plot part of the experiment as:

2 Spraying treatments 1 d.f.
4 Blocks (replicates) 3 d.f.
Residual 1 × 3 = 3 d.f.

Total (8 main plots) 7 d.f.

Sub-plots

These are the smaller plots in the part of experiment with greater
replication, and this part of the analysis is where the greatest interest lies.
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Nothing can alter the fact that there are 24 plot in the whole split plot
experiment. This therefore gives 23 d.f. Of these 23 d.f., 7 have just been
allocated to the main plots, which must leave 16 for the sub-plots. But
when we try and allocate the 16 degrees of freedom, it just doesn’t add up!
With 2 d.f. for three varieties and 7 for eight replicates, all our previous
experience tells us the residual must be 2 × 7 = 14 d.f. But then this would
add up to more than 16 − 23 in fact!

3 Varieties 2 d.f.
8 Blocks (replicates) 7 d.f.
Residual 2 × 7 = 14 d.f.

Total for sub plots 16 d.f.

Don’t read on just yet, but first look back to the experimental plan
(Fig. 15.1d) and try and work out for yourself how the discrepancy has
arisen. I’ll be really proud of you if you can!

OK – did you make it? The table above would add up to 16 d.f. if we
deleted the 7 d.f. for the eight blocks, wouldn’t it? And that is exactly what
we should do. The 7 degrees of freedom are from the eight replicates, which
themselves are the eight plots of the main plot experiment. So the 7 d.f.
for the total variation of the main plot part of the analysis is the same d.f.
and variation as associated with the eight blocks of the sub-plot part of
the analysis. So these 7 d.f. in the sub-plot allocation have already been
allocated! – in the main plot allocation of d.f.

So now the sub-plot d.f. add up to the required 16, but I fear the allocation
of d.f. in that part of the experiment is still not right. Remember (page 198)
that the spraying × variety interaction is part of the sub-plot analysis, so
we have still to fit in the 2 d.f. (from 1 d.f. for spraying × 2 d.f. for varieties).
If we do this, the residual now drops to 12:

3 Varieties 2 d.f.
2 spraying × 3 Variety interaction 1 × 2 = 2 d.f.
Residual (2 × 7) − 2 = 12 d.f.

Total 16 d.f.

But why is this right? It’s because the residual of an equivalent randomized
block experiment of 2 sprayings × 3 varieties = 6 treatments with 4 repli-
cates (i.e. still 24 plots with 23 total d.f.) would be 5 × 3 = 15 d.f. In the
split plot analysis 3 of these 15 d.f. are allocated to the residual of the main
plot part of the experiment, correctly leaving 15 − 3 = 12 for the sub-plot
residual.
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It may help if I show how the degrees of freedom for a randomized
block factorial jump around to give the allocation of d.f. for a split plot
analysis. Both experiments have 24 plots, and involve the same factorialized
treatments, 2 sprayings and 3 varieties:

 
Split plot
Main plot part d.f.

2 Sprayingsd.f  
4 Blocks 
Residual 

8 Main plots TOTAL 7 
 

Sub-plot part 
3 Varieties

2 Sprayings × 3 Varieties 1 ×  2 = 2
 

Residual

Sub-plot TOTAL

24 plot TOTAL

Randomized block

2 Sprayings 1
3 Varieties 2

2 Sprayings × 3 Varieties 1 × 2 = 2

6 Treatments 5

4 Blocks 3
Residual  5 × 3 = 15

24 plot TOTAL 23

2

12

16

23

1
3

1 ×  3 = 3

The allocation of degrees of freedom and calculation of sums of squares
for a split plot analysis can be confusing compared with a randomized block
factorial design as, since there is no single undivided sum of squares for
“Treatments” there cannot be the familiar Phase 2, nor therefore can there
be a Phase 3 splitting up the “treatment” variation into its components.
Analysing a split plot experiment therefore has to start from scratch.

The secret is to do the calculations in the right order. The following table
therefore repeats the allocation of degrees of freedom for our 2-factor split
plot, but has added to it the most helpful order of the calculations, which
will apply to any 2-factor split plot experiment:

Main plot part d.f. Order

2 Sprayings 1 3
4 Blocks 3 4
Residual 1 × 3 = 3 5

8 Main plots TOTAL 2

Sub-plot part
3 Varieties 2 7
2 Sprayings × 3 Varieties 1 × 2 = 2 8
Residual 12 9

Sub-plot TOTAL 16 6

24 plot TOTAL 23 1
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B     25.5 

A     24.9 

C     25.8 

C     26.1 

B     18.0 

A     21.7 

A     21.1 

B     17.9 

C     28.9 

A     27.6 

B     29.3 

C     28.6 

B     19.5 

A     23.2 

B     29.7 

C     30.3 

A     29.5 

C     29.3 

B     29.2 

A     29.8 

B     21.3 

C     31.0 

A     25.8 

C     29.4 

Fig. 15.2 Yield of sprouts (kg/plot) from the experimental design shown in Fig. 15.1d.

Numerical example of a split plot experiment and its
analysis

We might as well use the yield data (Fig. 15.2) from the experiment on
spraying and Brussels sprout varieties which has formed the basis of this
chapter so far. As before the shaded areas have been sprayed and A, B, and
C refers to the three sprout varieties. Final yield of sprouts was measured
in kg/plot.

As in previous analyses, we first have to unscramble the randomization
to gain easy access to the totals we will need for SqADS. Note that this table
of data would look just the same had the layout been randomized blocks;
we cannot tell the design from the table. As before, we will use subscripts to
track how many plots contribute to a total:

Table A

Replicate SA SB SC UA UB UC Row
totals

1 24.9 25.5 25.8 21.7 18.0 26.1 142.06
2 27.6 29.3 29.4 21.1 17.9 28.9 154.26
3 29.5 29.7 30.3 23.2 19.5 28.6 160.86
4 29.8 29.2 29.3 25.8 21.3 31.0 166.46

Column 111.84 113.74 114.84 91.84 76.74 114.64 623.424
totals

This table is the data for the 24 sub-plots. We now need a second table
for the eight main plots, which are the four replicates of areas sprayed or
unsprayed. Each line of data on either side of the double vertical line is the
three variety sub-plots in one sprayed (S) or unsprayed (U) main plot. So to
get the eight totals for the main plots, we add the three numbers in each
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replicate on either side of the double vertical line (e.g. 24.9+25.5+25.8 =
76.23) to get:

Table B

Replicate Sprayed Unsprayed Row totals
1 76.23 65.83 142.06
2 86.33 67.93 154.26
3 89.53 71.33 160.86
4 88.33 78.13 166.46

Column totals 340.312 283.112 623.424

Calculating the sums of squares

OK, so we can start “number crunching,” and we begin with calcu-
lating the correction factor for all the sums of squares as the (Grand
Total)2/24 = 623.42/24 = 16,192.82. This correction factor applies
regardless of whether a sum of squares is in the main or sub-plot part of
the analysis.

In calculating sums of squares we will follow the order suggested in
the earlier table of the allocated degrees of freedom. To save repetition of
the detail of the calculations, the relevant numbered paragraph will be

asterisked if such details are given in Box 15.1 (page 203). The
number of totals to square and add × the divisor will always be the number
of plots = 24 in this experiment.

But before we start calculating sums of squares, it is worth drafting an
interaction table for sprayings × varieties, using the format we’ve used
previously (page 159):

Table C

A
Varieties

B C

S 111.84 113.74 114.84 340.312

U 91.84 76.74 114.64 283.112

203.68 190.48 229.48  GT = 623.424

Sprayings

So off we go, calculating the sums of squares in the order suggested. It
will be a good exercise for you, as you reach each step in the sequence,
to identify the numbers you will need for that step. They can be found in
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BOX 15.1

1 The total sum of squares involves adding the squares of all 24 data in Table A
and subtracting the correction factor (623.42/24), viz.:

24.92 + 27.62 + 29.52 + 29.82 + 25.52 + · · · + 31.02 − 16,192.82

= 391.00

2 The number at the start of the relevant line in the analysis table clues us in
that there are eight main plot totals for SqADS, with the divisor of 3 since
24/8 = 3. Each main plot is one replicate of three varieties, so with six plots
per replicate there are two main plot totals per replicate. There they are, in
the body of Table B:

76.22 + 86.32 + 89.52 + 88.32 + 65.82 + · · · + 78.12

3

− 16,192.82 = 202.85

3 There are supertotals of 12 plots each for the two levels of Sprayings,
S and U.
They are the two row totals in Table C:

340.32 + 283.12

12
− 16,192.82 = 136.32

4 Four replicate totals (row totals in Table A) must have a divisor of 6:

142.02 + 154.22 + 160.8 + 166.42

6
− 16,192.82 = 202.85

5 Three Variety supertotals (column totals in Table C) are each totals of eight
plots (8 is therefore the divisor for SqADS):

203.62 + 190.42 + 229.42

8
− 16,192.82 = 98.37

The interaction. 2 Sprayings × 3 Varieties gives six totals (each of 24/6 =
4 plots) – these are six totals with subscript 4 inside the black frame of Table C.
But remember that interactions are always found as remainders – in this
case once the sums of squares already calculated for Sprayings (136.32)
and Varieties (98.37) have been deducted!

111.82 + 113.72 + 114.82 + 91.82 + 76.72 + 114.62

4

− 16,192.82 − 136 .32 − 98.37 = 84.81
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either Table A, B, or C – and there’s always Box 15.1 to help if you’re in
trouble.

1 Total sum of squares. We square and add all 24 plot data in Table A and
subtract the correction factor to get 391.00.

2 Main plot sum of squares. SqA8 Main plot totals Dby 3 SCorrection Factor. Eight
totals, each totals of three plots? These are the ones in the body of
Table B. The sum of squares is 202.05. The next three steps involve the
same table and partition this total main plot sum of squares into its
components.

3 Sprayings sum of squares. SqAThe 2 S and U totals Dby 12 SCorrection Factor.
Two totals, each totals of 12 plots? These have to be the row supertotals
of Table C, 340.3 and 283.1. SqADS gives us 136.32.

4 Replicates sum of squares. SqA4 Replicate totals Dby 6 SCorrection Factor. The
four totals we need are the four row totals in Tables A or B. SqADS gives
us 55.05.

5 Main plot residual sum of squares. This remainder from the main plot sum
of squares is found by subtraction, and similarly . . .

6 Subtraction of the main plot sum of squares from the total sum of
squares gives the sub-plot sum of squares. We can now begin to fill in
the analysis of variance table:

Lead line: 2 Sprayings × 3 Varieties (= 6 treatments) ×
4 Replicates = 24 plots
Correction factor: 16,192.82

Source of
variation

Degrees of
freedom

Sum of
squares

Order of
calculation

Mean
square

Variance
ratio

P

Main plots
2 Sprayings 1 136.32 3
4 Replicates 3 55.05 4
Main plot residual 3 10.68 5

8 Main plots total 7 202.05 2

Sub-plots
3 Varieties 2 7
2 Sprayings × 2 8
3 Varieties

Sub-plot residual 12 9

Sub-plot total 16 188.95 6

TOTAL (24 plots) 23 391.00 1
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7 Varieties sums of squares. SqA3 Variety totals Dby 8 SCorrection Factor. The
three variety supertotals (each of eight plots) are easy to identify as
the column totals of Table C – 203.6, 190.4, and 229.4. SqADS gives
us 98.37.

8 Spraying × Varieties interaction sum of squares.
SqA2×3=6 Spraying×Varieties totals Dby 4 SCorrection Factor. The six interaction
totals are the “treatment” or column totals of Table A, also the six totals
in the body of Table C. SqADS gives us 319.50. Can that be right? It’s
larger than the entire sub-plot total of 188.95. If this puzzles you, then
I fear you have forgotten something very important (page 152).

The sum of squares for an interaction can never be calculated
directly, it is always a remainder – what is left over when the sums of
squares of contributing sources of variation (in this case Sprayings and
Varieties have been deducted). Interactions are always remainders.
Surely that rings a bell? So we have to subtract the 136.32 for Sprayings
and the 98.37 for Varieties to leave 84.81 as the remaining sum of
squares attributable to the interaction.

9 The last figure, the sub-plot residual sum of squares, is found by
subtraction.

End Phase

We can now complete the END PHASE by calculating mean squares and
variance ratios. Note that we have two residual sum of squares (3.55 and
0.48), and each is used for the variance ratios in its part of the analysis.

Lead line: 2 Sprayings × 3 Varieties (= 6 treatments) × 4 Blocks (replicates)
= 24 plots
Correction factor: 16,192.82

Source of variation Degrees of
freedom

Sum of
squares

Mean square Variance ratio P

Main plots
2 Sprayings 1 136.32 136.32 38.29 <0.05
4 Replicates 3 55.05 16.35 5.15 ns
Main plot residual 3 10.68 3.55

Main plot total 7 202.05

Sub-plots
3 Varieties 2 98.37 49.19 102.47 <0.001
2 Sprayings ×  3 Varieties 2 84.81 42.41 88.34 <0.001

12 5.77 0.48
16  188.95

TOTAL (24 plots) 23 391.00

Sub-plot residual.
Sub-plot total
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The Sprayings × Varieties interaction is highly significant, indicating that
the sprout varieties differ in how far insecticide is necessary to protect the
yield from aphid damage. This difference between the varieties is the main
phenomenon being tested in this experiment. Even without doing the addi-
tional tests on differences between means described in the next chapter, the
totals in the body of Table C above show that Variety C is resistant to aphids
compared with Varieties A and B since it shows so little yield difference
when protected from aphids by spraying.

Comparison of split plot and randomized
block experiment

It would be nice to be able to compare the above analysis with that for the
randomized block design shown at the start of this chapter (page 196),
since both designs have 24 plots in a matrix of four columns of six plots.
But to mean anything, we would have to do the two different experiments
on the same piece of land at the same time – impossible, unless we do
it virtually! That’s the best we can do, and how we play with the data
we have from the split plot to get a best guess of the results we would
have got from the randomized block design is explained in Box 15.2. You
can skip this and move straight to the unscrambled table of data below, but
Box 15.2 is perhaps a useful demonstration of how we can use the principle
of the analysis of variance for another purpose. The “virtual” results are as
follows:

Replicate SA SB SC UA UB UC Row
totals

1 24.9 27.2 26.1 20.1 16.3 27.4 142.06
2 26.7 26.5 28.9 23.7 20.1 28.3 154.26
3 27.9 28.6 30.2 23.3 20.5 30.3 160.86
4 30.1 31.2 30.0 23.8 19.8 30.5 165.46

Column 109.64 113.54 115.24 90.94 76.74 116.54 622.424
totals

Compare this with the analogous table for the split plot experiment
(page 201). It is not possible to tell from the two tables that they reflect
different experimental designs. How a data table is analyzed is determined
by the plan of the experiment, not from the table of results!

I trust it’s not necessary to give the detail of analyzing the above table as
a randomized block experiment, but it might be a good spare-time activity
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BOX 15.2

Calculations from the split plot data
We begin with the six “treatment” means of the four replicates: SA = 28.0,
SB = 28.4, SC = 28.7, UA = 23.0, UB = 19.2, UC = 28.7. If our “treatments”
were the only variation in the data, then all plots per “treatment” would show
the same value. But positional effects (both within and between replicates)
leads to other variation, measured by the difference between the “treatment”
mean and the observed datum for the plot. This is shown on the plan below by
the treatment mean underlined, then the plot datum, and finally the difference
in bold. As before A, B, and C are the three varieties, and the sprayed plots
are shaded:

B 28.4, 25.5, −−2.9

A 28.0, 24.9, −3.1

C 28.7, 25.8, −2.9

C 28.7, 26.1, −2.6

B 19.2, 18.0, −1.2

A 23.0, 21.7, −1.3

A 23.0, 21.1, −1.9

B 19.2, 17.9, −1.3

C 28.7, 28.9, 0.2

A 28.0, 27.6, −0.4

B 28.4, 29.3, 0.9

C 28.7, 29.4,0.7

C 28.7, 28.6, −0.1

B 19.2,19.5, 0.3

A 23.0, 23.2, 0.2

B 28.4, 29.7, 1.3

C 28.7, 30.3, 1.6

A 28.0, 29.5, 1.5

C 28.7, 29.3, 0.6

B 28.4, 29.2, 0.8

A 28.0, 29.8, 1.8

B 19.2, 21.3, 2.1

C 28.7, 31.0, 2.3

A 23.0, 25.8, 2.8

If we now remove the treatment means and plot data from the above layout,
there is left (in bold typeface) how yield would change if no treatments had
been applied and we were just measuring uniformity of yield across the site.
A gradient of increased yield from left to right is clear. Here are these figures
in bold on their own:

−2.9

−3.1

−2.9

−2.6

−1.2

−1.3

−1.9

−1.3

0.2

−0.4

0.9

−0.1

0.3

0.2

1.3

1.6

1.5

0.6

0.8

1.8

2.1

2.3

2.8

0.7

(Continued)
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BOX 15.2 Continued

Converting to randomized blocks

A 23.0, −2.9, 20.1

A 28.0, −3.1, 24.9

B 19.2, −2.9, 16.3

C 28.7, −2.6, 26.1

B 28.4,−1.2, 27.2

C 28.7, −1.3, 27.4

B 28.4, −1.9, 26.5

A 28.0, −1.3, 26.7

C 28.7, 0.2, 28.9

C 28.7, −0.4, 28.3

B 19.2, 0.9, 20.1

A 23.0, 0.7, 23.7

A 28.0, −0.1, 27.9

A 23.0, 0.3, 23.3

B 28.4, 0.2, 28.6

B 19.2, 1.3, 20.5

C 28.7, 1.6, 30.3

C 28.7, 1.5, 30.2

B 19.2, 0.6, 19.8

A 23.0, 0.8, 23.8

C 28.7, 1.8, 30.5

A 28.0, 2.1, 30.1

C 28.7, 2.3, 30.0

B 28.4, 2.8, 31.2

Now we re-allocate the experimental treatments to the plots according to the
plan for randomized blocks (Fig. 15.1a). Each plot now has (from left to right)
underlined the treatment mean taken from the split plot data, e.g. mean for
variety A when sprayed = 28, the positional variation in bold (from the table
above) and, finally in italics the sum of the two, which becomes the hypothetical
new datum for that plot. Again, the sprayed plots are shaded: The yields in
italics are our estimate of what the results of the randomized block experiment
would have been.

to do the calculations and check that you reach the same analysis table
as this:

Lead line: 2 Sprayings × 3 Varieties (= 6 treatments) × 4 Blocks (Replicates)
= 24 plots
Correction factor: 16,140.91

Source of variation Degrees of
freedom

Sum of squares Mean square Variance ratio P

2 Sprayings <0.001
3 Varieties <0.001
2 Sprayings ×
  3 Varieties

<0.001

6 Treatments <0.001
4 Replicates

133.44
63.63
49.49

71.94
18.78 <0.001

Residual

122.41
58.37
45.40

65.99
17.22
0.92

TOTAL (18 plots)

1
2
2

5
3

15

23

122.41
116.74
90.80

329.95
51.67

 13.76

395.38

The sum of squares for residual variation at 13.76 is not that different
from 16.45, the sum of the two residuals in the split plot table. In the
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randomized block analysis, this gives a single “averaged” mean square
of 0.92 for calculating all the variance ratios. In the split plot analysis,
the larger main plots show more positional variation between them than
the small adjacent sub-plots. Indeed the residual sum of squares is split
very unequally, with two-thirds coming from main plots. As the main plot
residual has fewer degrees of freedom than the sub-plots, the residual mean
square is four times larger (3.55) than the “averaged” 0.92 above, while
that for the sub-plots is about halved (0.48). Hence, comparing a split
plot design with a randomized block, the chances of detecting statistically
significant effects of the main plot factor(s) decrease, while they increase
for the sub-plot factors. Remember that this experiment aimed to measure
plant susceptibility to aphids by the yield increase of sprayed over unsprayed
plants; i.e. the interaction between the factors and part of the sub-plot part
of the experiment.

Don’t pay too much attention to the significance levels in the analysis
tables. In this particular experiment, the randomized block has succeeded
perfectly well in associating a high level of significance (P < 0.001) with
the sub-plot components. The relative efficiency of the two parts of the
split plot design compared with the randomized block is clearly seen if we
compare the variance ratios (F values):

Source in the split plot design F (split plot) F (randomized block)

Main plot
Sprayings
Replicates

38.29 133.44
5.15 18.78

102.47 63.33
88.34 49.49

Sub-plot
Varieties
Spraying × varieties interaction

Look at the arrows. The shift in F values gives the split plot design an
advantage for the sub-plot at the expense of the main plot factors. We now
discuss why this “trade-off ” between the two parts of the split-plot design
might be beneficial.

Uses of split plot designs

Some uses were already alluded to at the start of this chapter, but it makes
sense to discuss the uses more fully now that we’ve been through the
features of the analysis.

1 The design can improve the detection of significant differences where
some parts of an experiment (particularly interactions) are of particular
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interest, and the overall affect of one of the factors is already known or
of limited interest. Many people set all experiments out as randomized
blocks, as if there were no other designs! If an experiment is factorial
in nature, it will really be quite often that the aim is more specific than
appropriate for randomized blocks – e.g. is it necessary to prove yet again
that plants grow better with nitrogen fertilizer? Nitrogen fertilizer has
probably only been included in the experiment because of interest in
how it interacts with another factor (see first example below). Here are
just three examples of experiments suitable for a split-plot design. I’m
sure you’ll pick up the general idea:

Does the yield enhancement obtained by removing the senescing
lower leaves of tomato depend on the amount of N fertilizer applied?
(N levels would be the main plot treatment; retaining or removing the
senescing leaves would be the sub-plot treatment.)

Are some formulations of a particular pesticide more rain-fast than
others? (Levels of simulated rainfall would be the main plot factor –
that rainfall washes pesticide off plants can be assumed; different
formulations would be the sub-plot factor.)

Is there an optimum timing for applying fruit thinner to apples, and is
it the same for all varieties. Although we might be interested in overall
yield differences between varieties, a split plot design would give us the
best chance of detecting the optimum timing for the fruit thinner and
the consistency between the varieties in relation to this timing. We might
therefore be wise to make varieties the main plot factor and the fruit
thinner timings the levels of the sub-plot factor.

2 Practical considerations may attract us to a split plot design. Land prepa-
ration and many agronomic practices such as mechanical weeding may
be hard to implement on a small-sized plot. A silly example was given
near the start of the chapter – imagine spraying a 1 m square plot from
the air without contaminating adjacent plots!

3 Here’s a cunning use of a split plot design – how to get something for
nothing! As soon as an experiment has a number of randomized blocks,
we can assign whole blocks to different levels of another factor as “main
plots” and so get “free” information about the effect of this factor. We
may have no interest in the interaction between the two factors, the use
of the main plot factor may just be a pilot study to see if it is worth
experimenting in that direction.

Suppose a grower is doing a lettuce variety trial in a corner of a large
glasshouse to find the most suitable variety for a winter crop. The grower
also knows there are some soil-borne pathogens in his glasshouse soil,
and wonders whether this has reached the stage where it would benefit
him to splash out on soil fumigation for the whole glasshouse. Doing the
lettuce variety trial gives him the chance to test soil fumigation out on a
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small scale as “main plots” superimposed on the lettuce variety trial. If
there really is a beneficial effect on yield, he should be able to pick this up.

4 Sometimes it is obvious that the averaging of residual variation for the
mean square would be illogical in relation to all the components of
a factorial experiment. This usually arises where a factor cannot be
randomized at the same level as the others. We may have too few plants to
have different plants for measuring disease incidence on young, medium
and old leaves, and have to use strata within single plants as one of our
factors. In experiments with lighting treatments for plants, the inability
to provide a different and randomized lighting treatment for every plant
may force us to bulk plants given other treatments into main plots for a
limited number of specific lighting conditions, even though such lighting
conditions might be the factor of primary interest in the experiments.

Or we may be measuring growth effects, and need to take measure-
ments in time. If we cannot make lots of multiple sowings at different
times, we wouldn’t be able to randomize plant age, and have to sample
from plants growing from a single sowing. As a “better than nothing”
solution, such data (with their very different residual variability) can be
treated as a sort of split plot, with leaf strata or time as main plots. How-
ever, a more advanced statistical text should be consulted for the more
complex analysis and significance tests involved.

Spare-time activity

The data are from an experiment comparing the productivity of Maris Bard
potatoes grown from small (S = 40–60 g) or large (L = 90–110 g) tubers.
There were 16 replicate rows with the halves of each row allocated at random
to the two tuber sizes (the sub-plots). The tubers in pairs of adjacent rows
were planted to be just covered with soil and then either immediately had the
soil between the rows drawn up to make a ridge 9 cm high over the tubers
(R) or not ridged until the plants were 10–15 cm high (F) (the main plots).

At harvest, for each sub-plot, assessments were of the number of tubers
and their total fresh weight, and the fresh weight per tuber. Only the data for
number of tubers are presented here:

Replicates R F
S L S L

1 64 61 36 59
2 51 59 42 58
3 44 58 37 51
4 59 69 45 64
5 56 78 33 56
6 50 61 42 50
7 59 84 57 70
8 51 67 43 64
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Complete a split-plot analysis of variance.
Is the interaction between planting technique and tuber size statistically

significant?
Keep your calculations and return to the interpretation of the experiment

as an exercise following Chapter 16.
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Chapters 11–15 225

Introduction

This is the chapter which has been mentioned throughout the previous
chapters on the analysis of variance as providing guidance to a fuller inter-
pretation of the results than can be derived from the variance ratio (F)
alone. At the end of an analysis of variance of plot yields of six varieties of
a crop we may have been able to show that the variance ratio (F value) for
varieties is significantly large. What does this mean? On page 107 I have
already emphasized that it does no more than indicate that at least one
of the varieties has a different yield from one of the others, from some of
the others or from all the others. Even with a very high F significant at
P < 0.001, it could be there is just one lousy or superb variety among the
six, with the other five having essentially similar yields.

If there are only two varieties in the experiment, then a significantly
high F is enough for us to accept that their yields are statistically different.
However, when we have more than two means to compare, we – perhaps
paradoxically – have to return to a test which can test differences only
between two means, namely the t-test.
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This test is a long way back, and you may wish either to turn back to
Chapter 8 to refresh your memory or manage with the recap below.

Brief recap of relevant earlier sections of this book

Pages 58–69. With the t-test, we can evaluate the statistical significance
of a difference between two means using the yardstick of the standard error
of differences between two means (s.e.d.m.). Does this ring a bell?

The t-test takes the form: is
mean x and mean y difference

s.e.d.m.
> tabulated t (usually for P = 0.05)

If this is familiar, how about the way we calculate the s.e.d.m. (it’s on
page 51)? Do you remember that we got there by beginning with the
variance (s2) of a set of numbers? We had a mnemonic (page 52) for
s.e.d.m. – “Square root of the Estimated variance, after Doubling and then
Mean-ing.” Thus, in notation, the progression from variance to s.e.d.m.
can be represented as:

s2 →
E

2s2 →
D

2s2/n →
M

√
(2s2/n)

then S

This sequence represents the steps: variance of individual numbers →
variance of differences → variance of differences between two means of
n numbers → standard error of differences between two means (s.e.d.m.)
of n numbers.

Note: Where the two means are based on different numbers of replicates (see
page 68 and page 81), we simply modify the calculation of the s.e.d.m. by using
the algebraic identity that

√
2s2/n can be re-written as

√
s2(1/n + 1/n) or

s
√

1/n + 1/n, giving us the opportunity to insert two different values of n.
Simple!

Pages 107–108. How does
√

2s2/n relate to the analysis of variance (see
page 107)? Well the “n” is the number of observations involved in the
means being compared – that’s fairly straightforward. What, however, is the
variance (s2)? It is not the total variance of the experiment, as that includes
not only the random background variation (the s2 we are looking for) but
also variability that creates the difference between the means we want to
test, i.e. the systematic variation caused by the experimental treatments



Van Emden: “C016” — 2008/1/31 — 10:23 — PAGE 215 — #3

The t -test in the analysis of variance 215

and replicates. We have to subtract this systematic variation from the total
variation to get at the s2 appropriate for evaluating differences between the
means. The s2 we want is the measure of the random background variation
and can be identified as the residual variation since, after all, this is what is
left of the total sum of squares as a remainder after the sums of squares
for treatments and replicates have been subtracted (page 89, if you need a
reminder).

Well, residual variance is sums of squares divided by degrees of freedom;
therefore it is what we have been calling the residual mean square in our
analysis of variance tables. So that’s the s2 for our

√
2s2/n (or s.e.d.m.)

calculation, making the s.e.d.m. = √
(2 × residual mean square/n).

We could then simply do our t-tests between pairs of means from the
experiment by asking:

is
mean A and mean B difference

s.e.d.m.
> tabulated t

(for P = 0.05 and the residual d.f.)?

Least significant difference test

A simple t-test is tedious with several means to test, and on page 108
I already introduced the concept of the least significant difference (LSD),
where we re-arrange the expression above to work out the minimum dif-
ference between means that would exceed the tabulated t. All differences
larger than this would be “significant” at P < 0.05 by the t-test. We can
re-arrange the t-test formula to get the LSD by solving for that mean A –
mean B value which equals t × the s.e.d.m., i.e.

LSD = t(P = 0.05, residual d.f .)×s.e.d.m.

or

LSD = t(P = 0.05, residual d.f .) × √
2 × residual mean square/n.

Pages 109–110. Here I pointed out that the t-test or LSD test in the above
form fails to address the problem of comparisons between several means,
such as say the yields of seven varieties of lettuce. There is no order in which
we can expect these means to be arranged; each is totally independent of
the others. Look again at Fig. 10.2 and Box 10.8 – seven means involve 21
tests if we compare each against all the others. On page 109 I illustrated
this danger with just the first seven means of three eggs drawn from the
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single population of eggs featured way back on page 26.Yes, the largest and
smallest of these seven means differed by more than the LSD (at P = 0.05,
the 1 in 20 chance) even though we know that the conclusion that the two
means were drawn from different populations of eggs is false.

Sometimes, in relation to means from an experiment, people ask “If I pre-
tend I had done the experiment with only the two treatments with which
I want to compare the means, I could then just use my LSD, couldn’t I?”
Of course the answer is “No.” If they had done fewer treatments, the resid-
ual mean square and degrees of freedom which determine the LSD would
have changed also!

Multiple range tests

A solution is to use a “multiple range test” in which the value of “t” is
increased from that given in the standard “t” table by a compensating
multiplier. This multiplier gets larger as the two means we are compar-
ing are separated by other means between them, i.e. they are further and
further apart as we rank the means in order of magnitude. The LSD then
becomes:

LSD = t(P = 0.05, residual d.f .) × compensating multiplier

× √
2 × residual mean square/n.

Many statistical texts contain tables of these t × multiplier numbers under
index entries such as “percentage points (Q) in the studentized range” or
“Duncan’s multiple range test.” We shall be using Table A2.2 in Appendix 2
at the back of this book. It is similar to other such tables in that the rows are
applicable to different degrees of freedom, and the “number of treatments”
in the different columns refers to the size of the group of means of which
we are comparing the extreme members. The Table gives t × multiplier
figures for P = 0.05 only, other books may contain additional tables for
P = 0.01 and P = 0.001.

Thus the column headed “2” refers to 2 means without any means in
between, i.e. adjacent means. As the unmodified t-test is appropriate in this
comparison, the numbers in the first column are identical to values for t at
P = 0.05 in Table A2.2 in Appendix 2. Unfortunately, this is not the case in
most other versions of the table (see Box 16.1). You will soon know which
table you have, since the figure for P = 0.05 at infinite degrees of freedom
for 2 means will not be the expected 1.96 found in tables of t, but 2.77!
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BOX 16.1 Relation of multiple range test tables to tables of t

As pointed out in the text, 1.96 is the appropriate value of t for LSD tests
between adjacent means at infinite degrees of freedom and P = 0.05. Yet the
figure found in this position in most tables for multiple range tests is 2.77. Why?

If we divide 2.77 by 1.96, we get the answer 1.41. Table A2.2 in this book has
1.96 where many other similar tables have 2.77, If we divide any of the numbers
in tables which have this 2.77 by the equivalent numbers in Table A2.2, the
answer will always be 1.41.

So, what’s special about this 1.41? It is the square root of the number 2.
The multiple range LSD takes the form:

t(P = 0.05, residual d.f.) × compensating multiplier

× √
2 × residual mean square/n (page 216)

where the rectangle shows what is included in the figures of Table A2.2.
The number 2 that becomes 1.41 when square rooted is there! And it is

under a square root bracket. We can re-write the multiple range LSD as:

t(P = 0.05, residual d.f.) × compensating multiplier × √
2

× √
residual mean square/n

The rectangular frame shows the multiplier used in most other tables – it
includes the

√
2 which is part of the normal s.e.d.m. calculation.

The s.e.d.m. (
√

2 × residual mean square/n) is usually a part of a computer
printout. So I find it easier to operate the multiple range test by using Table A2.2
to enlarge t in the standard LSD, i.e. t(P = 0.05, residual d.f.) × s.e.d.m. than to
go back to the residual mean square as required by most forms of the table
of multipliers.

Operating the multiple range test

It is probably best to illustrate this test with some example figures, and I
will describe the fullest way of using a multiple range test. This will seem
pretty tedious and long-winded, and you will see later in this chapter that
such a full exercise is rarely needed. However, it is worth demonstrating to
you, as it will familiarize you with what steps you are leaving out when
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you short-circuit the technique and will help you be content that short-
circuiting will not lead to false conclusions.

So here are nine imaginary means (A–I) of three replicates with a s.e.d.m.
from the analysis of variance of 2.41:

A B C D E F G H I
22.00 34.80 32.00 27.30 25.10 20.00 36.20 32.40 26.50

Step 1 – re-arrange these means in order of decreasing magnitude:

G B H C D I E A F
36.20 34.80 32.40 32.20 27.30 26.50 25.10 22.00 20.00

Step 2 – repeat the treatment codes vertically to the right of the grid,
starting with the largest mean:

G B H C D I E A F
36.20 34.80 32.40 32.20 27.30 26.50 25.10 22.00 20.00

G

B

H

C

D

I

E

A

F

Step 3 – Fill in the code for the difference between two means
represented by each position in the grid (the diagonal line shows
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where the same mean is at the end of both co-ordinates. Below this
diagonal, differences above it would merely be repeated – e.g. B–G would
repeat G–B.

Step 4 – Under each coded difference, insert the actual difference
between the two means:

G B H C D I E A F
36.20 34.80 32.40 32.20 27.30 26.50 25.10 22.00 20.00

G–B
1.40

G–H
3.80

G–C
4.00

G–D
8.90

G–I
9.70

G–E
11.10

G–A
14.2

G–F
16.20

G

B–H
2.40

B–C
2.60

B–D
7.50

B–I
8.30

B–E
9.70

B–A
12.80

B–F
14.8

B

H–C
0.20

H–D
5.10

H–I
5.90

H–E
7.30

H–A
10.4

H–F
12.4

H

C–D
4.90

C–I
5.70

C–E
7.10

C–A
10.2

C–F
12.20

C

D–I
0.80

D–E
2.20

D–A
5.30

D–F
7.30

D

I–E
1.40

I–A
4.50

I–F
6.50

I

E–A
3.10

E–F
5.10

E

A–F
2.00

A

F

Step 5 – Add dotted diagonal lines as shown in the next grid. Each
diagonal identifies differences between means to which the same new “com-
pensated LSD” will apply (i.e. the two means involved are the extremes of a
group of means of the same size), beginning with adjacent means on the
bottom diagonal. The numbers in brackets next to the treatment code let-
ters in the vertical dimension identify the size of the group of means (i.e. 2
for adjacent means).

Step 6 – At each step in the vertical dimension, multiply the s.e.d.m.
from the analysis of variance (2.41 in our example) by the multiplier in the
table for the residual sum of squares degrees of freedom (9 treatments ×
3 replicates = 8 × 2 = 16 d.f. in our example) appropriate for the right size
of the group of means involved (i.e. 2 for adjacent means). Details of these
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calculations are in Box 16.2. Add these “new LSD” values to the right of
the table:

G B H C D I E A F
36.20 34.80 32.40 32.20 27.30 26.50 25.10 22.00 20.00 LSD

G–B
1.40

G–H
3.80

G–C
4.00

G–D
8.90

G–I
9.70

G–E
11.10

G–A
14.2

G–F
16.20

G (9) 8.58

B–H
2.40

B–C
2.60

B–D
7.50

B–I
8.30

B–E
9.70

B–A
12.80

B–F
14.8

B (8) 8.34

H–C
0.20

H–D
5.10

H–I
5.90

H–E
7.30

H–A
10.4

H–F
12.4

H (7) 8.07

C–D
4.90

C–I
5.70

C–E
7.10

C–A
10.2

C–F
12.20

C (6) 7.76

D–I
0.80

D–E
2.20

D–A
5.30

D–F
7.30

D (5) 7.40

I–E
1.40

I–A
4.50

I–F
6.50

I (4) 6.89

E–A
3.10

E–F
5.10

E (3) 6.22

A–F
2.00

A (2) 5.11

F

Step 6

BOX 16.2 Using the table of s.e.d.m. multipliers

The worked example in the text has a s.e.d.m. from the analysis of variance of
2.41. In the multiple range test, “t ” in the LSD needs enlarging by a multiplier
(see Appendix A2.2) which increases as differences between means further
apart in order of magnitude are being tested for statistical significance. The
residual degrees of freedom are 16 (9 treatments × 3 replicates = 8 × 2 d.f.).
The working to obtain these:

Size of group s.e.d.m. Multiplier from “New” LSD for
of means table for 16 d.f. multiple range test

2 2.41 2.12 5.11
3 2.41 2.58 6.22
4 2.41 2.86 6.89
5 2.41 3.07 7.40
6 2.41 3.22 7.76
7 2.41 3.35 8.07
8 2.41 3.46 8.34
9 2.41 3.56 8.58

(Continued)
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BOX 16.2 Continued

Note that for differences between adjacent means (i.e. size of group = 2),
the multiplier for the s.e.d.m. is 2.12, the same as found for 16 d.f. and P = 0.05
in the table of t (Table A2.1). This is because the unmodified t -test is fully
appropriate for adjacent means (page 222).

This addition shows clearly the principle of the multiple range test –
the least significant difference (LSD) becomes larger as the difference being
tested is between means increasingly separated in the ranking by order of
magnitude. Differences between adjacent means (LSD = 5.11) are in fact
being tested by the unmodified t-test (see Box 16.2).

Step 7 – The differences in the table are now tested for significance
against the appropriate LSD as per the dotted lines. The order of doing this
is important. We begin from the right on the top line, and move horizon-
tally left, checking the size of each difference against the LSD at the end
of the relevant diagonal. We move down to the next line when the first
nonsignificant difference is encountered. First, however we draw a vertical
line, and do no more tests to the left thereof (even if a difference there
appears significant). In the table below, significant differences are identified
in italicized bold type:

G B H C D I  E A F   
36.20 34.80 32.40 32.20  27.30 26.50 25.10 22.00 20.00  LSD 

 G–B 
1.40 

G–H 
3.80 

G–C 
4.00 

G–D 
8.90 

G–I  
9.70 

G–E 
11.10 

G–A 
14.2 

G–F 
16.20 

G (9) 8.58

B–H
2.40

B–C
2.60

B–D
7.50

B–I
8.30

B–E
9.70

B–A
12.80

B–F
14.8

B (8) 8.34

H–C
0.20

H–D
5.10

H–I
5.90

H–E
7.30

H–A
10.4

H–F
12.4

H (7) 8.07

C–D
4.90

C–I
5.70

C–E
7.10

C–A
10.2

C–F
12.20

C (6) 7.76

D–I
0.80

D–E
2.20

D–A
5.30

D–F
7.30

D (5) 7.40

I–E
1.40

I–A
4.50

I–F
6.50

I (4) 6.89

E–A
3.10

E–F
5.10

E (3) 6.22

A–F
2.00

A (2) 5.11

F
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There are six nonsignificant differences (underlined) larger than 5.11,
the LSD appropriate for adjacent means. Without a multiple range test
we would have accepted these as valid differences. Note particularly C–E,
which at 7.10 is larger than the LSD of 6.89 at the end of its diagonal –
yet is declared as nonsignificant. This is because H–E, a larger difference
of 7.20, has previously been declared as nonsignificant, and mean C lies
between H and E!

Testing differences between means

There is no dispute about the fact that repeated chance sampling several
times from one and the same normal distribution will soon produce means
with differences between them that will turn up infrequently and less than
once in 20 times (i.e. P < 0.05). Significance tests at this level of probability,
such as the unmodified t-test, are therefore often inappropriate. Unfortu-
nately, the solution provided by multiple range tests is not accepted by many
statisticians, who query the validity of the assumptions made. Some sta-
tistical referees will not OK a scientific paper which uses these tests; others
will not OK it if it does not!

There’s little point in you or me trying to adjudicate on this matter, but
I offer the following suggestions as (i) at least providing an objective basis
for our conclusions from an experiment and (ii) erring on the side of safety.
We may miss real differences, but are unlikely to claim a difference where
none actually exists (see the note below). The trouble is that my suggestions
may well please no one – after all the Thai proverb puts it very well: “He
who takes the middle of the road is likely to be crushed by two rickshaws.”

Note: In any case, a lack of significance doesn’t mean a difference is not real. The
replication may not have been adequate to detect a difference that in truth exists
(see Appendix 1), or by bad luck our sampled difference is a bad underestimate
of a genuine difference. You can’t ever use statistics to be 100% sure that two
different sampled means are really estimates of an identical mean. In other words,
although you can frequently be virtually sure that treatments have had an effect,
you can never be as sure that they haven’t!

Suggested “rules” for testing differences between means

1 The unmodified t-test is always appropriate for testing differences
between two means that are adjacent in order of magnitude.

2 If the means represent treatments which are progressive levels of a single
factor, e.g. increasing or decreasing doses of fertilizer, a concentration
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series of insecticide, etc., and the means follow a progression reasonably
compatible with the series of treatments (e.g. plant weight seems to
increase with nitrogen fertilization), then you may use the t-test for dif-
ferences even between means that are not adjacent and so identify how
far the progression has to go before the change in the means attains
“statistical significance.” Linear relationships between a datum and a
quantitative change in a treatment are analyzed by regression or cor-
relation (Chapter 17), but significant differences revealed by Anova
are better evidence of “cause and effect” (as discussed at the start of
Chapter 17).

3 If the means are of treatments of a more independent nature (i.e. they
are qualitative rather than quantitative – such as different plant vari-
eties, different chemicals) then you should consider (but see 3a and 3b
below) a multiple range test for any differences between means which
are not adjacent. If the experiment merely seeks to identify treatments
which are superior/inferior to a single control, the unmodified LSD is
often used. However, if the control is just “another treatment” in the
sense that its mean has been established with no more precision than
any other of the treatments, the use of the unmodified LSD test is not
really appropriate.
(a) Do first check with the unmodified LSD test that tests between adja-

cent means do not adequately identify the significant differences that
exist.

(b) If the interest in the experiment is primarily in a significant interac-
tion(s), then it is often possible to use the unmodified LSD to pick out
just the few differences (between the levels of one factor at one or
two levels of the other) for which it is worth calculating the modified
LSD appropriate to that test(s).

Note: The multiple range test appears pretty complicated when described as above,
but is actually much quicker to do than to write about. There is also the snag that
you may have to do it manually – you won’t find it in many standard computer
packages. What a thought – having to do some maths! But it’s perhaps a good
thing to move forward from the view that so many folk seem to have: about
statistics and drawing graphs: “If it can’t be done on a computer, then it can’t be
done at all.”

Presentation of the results of tests of differences
between means

As emphasized at the start of this chapter, a significant variance ratio for
even as few as three treatments may result from only one difference between
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the means being significant. How do we present such results when listing
the means involved?

The most generally accepted procedure is to use lower case letters “a,”
“b,” “c,” etc., whereby means which do not differ significantly share the
same letter. There seems no agreed rule as to whether “a” goes to the
highest or lowest mean; I tend to use “a” for the highest mean. Thus, for
the case in the previous paragraph of three means (of which two are not
statistically distinguishable), the listing of means might look like:

49.4 a
48.7 a
32.1 b

It is quite possible to get “overlap – for example, the highest mean might
be clearly separable from the lowest, but the middle mean might not be
separable from either of the others. We would show this as:

49.4 a
40.0 ab
32.1 b

To go into a bit more detail when things get more complicated, we’ll take
the means, and which differences between them are statistically significant,
from the imaginary example I used for the multiple range test.

We first list the means in order of magnitude (I’ll do this with the means
across the page):

G B H C D I E A F
36.2 34.8 32.4 32.2 27.3 26.5 25.1 22.0 20.0

Beginning with the highest mean (G) we label it “a,” as well as the other
means which do not differ significantly:

G B H C D I E A F
36.2 34.8 32.4 32.2 27.3 26.5 25.1 22.0 20.0
a a a a

We now move to B. Only H and C are not significantly different, so the
“a” label’s already taken care of that. For H, we have C, D, I, and E which
do not differ significantly, so it is time to introduce letter “b” as:

G B H C D I E A F
36.2 34.8 32.4 32.2 27.3 26.5 25.1 22.0 20.0
a a ab ab b b b
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Moving on to “C,” the inseparable means are D, I, and E. H, however, is
significantly different, so we show this with the distribution of “c”:

G B H C D I E A F
36.2 34.8 32.4 32.2 27.3 26.5 25.1 22.0 20.0
a a ab abc abc abc abc

Now we reach mean D, and find that we have come to the end of
the differences that are significant, so means D–F all share the common
letter “d”:

G B H C D I E A F
36.2 34.8 32.4 32.2 27.3 26.5 25.1 22.0 20.0
a a ab abc abcd abcd abcd d d

Were these real results, we would point to the existence of two groups
of means, the high G–C and the lower D–F, with some overlap in the
middle (H–E).

The results of the experiments analyzed by analysis of
variance in Chapters 11–15

This is the bit you’ve all been waiting for? I’m now going back to all the
analyses of variance of experiments laid out in the different designs I have
described, and I will in each case suggest how the differences between the
means mught be compared statistically and interpreted biologically.

In each case I’ll first identify the size and structure of the experiment
with what I called the “lead line” in earlier chapters (page 118). Then I’ll
extract what sources of variation were statistically significant at at least
P = 0.05 by the F test in the analysis of variance, together with (needed to
calculate the LSD) the residual mean square and its degrees of freedom.

Next I’ll take each significant source of variation and calculate the appro-
priate LSD. To save repetition, all LSDs and claims of statistical significance
(unless otherwise stated) will be at the P = 0.05 probability level. I’ll then
present, for that source of variation, the relevant mean values, usually
in order of magnitude. In most cases I stopped short of calculating the
treatment and block means in the earlier chapters, so here I will have had
to derive from totals given in the appropriate chapter, by dividing by the
number of plots involved.

I will then discuss my approach to using the unmodified t-test or a mul-
tiple range test to separate means statistically, and finally I will give my
biological interpretation of the results. You’ll notice I have used the first
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person a lot here – I think I have already made it clear that there is some
lack of unanimity concerning this final stage of biological experiments!

But don’t skip over the first example – this has more explanation than
the others because it is the first; more is assumed after that.

Fully randomized design (page 117)

Structure: 3 Fertilizers each occurring 4 times = 12 plots.
Data: Days to 50% flowering per plot of broad bean plants.
From analysis table: Fertilizer effect significant at P < 0.01; residual

mean square of 5.60 @ 9 d.f.
Least significant difference (Fertilizer effect): Means are of 4 plots.

The detailed working via the s.e.d.m. will only be presented for this first
example:

s.e.d.m =   (2 × 5.50)/4 = 1.658 

 residual mean square number of plots in mean 

 

d.f. for residual mean square 

LSD = 1.658 × t(P=0.05, 9 d.f.) = 1.658 × 2.262 = 3.75 

Note: Whatever number of decimal places you keep during calculations, the final
LSD yardstick for comparing means should have the same number of decimal
places as the means being compared.

Fertilizer means in order of magnitude:

B A C
40.00 38.75 30.75

Differences between 1.25 8.00
adjacent means
(bold italic type indicates
difference > LSD)

Interpretation of Fertilizer effect: That only the A–C difference exceeds
the LSD shows that the bean plants flower significantly earlier with fertilizer
C than with either fertilizers A or B, whose two means cannot be statistically
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separated. Letters (see page 224) can therefore be added as:

B A C
40.00 38.75 30.75
a a b

Randomized block experiment (page 123)

Structure: 3 Fertilizers × 4 Blocks = 12 plots.
Data: Days to 50% flowering per plot of broad bean plants.
From analysis table: Fertilizer and Block effects are both significant at

P < 0.01; residual mean square of 8.26 @ 6 d.f.
�

Least significant difference (Fertilizer effect): Means are of 4 plots.

�LSD = √
(2 × 8.26)/4 × 2.447 = 4.97

Fertilizer means in order of magnitude:

B A C
39.50 37.50 29.50

Differences between 2.50 8.00
adjacent means
(bold italic type indicates
difference > LSD)

Interpretation of Fertilizer effect: That only the A–C difference exceeds
the LSD shows that the bean plants flower significantly earlier with fer-
tilizer C than with either fertilizers A or B, whose two means cannot be
statistically separated. Letters (see page 224) can therefore be added as:

B A C
40.00 38.75 30.75
a a b

This is the same interpretation as for the fully randomized design. Hardly
surprising, since both experiments also involve the flowering of broad beans
and the same three fertilizers!

Least significant difference (Block effect): These means are now of
only three plots:

LSD = √
(2 × 8.26)/3 × 2.447 = 5.74�

the only change
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Block means in order of magnitude:

4 3 2 1
43.67 39.00 30.00 29.33

Differences between 4.67 9.00 0.67
adjacent means
(bold italic type indicates
difference > LSD)

Interpretation of Block effect:

4 3 2 1
43.67 39.00 30.00 29.33
a a b b

The bean plants flower significantly earlier in the pair of blocks 1 and
2 than in the pair of blocks 3 and 4. However, I note that the rank order
of means follows a consistent gradient from block 1 to block 4. Therefore
I would not be so bold as to claim that the difference of 4.67 between the
means of blocks 3 and 4 is not a real effect, merely that the two means
cannot be separated statistically at P = 0.05 (when the LSD is 5.74).
Indeed, at P = 0.1 (the 10% chance) the difference of 4.67 would be
statistically significant (see Box 16.3 – but first see if you can confirm this
yourself !).

BOX 16.3

The formula in the text for the LSD at P = 0.05 was given as:

√
(2 × 8.26)/3 × 2.447 = 5.74

The key to calculating the LSD for a different level of probability lies in the
number 2.447, which is the value in t tables for the six residual mean square
d.f. at P = 0.05.

In finding the LSD at P = 0.1, the residual degrees of freedom are unaf-
fected, so we need to look up the t value for the same 6 d.f. at P = 0.1.

We will find this to be 1.943. Therefore the LSD at P = 0.01 is:

√
(2 × 8.26)/3 × 1.943 = 4.56
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Latin square design (page 132)

Structure: 4 Columns × 4 Rows = 16 plots of 4 cabbage Varieties (i.e.
4 plots per variety).

Data: Numbers of winged aphids arriving on 20 plants per plot.
From analysis table: Variety and Rows show significant effects at P <

0.001, Columns at P < 0.01; residual mean square of 17.42 @ 6 d.f.
Least significant difference: Variety, Row and Column means are all

based on the same number of plots (4), so only one LSD needs to be
calculated for this experiment:

LSD = √
(2 × 17.42)/4 × 2.447 = 7.22

Variety means in order of magnitude:

D A C B
85.5 51.25 39.25 35.00

Differences between 34.25 12.00 4.25
adjacent means
(bold italic
type indicates
difference > LSD)

Interpretation of Variety effect:

D A C B
85.5 51.25 39.25 35.00
a b c c

The simple LSD test is all that is needed. Most aphids settled on variety D,
significantly fewer on A, and least on C and B (these two adjacent means
cannot be separated statistically).

Column means in order of magnitude:

Columns (1–4 from 1 2 3 4
left to right)

62.75 56.25 50.75 41.25
Differences between 6.50 5.50 9.50
adjacent means
(bold italic
type indicates
difference > LSD)
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Interpretation of Column effects: Only the difference between the
means of columns 3 and 4 exceeds the LSD. However, there is clearly a con-
sistent left–right gradient in the four means, and the difference of 12.00
between means 1 and 3 can also be accepted as significant, thus:

1 2 3 4
62.75 56.25 50.75 41.25
a ab b c

Row means in order of magnitude:

Rows (1–4 from 1 2 3 4
top to bottom)

72.75 67.25 43.25 27.75
Differences between 5.50 24.00 15.50
adjacent means
(bold italic type
indicates
difference > LSD)

Interpretation of Row effects: Rows 2, 3, and 4 have statistically sep-
arable and progressively decreasing means. The decrease in the mean of
row 2 from row 1 is less than the LSD:

1 2 3 4
62.75 56.25 50.75 41.25
a a b c

Interpretation of positional effects: The use of a Latin square design
provides statistically validated evidence that row and column means for
arriving winged aphids fall off in both vertical and horizontal directions
from the top left-hand corner. The aphid immigration flight clearly arrived
from approximately that direction.

2-Factor experiment (page 155)

Structure: 3 Fertilizers × 2 strawberry Varieties × 3 Blocks = 18 plots.
Data: Yield of strawberries (kg/plot).
From analysis table: All effects (of Fertilizer, Variety, Fertilizer × Variety

interaction, and Blocks) are significant at P < 0.001; residual mean
square of 9.0 @ 10 d.f.

Least significant difference (Variety × Fertilizer): Note that signif-
icant interactions are interpreted before overall effects of the main
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factors, since the presence of the interaction can make interpretation
of the overall effects misleading.

Variety × Fertilizer means are means of three plots:

LSD = √
(2 × 9.0)/3 × 2.228 = 5.46

Variety (Y, Z) × Fertilizer (A, B, C) means (in order of magnitude):

BY AY BZ CZ AZ CY
38.67 36.67 26.33 25.00 24.67 20.00

Differences between 2.00 10.34 1.33 0.33 4.67
adjacent means
(bold italic
type indicates
difference > LSD)

The only statistically valid difference between adjacent means is AY–BZ.
However, BZ and CY differ by 6.33, larger than the LSD of 5.46. As these
means are not adjacent but the extremes of a group of four means, a
multiple range test is called for:

4 mean range LSD = √
(2 × 9.0)/3 × 3.06 = 7.50�

from Appendix A2.2 for 4 treatments and 10 d.f.

So BZ and CY are not statistically separable.

Interpretation of Fertilizer × Variety interaction (arranged in
order of magnitude of means for main factors – in italic type).
Re-arranging the means this way is a neat trick for making it easier
to see what a significant interaction means biologically):

B A C
Y 38.67a 36.67a 20.00b 31.80
Z 26.33b 24.67b 25.00b 25.53

32.50 30.67 22.50

Variety Z has a uniform yield regardless of fertilizer, whereas variety Y
shows yield increased over Variety Z with fertilizers A and B only, and to
a similar extent. If a grower particularly wished to grow variety Z (e.g.
because it fruited particularly early), he could use any of the three fertiliz-
ers. But fertilizer C must be avoided when growing variety Y! Although the
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main factors had a significantly high variance ratio in the analysis, it would
be misleading to interpret them. The superiority of fertilizer B, suggested by
the main factor means, does not apply to variety Z; similarly the suggested
better yield of variety Y does not apply with fertilizer C.

Least significant difference (Block effect): The Block means are of six
plots:

LSD = √
(2 × 9.0)/6 × 2.228 = 3.86

Block means in order of magnitude:

3 2 1
34.00 28.83 22.83

Differences between 5.17 6.00
adjacent means
(bold italic type indicates
difference > LSD)

Interpretation of Block effect:

3 2 1
34.00 28.83 22.83
a b c

There is clearly a strong gradient with yields decreasing from block 3
through 2 to block 1; the means of all three blocks can be distinguished
statistically.

4-Factor experiment (page 173)

Structure: 3 Varieties of leeks × 2 Fertilizers × 2 Alignments ×
3 Trimmings × 3 Blocks = 108 plots.

Data: Marketable yield (kg/plot).
From analysis table: Effects of Variety, Alignment, Variety × Alignment

interaction, and Blocks are all significant at P < 0.001; effects of Fer-
tilizer and Trimming are significant at P < 0.01; no other interactions
of any order reach significance; residual mean square of 0.58 @ 70 d.f.

Least significant difference (Variety × Alignment):

Variety × Alignment means are means of 18 plots:

LSD = √
(2 × 0.58)/18 × 1.994 = 0.51
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Variety (A, B, C) × Alignment (P, Q) means (in order of magnitude):

CP CQ BP AP AQ BQ
9.17 9.09 9.04 8.50 7.36 6.04

Differences between 0.08 0.05 0.59 1.14 1.32
adjacent means
(bold italic
type indicates
difference > LSD)

Interpretation of Variety × Alignment interaction (arranged in
order of magnitude of means for main factors – in italic type): The
LSD test provides all the separation of means that is possible, without the
need for a multiple range test:

C A B
P 9.17a 8.50b 9.04a 8.90
Q 9.09a 7.36c 6.04d 7.50

9.13 7.92 7.54

Leeks of varieties A and B, planted along the row (P), yield more than
those planted with the fan across the row (Q), but variety C gives a very high
and similar yield however aligned. Both alignments have lower yields when
variety A is used than with C. Variety B shows a particularly strong interac-
tion with alignment; P leeks yield as well as the top-yielding variety (C), but
when Q-planted they have the worst yields. So planting along the row (P)
seems the best option, but is particularly important for any grower deciding
to use variety B, perhaps because of valuable disease resistance.

The overall effects of Variety and Alignment, although both have F values
at P < 0.001, are too inconsistent to be interpreted separately from their
interaction. Variety C does not outyield B in the P orientation, and (unlike
the other varieties) is not affected by orientation.

Interpretation of Fertilizer effect: One top dressing gave a mean yield
of 8.00 kg/plot, raised to 8.40 when a split dose was used. With only two
means, a significantly high variance ratio in the analysis is all that is needed
to confirm they are significantly different.

Least significant difference (Trimming effect): The Trimming means
are of 36 plots:

LSD = √
(2 × 0.58)/36 × 1.994 = 0.36
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Trimming means in order of magnitude:

T R L
8.43 8.31 7.86

Differences between 0.12 0.45
adjacent means
(bold italic type
indicates difference > LSD)

Interpretation of Trimming effect:

T R L
8.43 8.31 7.86
a a b

There is no “untrimmed” treatment, so we have to assume that all plants
were trimmed because it is known that trimming gives some advantage that
the grower values (even if only ease of handling at planting). The results
above show that trimming just the leaves is the worst option; yield is raised
when roots are trimmed (and to the same extent whether or not leaves are
trimmed as well).

Least significant difference (Block effect): The Block means are of
36 plots:

LSD = √
(2 × 0.58)/36 × 1.994 = 0.36

Block means in order of magnitude:

3 1 2
57.10 47.72 42.80

Differences between 9.38 4.92
adjacent means
(bold italic type indicates
difference > LSD)

Interpretation of Block effect:

3 1 2
57.10 47.72 42.80
a b c

All block means differ significantly from each other. This is perhaps only
to be expected, since the “blocks” were actually different sites and not, as in
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the other experiments, blocks set at right angles to a possible gradient on
the same piece of land.

Split plot experiment (page 201)

Structure: 2 Sprayings × 3 Brussels sprout Varieties × 4 Replicates = 24
plots, with Sprayings allocated to main plots with Varieties as sub-plots.

Data: Yield of sprouts (kg/plot).
From analysis table: Main plot analysis – The effect of Spraying was

significant at P < 0.05, the Replicate effect was not significant; main
plot residual mean square 3.55 @ 3 d.f.

Sub-plot analysis – Varieties and the Variety × Spraying interaction
were both significant at P < 0.001; sub-plot residual mean square of
0.48 @ 12 d.f.

Least significant difference (Variety × Spraying): Significant inter-
actions are interpreted before overall effects of the main factors, since
the presence of the interaction can make interpretation of the overall
effects misleading.

Variety × Spraying means are means of four plots, and the relevant
residual mean square is that in the sub-plot part of the analysis:

LSD = √
(2 × 0.48)/4 × 2.179 = 1.07

Variety (A, B, C) × Spraying (U, S) means (in order of magnitude):

AS CS CU BS AU BU
29.70 28.70 28.65 28.43 22.95 19.18

Differences between 1.00 0.05 0.22 5.48 3.77
adjacent means
(bold italic
type indicates
difference > LSD)

Interpretation of Variety × Spraying interaction (arranged in order
of magnitude of means for main factors – in italic type): The LSD test
provides nearly all the separation of means that is possible, but means
AS and BS differ by 1.27, more than the LSD. The multiple range LSD
for the extreme pair of four means in this case is

√
(2 × 0.48)/4 × 2.97
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(intersection of four treatments with 12 d.f. from Table A2.2) = 1.45, so
the AS and BS difference is not significant.

C A B
S 28.70a 29.70a 28.43a 28.36
U 28.65a 22.95b 19.18c 23.59

28.68 25.45 23.80

This experiment is about controling aphids on different cabbage vari-
eties with an insecticide. The results show that equally high yields can
be obtained on unsprayed (U) as on sprayed (S) variety C; this variety is
clearly tolerant or not susceptible to aphid attack. The other two varieties
suffer significant yield loss if not sprayed. The main effects (though with
significant variance ratios in the analysis of variance) are not consistent.
Insecticide does not raise yield significantly on variety C, and the varieties
do not have significantly different yields if insecticide is used.

Spare-time activities

1 Now here’s something most unusual! Your challenge is first to do a factorial
analysis of variance backwards, and then test differences between means
as described in this chapter.

The data below were published by Saraf, C.S., and Baitha, S.P. (1982)
in the Grain Legume Bulletin, IITA, Ibadan, Nigeria, and are the results of
an experiment on the number of nodules per lentil plant with three dates
of planting and five water regimes. The table gives the means of four repli-
cates.

Planting dates were October 25 (D1), November 16 (D2), and
December 7 (D3).

Watering regimes were low irrigation throughout crop growth (W1), low
irrigation during vegetative growth followed by high irrigation in reproductive
phase (W2), the reverse (i.e. high in vegetative and low in reproduc-
tive phase) (W3), high irrigation throughout (W4), and an unirrigated
control (W5).

Planting dates Water regimes

W1 W2 W3 W4 W5

D1 23.0 22.0 25.9 29.2 28.2
D2 21.6 33.4 30.5 32.2 20.7
D3 13.2 20.0 19.0 22.5 20.0

The authors also give the information that the LSD (P = 0.05) = 5.7.
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You probably haven’t any idea as to how to set about this? If you can
manage without further clues, I really do take off my hat to you! But given
two particular clues you might well have a go at this one. The clues can be
found right at the end of Appendix 3.

By the way, there will be two sums of squares in the analysis table you
will have to leave blank. These are the total and the replicate ones; neither
can be calculated when it is the means of the four replicates per treatment
that are the only data provided.

You are not required to interpret the results. I do give the outcome of a full
15-treatment multiple range test as part of the solution (Appendix 3), and
it is difficult to find any clear pattern in how date of planting and watering
regime affect nodulation.

2 Go back to the “spare-time activity” on grape varieties in Chapter 13,
and use tests on differences between means to answer the following
questions:
(a) Should a grower wishing to produce a Müller Thurgau/Semillon blend

use a different training system for the two grape varieties, assuming
the cost of the two systems is identical?

(b) Will a grower get a significantly different yield if he switches from tra-
ditional Huchselrebe to high-wire Pinot Blanc? If so, will it be higher or
lower?

3 Go back to the “spare-time activity” with fungicidal seed dressings in
Chapter 14. Interpret the significant 2-factor interaction.

4 Go back to the “spare-time activity” in Chapter 15 – the split plot experiment
with potatoes. Interpret any significant effects of planting method and tuber
size in the experiment.



Van Emden: “C017” — 2008/1/31 — 10:23 — PAGE 238 — #1

17

Linear regression and
correlation

Chapter features

Introduction 238
Cause and effect 239
Other traps waiting for you to fall into 239
Regression 244
Independent and dependent variables 245
The regression coefficient (b) 247
Calculating the regression coefficient (b) 248
The regression equation 253
A worked example on some real data 255
Correlation 263
Extensions of regression analysis 266

Introduction

If there’s one thing biologists seem to like doing, it’s drawing lines through
points. Instead of carrying out replicated treatments in an experimental
design amenable to analysis of variance or some similar statistical proce-
dure, they collect data and then attempt a graph with a line (usually a
straight one!) to show that a change along one axis results in a consistent
direction of change in the other. These are dangerous waters, but they do
have a place in biological investigation, especially if we wish to use one
measurement to predict another. An example of this would be when we
use the color absorbance at a particular wavelength of carefully prepared
standard solutions of different concentrations of a compound to calibrate a
spectrophotometer. The point with the spectrophotometer example is that
we know there is a cause and effect. We know that color absorbance will
increase with concentration of our chemical – we are NOT using our results
to prove that this is so!
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Cause and effect

I’d like to contrast the spectrophotometer with the undoubted gradual
decline in butterflies that can be graphed against increasing tonnage
of insecticide applied on UK farms between 1945 and the late 1970s.
Environmentalists have sought to use this relationship as anti-insecticide
propaganda. However, the number of television licences issued per year
also increased progressively over the same time period. We can assume that
it is more likely to be the insecticides than the increased number of tele-
vision licences, but we cannot be as dismissive of the decreased diversity
and reduced abundance of food plants for the caterpillars of the butterflies
caused over the same period by removal of hedges and increased use of
herbicides. No, the increased use of insecticides, the increased number of
TV licences, and the removal of plant diversity on farms were all correlated
in time – which one is really to blame for the decline in butterflies? Or is
it all of them? Or is it none of them, and something totally different like a
subtle change in climate? We can only guess. It is not an experiment. We
just cannot use any of these relationships to identify the culprit!

Other traps waiting for you to fall into

Extrapolating beyond the range of your data

We may be able to show a convincing statistical fit of a number of data
points to a straight line, but straight lines rarely go on for ever, and we must
usually be careful not to project the straight line beyond the points we
have. Figure 17.1 shows an apparent relationship in a region between the
population per square kilometer and the annual number of births. Extrapo-
lating the line suggests the stupid conclusion that kilometer squares totally
devoid of humans (i.e. at the zero population point on the horizontal axis)
will become populated by spontaneously created children. Similarly, fitting
a straight line to the reduction in mortality in successive years following
the introduction of a malaria control program is bound eventually to reach
zero mortality followed by, with further projection of the line, resurrection
of the dead! In actual fact, such an apparent initial straight line reduction
is not likely to lead to the elimination of malaria – the real line is almost
certainly a curve (Fig. 17.2).

Is a straight line appropriate?

If a straight line is appropriate, then there should normally be as many
points below as above it. Be suspicious if this is not so (e.g. Fig. 17.13,



Van Emden: “C017” — 2008/1/31 — 10:23 — PAGE 240 — #3

240 Chapter 17

N
um

be
r 

of
 b

irt
hs

 p
er

 s
qu

ar
e 

ki
lo

m
et

er
pe

r 
an

nu
m

Human population per square kilometer
0

0

Fig. 17.1 Relationship between population density in an area and the annual num-
ber of births, illustrating the inadvisability of projecting the straight line relationship
beyond the observed data points.
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Fig. 17.2 Decline in deaths/1000 people from malaria following the introduction of
a new control measure. The points in the first few years can be fitted by a straight line,
but the improbability of the death rate falling to zero suggests the real relationship is a
curve, or at least that the initial straight line decline will lead into a curve.

where, although a straight line has been fitted, there seems every likelihood
that the true relationship is a curve and not linear!). Sometimes holding the
graph paper with the points marked (before the line is drawn) horizontally
at eye level, and viewing the points from the vertical axis, will show up any
curved relationship quite clearly.
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If a curve is indicated, then there are two possibilities. A simple hollow or
convex curve without a peak can probably be converted to a straight-line
relationship by transforming (page 38) the values on one or even both axes
to logarithms or some other function. In testing insecticides, it is known
that the frequency of insects in a population which are super-susceptible,
ordinary, or resistant follows a normal distribution (page 26). This normal
distribution of susceptibility translates to a sigmoid (S-shaped) increase in
mortality in groups of insects treated with increasing concentrations of
insecticide (Fig. 17.3a). Therefore an appropriate transformation has been
established for such data. We plot what is known as the “probit” of per cent
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Fig. 17.3 (a) The plot of increasing per cent kill of insects against increasing concen-
tration of insecticide. (b) By changing the scales on the axes respectively to the probit of
kill ands the log10 concentration of insecticide, we have transformed the sigmoid curve
in (a) to something close to a straight line relationship.
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mortality (obtainable from statistical tables) against the logarithm to base
10 of concentration (Fig. 17.3b). This effectively straightens out the tails
of the S shape of the original curve.

The advantages of a straight line compared with a curve are analogous
to the advantages of the standard deviation (page 18). The straight line is
defined by fewer statistics (only the slope and overall height of the line on
the vertical scale – see respectively the statistics b and a later) than a curve,
and has the simplest statistical recipe book to go with it.

If the curve has one or more peaks, we have to fit an appropriate rela-
tionship model with the same number of peaks (see towards the end of
this chapter). You also need to be alert to the trap that data, which are
clearly not related linearly, can nevertheless be fitted with a statistically
validated straight line. This is because the validation is rather crude – it is
that the best (however badly) fitting line is statistically distinguishable from
a line with no slope (i.e. parallel to the horizontal axis). Thus Fig. 17.4 is
an example from real data where a very weak negative slope can be shown
to be “statistically significant” in spite of the obvious message from the
data points that the point furthest to the left bucks the trend of decreasing
means from left to right shown by the other three points.

Figure 17.5a, where petrol consumption of several motor cars is plotted
against their length, flags another warning. At first sight a linear positive
relationship seems quite reasonable. However, such a relationship assumes
that the failure of the points to sit on the line is due to some error of
measurement. If we look at the additional information provided for the
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Fig. 17.4 The triumph of statistics over common sense. Each treatment mean is based
on very many replicate points, and the negative relationship indicated by the straight
line, between size of mean and increasing application of treatment, is actually just
statistically significant!
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Fig. 17.5 (a) The data points would seem to warrant the conclusion that larger cars
use more petrol. (b) Reveals, however, that the failure of all the points to fit exactly on the
line is partly because the two open circles should not be included in the relationship –
these two cars have diesel engines, which are more economical for a given vehicle size
than the petrol-engined models.

same points in Fig. 17.5b, we see that the data show far more than that
larger cars cost more to run. The variation about the line comes from
the fact that both petrol- and diesel-fueled cars were tested, and it is clear
(the two open circles) that larger diesel-powered cars are more economical
than many smaller (petrol-powered) ones. The original conclusion that
economy can be predicted from the length of a car is untrue, though the
conclusion may be valid within either the diesel- or petrol-powered cohorts.
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Fig. 17.6 Data which fail to meet the criterion for regression or correlation calcula-
tions that variation on the vertical scale should be equally distributed in relation to the
horizontal scale. Here the variation clearly increases strikingly from left to right.

The distribution of variability

The statistics for linear relationships require that (similar as for treat-
ments in the analysis of variance – page 103) the variability (i.e. failure
of the points to sit exactly on one line) should be roughly the same across
the whole graph. In Fig. 17.6 this is clearly not so: the vertical range of
points increases from left to right, so that low values occur equally at all
levels along the horizontal axis. However, there is the relationship that
high values on the vertical axis do require high values on the horizon-
tal axis. Transformation techniques are available for validating this latter
conclusion; statistical help should be sought.

Regression

In what is called regression, we are trying to fit the line for which the devia-
tions from it of the actual data points are minimized, but only in relation to
one of the two axes. In the regression of y on x, we are trying to minimize
the deviations from the fitted line on the vertical scale only (Fig. 17.7) –
I’ll explain later why we wish to do this. By convention, the vertical axis
on the graph is identified as the “y” axis, with the horizontal as the “x”
axis. Regression measures the slope (b) of the relationship (Fig. 17.8). As
pointed out earlier, it has nothing to do with how well the points fit the
line – the two top graphs of Fig. 17.8 show the same slope, but with two
very different fits of the points to the line. Note also that the slope is not
the slope on the graph paper – it is measured in the units of y and x. Thus
both the bottom graphs of Fig. 17.8 have the same slope of b = 0.5, yet
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Fig. 17.7 The importance of allocating the related variables to the correct axis. The
graph shows a regression of y (vertical values) on x (horizontal values) such that the
regression calculation will minimize the squared distances indicated by the dotted lines.
This enables the best prediction of an unknown y (the dependent variable) from a
measure of x (the independent variable).

the graphs show apparently different angles for the line because the scale
of the two x axes differs (look carefully!).

To measure how well the points fit the regression line, we need to cal-
culate a different statistic from b, namely the “correlation coefficient” (r)
which rises to a maximum of 1 with a perfect fit. Figure 17.8 shows lines
possessing different combinations of these two statistics, b and r.

Independent and dependent variables

On a graph with two axes (x and y), each data point sits at where two
measurements intersect (the y measurement and the x measurement). In
regression, one variable is deemed to be “dependent” on the other. The
latter variable (the “independent” variable) is usually graphed on the x
(horizontal) axis and the “dependent” one on the y (vertical) axis. Such an
arrangement is a “regression of y on x”. A regression of x on y puts the
variables the other way round – I’ll stick with the normal type regression
(y on x) in this book. If for any reason you need to do a regression of x on y
(I can’t actually think of a reason why you should), then merely reverse y
and x in the notation that follows.

We may have measured the development time of aphids from birth to
adult at different temperatures. The development time of individual aphids
at any one temperature may show variation; the temperature is not var-
ied by how long an aphid takes to develop! The temperature would be
the independent variable (x axis) from which we might wish to predict a
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Fig. 17.8 The characteristics of the regression (b) and correlation (r) coefficients.
Top pair of graphs: These share the same slope (b = 1, where an increment along the
horizontal axis leads to the identical increment on the vertical axis), but the poorer
fit to the points on the right reduces r from 1 (its maximum value) to 0.5. Middle left:
The points have no relationship, both b and r = 0. Middle right: If increments on the
horizontal axis are associated with a decrease on the vertical axis, both b and r have
negative values. Bottom pair: Both graphs have the same slope (b = 0.5). The apparent
steeper slope on the right arises because the same visual distance on the horizontal scale
represents different increments in the two graphs.
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Fig. 17.9 Diagrammatic representation of a regression line as a plank laid on a
staircase. The top staircase is steeper than the bottom one, but inevitably in both cases
you are halfway up when you are halfway along.

development time (the dependent y variable) at a temperature intermediate
between two of our experimental temperature regimes.

The regression coefficient (b)

The principle is nothing less familiar than a plank laid up a staircase.
Figure 17.9 shows two such planks, but with different angles of slope.
However, regardless of the slope, you inevitably gain half the height when
you have covered half the horizontal distance. With a straight plank, that
is inescapable! In terms of a graph of y (vertical axis) on x (horizontal axis),
you can think of the line (the plank) as being nailed in position where
halfway along the x axis (the mean of the x values) intersects with halfway
up the y axis (the mean of the y values). This plank is free to swing around
through 360◦ until we fix it in place by defining the direction of the stair-
case (up or down from left to right), the dimensions of the “tread” (the
horizontal bit you step on), and the “riser” (the amount you rise or descend
per step). With a straight line staircase (Fig. 17.9), the treads and risers are
each of constant size along the flight. Thus the slope of one step fits the
whole staircase. In Fig. 17.9, both planks are “nailed” at the same middle
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distance and height point, but the slopes of the two planks are different.
This is because the top staircase has approximately equal treads and ris-
ers, and so it rises steeply. By contrast, the treads of the lower staircase
are rather longer than the risers, with the result that the slope is relatively
shallow. The slope of a straight line (the coefficient b) is calculated from the
relative proportions to each other of the riser (units on the y axis) and the
tread (units on the x axis).

Calculating the regression coefficient (b)

Slope (=the regression coefficient b) is riser/tread (see above). So if the
risers are 15 cm and the treads 25 cm, the slope is 15/25 = 0.6. Should
the risers be higher (20 cm) and the treads very narrow (say only 10 cm)
the slope would be y/x = 20/10 = 2. So in the first case, 100 cm of treads
(x) would raise us by 100 × 0.6 = to a y of 60 cm, and in the second case
by 100 × 2 = a y of 200 cm. So height can be predicted from b multiplied
by the horizontal distance (x), i.e. y = bx. If we divide both sides of this
little equation by x, it comes back to “slope = riser/tread”:

b = y/x

In biology, our points rarely fall exactly on the “plank” we lay on our
“staircase,” and regression is the exercise of finding the “best” estimate for
the slope of the plank we think the points represent. In Fig. 17.10 I show
the deviations of each point (as distances in x and y units) from the one
point we know sits exactly on the best fit line (i.e. as pointed out above,
where mean y intersects with mean x). The figure shows clearly that we
will have diverse estimates of b from each experimental point; b for the six
data points varies from 0.24 to 1.17!

Note: Read that bit again. These individual values of b (riser/tread) for each
point are calculated from deviations from means. Does that phrase ring a bell?
It should – sums of squares (page 21) are the sum of squares of deviations
from means. So here’s advance warning that regression calculations are going
to revisit what should be familiar territory.

How can we get our best estimate of a common slope for all these variable
data? We are seeking the line from which the points give the lowest summed
squared deviation measured on the y axis. We could “nail” the line on graph
paper where mean y and mean x intersect, and swing it around measuring
deviations as shown in Fig. 17.7 until we get the overall minimum total
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Fig. 17.10 Six data points for which one might wish to calculate a regression line.
The distances of each point from the mean of their x and y values is shown as the
basis for calculating b as vertical deviation/horizontal deviation. The variable b values
so obtained are shown underlined.

of squared deviations from the mean of the y values (remind yourself of
page 17 as to why this is the standard statistical approach to combining
variation) – that would give us the best line of regression of y on x.

But of course, there has to be a computational method, and this is based
on the covariance of the points – how the individual points co-vary on
the x and y axes. This involves considering each point as based on two
measurements taken from the one certain point on the final line, where
mean y and mean x intersect. Thus each point has coordinates of y − ȳ and
x − x̄ (as in Fig. 17.10).

We can’t just sum all the y−ȳ and x−x̄ values and divide so that b (which
is y/x for each point) is simply

∑
(y − ȳ) divided by

∑
(x − x̄). Why not? It’s

because of covariance – any one y − ȳ cannot be “divided” by the average
x − x̄. The contribution of that y − ȳ to the overall slope (b) depends on its
own individual distance from mean x. You may well not grasp this point at
first reading, so look at Fig. 17.10. The point with a b of 0.32 only gives a
b so much lower than, for example, the point with a b of 1.17 because of
the difference in their respective x − x̄ values; there is no large difference
between the two points in their y − ȳ, is there?

Therefore, the computational method for calculating b has to begin by
calculating the product of y − ȳ and x − x̄ separately for each point. Only
then can these products be added together to get what is called the sum of
cross products. In notation this is

∑[(y − ȳ) × (x − x̄)].
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However, in doing this we have loused up the balance of the b = y/x
equation which forms the basis for calculating the slope of the regression
line. By multiplying each y−ȳ by its own x−x̄ we have effectively multiplied
the y of b = y/x by x, and so changed the equation to b = y × x/x! To
redress this, we need to also multiply the x of the divisor by x also, i.e.
b = (y × x)/(x × x) or b = yx/x2. So in notation for summed deviations
from mean x, this divisor becomes

∑
(x − x̄)2. This should be immediately

familiar to you as the sum of squares of x (see Chapter 3 if it is not!),

so b in notation =
∑[y − ȳ] × [x − x̄])

∑
(x − x̄)2

or

in English = sum of cross products
sum of squares for x

Let us explore this further with Fig. 17.11, which shows just eight data
points in four quadrants (A–D). Each quadrant has a different combination
of + and − deviations from means on the vertical and horizontal axis, so
the products of these deviations will be plus where the deviations have the
same sign (whether + or −), and negative where there is one + and one −.
In order to keep you thinking of deviations in terms of units of x and y and
not how things look on graph paper, I have introduced the nuisance factor
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Fig. 17.11 Eight points each with a b of + or −2. Including all points in a regression
calculation would show no relationship. The open circles would give a negative slope
cancelled out by the positive slope of the closed ones. How the computational procedure
for calculating b relates to this figure is explained in the text.
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that the x and y axes are to different scales; the length on the horizontal
scale that represents 2 units represents twice this (4 units) on the vertical
scale.

All eight points have the same y/x of 2, though the slope of all the open
circles is −2 (a slope downwards from left to right = a negative slope),
whereas that of all the black circles is +2 (a rising slope from left to right =
a positive slope).

The “cross product” is the two deviations from the mean y and x values
for each point multiplied; thus the cross product for the top left point in
quadrant B is +4 × −2 = −8. For the other point in quadrat B, the cross
product is −2. Two similar cross products occur in quadrat D, so the SUM
of cross products for the open circles is −8 + (−2) + (−8) + (−2) = −20.
From this sum of cross products we need to get to the right answer for b,
which the figure was set up to equal 2 (or −2, of course). To get a slope
of −2 we need to divide by 10, and this is exactly the sum of squares for
x (obtained by squaring and then adding the x − x̄ deviations for the four
points (−2)2 + (−1)2 + (+1)2 + (+2)2).

Well, I hope the argument based on Fig. 17.11 has given you confidence
that the equation:

sum of cross products
sum of squares for x

gives the right answer.
Let’s now go back to Fig. 17.10. Does the calculation to fit the regression

line really mean first working out all the “deviations” as shown on that
figure and then squaring them? It’s not that hard work for six points – but
most regression calculations involve many more data points!

Early on in this book (page 23), we worked out a much easier way of
working out the sum of squares of deviations from the mean of several
numbers without working out the deviations first. Remember?

∑
(x − x̄)2 could be replaced by

∑
x2 − (

∑
x)2

n

So the divisor for the regression coefficient,
∑

(x − x̄)2, is 541.4 (see
Box 17.1 for the detailed calculation).

How about the sum of cross products? To do this without having to work
out lots and lots of individual deviations, we can modify the expression:

∑
x2 − (

∑
x)2

n
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BOX 17.1

Data needed for calculations of the slope (b) of the regression for the points
in Fig. 17.10:

y x y × x

5.9 4.6 27.14
7.4 11.4 64.36

14.0 16.4 229.60
19.6 24.8 486.08
14.9 26.4 393.36
17.4 32.5 565.50

Total 79.2 116.1 1786.04
Mean 13.20 19.35

Added squares of x :

∑
x2 = 2788.33

Sum of squares of x :

∑
x2 − (

∑
x )2

n
= 2788.83 − (116.1)2

6
= 541.4

Sum of cross products

∑
([y − ȳ ] × [x − x̄ ]) =

∑
(y × x ) − (

∑
y × ∑

x )

n

= 1786.04 − (79.2 × 116.1)

6
= 253.5

which we have used throughout this book as well as in the previous
paragraph, to save calculating the individual deviations of

∑
(x − x̄)2.

The thinking goes like this:
∑

(x − x̄)2 is of course
∑

([x − x̄] × [x − x̄]),
and so:

∑
x2 − (

∑
x)2

n
is also

∑
(x × x) − (

∑
x × ∑

x)

n

We can now cunningly replace one x in each part of the expression by y as:

∑
(y × x) − (

∑
y × ∑

x)

n

in order to calculate the sum of cross products,
∑

([y − ȳ] × [x − x̄]).
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Fig. 17.12 The calculated regression line added to Fig. 17.10.

For the points in Fig. 17.10 the sum of cross products is 253.5 (see
Box. 17.1), giving a slope (b) of 253.5/541.4 = 0.47. Figure 17.12 adds
the regression line to Fig. 17.10.

On page 23 I emphasized strongly that if you ever got a “sum of squares”
that was negative, then you had made a computational error since the
correction factor has to be smaller than the added squared numbers. This
does NOT apply to a sum of cross products – this MUST be negative when
the slope of the line is downwards (a negative slope). So don’t be surprised
if (

∑
y × ∑

x)/n is larger than
∑

(y × x).
I now propose largely to give up using algebraic notation for the rest of

this chapter, and propose to use (as far as possible) the following simplified
terminology instead:

Sum of squares of x replaces
∑

(x − x̄)2

Sum of squares of y replaces
∑

(y − ȳ)2

Sum of cross products replaces
∑

([y − ȳ] × [x − x̄]).

The regression equation

It is clear that – if we were to project the slope on Fig. 17.12 to the left – it
would hit the y axis when x = 0 at a value of y somewhat higher than 0
(at about 24 on the vertical scale in Fig. 17.13a). This value of y at x = 0
is known as the “intercept” (a) and is the second parameter of regression
lines mentioned earlier, which determines the overall height of the line.
Thus our “staircase” with slope b usually begins at a “landing” (a) above or
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Fig. 17.13 (a) A regression line has an intercept (a) value at about 24 on the vertical
axis at the point where the horizontal axis has its origin (i.e. where x = 0). (b) How
graph (a) should be presented to maximize the use of the graph area (note how the fact
that both axes start well above 0 can be indicated).

below y = 0 when x = 0. Thus the full regression equation for predicting
y values from the y axis is:

y = a + bx

I have not yet explained how I drew the regression line in Fig. 17.12, or
how to calculate the value of the intercept a. We also need to know how
to check whether there is a statistically significant relationship between y
and x, or whether our estimate of b is just a bad estimate of no slope (i.e.
a b of zero). Then we also want to work out the correlation coefficient (r)
to see how closely the points fit our line. I’ll take you through all this with
another set of data, this time a real set.
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A worked example on some real data

The data (Box 17.2)

In a pot experiment with many replications of different densities of mus-
tard seeds, it was suggested by someone that it would be too tedious
to count out the seeds individually, and that “guesses” might be near
enough. One person therefore took samples of mustard seeds from a bowl

BOX 17.2

Data (in bold) comparing the actual number of mustard seeds in a teaspoon
(y ) with the number guessed when the sample was taken.

Actual (y) Guess (x) y × x

8 8 64
15 10 150
10 14 140
19 18 342
24 20 480
20 23 460
28 26 728
36 30 1050
32 36 1152
45 43 1935
47 50 2350

Total 283 278 8851
Mean 25.73 25.27
n 11 11 11

Added squares of x :

∑
x2 = 8834

Sum of squares of x :

∑
x2 − (

∑
x )2

n
= 8834 − (278)2

11
= 1698.82

Sum of cross products:

∑
(y × x ) −

(∑
y ×

∑
x
)

/n = 8851 − (283 × 278)/11 = 1698.82
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with a teaspoon, made a quick guess of the number of seeds in the
spoon, and then passed the spoon to a colleague for an accurate count
of the seeds it contained. A regression analysis of the actual number
of seeds (y) on the guess (x) was carried out to see how accurately the
actual number could be predicted from the instant guess. The data are
shown in bold in Box 17.2, which also has (not in bold) some further
calculations.

Totalling the y and x columns shows that guessed 278 seeds compares
well with the actual 283!

Calculating the regression coefficient (b) – i.e. the slope of the
regression line

The two numbers we need for this are the sum of
squares(of deviations from the means remember) of the guessed (x) values and the
sum of cross products. I am sure you remember that such calculations are
most easily done by adding numbers first before subtracting a “correction
factor,” but in any case it really is worth following the steps by contin-
ual back-reference to the earlier section on “calculating the regression
coefficient” in this chapter (page 248).

For the sum of squares for x, the added numbers are the squared x values.
(
∑

x2) is 82 + 102 + 142 + · · · + 502 = 8834, and for the sum of cross
products the added numbers are each y multiplied by its x (i.e. x × y, a
column added on the right of Box 17.2). The sum of these y × x values is
64 + 150 + 140 + · · · + 2350 = 8851.

Now for the two correction factors. The correction factor for the sum
of squares for x is the total of x values squared and divided by n, i.e.
(278 × 278)/11 = 7025.82. For the sum of cross products the correc-
tion factor is the total of the y values multiplied by the total of the x
values, and then this product is divided by n, i.e. (283 × 278)/11 =
7152.18.

So
∑

(x − x̄)2 works out at 8834 − 7025.82 = 1808.18 and
∑

([y −
ȳ] × [x − x̄]) at 8851 − 7152.18 = 1698.82. Therefore b is:

sum of cross products
sum of squares for x

= 8851 − 7152.18
8834 − 7025.82

= 1698.28
1808.18

= 0.94

In other words, each extra seed in the guess is on average worth just less
than one actual seed – very close indeed!
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Calculating the intercept (a)

As pointed out earlier, it is rarely the case that y = 0 when x = 0, even when
we would expect it biologically. As explained there, the linear relationship
we can show with our data may actually be part of a curve or may change
from linear to a curve at some point not covered by our data. Sampling
errors can also lead to us not getting the regression equation quite right –
with a small error showing as a small but nonsensical y value at x = 0.
At the start of this chapter I gave the example of zero parents nevertheless
having some children, and if you complete the spare-time activity at the
end of this chapter, you’ll discover that a bean can weight less than nothing
when it has zero length! So we cannot assume that our linear regression will
accurately predict no seeds in an empty teaspoon. Of course, the intercept a
can also be a negative number, i.e. less than no children when there are
no parents! This is a cogent argument for not projecting the regression
line beyond the range of our data, and for obtaining the intercept a by
calculation rather than graphically.

We have already established that the regression equation is:

y = a + bx,

and we now know b to be 0.94. So y = a + 0.94x for our mustard seeds.
The equation y = a + bx can be re-written by subtracting bx from both

sides to solve for a, i.e. y − bx = a. Swapping the two sides of the equation
over, and inserting our calculated slope of 0.94 in place of b, we get a = y−
0.94x. If we had numbers for y and x, a would remain the one “unknown”
and therefore can be discovered. Well we do have one data point where we
know the y and x values without knowing a. Remember, all regression lines
pass through where the means of y (=25.73) and x (=25.27) intersect,
where we “nail” our plank before we swing it around to find the best fit
to the points. So we can insert these two mean values into the equation
a = y − 0.94x above to solve for a, i.e.:

a =
ȳ

25.73 −(
b

0.94 × x̄
25.27) = 25.73 − 23.75 = 1.98

So there are nearly two seeds in an empty teaspoon!

Drawing the regression line

Now we have two points on the regression line. One is where mean y and
mean x intersect, and the other is a where x = 0. Now we can surely draw
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our straight line, can’t we? Well, actually that’s not a very good idea, for
two reasons:

1 Three points are better than two – they will show up if we have made an
error in our calculations by not being exactly in a straight line, whereas
you can always draw an exactly straight line between two points, even
if one of them is wrong!

2 Often our data points are nowhere near x = 0, and including the
intersection of y = 0 and x = 0 would leave most of the graph area
unproductively blank – just compare Figs 17.13a and b in terms of use
of graph space and usefulness of the presentation.

A better approach is therefore to retain the intersection of mean y
(25.73) with mean x (25.27) as one of our points, but to calculate two
further points by substituting two values for x (anywhere within the range
of x but well apart on either side of the mean) in the regression equation.
Now we know a to be 1.98, the new y point of the regression line will be
the one “unknown” we can solve for. Given that the minimum and max-
imum x values for the mustard seeds are 8 and 50, we could use say 10
and 50, i.e.:

a b x

y = 1.98 + (0.94 × 10) = 11.38 and

y = 1.98 + (0.94 × 50) = 48.98

With the three intersections of y = 25.73 at x = 25.27, y = 11.38
at x = 10, and y = 48.98 at x = 50, we can plot the points and draw
in the accurate line for predicting the actual number of mustard seeds (y)
corresponding to a guess (x). The result is Fig. 17.14.

Testing the significance of the slope (b) of the regression

The regression calculations will almost always give a + or − number for
b, even if there is no real evidence of a relationship (i.e. the slope is not
statistically distinguishable from a zero slope). In Fig. 17.11, data points
in quadrants A + C (the closed circles) or B + D (the open circles) have
respectively strong positive and negative slopes, but the points in A + B and
C + D or A + D and B + C have zero slope. Any line we drew would be
parallel to either the horizontal or vertical axis, and therefore would have
no slope.
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Fig. 17.14 The calculated regression line for the data points relating the actual num-
ber of mustard seeds in samples with the number simply guessed. The open circles on
the regression line are the three calculated points used to draw the line.
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Fig. 17.15 The distances for which sums of squares are calculated in the regression
analysis of variance (see text).

To test whether the regression has a significant slope, we can use anal-
ysis of variance. Look at Fig. 17.15, which identifies three sources of
deviation:

1 The deviation of any point on the y axis from the mean of y (on the figure,
this distance is shown by the thin line identified as y − ȳ running from mean
y to the data point) can be divided into the other two sources of deviation.
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2 The first of these other two sources of deviation is the difference between
the mean of y and where the point “should be” on the regression line at
the same x value, i.e. at b × (x − x̄) (on the figure, this distance is shown
by the thick line identified as b(x − x̄) running from mean y to the regression
line). This is the part of the variation accounted for by the regression.

3 The other source is the difference between the point where it “should
be” on the regression line and where it actually is (on the figure, this
distance is shown by the dotted line running from the regression line to the
data point). This is the residual variation for that point. So sources 2 and
3 add up to 1.

For each point, therefore, we have the three components (1), (2), and (3)
needed for a simple analysis of variance of the form:

Source of variation Distance on Fig. 17.15
(2) Fit to regression line thick line b(x − x̄ )

(3) Deviation from line dotted line (found by subtraction)
(1) Deviation from mean y thin line y − ȳ

So now, for each of these three distances, we have to calculate, using all
the points, the appropriate sum of squares of these deviations.

The total sum of squares for deviations from mean y

In calculating the regression coefficient b above, we were reminded about
the quick way we use to sum squared deviations of a set of numbers from
their mean – it is added squares of the numbers minus a correction factor based
on the total of the numbers. So for the total sum of squares of deviations from
mean y (i.e.

∑
y − ȳ)2 in notation), the calculation is:

∑
y2 − (

∑
y)2

n

Using the y column in Box 17.2, 82 +152 +102 +· · ·+472 = 8893 and
the correction factor is 2832/11 = 7280.82. So the total sum of squares
that regression and deviation sums of squares will add up to in our analysis
of variance is 8893 − 7280.82 = 1612.18, thus:

Source of variation Sum of squares
Fit to regression line (to be calculated)
Deviations from line (=residual variation) (found by subtraction)
Deviation from mean y 1612.18
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The sum of squares for the regression line

Look again at Fig. 17.15 and take just the right-hand point. For any data
point, the x value will have moved from mean x by the amount x − x̄, and
the slope of the regression (b) will have caused y to increase from mean y by
b × that x distance, i.e. b(x− x̄). So the sum of squares for all these distances
is

∑[b(x − x̄)]2. Well, to calculate b, we already had to work out the sum of
squares of x, as 1808.18. As this is

∑
(x − x̄)2, multiplying it by b2 will get

us to the
∑[b(x − x̄)]2 that we’re after! Simple! As b was 0.94, our sums of

squares for the regression line are 0.942 × 1808.18 = 1597.70.

Note: Statistics books usually give a different expression for the sum of squares
of the regression line. They give it as the square of the sum of cross products
divided by the sum of squares of x. This is exactly the same as

∑[b(x − x̄)]2, see
Box 17.3.

BOX 17.3

The identity of
∑[b(x − x̄ )]2 and squared sum of cross products divided by

the sum of squares of x .

The expression often used in statistics texts for the regression slope b is in
notation:

∑
([y − ȳ ] × [x − x̄ ])

(x − x̄ )2
which we can also write as

sum of cross products
sum of squares of x

The sum of squares accounted for by the regression,
∑[b(x − x̄ )]2, can

also be written (see above) as b2 × sum of squares of x.
As a square is a number multiplied by itself, we can also write this last

expression as:

sum of cross products
sum of squares of x

× sum of cross products
sum of squares of x

× sum of squares of x

We can now cancel out the far right sum of squares of x with one of the
divisors to leave:

sum of cross products x sum of cross products
sum of squares of x

which is the square of the sum of cross products divided by the sum of
squares of x .
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Completing the analysis of variance to test the significance of the
slope b

As the residual variation is found by subtraction, we can now complete the
analysis of variance table, including the End Phase (page 99):

Source of
variation

d.f. Degrees of
freedom

Sum of
squares

Mean
square

Variance
ratio

P

Regression 1 1597.70 1597.70 992.36 <0.001
(slope b)

Residual 9 14.48 1.61

Total 10 1612.18

Degrees of freedom: 11 data points give 10 d.f. for the total sum of
squares. All of this is residual (i.e. 9 d.f.) except for the single degree
of freedom represented by b, the regression slope we are testing for
significance.

Clearly we have a hugely significant variance ratio. The linear regression
therefore has a significant slope – there is a strong relationship between the
actual number of seeds in the spoon and our guess.

How well do the points fit the line? – the coefficient of
determination (r 2)

As mentioned near the start of this chapter, the correlation coefficient, and
not the regression coefficient, is the statistic which measures how well the
points lie on our straight regression line rather than whether or not the line
has a statistically significant slope.

If there is perfect correlation, i.e. all the points sit exactly on the line,
then in our analysis of variance above all the variation in y values from
mean y are accounted for by the line. In terms of Fig. 17.15, the thick
and thin lines are identical for each point – there will be no dotted lines
(i.e. no residual variation). As points increasingly deviate from the line, the
residual will increase from zero at the expense of the sum of squares for
regression. Therefore the proportion of the total variation accounted for
by the regression line measures “goodness of fit” – this proportion will be
100% if there is no residual variation. In our mustard seed example the
total variation of 1612.18 accounted for by the regression (1597.70) is
99.1% – very high; the points fit the line very well indeed (Fig. 17.14).
99.1% can also be expressed as 0.991 out of a maximum of 1, and this
value of 0.991 (in our example) is called the coefficient of determination or
r2 in notation.
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Correlation

As this coefficient measures how well the points fit the line, there is no
real distinction between deviations from it in both x and y directions. So
whereas the regression coefficient answers the question “HOW are x and
y related?,” correlation answers a different question – “How WELL are x
and y related.” There are some biological situations where the appropri-
ate analysis of relationships is with correlation rather than regression,
because neither of the variables x and y are dependent on the other either
biologically or for purposes of prediction. We are then not assigning depen-
dence and independence to the two variables, definitions that are implicit
in regression analysis.

Perhaps the easiest way to be sure as to whether correlation or regression
analysis is appropriate is to ask the question “Do I want to know how much
one changes as the other changes?” If the answer is “Yes,” regression is
indicated.

We measure the degree of correlation by the correlation coefficient (r). Well,
following our regression analysis above, we calculated the goodness of fit
of the points to the regression line by the coefficient of determination (r2).
Is r the square root of r2? Is the correlation coefficient the square root of
the coefficient of determination? The answer is yes, and either can simply be
calculated from the other.

Derivation of the correlation coefficient (r)

sum of cross products2

sum of squares of x
divided by sum of squares of y

In doing our analysis of variance for a regression of y  on x, it became
important whether the sum of squares of x  or y  was used as the divisor for
calculating b, and whether the total sum of squares to be explained by the
analysis was the sum of squares of x  or y.
    Thus the coefficient of determination for the regression of y  on x  was
calculated as:

This relatively simple expression for the coefficient of determination may
come as something of a surprise, given that we got r2 from the analysis of
variance by working out what proportion (that’s the “divided by” bit) of the
sum of squares of y was represented by

∑
(b2 × sum of squares of x). So see

Box 17.3 to confirm the sum of cross products2 divided by the sum of squares
of x bit.
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Had we been working with the regression of x on y (rather than y on x),
the coefficient of determination (r2) would have been:

sum of cross products2

sum of squares of y
divided by sum of squares of x

The coefficients of determination of both regressions turn out to be
identical, since both can be re-written as:

sum of cross products2

sum of squares of x × sum of squares for y

So our correlation coefficient (r), the square root of the coefficient of deter-
mination (r2), has the property we expect (see first sentence of this section)
that it involves no assumptions about whether y regresses on x or x on y.

r can therefore be calculated directly from data, without a preceding
regression analysis, from the above formula, which can also be “square-
rooted” to read:

sum of cross products
√

sum of squares of x × sum of squares for y

The maximum value of r is 1 (like the coefficient of determination),
representing 100% fit of the points to the line, but like the regression coef-
ficient (though unlike the coefficient of determination, which is a squared
value) it can be positive or negative depending on the sign of the sum of
cross products. This has to be checked when deriving r from any expres-
sion using the square of the sum of cross products, as this will be positive
whether the un-squared sum is positive or negative.

The statistical significance of r can be checked in statistical tables for
n − 2 d.f., i.e. 2 less than the number of data points. Just as with regression,
a straight line accounts for 1 d.f. As d.f. for all the data points is 1 less than
the number of points, n − 2 is left for the residual variation from the line.

An example of correlation

We might wish to test how far there is a relationship between the length and
breadth of leaves of the leaves on a cultivar of Azalea based on measuring
12 leaves. There is no reason why one dimension should be designated
the variable which is dependent on the other independent one; they are
pairs of characteristics “of equal status” from individual leaves. The data
and some of the calculations we require are shown in Box 17.4. From
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BOX 17.4

Data of length and width (both in cm) of Azalea leaves.

Length (y) Width (x) y × x

11.0 3.8 41.80
11.7 5.3 62.01
12.1 4.6 55.66

8.0 4.2 33.60
4.1 1.6 6.56
7.0 2.8 19.60
8.4 3.3 27.72
6.8 3.0 20.40
9.5 3.7 35.15
6.2 3.2 19.84
7.4 3.1 22.94

10.9 4.0 43.66

Total 103.1 42.6 388.88
Mean 8.59 3.55

Added squares

∑
y 2 = 953.17

∑
x2 = 161.16

Sum of squares

∑
y 2 − (

∑
y )2

n
= 953.17 − (103.1)2

12
= 67.37

∑
x2 − (

∑
x )2

n
= 161.16 − (42.6)2

12
= 9.93

Sum of cross products

∑
(y × x ) − (

∑
y × ∑

x )

n
= 388.88 − (103.1 × 42.6)

12
= 22.88

these calculations:

r = sum of cross products
√

sum of squares of x × sum of squares for y

= 22.88√
9.93 × 67.37

= 0.885
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This represents a high degree of correlation between leaf length and
breadth, and this is also shown by the plot of the points in Fig. 17.16a,
which shows as the points forming a clear ellipse.

Is there a correlation line?

If r is 0.885, then surely we can square it to get to an r2 of 0.783, and r2

is the coefficient of determination in regression – from which we can deduce
that the line which the points fit accounts for 78.3% of the variation of
the points from their mean. In regression, the mean in question is that
of the dependent variable (y in a regression of y on x).

But what is the correlation line, and which variable does the mean relat-
ing to the r2 refer to? There are always two lines (Figure 17.16b), depending
on which way round we hold the paper (compare Fig. 17.16b and c), and so
which axis forms the horizontal treads of our “staircase” (page 247). These
two lines are of course the lines for the regressions of y on x and x on y.
The only time there is only one line is when there is perfect correlation,
when the two regressions fall along the same line. Otherwise, although
both regression lines pass through both mean x and mean y, their slope
differs increasingly as the level of correlation deteriorates. The calculations
for both regressions in our Azalea leaf example are given in Box 17.5, and
you will see that – although the slopes (b) and intercepts (a) differ consid-
erably (b is 2.304 for y on x and much smaller at 0.340 for x on y; a is
respectively 0.413 and 0.629) – the coefficient of determination (r2) for the
two regressions is identical at 0.782.

To avoid confusion, I suggest that you calculate the coefficient of determi-
nation (r2) only for regressions, and the correlation coefficient (r) only when
quantifying the association between variables which have no dependence
on each other. This is not to say that you should not carry out regression
analysis with such variables for “prediction” purposes. In the Azalea leaf
example, you might wish to measure only the width and use this to convert
to length – I can’t think why, but you might if an insect had eaten chunks
out of some leaves, making measurement of many of the widths difficult?

Extensions of regression analysis

There are some very useful extensions of regression, which are beyond the
scope of this elementary text, but it is important that you should know
about them. After having worked through this book, you should have the
confidence to be able to use at least some of the relevant “recipes” given in
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Fig. 17.16 (a) The correlation between length (y) and width (x) of Azalea leaves.
(b) Regression lines fitted to these data; the solid line shows regression of y on x
and the broken line the regression of x on y. (c) Graph (b) re-oriented to make y the
horizontal axis.
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BOX 17.5

Regressions using Azalea leaf data from Box 17.4, and using the statistics already
calculated there. Dv = dependent variable in each case; Iv = independent variable. 

Regression Length (y) on width (x) 

Regression coefficient (b):

Sum of cross products
Sum of squares for Iv

22.88
9.93

= 2.304 22.88
67.37

= 0.340

Intercept (a):

Mean Dv – (b × mean Iv) 8.592 – (2.304 ×
  3.550) = 0.413

3.550 – (0.340 ×
  8.592) = 0.629 

y = 0.413 + (2.304 × x) x = 0.629 + (0.340 × y) 

Regression equation:

Dv = a + (b × mean Iv)

Regression analysis table:

Source of variation d.f. Sum of
squares

Mean
square

F FSum of
squares 

Mean
square

Regression
  (b 2 × sum of
  squares for Iv
Residual
  (by subtraction)

10 14.66 1.47 2.15 0.22

1 52.71
  (2.30 2 ×
  9.93 )

7.79
  (0.340 2 ×
  67.37 )

7.79 35.4152.71 35.99

Total
  (sum of squares
  for Dv)

11 67.37 9.93

Coefficient of
  determination (r 2)*

sum of cross products
sum of squares for Dv × sum of squares for Iv

2.882 

67.37 × 9.93
= 0.782 2.882 

9.33 × 67.37
= 0.782

Width (x) on length (y)

∗
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larger textbooks – alternatively you will at least have realized that these are
statistical techniques you might wish to talk to a statistician about.

Nonlinear regression

This takes us into the realms of nonlinear statistics. There is still only
one intercept in the nonlinear regression equation, and only one y to be
predicted, but x appears (raised to different powers) in the equation as many
times as define the type of curve. Each time x has a different regression
coefficient (b).

Thus the simplest curve, the “second order,” would have a regression
equation of the form y = a + b1x + b2x2. Such a curve is shown in
Fig. 17.17, but note that values of b can be mixed positive and nega-
tive ones. A “third order” curve has a regression equation of the type
y = a + b1x + b2x2 + b3x3. I can probably stop with a fourth order curve at
y = a+b1x+b2x2+b3x3+b4x4?You’ll have got the idea, I’m sure. Examples
of a third and of a fourth order curve are also shown in Fig. 17.17.

The calculations for working out the regression coefficients (b) for each
x term of the equation, and the analysis of variance apportioning sums of
squares to each element in the regression equation are fearsome challenges

y = a + b1x − b2x2 y = a + b1x − b2x2 + b3x3

3rd order

y = a + b1x – b2x2 − b3x3 + b4x4

4th order

2nd order

Fig. 17.17 Examples of nonlinear regression lines together with the form of their
regression equations.
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if done manually, and venturing into nonlinear statistics before the advent
of suitable computer programs was not something to be done lightly! It was
made rather easier if the x values for which y had been measured were at
equal increments along the x axis.Then one could use tables of orthogonal
polynomials, which made it relatively quick to do the calculations on a
pocket calculator. The tables provide integer multipliers for each x value
at each component of the equation and, from these new x values, sums
of cross products and sums of squares of x for each b can be calculated.
However, even then, further steps are needed before final values for the
regression coefficients can be obtained.

Fortunately, computer programs have made the tedious manual compu-
tations redundant, though it is still worth bearing in mind that it pays to
measure y at equal increments of x whenever this is compatible with the
aims of the data collection.

Multiple linear regression

You need to know this exists – it is a powerful and very useful technique. It
enables the relative importance of each of a number of independent vari-
ables (x) in determining the magnitude of a single dependent variable (y) to
be estimated. I have used this wording because it does make the potential of
the technique clear although the wording is bad in that it suggests “cause
and effect,” which of course can never be proved from the existence of a
numerical relationship (as stressed at the start of this chapter).

As an example, I can cite my own interest in regressing the weight
increase of greenfly against the concentrations of 14 different amino acids
in plant leaves – how many amino acids, and which, have the closest positive
or negative relationship with aphid weight gain? Some might be essential
nutrients, others might stimulate the aphid to feed, and yet others might be
deterrent or toxic.

In multiple regression we therefore have any number of independent
variables, x1, x2, x3, etc. So the multiple regression equation:

y = a + b1x1 + b2x2 + b3x3 + b4x4 + b5x5 etc.

at first sight looks very similar to a nonlinear equation, but the numbers for
x are now subscripts (to indicate different variables) and not superscripts
(different powers of the same variable).

Again, before computer programs, the calculation of multiple regres-
sions was a lengthy and complex process. It involved setting up matrices
and then inverting them to solve a series of simultaneous equations; three
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or four independent variables were as many as most of us would have the
courage to tackle. I’m told that one statistician claimed to be able to do only
seven in a week!

Computer programs have made it all so easy, and there is no reason for not
incorporating as many independent variables as you wish. My 14 amino
acids is, by today’s standards, quite a modest number!

However, there are two things you need to beware of:
Firstly (and this also applies to nonlinear regression), you need to be sen-

sible about how many independent variables (or coefficients) you include
in your final prediction of y, especially if there is only one unreplicated y
measurement going into the total sum of squares (=sum of squares of y).
You are then bound to get a perfect fit if you use all of them. Having used
up all the total degrees of freedom as regression d.f., all the variation in
y (total sum of squares) will have been apportioned somewhere among
the independent variables! Not only do you then have no residual mean
square to test the significance of the regression (since the total sum of
squares = the regression sum of squares) but the fitted equation will be
tied to past data and be pretty useless for predicting into the future. The
literature is full of examples where workers have fitted too many variables
(e.g. weather data) in their attempt to match fluctuations in the abundance
of a particular crop pest over many years. They have found their “model”
matches the pest’s population fluctuations remarkable well – but they have
then failed totally to predict fluctuations that then occurred in the next
few years.

Secondly, there is always internal correlation between the variables.
A plant rich in one amino acid (in my greenfly example) may well be rich
in amino acids in general; hot years are likely to be drier, etc. The variable
with the greater range in values will “capture” sums of squares from the
other, even though the latter may be biologically more important in spite
of smaller fluctuations.

Using a “stepwise” multiple regression computer program is there-
fore highly recommended as a safeguard against both these problems.
A “stepwise” program begins by regressing y on all x variables indepen-
dently. It then regresses y on all permutations of two variables. If no pair
of variables improves the proportion of y variation (as sums of squares)
accounted for by the regression by more than a fixed amount (often set at
5%), the program goes no further. If pairs do improve the proportion of y
variation accounted for to a sufficient extent, the program next compares
all permutations of 3 x variables with the results of the best paired regres-
sion – and so on. When the program stops (since it cannot further improve
the regression sum of squares by the set target), you get a printout of the
regression equation so far.
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A safeguard against the picking of spurious independent variables,
which have merely captured sums of squares from others, is to repeat
the stepwise process in the opposite direction, and then focussing on those
x variables which appear in both printouts. The “opposite direction” means
beginning with a multiple regression on all independent variables, then
trying all permutations of leaving out one variable at a time, and only
going on to all permutations of leaving out two variables at a time if no
regression sum of squares with one variable omitted loses more than the
target (say 5%) proportion of the total sum of squares for y.

Multiple nonlinear regression

I guess computer programs make this possible, but I still think my advice
should be “don’t even go there”!

Analysis of covariance

This is an exceptionally valuable combination of regression analysis with
analysis of variance. Sometimes the variability of your experimental mate-
rial makes you plan for an analysis of covariance from the outset. However,
even if you don’t plan to use it, knowing it exists will encourage you to
take extra data from your experiments which might prove useful should an
analysis of covariance look advisable later.

What analysis of covariance is, and when one might use it, is perhaps
best explained by two examples.

We might want to test the relative success of two methods of teaching
French to adults – one is traditional teaching of grammar and vocabulary
largely in English, and the other just speaking with them in French with
no English explanations. We would be naïve not to be aware that the adults
we propose to divide at random into two groups may have learnt French to
different levels in school, and that many will anyway have been to France
on holiday. Such variation in previous experience of the language will add
undesirably to the variation of the results of a French test we plant to ana-
lyze at the end of the experiment; we say such variation is a “confounding”
variable. So it makes sense to give our adults a test BEFORE we start teach-
ing them, and use the results of this preliminary test as a covariate in the
final statistical analysis. Putting it simply, analysis of covariance allows us
to make a “correction” of the final test results for each individual, so that
the results become closer to what each person would have achieved had
they started with the same previous experience.
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As a second example, we might plan to do a perfectly normal plot experi-
ment on the effect of different levels of weed control on the yield of potatoes.
During the experiment, some plots look stunted, and testing the soil shows
that a pest, the potato cyst eelworm, patchily infests the field. This patchy
infestation is clearly going to introduce serious undesirable variability into
our results. Knowing of analysis of covariance should motivate us to mea-
sure eelworm infestation in each of our experimental plots. We can then
use this as a covariate in the analysis of variance to correct the yield of each
plot nearer to what it would have yielded if uninfested by eelworm.

The underlying concept of the analysis of covariance can be described
with reference to Fig. 17.15. The covariation between the experimental
data as the dependent variable (y) and the extra measurement made (x) is
used to determine how much of the total variation (the sum of squares of
the distances represented on Fig. 17.15 for any one point as y − ȳ) is due to
regression (based on the distances labelled b(x−x̄). This leaves the distances
marked as “the residual derivation” to be partitioned into treatment and
residual sum of squares as in a traditional analysis of variance.The diagram
below shows what is happening:

Source of variation Source of variation
(regression) (analysis of variance)
Fit to regression line Treatment variation

Residual variation

Residual variation becomes � Total variation

Total variation

It is perfectly possible to have more than one independent variable in the
analysis of covariance, and so to “correct” the experimental observations
for two or more confounding variables. For example, in the potato experi-
ment above, confounded by eelworm infestation, we may also have noticed
that all the plots at the edge of the trial have suffered more slug damage
than the other plots – again something we can measure and include as well
as eelworm populations in the analysis of covariance.
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EXECUTIVE SUMMARY 7
Linear regression

The REGRESSION of y on x calculates the best fit straight line for pre-
dicting y from measurements of x : y is usually represented on the vertical
axis of a graph, and x on the horizontal.

The slope (b) is how far you would rise (in y) for each unit of x, e.g.
15/20 = 0.75 cm. Your height (y) at any horizontal distance (x) can be
predicted as y = bx.

Visualize the regression slope as a flight of stairs and you will realise that
halfway up the stair you are also halfway along horizontally. Where mean
y and mean x intersect is one point on the regression line, and the coordi-
nates in y and x units of the data points is measured as deviations from
that unique location, The slope from there to any data point is therefore
(y − ȳ)/(x − x̄).

The points on a graph do not usually show such a regular staircase,
and each point will give a different answer for (y − ȳ)/(x − x̄). Our best
estimate of the slope (b) will be to sum the information from all the points
in some way.

The calculation of b using the “Sum of cross products”
∑

(y − ȳ)(x − x̄) is called the sum of cross products. Unlike the sum of
squares of deviations (always positive), the sum of cross products can be
positive or negative. How do we calculate it?

We can express a squared number as that number multiplied by itself, i.e.
the sum of squares of x, i.e. (

∑
x2 − (

∑
x)2/n), can equally be written as:

∑
(x × x) −

(∑
x × ∑

x
)

n
.

For the sum of cross products we simply replace one x in each part
by as y as:

∑
(y × x) − ((

∑
y × ∑

x)/n). So for each point, we multiple x
and y, add these products together, and subtract the new correction factor
based on the product of the two totals. b is then:

sum of cross products
sum of squares for x

The regression equation

We now have the slope (b), but usually y is not zero when x = 0; i.e. the
regression line crosses the y axis at some intercept (a) above or below y = 0.
Thus the full regression equation is y = a + bx, where a is the height (y)
at x = 0. We know the line passes through the coordinate ȳ with x̄ so
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we can substitute our means in the regression equation to solve the one
unknown, a. The algebra for this is:

a = ȳ − b(x̄)

We know one point on the line is the coordinate ȳ with x̄. Find two other
points by putting first a low and then a high value of x into y = a + bx.
Then draw the line.

Analysis of variance of the regression

Each point on the graph can be measured on the y scale as y − ȳ. All these
y − ȳ values represent the “total variation.” Each y − ȳ is made up of two
elements which together account for that variation:

1 Where the point OUGHT to be if it sat on the line at that particular
position of x − x̄. This is b(x − x̄).

2 The ERROR – how far the point is away on the y scale from where it
ought to be.

We can easily work out the TOTAL VARIATION in y as sums of squares
as

∑
y2 − (

∑
y)2/n – our usual calculator method.

We can also work out how much of this is accounted for by (1) above –
i.e. the variation of the points as if they all sat exactly on the regression
line. This is summed for all the points from (1) above as:

∑
b[(x−x̄)2], which is the same as b2 × sum of squares of x.

We now have TOTAL variation in y (n − 1 degrees of freedom) and how
much of this is accounted for by the regression line (1 degree of freedom).
The difference is the RESIDUAL (n − 2 degrees of freedom). We can then
carry out the END PHASE to check that F (variance ratio) for the regression
is significant – this tells us we have a significant relationship for y on x, i.e.
b (slope) is significantly different from zero (no slope).

How well do the points fit the line?

We measure this by the PERCENTAGE of the total variation in y accounted
for by the regression:

Sum of squares for regression
Sum of squares of y

× 100

This is called the “coefficient of determination.” The statistic BEFORE
multiplication by 100 is known as r2. r, the correlation coefficient, is the
square root of this value.
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Spare-time activities

1 The data are measurements on 10 seeds of broad bean cv. Roger’s
Emperor

Weight (g) Length (cm)

0.7 1.7
1.2 2.2
0.9 2.0
1.4 2.3
1.2 2.4
1.1 2.2
1.0 2.0
0.9 1.9
1.0 2.1
0.8 1.6

Draw a graph of the regression of weight (y ) on length (x ) of the bean
seeds in order to use length as a simple quick guide to weight of the seed.
Is the slope of the regression significant and what is the coefficient of
determination (r 2)?

2 In an experiment on strawberry plants, the number of flower heads pro-
duced during the fruiting season was counted on individual plants, and
then the eventual yield from those same plants was recorded. The data
were as follows:

Number of flower heads Yield (kg)

5 0.69
15 1.39
12 1.09

9 0.76
12 0.86
10 1.04
13 1.10

7 0.94
14 0.98

5 0.75
6 0.76

13 1.21
8 0.86
9 0.71

10 1.19

What is the linear regression equation to predict yield from the number
of flower heads?

In order to be able to substitute a count of flower heads for measuring
yield, about 80% of the variation should be accounted for by the regression.
Do these data meet that criterion?
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Introduction

I introduced the normal distribution early in this book (Chapter 5). It is the
basis for judging what probability there is that an individual observation
differing from the mean value by any given amount could be sampled by
chance, given the mean and standard deviation of the distribution. I also
explained that biologists usually accept a probability of less than once in 20
samples (P < 0.05) as being an event unlikely enough to suggest that the
observation in question probably came from another normal distribution
centred around a different mean value.

Statisticians have used the normal distribution to derive new statistics
and provide significance tests based on distributions of one number divided
by another. Thus the t-test uses the difference between two means divided
by the standard error of differences between two means. The “F” test involves
dividing one variance (called “mean square” in the analysis of variance)
by another (usually the residual mean square in the analysis of variance).
So tables of “t” and “F” exist which give the largest value of that statistic
which chance sampling of one normal distribution would yield for different
levels of probability and different “sizes” of experiments (as measured by
degrees of freedom).Thus 1.96 is the largest chance value of the t statistic
at P = 0.05 in very large experiments (∞ d.f., Table A2.1), whereas the
equivalent largest chance value for F for two treatments (1 d.f. horizontally
and ∞ d.f. vertically in Table A2.3) is a different number, 3.84.

In this chapter we meet yet another significance test employing a new
statistic called “chi-square.” “Chi” is the letter of the Greek alphabet



Van Emden: “C018” — 2008/1/31 — 10:23 — PAGE 278 — #2

278 Chapter 18

denoted by the lower case symbol χ , so we represent the statistic
“chi-square” by the statistical notation χ2. This statistic was developed
in the late 19th century by Karl Pearson, who used theoretical calculations
from the normal distribution to work out the chance distribution of χ2

at different degrees of freedom (Table A2.5). The ratio for which Pearson
worked out the distribution may strike you as a little obscure – it is the square
of the difference between an observed number and the number your hypothesis
suggested it should be divided by that “expected” number. In notation (followed
by English) we normally write the formula for χ2 as:

(O − E)2

E
or

(Observed – Expected)2

Expected

χ2 is nearly always the summation of several values, so is perhaps better
defined as:

∑ (O − E)2

E
or

∑ (Observed – Expected)2

Expected

This statistic is actually extremely useful and figures quite often in the
biological literature. I suspect this is partly because the calculation is so
quick and simple; as a result, χ2 is not infrequently misunderstood and
misused.

When and where not to use χ2

χ2 is a test to use only with data in the form of frequencies. Thus you
can test whether there are different proportions of species of herbaceous
plants and shrubs in a new than in an ancient woodland, but you cannot
use χ2 to test whether the total number of species differs between the two
habitats. You can test whether 235 men and 193 women is a good enough
fit to a 50:50 sex ratio, but you cannot test whether 235 mice per sq km is
a higher population than 193 mice per sq km at another site. There is of
course an “expected value” of 214 mice for a hypothesis that there is no
difference in mouse density between the sites, but in this example 235 and
193 are not frequencies.

So what is a frequency? Frequency data really can arise in only one way.
It is the group of data in a sample which share a common characteristic
(in the mice example above, 235 and 193 were different samples). You
have to ask yourself: “Am I really partitioning a population into groups?”
“Unpartitioned” populations are not frequencies. So, although you cannot
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test whether 235 and 193 mice are significantly different, you could test

whether their sex ratio differs at the two sites. So never fall into the
trap of using χ2 for 1 d.f. to test whether two numbers are significantly
different – in any case, just biologically it would be nonsense.

Percentages are also not frequencies. Frequencies have to be the actual
experimental numbers. This is because χ2 is “scale-dependent.” The larger
the numbers, the better the chances of the χ2 test detecting a significant
difference even where percentage differences remain unchanged.

For example, a 60% and 40% split can come from many frequencies e.g.
3 and 2, 6 and 4, 12 and 8, 24 and 16, 48 and 32, and so no. In this series
the frequencies are doubling, but they are all 60:40% splits. We haven’t yet
talked about how we do the test, so take my word for it that the χ2 values for
the series above are respectively 0.8, 1.6, 3.2, 6.4, and 12.8. χ2 is doubled
each time we double the frequencies. Incidentally, for this series, any value
of χ2 more than 3.8 is significant at P < 0.05.

The problem of low frequencies

In the past, a lot has been made of whether a χ2 test can be used if any of
the frequencies involved are small. The traditional wisdom was that there
should be no expected frequencies (i.e. the divisor(s) in the χ2 equation)
below 5, and that such a low frequency should be combined with the
frequency in an adjacent class to eliminate the problem. Today, this is
regarded as too restrictive, and frequencies should only be combined to
eliminate expected values of less than one.

Yates’ correction for continuity

By their very nature, observed frequencies tend to be integers and therefore
“discontinuous,” i.e. you may find frequencies of 4 and 5, but 4.2, 4.7, etc.
are often just not possible. Yet the expected frequency in the formula for χ2

may well be a continuous number. It is therefore often suggested that, if
the frequencies are not continuous, then to play safe the observed integer is
regarded as having been rounded up or down in the direction which would
make the “Observed – Expected” part of the χ2 formula a little too large.
This difference (unless already less than 0.5) should therefore be reduced
by 0.5 before squaring. The correction is named after the statistician who
devised it and it is always called the “Yates” correction for continuity.” I have
to say this strikes me as odd – is it not really a correction for discontinuity?
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In any case, it makes little difference unless the numbers are small. I tend
only to use it for integer data less than 100 when only 2 frequencies are
being compared (i.e. a χ2 for 1 d.f.) or if some frequencies are less than 10.

The χ2 test for “goodness of fit”

χ2 tests enable us to judge whether observed frequencies deviate signifi-
cantly from the frequencies expected on the basis of some hypothesis that
we wish to test. The “goodness of fit test” applies to where each observa-
tion can be assigned to just one of a number of classes – for example, the
frequencies of different eye color in a large sample of people. We could also
apply it where we regard all those combining a particular eye color with a
particular hair color as falling into a single class. The second test I shall
mention (association χ2) is where each observation has a place in each
of two or more classifications. Then, we compare the observed frequencies
with the frequencies expected on the hypothesis that there is no association
between the classifications, i.e. the observed frequencies are purely random.
For example, we could secondarily divide the frequencies of each eye color
into males and females and ask “are any eye colors more common in one
sex than the other?”

But back to goodness of fit. We’ll begin with a classification of our obser-
vations into two classes only. In rearing some biological control agents
related to wasps, the danger is known that an apparently flourishing cul-
ture may suddenly crash because overcrowding has led to few females
being produced by a species which normally produces equal proportions of
males and females. So samples are regularly taken from such cultures to
check that no statistically significant switch to a male biased sex ratio has
occurred.

Say we have collected 98 adults and found them to comprise 54 males
and 44 females. Should we be getting worried? Well, the 50:50 expectation
is clearly 98/2 = 49 individuals in each sex. (Observed – Expected)2 for
males is (54 − 49)2 = 52. However, with just 2 frequencies, this is a case
for correction for continuity. So we subtract 0.5 from the difference and use
4.52 = 20.25. For females it is equally (44 − 49)2 = −52, which is also
25 since the square of a minus value is a plus. Combining the χ2 for both
sexes gives:

∑ Observed − Expected − 0.5)2

Expected
= 20.25

49
+ 20.25

49
= 0.41 + 0.41 = 0.82

How many degrees of freedom are appropriate in this case? Not difficult –
two classes (male and female) gives 2 − 1 = 1 d.f.
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So we need to look up in the table of χ2 (Table A2.5) what is the value
χ2 needs to attain at P = 0.05 and 1 d.f. It is 3.84. We do not have
confirmation that the sex ratio has become significantly biased towards
males; our sample has a greater than 1 in 20 chance of having been taken
from a population where males and females are in equal numbers.

Since the “expected” frequencies are a re-apportioning (to reflect the
hypothesis being tested) of the observed total, the totals of the observed
and the expected frequencies are always identical.

The expected hypothesis does not have to be one of equality. Good exam-
ples of this come from the field of genetics, since there are known ratios of
characteristics defining certain forms of inheritance. Some of these ratios
stem from the famous work of the monk Gregor Mendel late in the 19th
century, and I’ll use his characteristics of garden peas with χ2 to develop
this part of the chapter further.

After crossing parents with normal green round peas, the pods of the
offspring show peas which differ in two characteristics – the color of the
seed coat (green or yellow) and the structure of the seed coat (round or
wrinkled). A sample of 896 peas gives the following frequencies:

green & green & yellow & yellow &
round (GR) wrinkled (GW) round (YG) wrinkled (YW)

534 160 165 37

The parents carried all these characters, but that yellow and wrinkled
only appeared in their offspring suggests that these characters are recessive
as compared with dominant green and round.

Mendel’s work concluded that green and yellow should occur in the
ratio 3:1. So of the 896 peas, 3/4 (i.e. 672) are expected to be green and 1/4
(i.e. 224) to be yellow. The observed numbers are 534 + 160 = 694 green
and 165 + 37 = 202 yellow. Do these frequencies fit Mendel’s 3:1 ratio?

So the χ2 test goes:

Green Yellow

Observed 694 202
Expected 672 224
Observed – Expected 22 −22
(Observed – Expected)2 484 484
(Observed – Expected)2/ 484/672 = 0.72 484/224 = 2.16
Expected

χ2
(P=0.05,1 d.f.) = 0.72 + 2.16 = 2.88�

d.f. = n – 1 for 2 classes = 1



Van Emden: “C018” — 2008/1/31 — 10:23 — PAGE 282 — #6

282 Chapter 18

In the table, χ2 for P = 0.05 and 1 d.f. is 3.84, so our pea color ratio fits
the expected 3:1 ratio. The other character of seed coat structure should
similarly fit a 3:1 ratio. Does it?

Round Wrinkled

Observed 534 + 165 = 699 160 + 37 = 197
Expected (as before, 3:1) 672 224
Observed – Expected 27 −27
(Observed – Expected)2 729 729
(Observed – Expected)2/Expected 729/672 = 1.08 729/224 = 3.25

χ2
(P=0.05,1 d.f.) = 1.08 + 3.05 = 4.33

This is now larger than the 3.84 in the table: the seed coat structure does
not fit the expected 3:1 ratio, but see below for further statistical detective
work!

The case of more than two classes

We can get a better idea of what is going on by returning to the frequencies
in all four pea categories, and comparing the observed frequencies with the
ratio of 9:3:3:1 that Mendel suggested would apply with the combination
of two characters (one dominant and the other recessive). After the earlier
examples above, I hope it is OK for me to leave out some of the detail of the
calculations; they can be found in Box 18.1 (if needed).

The sum of the expected ratios 9 + 3 + 3 + 1 = 16, so the expected
frequencies will be calculated in the relevant “sixteenths” of the total of
896 seeds:

GR GW YR YW

Observed 534 160 165 37
Expected 896 × 9/16 896 × 3/16 896 × 3/16 896 × 1/16

= 504 = 168 = 168 = 56
Difference (O – E) 30 −8 −3 −19

χ2(O – E)2/E 1.78 + 0.38 + 0.05 + 6.45 = 8.66

Four categories give 3 d.f. and in the table χ2
(P=0.05,3 d.f .) is 7.81. The

observed frequencies deviate significantly from a 9:3:3:1 ratio.
You will note that, with more than two classes, the χ2 test has the

similarity with the F-test (in the analysis of variance) that the existence of a
significant difference is identified – but not which frequency or frequencies
differ(s) significantly from their expected one. They might all do so, or
only one.
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BOX 18.1

In this box regarding χ2 calculations, observed frequencies are shown in
BOLD and expected frequencies in BOLD ITALICS.

Example of goodness-of-fit to a 9:3:3:1 ratio (page 282):

χ2 = (534 − 504)2

504
+ (160 − 168)2

168
+ (165 − 168)2

168
+ (37 − 56)2

56

Example of goodness-of-fit to a 9:3:3 ratio (page 284):

χ2 = (534 − 515.4)2

515.4
+ (160 − 171.8)2

171.8
+ (165 − 171.8)2

171.8

Example of limpets and black and white backgrounds (total frequencies):

χ2 = (71 − 59.5 − 0.5)2

59.5
+ (48 − 59.5 − 0.5)2

59.5

Example of limpets and black and white backgrounds (by individual board):
Frequencies Expected χ2 (with correction for continuity)

(equality)

18 and 3 10.5
(18 − 10.5 − 0.5)2

10.5
+ (3 − 10.5 − 0.5)2

10.5

20 and 8 14.0
(20 − 14.0 − 0.5)2

14.0
+ (8 − 14.0 − 0.5)2

13.0

7 and 16 11.5
(7 − 11.5 − 0.5)2

11.5
+ (16 − 11.5 − 0.5)2

11.5

10 and 11 10.5
(10 − 10.5 − 0.5)2

10.5
+ (11 − 10.5 − 0.5)2

10.5

16 and 10 13.0
(16 − 13.0 − 0.5)2

13.0
+ (10 − 13.0 − 0.5)2

13.0

71 and 48 59.5
(71 − 59.5 − 0.5)2

59.5
+ (48 − 59.5 − 0.5)2

59.5

Really the only technique for sorting this out is to run the χ2 calculation
again with the class which appears the most deviant from the expected ratio
excluded. If the remaining classes now fit the remaining expected ratio, one
can be satisfied that it is this class which has caused the significant total
χ2 value. If the ratio is still not fitted, there is clearly a second deviating
class, and the calculation is re-run with the remaining most deviant class
excluded – and so on.
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Clearly the YW class produces the largest contribution (6.45) to the total
χ2 of 8.66. We therefore exclude this class and test the fit of the remaining
three classes to what is left of the expected ratio, i.e. 9:3:3. These ratios now
adding up to 15 with 859 seeds remaining, making 9/15 the proportion of
the total number of seeds that are expected to be GR:

GR GW YR

Observed 534 160 165
Expected 859 × 9/15 859 × 3/15 859 × 3/15

= 515.4 = 171.8 = 171.8
Difference (O – E) 18.5 −11.8 −6.8

χ2(O – E)2/E 0.66 + 0.81 + 0.27 = 1.74

The total χ2 (now for 3 − 1 = 2 d.f.) is well below the table value of
5.99 at P = 0.05. Clearly GR, GW, and YR do fit the Mendelian ratio of
9:3:3:1 well, but the YW class has significantly fewer seeds than expected.
This is the double recessive combination, which may well sometimes fail to
produce a seed.

Quite a nice story and also a neat example of using χ2.

χ2 with heterogeneity

In the first test in this chapter, a test which concerned sex ratios, we
tested the fit of observed frequencies to a 50:50 expected male:female ratio.
Statisticians seem to have no problem with two unreplicated frequencies,
but χ2 tests for 1 d.f. have always bothered me as a biologist. OK, I guess I
accept testing the fit to a 50:50 ratio substantiated by genetics theory, but
is this really different from testing whether two observed frequencies differ
from an assumption of equality?

Suppose we put a black and white checkerboard in of each of five tanks
of seawater and toss 30 limpet molluscs into each tank. We record whether
they have settled on black or white squares, ignoring those who have settled
across a boundary. Out of the 150 limpets, we find 71 have settled on black
squares and 48 on white ones. The expectation assuming no preference is of
course (71 + 48)/2 = 59.5. χ2 for 71 and 48 with an expected frequency
of 59.5 (and correction for continuity as there are only two frequencies
and limpet numbers are bound to be integers) is 4.07 (see Box 18.1 for the
full calculation if you need it), above the 3.84 for P = 0.05 and 1 d.f. in
the χ2 table. This might convince us that limpets prefer to settle on dark
surfaces. But hang on a minute! One of our five checkerboards (see below)
has only seven limpets on black squares compared with more than twice
as many (16) on white. Also, another checkerboard has almost the same
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frequency on both colors (10 and 11). So, in spite of the apparent large
difference between 71 and 48, the evidence that limpets prefer to settle on
dark surfaces is not that convincing after all, is it?

The results for all five boards are:

Black White

18 3
20 8

7 16
10 11
16 10

A heterogeneity χ2 analysis includes a statistical measure of how
consistently the overall difference is reflected by the different replicates,
guiding us as to how far a significant χ2 between the two overall totals can
be trusted.

To do such an analysis, we first calculate a separate χ2 for 1 d.f. for each of
the five boards, and total them to arrive at a χ2 for 5 d.f. Correction for con-
tinuity is again needed (see earlier) and so we subtract 0.5 from Observed –
Expected differences (again Box 18.1 has the calculations involved):

Black White χ2
(1 d.f.)

18 3 9.33
20 8 2.70

7 16 2.78
10 11 0.00
16 10 0.96

[χ2
(5 d.f.) = 15.77]

Overall 71 48 4.07 (with correction for continuity)

The heterogeneity χ2 analysis table is not dissimilar from a simple anal-
ysis of variance. The χ2 values for the five replicates total 15.77 for 5 d.f.,
of which 4.07 is accounted for by the overall result (71 v. 48) for 1 d.f.,
leaving a “residual” (by subtraction) with 5 − 1 = 4 d.f. as an estimate of
the lack of consistency (= heterogeneity) of the overall result across the five
replicates. The table is therefore as follows, with the appropriate P values
from the χ2 table:

Source of χ2 d.f. χ2 P

Overall (71 v. 48) 1 4.07 <0.05
Heterogeneity (by subtraction) 4 11.70 <0.05

Total 5 15.77
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You can see that although the χ2 for the overall distribution to 1 d.f.
of the limpets between black and white backgrounds is significantly high,
so is the χ2 for heterogeneity. The conclusion, based on the χ2 for 1 d.f.
that the limpets have settled more on black than white backgrounds, has
to be regarded as unsafe in spite of the apparent large difference. The
χ2 for heterogeneity has picked out that there is significant inconsistency
between the replicates in how the limpets are distributed. The advantage
of replicating experiments so as to make them amenable to a heterogeneity
χ2 analysis is clear.

Heterogeneity χ2 analysis with “covariance”

Well, it’s not really covariance, but I didn’t know what else to call it! There
are sometimes reasons why expected values for different replicates may vary
because of some additional effect which affects the replicates differentially.
I guess this would make more sense with an example?

Say we want to assess the preference of aphids for two different varieties
of cabbage (we’ll call them A and B). An approach to doing this might be to
confine a number of aphids in a cage enclosing equal areas of leaf of each
variety (potted plants). To know how many aphids have really settled down
to feed on either leaf portion, we decide to treat the pot of one plant of each
pair with a systemic insecticide. This will poison the plant sap and kill any
aphid that imbibes that sap, even if only for a short time. It makes sense
to have an even number of replicates, in half of which variety A is treated
with insecticide and B is treated in the other replicates. The results of 10
replicates might be as follows (dead aphids are assumed to have preferred
the insecticide-treated variety):

Replicate Dead Alive

Variety A treated
1 16 4
2 15 5
3 18 2
4 20 0
5 14 6

Variety B treated
6 12 8
7 10 10
8 13 7
9 9 11
10 13 7

Totals dead and alive 140 60
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If you look at which variety was treated in each replicate, the figures
in italics (totalling 126) can be presumed to be aphids which have settled
to feed on variety A (since they have encountered the poison applied to A
and avoided that applied to B) and the regular typeface aphids (total 74)
can be presumed to have fed on variety B (by the reverse argument). The
χ2

(1 d.f .) for 126 v. 74 is significantly high (see later), indicating the aphids
have shown us a preference for Variety A, but there are another two totals
to consider in this experiment! These are the totals of 140 dead and only
60 alive aphids in the experiment. If the insecticide had no effect on how
the aphids are distributed, then we would expect both totals to be 100,
since in both varieties there were as many untreated as treated plants.
Clearly, regardless of which variety received insecticide in each replicate,
more aphids settled on whichever variety in the replicate was treated with
insecticide and were poisoned. Presumably, many aphids tried feeding on
both varieties at some time.

In each of the ten replicates, therefore, the expected values for the het-
erogeneity χ2 analysis (assuming no varietal preference) are 14 dead per
replicate for the insecticide-treated variety and six alive per replicate for the
untreated variety.

The heterogeneity χ2 analysis therefore becomes (again see Box 18.2 for
more detailed formulae):

Replicate Variety A Variety B χ2
(1 d.f.)

Observed Expected Observed Expected

Variety A treated
1 16 14 4 6 0.54
2 15 14 5 6 0.06
3 18 14 2 6 2.92
4 20 14 0 6 7.20
5 14 14 6 6 0.00

Variety B treated
6 8 6 12 14 0.54
7 10 6 10 14 2.92
8 7 6 13 14 0.06
9 11 6 9 14 3.49
10 7 6 13 14 0.06

[χ2
(10 d.f.) = 17.79]

Overall 126 100 74 100 13.00
(with correction for continuity)
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BOX 18.2

Example of aphid plant variety preference test using insecticide:

Frequencies (expected χ2 (with correction for continuity)
frequency in brackets)

16 (14) and 4 (6)
(16 − 14 − 0.5)2

14
+ (4 − 6 − 0.5)2

6

15 (14) and 5 (6)
(15 − 14 − 0.5)2

14
+ (5 − 6 − 0.5)2

6

18 (14) and 2 (6)
(18 − 14 − 0.5)2

14
+ (2 − 6 − 0.5)2

6

20 (14) and 0 (6)
(20 − 14 − 0.5)2

14
+ (0 − 6 − 0.5)2

6

14 (14) and 6 (6)
(14 − 14 − 0.0)2

14
+ (6 − 6 − 0.0)2

6

8 (6) and 12 (14)
(8 − 6 − 0.5)2

6
+ (12 − 14 − 0.5)2

14

10 (6) and 10 (14)
(10 − 6 − 0.5)2

6
+ (10 − 14 − 0.5)2

14

7 (6) and 13 (14)
(7 − 6 − 0.5)2

6
+ (13 − 14 − 0.5)2

14

11 (6) and 9 (14)
(11 − 6 − 0.5)2

6
+ (9 − 14 − 0.5)2

14

7 (6) and 13 (14)
(7 − 6 − 0.5)2

6
+ (13 − 14 − 0.5)2

14

126 (100) and 74 (100)
(126 − 100 − 0.5)2

100
+ (74 − 100 − 0.5)2

100

The heterogeneity χ2 table is therefore:

Source of χ2 d.f. χ2 P

Overall (126 v. 74) 1 13.00 <0.001
Heterogeneity (by subtraction) 8 4.79 n.s.

Total 9 17.79

The heterogeneity χ2 is extremely small (at P = 0.05 and 8 d.f. it would
have to be at least 15.51), and so we can readily accept the highly significant
overall χ2 as evidence that the aphids preferentially feed on Variety A.
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Association (or contingency) χ2

This is a rather different use of χ2, though the basic (Observed –
Expected)2/Expected calculation, the requirement for frequencies, the prob-
lem of small expected values, and the correction for continuity all still
apply. Association χ2 tests involve multiple categorization of frequencies.
The concept of association is found in simple questions like “Is red-green
color-blindness associated with one gender rather than the other?”

Each individual in the test is not only either color-blind (CB) or not
(Normal), but is also either a man or a woman. In goodness of fit tests we
had a linear series of frequencies:

Category CB men Normal men CB Women Normal women

Frequency 44 18 10 39

In this example, what are the expected values? We have no ratio of
frequencies we can test for goodness of fit, and 1:1:1:1 would be stupid, if
only because more men than women were tested for color vision.

This is where we need an association test with its multidimensional table
(called the contingency table).

2 × 2 contingency table

For the above data on color-blindness, the four data would form a table with
two rows and two columns (i.e. a 2 × 2 table):

Color-blind Normal Totals
Men 44 18 62
Women 10 39 49

Totals 54 57 111

We have 111 folk, of whom 44 are both men and color-blind. Given no
association between men and color-blindness, we would expect the propor-
tion of color-blind men and women to be identical , i.e. about half (54 out
of 111). With 62 men, there should therefore be 62 × (54/111) = 30.2
who are color-blind, but at 44 the frequency is rather higher, suggest-
ing some association between color-blindness and gender. Similarly, the
expected color-blind women is 49 × (54/111) = 23.8, and the expected
frequencies of normal men and women respectively 62×(57/111) = 31.8
and 49 × (57/111) = 25.2. Of course, just as with the goodness-of-fit test,
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these four expected frequencies of 30.2, 23.8, 31.8, and 25.2 again add up
to the same grand total of 111 for the number of people tested.

You’ll see that all the expected frequencies are the respective row and
column totals multiplied together and then divided by the grand total.
Simple to remember, I think. Is this a familiar calculation? Probably not,
but we have been there before in the analysis of variance (Box 11.2) when
working out the expected values of data if there were no interaction.

So we can now add the “expected” values (in brackets and italics) to our
contingency table:

Color-blind Normal Totals
Men 44 (30.2) 18 (31.8) 62
Women 10 (23.8) 39 (25.2) 49

Totals 54 57 111

This gives us four χ2 values to calculate and add to obtain an overall χ2,
but how many d.f. does it have? Well, you might think four numbers gives
us 3 d.f., but think again of the analogy with interactions (page 150). There
is just 1 degree of freedom. Put in any one figure (say 10 for color-blind
women), and the other three numbers follow inevitably from the column
and row totals:

Color-blind Normal Totals
Men 54–10 62–(54–10) 62
Women 10 49–10 49

Totals 54 57 111

So remember, degrees of freedom for contingency tables are
(columns − 1) × (rows − 1) = 1 × 1 = 1 in the above example.

The calculation of the four χ2 values proceeds as before; the detailed
calculations are given in Box 18.3. We can then insert these values in the
table (in bold and in square brackets):

Color-blind Normal Totals
Men 44 (30.2) [6.31] 18 (31.8) [5.99] 62
Women 10 (23.8) [8.00] 39 (25.2) [7.56] 49

Totals 54 57 111
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BOX 18.3

In this box regarding χ2 calculations, observed frequencies are shown in
BOLD and expected frequencies in BOLD ITALICS.

Example of color-blindness in men and women (page 289):

For color-blind men, χ2 = (44 − 30.2)2

30.2
= 6.31

For color-blind women, χ2 = (10 − 23.8)2

23.8
= 8.00

For normal men, χ2 = (18 − 31.8)2

31.8
= 5.99

For normal women, χ2 = (39 − 25.2)2

25.2
= 7.56

Example of cyanogenic bird’s foot trefoil at coast and inland (page 292):

For +CG at coast, χ2 = (17 − 25.5 )2

25.5
= 2.83

For +CG inland, χ2 = (48 − 39.5 )2

39.5
= 1.83

For −CG at coast, χ2 = (14 − 10.2)2

10.2
= 1.42

For −CG inland, χ2 = (12 − 15.8)2

15.8
= 0.91

For Both at coast, χ2 = (45 − 40.4)2

40.4
= 0.52

For Both inland, χ2 = (58 − 62.6)2

62.6
= 0.34

Adding these four χ2 values together gives the highly significant
(P < 0.001) total χ2 for 1 d.f. of 27.86. Inspection of observed and
expected values leads to the interpretation that red-green color-blindness
is significantly commoner in men than in women.

Fisher’s exact test for a 2 × 2 table

I pointed out earlier that low expected frequencies are a problem with
χ2 tests. In a 2 × 2 table, a single small expected frequency of less than
5 represents a large proportion of the data, and the famous pioneer
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statistician R.A. Fisher devised his “Exact test” for such situations. This
involves the factorial values of the numbers in the table. Remember facto-
rials (Box 14.1)? – not the experimental design which bears that name but
the function of a number (e.g. 7! denotes the factorial value of the num-
ber 7). To remind you, in mathematics the “factorial” is the product of a
descending series of numbers beginning with the number to be factorialized
– e.g. factorial 7 or 7! is 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5040.

Fisher’s “Exact test” is beyond the scope of this book. You will find details
in larger statistical texts, but the following will give you a rough idea of
what’s involved. First the factorials of all the column and row totals are
multiplied together and then the result is divided by another product of
factorials using the grand total and the numbers within the table. This is
repeated with the smallest number reduced by one (but no totals changed
as a result), with the final repeat when it reaches zero. The “Exact test” does
not produce a χ2 of which the probability has to be found in tables; instead,
the P value is found directly by adding together the result of the several
repeat calculations.

Larger contingency tables

There is no limit to the number of columns and rows in a contingency table;
each time the degrees of freedom for the resulting χ2 will be (columns −
1) × (rows − 1).

As an example of a contingency table larger than 2 × 2, I’ll use a 3 × 2
table. My example relates to a common leguminous plant, the “bird’s foot
trefoil.” One form of two forms of this plant produces cyanogenic glucosides
poisonous to many herbivorous animals; the other form does not. The data
below show results from a presence or absence study of the two forms in a
large number of sampled 0.5 m × 0.5 m areas in two locations, at the coast
and at least 3 km inland. Squares were categorized as containing only the
cyanogenic form (+CG), only the acyanogenic form (−CG), or some of each
form (Both):

+CG −CG Both Totals
Coast 17 14 45 76
Inland 48 12 58 118

Totals 65 26 103 194

We now have six expected values to calculate by the formula I
explained earlier for contingency tables: expected value = row total ×
column total/grand total. So for +CG at the coast, the expected value is
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76 × 65/194 = 25.5. The other expected values are calculated similarly,
and added to the table in italics and round brackets:

+CG −CG Both Totals
Coast 17 (25.5) 14 (10.2) 45 (40.4) 76
Inland 48 (39.5) 12 (15.8) 58 (62.6) 118

Totals 65 26 103 194

The calculation of the six χ2 values proceeds as before, the detailed
calculations are given in Box 18.3. We can then again insert these values
in the table (in bold and in square brackets):

+CG −CG Both Totals
Coast 17 (25.5) [2.83] 14 (10.2) [1.42] 45 (40.4) [0.52] 76
Inland 48 (39.5) [1.83] 12 (15.8) [0.91] 58 (62.6) [0.34] 118

Totals 65 26 103 194

The total of these six χ2 values is 7.85. Degrees of freedom =
(columns − 1) × (rows − 1) = 2 × 1 = 2. Table A2.5 in Appendix 2
tells us that a χ2 value as high as 7.85 at 2 d.f. is statistically significant
(P < 0.05).

How should we interpret the results of this survey biologically? Well,
the largest contributions to the χ2 of 7.85 come from the distribution
of +CG plants (which are more frequent than expected inland and less
than expected at the coast) and the greater than expected frequency of
–CG at the coast. But this doesn’t explain the biology of what is happen-
ing. Surveys like this are not experiments, but can be used to show that
frequencies are at least consistent with a hypothesis, even though they
cannot prove it. In this case the hypothesis being statistically supported is
that the distribution of cyanogenesis in the plants reflects the distribution
of snails, which are deterred by the cyanogenic compounds from feeding
on the +CG form of bird’s foot trefoil. Thus, inland, the unprotected –CG
plants are at a disadvantage compared with +CG plants. However, snails
cannot tolerate the salty environment at the coast, so the –CG plants are no
longer disadvantaged and their frequency in comparison with +CG plants
increases.

Interpretation of contingency tables

We have just seen how a contingency table can be used to support a hypoth-
esis. But it is dangerous to use the data to try and create a hypothesis!
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The obvious deduction from the data is the direct one that –CG plants
tolerate saline soils better than +CG ones – you have to know the snail
connection to interpret the contingency table correctly.

So, rather like regression (page 239), contingency tables can identify
phenomena – but they cannot explain them. For that you need an exper-
iment with treatments specifically designed to identify explanations. By
contrast, the contingency table may appear to answer a question, but it
just as well answers other questions, some of which may paint a totally
different picture.

Take a contingency table which divides imprisoned and tagged convicts
into those that do and do not re-offend, and which gives frequencies that
might convince a social worker that tagging offenders rather than putting
them in prison reduces the risks of a repeat offence. A more cynical prison
officer might, however, use the identical contingency table to argue that
tagging is applied mainly to first offenders committing less serious crimes,
while the hardened criminals who regularly re-offend go straight to prison
without the tagging option being considered.

Spare-time activities

1 In sampling aphids, many workers turn over plant leaves and count the
number of aphids they see in the different growth stages (instars). It takes
a lot of time, and a lot of skill to identify the instars! But is the method
accurate?

Here’s one such field count (in the column headed “Inspection”). The
second column was obtained by taking some other leaves back to the
laboratory and washing the aphids off into a sieve under a jet of water
– this effectively cleans everything off the leaves and therefore gives a very
accurate count:

Instar Inspection Washing

1 105 161
2 96 114
3 83 85
4 62 63
Adult 43 47

Total 389 470

Use χ2 to determine how well the inspection counts reflect the true instar
distribution? Is there any instar which appears particularly poorly estimated
by inspection?
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Note: The expected values of the observed “inspection” counts will be
their total (389) divided up to reflect the proportions found in the “washing”
counts.

2 On different evenings, groups of 10 snails were released onto a small tray
fixed onto a brick wall. The next morning, the snails which had moved at
least 10 cm upwards or downwards from the tray were counted:

Trial Upwards Downwards

1 7 3
2 5 4
3 4 4
4 6 4
5 5 5
6 7 2

Use a heterogeneity χ2 test to analyze whether there is a difference in
the frequency of upwards versus downwards movement.

3 The larvae of a fly tunnel within holly leaves, and suffer mortality from two
main sources – birds peck open the mine and eat the insects, and the
larvae of small wasps (parasitoids) feed internally on the fly larvae and
then pupate within the leaf mine.

The fate of the larvae in 200 leaves picked from the top, middle, and
bottom of the tree was as follows:

Top Middle Bottom

Healthy larva 9 41 18
Healthy pupa 11 23 6
Parasitoid pupa 8 19 24
Eaten by bird 15 20 6

Can you confirm that the frequency of either of the mortality factors is
greater at one tree stratum than the others?
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Disclaimer

I’d better come clean right at the start of this chapter, and explain that
I’m not going to try and teach you any of the nonparametric methods
of data analysis. Each one has a unique formula for calculating its own
statistic (examples are given in Box 19.1), and each then requires its own
tables for testing the significance of that statistic. This book is limited to
the most widely used traditional parametric methods. I’m not competent
to explain the theory behind the different nonparametric methods, and so I
would not be able to add anything to the recipes and tables that are already
widely available, including on the internet. I’m therefore limiting my sights
to where I think I can contribute to your understanding. I will introduce
you to the idea of nonparametric methods, to explain how they differ from
parametric ones, and where they may be particularly useful. Finally, I will
guide you towards those nonparametric methods able to substitute for some
of the parametric methods featured in this book.

Introduction

This book has so far dealt only with parametric methods, by which is meant
methods that fit our data to theoretical distributions. Such distributions
can be summarized by statistical parameters such as average, variance,
standard deviation, regression coefficients, etc. “Parameter” is Greek for
“beyond measurement,” so I always allow myself a smile whenever I read
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BOX 19.1

The statistic H of the Kruskal–Wallis analysis of ranks from the example on
page 302

The two figures needed are n, which is the number of observations = 12
and

∑
R, the sum of squared “treatment” totals first divided by number of

data in the treatment

= 32.002

4
+ 36.002

4
+ 10.002

4
= 256.00 + 324.00 + 25.00 = 605

The equation for H is:

(∑
R × 12∗

n(n + 1)

)

− 3∗(n + 1) =
(

605 × 12∗
12(3)

)

− 3∗(13)

= (605 × 0.077) − 39 = 7.585

∗12 and 3 are constants and have nothing to do with, for example, e.g. that
n = 12 in this example.

Note also that the divisors in the calculation of
∑

R need not be identical,
so that treatments with different numbers of replicates can be accommodated.

The statistic r, Kendall’s rank correlation coefficient, from the example on
page 303.

The two figures needed from page 303 are
∑

(P −Q) = +38 and the number
of pairs, n = 10.

The equation for Kendall’s r is:

2 × ∑
(P − Q)

n(n − 1)
= +76

10(11)
= +76

110
= +0.691

“The following parameters were measured.” No, in parametric statistics we
recognize that, although the theoretical distributions on which we base our
statistical analyzes are defined by parameters, we have to work with samples
from real populations. Such samples give us, with varying accuracy, only
estimates of the parameters that are truly “beyond measurement.”

Parametric statistics analyze the distances between numbers and the
mean or each other, and fit these distances to theoretical distributions
(particularly the normal distribution). Estimates of the parameters which
can be derived from the theoretical distribution (such as the s.e.d.m.) are
used to calculate the probability of other distances (e.g. between means
of two treatments) arising by chance sampling of the single theoretical
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population. Parametric methods are therefore essentially quantitative. The
absolute value of a datum matters.

By contrast, nonparametric methods are more qualitative. The absolute
value of a datum is hardly important – what matters is sometimes merely
whether it is larger or smaller than other data. So means of 0.8, 17, and
244 can be “equal” nonparametrically in all being smaller than a mean
of 245!

Thus nonparametric statistics are all about the probability of an event
occurring without it relating to any quantitative distribution. To judge if a
lettuce of a certain weight is improbably larger involves measuring other
lettuces also, but to say that the probability of throwing 3 sixes in sequence
with a dice is 1/6 × 1/6 × 1/6 = about 0.005 (i.e. once in 200 goes) is
a nonparametric calculation – no actual quantitative measurements are
needed to calculate that probability.

Advantages and disadvantages of the two approaches

Where nonparametric methods score

The big disadvantage of parametric methods is their basis in quantitative
theoretical distributions – if the data don’t fit the theoretical distribu-
tion, then a parametric test is likely to lead to the wrong conclusions. So
important assumptions in parametric statistics are that data are normally
distributed and that the variability within the populations being compared
is essentially similar. Thus, in the analysis of variance, standard deviations
in the different treatments should be similar in spite of different means
(page 103). This is often hard to tell if each treatment has only a few repli-
cates! Biologists tend to assume the data are normally distributed, though
you would probably need at least 20 replicates of a treatment to be sure. But
we often only have three or four. Should we therefore give up parametric
tests? We need to be sensible about this. We would expect many biological
characteristics to show individual variation of a “normal” type, with most
replicate samples close to the mean, and more extreme values increasingly
less frequent in both directions away from that mean. It is often said that
one cannot test the assumption of normality with few samples, and we
should indeed inspect our data to check as far as we can that no obvious
departure from normality is likely. We may settle for normality on theoreti-
cal grounds or from previous experience of the type of datum, personal or
from the literature. A useful check possible with even just a few replicates
of several treatments, is to look for the tell-tale sign of trouble that standard
deviations or errors increase with the size of those means (page 37). Trans-
formation of the data (page 38) may then be a solution allowing parametric
methods nonetheless to be used.
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Things are very different in medical statistics. Clearly the incidence of
an unusual disease will not be normally distributed in a population but
target some age or genetic groups more than others. Moreover, if medical
treatments are any good, some treatments can have very little standard
deviations compared with others (e.g. the top treatment may give close to a
100% cure with very little variation). It is therefore perhaps not surprising
that nonparametric tests are used far more widely in medicine than in
biology.

Unfortunately, cleverly designed though computer software often is, the
human still has to decide whether a parametric or a nonparametric test is
appropriate. Some data can be analyzed both ways – some only by nonpara-
metric methods. One example of the latter is where we know the different
populations of numbers we are comparing have very different distribu-
tions, as in the contrast between many zeros and only few insects where
we have applied an insecticide and a wide distribution of insect numbers
on untreated plants. Another example is where the data are ordinal. This is
where the data are ranks and not the original numbers which have been
ranked. Thus we might have ranked a school class from first to last on both
their French and mathematics marks and wish to test how far the same
students are good at both subjects. That nonparametric tests frequently use
ranks or simply direction of differences, can make them quick and simple
to use. The collection of data can also be far less time-consuming than that
for parametric tests.

Where parametric methods score

Data suitable for parametric tests can often also be analyzed by a non-
parametric method. The parametric method then has several advantages.
The significance of interactions in factorial experiments and the relative
importance of the factors being factorialized can be identified, whereas in
analogous nonparametric tests, “treatments” have to be just “treatments”
even when they are a combination of levels of more than one factor. In
other words, with nonparametric tests we have no Phase 3 (page 158) for
the analysis of factorial experiments. Parametric methods also have the
advantages of greater power and greater ability to identify between which
treatment means there are significant differences. As regards greater power,
the parametric test will be less likely to reject a real difference than a non-
parametric test. Thus, often data suitable for the parametric “t-test” could
equally be analyzed by the nonparametric “sign test,” but you would need
to do more sampling with the sign test to achieve the same level of dis-
crimination between the means as with the t-test. When the sample size
is small, there is little difference between the two tests – only 5–6% more
samples need to be taken in comparison to a t-test. But the difference in
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the relative power of the two tests does increase with number of samples,
and rises to close on 40% additional sampling necessary for the sign test
with a large number of samples. However, it may still be more economic to
collect a lot of samples which can be quickly assessed than to collect fewer
but much more time-consuming data. A nonparametric test will then be
perfectly adequate for demonstrating the superiority of one treatment over
another – but if you want to know how much more superior it is, then only
a parametric test will do.

The bottom line is that it is better to use a nonparametric test and lose
discriminatory power than to wrongly apply a parametric test.

Some ways data are organized for nonparametric tests

I’ve already warned you that I’m not going to equip you to carry out non-
parametric tests to completion, but I do propose to show you how simple
the initial stages of such tests are compared with parametric ones. I’ll take
a few nonparametic tests to the point where you’ll need to move to a more
advanced textbook. There you will find what are usually highly algebraic
recipes for calculating the statistic often unique to that particular test.
Equally unique are the tables required to assess the significance of that
statistic.

The sign test

To illustrate this test, I’ll repeat some data (Box 8.8) that we have already
used for the paired t-test. They concern comparing two soils for how well ten
plant species (effectively the replicates) grow in them when in containers.
The data are dry weight in grams of the aerial parts of the plant when
ready for sale:

Plant species Soil A Soil B

1 5.8 5.7
2 12.4 11.9
3 1.4 1.6
4 3.9 3.8
5 24.4 24.0
6 16.4 15.8
7 9.2 9.0
8 10.4 10.2
9 6.5 6.4
10 0.3 0.3
Mean 9.07 8.87
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All we do is give each row of the table the + or − sign for column A –
column B:

Plant species Soil A Soil B

1 5.8 5.7 +
2 12.4 11.9 +
3 1.4 1.6 −
4 3.9 3.8 +
5 24.4 24.0 +
6 16.4 15.8 +
7 9.2 9.0 +
8 10.4 10.2 +
9 6.5 6.4 +
10 0.3 0.3 0
Mean 9.07 8.87

The test statistic for the sign test is so simple I can actually tell you what it
is here. It is the smaller of the number of plus or minus signs, which in the
above example is the minus signs with just one! The test is not dissimilar
from evaluating the probability of tossing a coin several times and, in this
instance, getting just one head in 10 goes. In this example, the test statistic
of 1 with n = 10 is just significant (P = 0.05).

The Kruskal–Wallis analysis of ranks

As soon as we have more than two treatments, we need a nonparametric
test analogous to the analysis of variance, and the Kruskal–Wallis test is
one of these. To illustrate how the data are manipulated, I’ll again use a set
of data we’ve used before; this time the data for the fully randomized design
for analysis of variance (from page 118), which are days to flowering of
50% of broad bean plants per plot given one of three fertilizers, A, B, or C
(with four replicates):

A B C
35 43 29
38 38 31
42 40 30
40 39 33
Mean Mean Mean
38.75 40.00 30.75
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The first thing we do is to rank all 12 measurements regardless of their
fertilizer treatment, with ties receiving the sum of their ranks divided
by the number sharing that rank, i.e. if three plots were tied after posi-
tion 8, they would be given the positions 9, 10, and 11 and the rank
(9 + 10 + 11)/3 = 10.

The 12 plots are therefore arranged from lowest to highest as follows,
with their rank in bold italics beneath:

29 30 31 33 35 38 38 39 40 40 42 43
1 2 3 4 5 6 7 8 9 10 11 12

6.5 6.5 9.5 9.5

Then we reproduce the table of data, but with each datum replaced by
its rank from the above line-up:

A B C
5 12 1
6.5 6.5 3

11 9.5 2
9.5 8 4

Totalling the columns gives: 32.00 36.00 10.00
whereas the data means were: 38.75 40.00 30.75

The test statistic (H) is based on the summed squares of the rank totals
and the total number of observations (Box 19.1). Box 19.1 shows that,
in this example, H = 7.585 (P < 0.01 from appropriate tables). The
nonparametric test has therefore shown, like the analysis of variance on
page 120, that we can reject the null hypothesis that data in the three
columns were sampled from the same population.

This test can be used even when there are unequal numbers of data per
treatment.

Kendall’s rank correlation coefficient

As a final example of how data are handled for nonparametric tests, I’ll use
Kendall’s rank correlation method to illustrate the form in which correla-
tion data can be presented. I’ll use the data on weight and length of broad
bean seeds from the “spare-time” activities of Chapter 17 (page 276).

The first step is to arrange either the weight or length data in increasing
order of magnitude, with the corresponding other measurement under-
neath (it doesn’t matter which you choose to order, I’ll use length). Where
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there are tied data, I arrange them in increasing order of the other
measurement:

Length (cm) 1.6 1.7 1.9 2.0 2.0 2.1 2.2 2.2 2.3 2.4
Weight (g) 0.8 0.7 0.9 0.9 1.0 1.0 1.1 1.2 1.4 1.2

Next, taking the lower row (weight) we calculate three things for each
number there, with each calculation adding a new row.

1 The row “More” (often designated as P): How many values to the right in
the lower row are larger than that number. Note we don’t bother with
the extreme right value – there are no numbers further to the right to
compare it with!

2 The row “Less” (often designated as Q): How many values to the right in
the lower row are smaller than that number. Again, we don’t need to
bother with the last number.

3 The row “Difference” (P − Q): The value in the “Less” row subtracted from
the value in the “More” row:

Length (cm) 1.6 1.7 1.9 2.0 2.0 2.1 2.2 2.2 2.3 2.4
Weight (g) 0.8 0.7 0.9 0.9 1.0 1.0 1.1 1.2 1.4 1.2

More (P ) 8 8 6 6 4 4 3 1 0
Less (Q) 1 0 0 0 0 0 0 0 1
Difference (P − Q) +7 +8 +6 +6 +4 +4 +3 +1 −1

The test statistic is the total of the values in the last row (in our case +38).
For 10 pairs (n = 10) this shows significant correlation (P < 0.05 from
appropriate tables) . The calculation of the correlation coefficient (r) in our
example is shown in Box 19.1 The value of r is 0.691, rather lower than
the 0.896 calculated parametrically (from r2 in “Solutions” on page 333).

The main nonparametric methods that are available

Finally in this chapter, which has introduced you to the idea of nonparamet-
ric methods, I will look at the various nonparametric tests you might wish to
look up in more advanced statistical texts. I would guess that the most help-
ful way to do this is to list them by the kind of data for which you may find
them useful and doing this by analogy with the parametric tests covered in
the earlier chapters of this book. Remember, however, that nonparametric
methods enable you to analyze data you could never hope to analyze by
parametric methods (e.g. distribution-free data such as ranks, see earlier).
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By using the analogy with parametric methods I am not implying that par-
ticular parametric and nonparametric tests are necessarily alternatives.
It is merely the way the results table looks (not the type of data within
it) that makes an analogy possible. In what follows, to keep things sim-
ple and comprehensible, I will use the word “treatments” in the broadest
sense to identify a replicate group of data sharing the same “experimental”
characteristic, e.g. male students, all plots treated with fertilizer A.

Analysis of two replicated treatments as in the t-test (Chapter 8)

For unpaired data of replicate values for the two treatments
Example: Box 8.4 – comparing the statistic examination marks of 12
replicate and 14 replicate women.

Nonparametric tests: Mann–Whitney test or Kolmorgorov–Smirnov
two-sample test. Both tests can accommodate unequal or equal repli-
cates per treatment, though the evaluation of statistical significance
in the Kolmogorov–Smirnov test becomes more complicated with
unequal replicate numbers. The Mann–Whitney test is more powerful
for larger numbers of replicates, while the Kolmogorov–Smirnov test
is preferred for a very small number of replicates.

For paired data of replicate values for the two treatments
Example: Box 8.8 – growing ten different plants as replicates in two
soils.

Nonparametric tests: Sign test (see earlier) or Wilcoxon’s signed
rank test. The sign test is simpler, but merely works on the direction
of differences, ignoring their magnitude. By contrast, the Wilcoxon
test is more powerful in the sense that it gives greater weight to
pairs showing a larger difference than to pairs showing only a small
difference.

Analysis of more than two replicated treatments as in the analysis of
variance (Chapter 11)

For fully randomized replicates of the treatments
Example: page 117 – Days to flowering of broad beans treated with
three fertilizers as a fully randomized design of four replicates per
treatment.

Nonparametric test: Kruskal–Wallis analysis of ranks (see earlier).
Like the analysis of variance for a fully-randomized design, the
Kruskal–Wallis test can accommodate unequal numbers of replicates
in different treatments.
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For experimental designs where the replicates of the treatments are grouped
as Blocks. Nonparametric tests are limited to a two-way analysis – i.e.
“Treatments” and Blocks. In factorial experiments (Chapters 13 and 14),
therefore, each different factorial combination has to be regarded as a
separate “treatment.”

Example: page 123 – Days to flowering of broad beans treated with
three fertilizers laid out in four replicate Blocks.

Nonparametric test: Friedman two-way analysis. This test, unlike the
corresponding analysis of variance, cannot accommodate missing
plots – numbers of replicates have to equal for all treatments.

Correlation of two variables (Chapter 17)

Example: Box 17.2 – actual and guessed number of mustard seeds.
Nonparametric tests: Kendall’s rank correlation coefficient (see ear-
lier) or Spearman’s rank correlation coefficient. Both tests are equally
powerful, but an advantage of Kendall’s test is that it is possible to
develop it to a correlation of one variable with two others.
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How many replicates

Introduction

When I have been acting as external examiner for PhD theses, I have often
asked the candidate how the number of replicates for an experiment in
the thesis had been chosen. The answer was either “it was what my super-
visor suggested,” or “I couldn’t fit more into the glasshouse space I was
allocated,” or “I couldn’t handle more in one day.”

None of these are really good reasons – whatever the practical constaints
may have been. If the number of replicates is too small (in relation to the
variability of the material) to enable detection of differences that exist
between treatments, then even “the limited glasshouse space” and “the
days’ work” have been totally wasted. Not doing the experiment at all
would leave the experimenter equally informed, but with the research kitty
still intact. At the other end of the scale, if the number of replicates is
excessive, then scarce research resources of space and money have been
squandered.

I don’t think I ever got the answer “I worked out the optimum number
of replicates statistically.” Perhaps this is not surprising – I have found
that how to do this is rather hidden away in many statistics textbooks
and the topic has not even been mentioned in some statistics courses I
have attended. So this Appendix is not just a casual add-on to this book;
it discusses a subject of considerable practical importance which deserves
more attention from biological researchers.

Underlying concepts

You need to be sure you have understood “standard error of differences
between means” (page 52) and the t-test (page 59) before going any
further.
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The standard error of differences between two means (s.e.d.m.) is calcu-
lated from the variance of individual observations and the number of those
observations (n) as:

s.e.d.m. = √
2 × variance/n

The s.e.d.m. will therefore get smaller as the divisor “n” increases. This
has two important consequences which help us to design the optimum size
of experiments:

1 If we have just one difference between means to test (as at the end of
an experiment with two treatments), its chances of reaching statistical
significance (i.e. exceeding t × s.e.d.m.) clearly increase as the s.e.d.m.
shrinks, which can be achieved by increasing “n.” This is analagous to
trying to support a plank on two chairs further apart than the plank
is long. You can’t make the plank longer, so – if you want to succeed –
you have to shrink the space between the chairs by moving them closer
together. More replicates don’t change the true difference between two
means (i.e. the length of the plank), but they do reduce the chances
of an experimental difference of a given size being “too short a plank”
(Fig. A1.1) to attain significance.

2 If we have lots of sampled differences between pairs of means sampled
at random from the same population, the differences would form a
normal distribution about the true average difference, which is of course

Same difference between two means

With n replicates With 2n replicates

Zone of differences
significantly greater
than 0

0 0

Fig. A1.1 Doubling the number of replicates in an experiment increases the proba-
bility that the true difference between the means of two treatments will fall into the
“improbable” area of the distribution of differences between means drawn from the
same population.
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0 15 0 15

Same true difference (e.g. of 15) between the means of populations x and y

Distribution of samples of
differences between two means

drawn from the same
population (x or y)

Distribution of sample of
differences between two means

drawn from the same
population (x or y)

Distribution of samples of
differences between the means of

populations x and y

Distribution of samples of
differences between the means of

populations x and y

Zone of
differences
significantly
greater than 0

With n replicates with 2n replicates

(a) (b)

Zone of sampled
differences between the

means of population
x and y which fail to

reach significance

Fig. A1.2 Doubling the number of replicates in an experiment increases the
probability that a higher proportion of differences which might be sampled
between the means of two treatments (with a true difference of 15) will fall into the
“improbable” area of the distribution of differences between means drawn from the
same population.

zero in a single population (page 59). By contrast, if we now took lots
of different samples from a different population with a different mean
as well, the differences between the means of two samples drawn from
the two different populations would not be variable estimates of zero,
but variable estimates of some number not equal to zero, i.e. the true
difference that exists between the means of the two populations. These
sampled differences would again form a normal distribution around that
true difference in the means of the two populations. Unless the two
means are very different, these two normal distributions of differences
(one averaging zero and the other some number) might overlap. Then,
as Fig. A1.2a shows, a large proportion of these estimates of the true
difference between the population mean cannot be distinguished from
differences (all estimates of zero) between means in a single population.
Analagous to the case desribed in (1), more replicates will reduce the
yardstick (s.e.d.m.) by which “improbable” tails of both distributions are
defined, so that more samples of differences between the means of the
two populations will fall into the “improbable” tail of the distribution
of differences from the same population (Fig. A1.2b). It’s a bit like two
wide triangles, one behind the other, positioned so that you can’t see
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(a)

(b)

Fig. A1.3 The concept of Fig. A1.2 explained by analogy with two overlapping tri-
angles, and the increase in area of the back triangle revealed when the bases of the
triangle are narrowed without any change in the position of their peaks.

very much of the one at the back (Fig. A1.3a). As soon as the bases of
the triangles are made narrower (Fig. A1.3b) a much greater proportion
of the area of the triangle at the back separates from the one at the
front, even though the positions of the peaks remain stationary! An
over-simplified analogy, perhaps, but it may help?

Note: The above hopefully enables you to understand an important aspect of how
increasing replication improves the chances of separating two means statistically.
It is an important part of the story, but only part. There are two other effects
that increasing the number of replicates has. Firstly, the size of t (by which the
s.e.d.m. is multiplied to calculate the “least significant difference”) decreases with
more degrees of freedom (n – 1) as well as the s.e.d.m. does. This further helps
the chances of statistically separating two means Secondly, with more replicates,
our estimate of the difference between the two means gets nearer the true value.
If our estimate from few replicates was inflated, it will get smaller with more
replicates and therefore work against detecting the two means as significantly
different. However, if we have underestimated the true difference between the
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means with our few replicates, it will get larger with more replicates (at the
same time as a decreasing s.e.d.m.), and the chances of separating the means
statistically obviously improve.

“Cheap and cheerful” calculation of number of replicates
needed

This approach is based on Fig. A1.1. The calculation of the LSD as
t × √

2 × variance/n suggests we should be able to solve for the “n” if
we can make this the only unknown. We can do this if we put a numerical
value on that LSD which is needed to separate two means statistically.

If we square everything, the calculation becomes LSD2 = t2 × 2 ×
variance/n from which we can solve for:

n = t2 × 2 × variance

LSD2.

So in terms of the number of replicates needed for a difference between
means to be significantly different (if there is a true difference to be found),
the calculation becomes:

Number of replicates = t2 × 2 × variance

difference2

So to an example: Say we have an experiment with five treatments and
four replicates. The residual mean square (= variance) is 0.48 (4 × 3 =
12 d.f.) and we have not been able to detect that a difference between two
means of 0.7 is statisitically significant at P = 0.05. How many replicates
might have shown a statistically significant difference if one really exists?
t for 12 d.f. at P = 0.05 is 2.179.

Number of replicates needed = 4.75 × 2 × 0.48
0.49

= 9.31

Ten replicates should be enough. I call this the “cheap and cheerful”
method because, of course, t in an experiment with ten replicates would
be smaller than 2.179, making detection of the difference (if it exists) even
more certain!

The method can also be used with the variance obtained by some prelim-
inary sampling before rather than after an experiment is attempted, using
the number of samples – 1 as the d.f. for t. However, it will pay to repeat
the calculation with a d.f. based on that of the residual mean square of the
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intended experiment given the number of replicates suggested by the initial
calculation.

More accurate calculation of number of replicates needed

This approach is based on Fig. A1.2. As with the “cheap and cheerful”
method, this method can also be used for planning the size of an experiment
following some preliminary sampling to get an estimate of the variance.The
difference between the methods is that, in the more accurate method, we
allow for the reality that we cannot know how close our eventually sam-
pled difference between two means will be to the true difference between
them. In the “cheap and cheerful” approach we worked out the number
of replicates needed to detect a fixed difference between two means. In the
more accurate method, we visualize a normal distribution of the potential
differences between two means that samples might show and then we have
to make a decision on what area of the distribution of potential differences
we wish to attain significance should a difference between the means really
exist. This is illustrated in Fig. A1.2, where in (a) the area under the curve
of differences between populations x and y which would show as significant
(unshaded area) is smaller than in (b) (which has twice as many replicates).
Putting it another way, fewer of the mean x – mean y differences in (b) fall
into the area (shaded) which is not distinguishable from a curve around
a mean of zero (the average of differences between means drawn from a
single population).

So, in addition to using t for P = 0.05, we need to specifiy with what
certainty we wish to detect any real difference between the means that
exists (e.g. 60%, 70%, 80%, or 90% certainty?). Thus, if we opt for 80%
or 90%, we have to enlarge the two 2.5% probability tails (to make 5%
for P = 0.05) in the distribution of differences between the means by
respectively 20% and 10%, or respectively 0.4 and 0.2 in “P” terms. The
t value for the calculation then becomes a combination of two t values:
that for t at P = 0.05 plus that for t at the required level of certainty
(P = 0.4 or 0.2 in the description above). So that you can identify it, this
combination of t values will be shown in bold in brackets in the calculations
that follow.

To give the calculation procedure for the more accurate method, let’s
begin with a variance of 4.5, five treatments and a difference between
means of 2.5 to be detected as significant (if such a difference really exists;
it may not, of course). We decide we want a 90% certainty of detection
at P = 0.05, which will involve us in two values of t, for P = 0.05 and
P = 0.20 (for 90% certainty, see above). We now have to guess a number
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of replicates, say four. This makes 12 (5 treatments − 1 × 4 replicates − 1)
the residual d.f. for looking up t , which therefore is 2.179 and 1.356 for
P = 0.05 and P = 0.20 respectively.

Beginning with this guess of four replicates, we make our first calculation
of the number of replicates which might really be required:

Number of replicates = [t]2 × 2 × variance

(difference to be detected)2

It’s really pretty much the same as the “cheap and cheerful” calculation
except for the addition of the certainty factor. So we’ll turn the above
expression into the numbers for our example:

t(P=0.05, 12 d.f.) t(P=0.20, 12 d.f.) variance

 2.52 6.250

difference to be detected

[2.179 + 1.356]2 × 2  ×  4.50       12.496  ×  9.000
n = = = 17.994 

This suggests 18 replicates, so we repeat the calculation assuming 18
replicates. A repeat calculation is necessary because we have now changed
the residual degrees of freedom for t from 12 to 5 − 1 treatments × 18 − 1
replicates, i.e. 68. Table A2.1only gives t values for 50 and 120 d.f.; I would
just boldly guess 1.995 for P = 0.05 and 1.295 for P = 0.20. The new
calculation is therefore:

n = [1.995 + 1.295]2 × 2 × 4.500
2.52 = 10.824 × 9.000

6.250
= 15.566

The new answer of 16 replicates does not differ greatly from the 18
replicates we used for it, and I would “stick” at this point. A larger difference
would cause me to recalculate again with the new guess. If I decided to do
it here, the d.f. would now be (5−1)× (16−1) = 60. The new calculation
still comes out at 16 replicates, and would be:

n = [2.000 + 1.296]2 × 2 × 4.500
2.52 = 10.864 × 9.000

6.250
= 15.644

Sometimes the first answer is stupifyingly large, say 1889! Who could do
that number of replicates? But doesn’t it just show how useful the exercise
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is in alerting you that you might have been proposing a complete waste of
time? Should this befall you, all is not lost:

• A ridiculously large number of replicates is often a sign that the vari-
ance is large compared with the difference to be detected. This is usually
because the data are not normally distributed around the mean but
badly clumped. If this turns out to be true, then transforming the data
(e.g. to square root + 0.5) as discussed on page 38 can work mira-
cles! The variance of the transformed values can shrink dramatically (of
course the per cent difference to be detected will also need to be recal-
culated for the transformed data). In a student exercise involving the
sampling of the very clumped whitefly population found on the shrub
Viburnum tinus, we found that the 450 replicates needed to detect a dou-
bling of the population shrunk to about 40 after applying the square
root transformation.

• The second thing that will help is to lower our sights in relation to the
size of difference we want to be sure we could detect. If we cannot detect
a 25% difference with the maximum replication that is practicable, is
there any value in doing the experiment if we can only detect a 50%
difference? There may well be. In assessing varieties of beans for resis-
tance to blackfly, it might be nice to identify ones that lower the aphid
population by 25%, but that might not be enough reduction to satisfy
gardeners. However, they might buy the seed of a variety known to halve
the population.

• The temptation to go for maximum certainty of finding a significant dif-
ference between means is very tempting, so most people would probably
do the first calculation with a nominated certainty of 90% or over. How-
ever, if it becomes a choice between abandonig the experiment because
of the impractical replication needed or lowering the level of certainty,
you should certainly consider taking a chance on the latter.

How to prove a negative

It may be possible to “disprove” the null hypothesis (page 59) to the extent of
showing that the probability of two different mean values arising by chance
sampling of a single population is less than 0.05. It is much harder to
“prove” that the null hypothesis is true! Would the null hypothesis not have
held if you had done a few more replicates? At least the above calculation
does put you in the position of being able to say “If there had been a real
difference, then I really should have found it.”
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Table A2.1 Values of the statistic t. (Modified from Biometrika Tables for Statisticians,
vol. 1, eds E.S. Pearson and H.O. Hartley (1958), published by Cambridge University
Press, by kind permission of the publishers and the Biometrika Trustees.)

d.f. Probability of a larger values of t (two-tailed test)

0.5 0.4 0.3 0.2 0.1 0.05 0.02 0.01 0.001

1 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 636.62
2 .816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 31.60
3 .765 .978 1.250 1.638 2.353 3.182 4.541 5.841 12.94
4 .741 .941 1.190 1.533 2.132 2.776 3.747 4.604 8.610
5 .727 .920 1.156 1.476 2.015 2.571 3.365 4.032 6.859
6 .718 .906 1.134 1.440 1.943 2.447 3.143 3.707 5.959
7 .711 .896 1.119 1.415 1.895 2.365 2.998 3.499 5.405
8 .706 .889 1.108 1.397 1.860 2.306 2.896 3.355 5.041
9 .703 .883 1.100 1.383 1.833 2.262 2.821 3.250 4.781

10 .700 .879 1.093 1.372 1.812 2.228 2.764 3.169 4.587
11 .697 .876 1.088 1.363 1.796 2.201 2.718 3.106 4.437
12 .695 .873 1.083 1.356 1.782 2.179 2.681 3.055 4.318
13 .694 .870 1.079 1.350 1.771 2.160 2.650 3.012 4.221
14 .692 .868 1.076 1.345 1.761 2.145 2.624 2.977 4.140
15 .691 .866 1.074 1.341 1.753 2.131 2.602 2.947 4.073
16 .690 .865 1.071 1.337 1.746 2.120 2.583 2.921 4.015
17 .689 .863 1.069 1.333 1.740 2.110 2.567 2.898 3.965
18 .688 .862 1.067 1.330 1.734 2.101 2.552 2.878 3.922
19 .688 .861 1.066 1.328 1.729 2.093 2.539 2.861 3.883
20 .687 .860 1.064 1.325 1.725 2.086 2.528 2.845 3.850
21 .686 .859 1.063 1.323 1.721 2.080 2.518 2.831 3.819
22 .686 .858 1.061 1.321 1.717 2.074 2.508 2.819 3.792
23 .685 .858 1.060 1.319 1.714 2.069 2.500 2.807 3.767
24 .685 .857 1.059 1.318 1.711 2.064 2.492 2.797 3.745
25 .684 .856 1.058 1.316 1.708 2.060 2.485 2.787 3.725
26 .684 .856 1.058 1.315 1.706 2.056 2.479 2.779 3.707
27 .684 .855 1.057 1.314 1.703 2.052 2.473 2.771 3.690
28 .683 .855 1.056 1.313 1.701 2.048 2.467 2.763 3.674
29 .683 .854 1.055 1.311 1.699 2.045 2.462 2.756 3.659
30 .683 .854 1.055 1.310 1.697 2.042 2.457 2.750 3.646
40 .681 .851 1.050 1.303 1.684 2.021 2.423 2.704 3.551
60 .679 .848 1.046 1.296 1.671 2.000 2.390 2.660 3.460

120 .677 .845 1.041 1.289 1.658 1.980 2.358 2.617 3.373
∞ .674 .842 1.036 1.282 1.645 1.960 2.326 2.576 3.291
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Table A2.2 Multipliers for the multiple range test.

d.f. Number of treatments

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 12.7 19.1 23.2 26.3 28.6 30.5 32.1 33.4 34.7 35.8 36.7 37.6 38.4 39.2 39.8 40.4 41.0 41.6 42.1
2 4.31 5.89 6.93 7.70 8.29 8.79 9.21 9.57 9.89 10.18 10.43 10.66 10.88 11.07 11.25 11.41 11.57 11.72 11.86
3 3.18 4.18 4.83 5.31 5.69 5.99 6.26 6.49 6.69 6.87 7.04 7.18 7.32 7.44 7.56 7.67 7.76 7.86 7.95
4 2.78 3.56 4.07 4.45 4.74 4.99 5.20 5.37 5.54 5.68 5.81 5.92 6.06 6.13 6.22 6.31 6.39 6.46 6.53
5 2.57 3.25 3.69 4.01 4.26 4.48 4.65 4.81 4.94 5.07 5.18 5.28 5.37 5.46 5.54 5.61 5.68 5.74 5.81

6 2.45 3.07 3.46 3.75 3.98 4.16 4.33 4.47 4.59 4.70 4.80 4.89 4.98 5.05 5.12 5.19 5.25 5.31 5.37
7 2.36 2.94 3.31 3.58 3.78 3.95 4.10 4.24 4.35 4.45 4.54 4.62 4.70 4.77 4.84 4.90 4.96 5.01 5.06
8 2.31 2.86 3.20 3.46 3.66 3.82 3.96 4.08 4.19 4.28 4.37 4.45 4.52 4.58 4.65 4.70 4.76 4.81 4.86
9 2.26 2.79 3.13 3.37 3.55 3.71 3.84 3.96 4.06 4.15 4.23 4.31 4.38 4.44 4.50 4.55 4.60 4.65 4.70
10 2.23 2.74 3.06 3.30 3.47 3.62 3.75 3.86 3.96 4.04 4.12 4.19 4.26 4.33 4.38 4.43 4.48 4.53 4.57

11 2.20 2.70 3.01 3.24 3.41 3.56 3.68 3.78 3.88 3.97 4.04 4.11 4.17 4.23 4.29 4.34 4.38 4.43 4.48
12 2.18 2.67 2.97 3.19 3.36 3.50 3.62 3.73 3.82 3.90 3.97 4.04 4.10 4.16 4.21 4.26 4.31 4.35 4.39
13 2.16 2.64 2.93 3.15 3.32 3.45 3.57 3.67 3.76 3.84 3.91 3.98 4.04 4.09 4.14 4.19 4.24 4.29 4.32
14 2.14 2.62 2.91 3.12 3.28 3.42 3.53 3.63 3.71 3.79 3.86 3.93 3.99 4.04 4.09 4.14 4.19 4.23 4.26
15 2.13 2.60 2.88 3.09 3.25 3.38 3.49 3.59 3.68 3.75 3.82 3.88 3.94 4.00 4.04 4.09 4.14 4.18 4.21

16 2.12 2.58 2.86 3.07 3.22 3.35 3.46 3.56 3.64 4.43 3.78 3.85 3.90 3.95 4.00 4.05 4.09 4.13 4.17
17 2.11 2.56 2.84 3.05 3.20 3.32 3.44 3.53 3.61 3.68 3.75 3.81 3.87 3.92 3.97 4.02 4.06 4.09 4.13
18 2.10 2.55 2.83 3.03 3.17 3.30 3.42 3.51 3.59 3.66 3.73 3.78 3.84 3.89 3.94 3.98 4.02 4.06 4.09
19 2.09 2.54 2.81 3.01 3.16 3.28 3.39 3.48 3.56 3.63 3.70 3.76 3.81 3.86 3.91 3.95 4.00 4.03 4.07
20 2.09 2.53 2.80 3.00 3.15 3.27 3.37 3.46 3.54 3.61 3.68 3.73 3.79 3.84 3.89 3.93 3.97 4.00 4.04

24 2.06 2.50 2.76 2.95 3.09 3.21 3.31 3.40 3.48 3.54 3.61 3.66 3.71 3.76 3.80 3.85 3.89 3.92 3.95
30 2.04 2.46 2.72 2.91 3.04 3.15 3.25 3.34 3.42 3.48 3.54 3.59 3.64 3.68 3.73 3.77 3.80 3.87 3.87
40 2.02 2.43 2.68 2.86 2.99 3.10 3.34 3.27 3.35 3.42 3.46 3.52 3.57 3.61 3.66 3.69 3.73 3.76 3.79
60 2.00 2.40 2.64 2.81 2.94 3.05 3.14 3.22 3.29 3.34 3.40 3.45 3.49 3.54 3.58 3.61 3.64 3.68 3.71
120 1.98 2.38 2.61 2.77 2.90 3.00 3.08 3.16 3.22 3.28 3.33 3.38 3.42 3.46 3.50 3.54 3.56 3.60 3.63
∞ 1.96 2.35 2.57 2.73 2.85 2.95 3.03 3.10 3.16 3.22 3.27 3.31 3.35 3.39 3.42 3.46 3.49 3.51 3.54
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Table A2.3 Values of the statistic F. (Modified from Biometrika Tables for Statisticians,
vol. 1, eds E.S. Pearson and H.O. Hartley (1958), published by Cambridge University
Press, by kind permission of the publishers and the Biometrika Trustees.)

The three rows for each degree of freedom are the maximum values of F for respectively
P = 0.05, P = 0.01 and P = 001 (one-tailed test)

d.f. for
smaller
Mean
Square

d.f. for larger Mean Square

1 2 3 4 5 6 8 12 24 ∞

2 18.51 19.00 19.16 19.25 19.30 19.33 19.37 19.41 19.45 19.50
98.49 99.01 99.17 99.25 99.30 99.33 99.36 99.42 99.46 99.50

998 999 999 999 999 999 999 999 999 999

3 10.13 9.55 9.28 9.12 9.01 8.94 8.84 8.74 8.64 8.53
34.12 30.81 29.46 28.71 28.24 27.91 27.49 27.05 26.60 26.12

167.0 148.5 141.1 137.1 134.6 132.8 130.6 128.3 125.9 123.5

4 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.91 5.77 5.63
21.20 18.00 16.69 15.98 15.52 15.21 14.80 14.37 13.93 13.46
74.13 61.24 56.18 53.48 51.71 50.52 49.00 47.41 45.77 44.05

5 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.68 4.53 4.36
16.26 13.27 12.86 11.39 10.97 10.67 10.27 9.89 9.47 9.02
47.04 36.61 33.28 31.09 29.75 28.84 27.64 26.41 25.15 23.78

6 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.84 3.67
13.74 10.92 9.78 9.15 8.75 8.47 8.18 7.72 7.31 6.88
35.51 27.00 23.70 21.90 20.81 20.03 19.03 17.99 16.89 15.75

7 5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.57 3.41 3.23
12.25 9.55 8.45 7.85 7.46 7.19 6.84 6.47 6.07 5.65
29.25 21.69 18.77 17.20 16.21 15.52 14.63 13.71 12.73 11.70

8 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.12 2.93
11.26 8.65 7.59 7.01 6.63 6.37 6.03 5.67 5.23 4.86
25.42 18.49 15.83 14.39 13.49 12.86 12.05 11.20 10.30 9.34

9 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.07 2.90 2.71
10.56 8.02 6.99 6.42 6.06 5.80 5.47 5.11 4.73 4.31
22.86 16.59 13.98 12.50 11.71 11.13 10.37 9.57 8.72 7.81

10 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.91 2.74 2.54
10.04 7.56 6.55 5.99 5.64 5.39 5.06 4.71 4.33 3.91
21.04 14.91 12.55 11.28 10.48 9.93 9.20 8.44 7.64 6.76

11 4.64 3.98 3.59 3.36 3.28 3.09 2.95 2.79 2.61 2.40
9.65 7.20 6.22 5.67 5.32 5.07 4.74 4.40 4.02 3.60

19.68 13.81 11.56 10.35 9.58 9.05 8.35 7.63 6.85 6.00

12 4.75 3.38 3.49 3.26 3.11 3.00 2.85 2.69 2.50 2.30
9.33 6.93 5.95 5.41 5.06 4.82 4.50 4.16 3.78 3.36

18.64 12.97 10.81 9.63 6.89 8.38 7.71 7.00 6.25 5.42
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Table A2.3 Continued

d.f. for
smaller
Mean
Square

d.f. for larger Mean Square

1 2 3 4 5 6 8 12 24 ∞

13 4.67 3.80 3.41 3.18 3.02 2.92 2.77 2.60 2.42 2.21
9.07 6.70 5.74 5.20 4.86 4.62 4.30 3.96 3.59 3.16

17.81 12.31 10.21 9.07 8.35 7.86 7.21 6.52 5.78 4.97

14 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.35 2.13
8.86 6.51 5.56 5.03 4.69 4.46 4.14 3.80 3.43 3.00

17.14 11.78 9.73 8.62 7.92 7.43 6.80 6.13 5.41 4.60

15 4.54 3.68 3.29 3.00 2.90 2.79 2.64 2.48 2.29 2.07
8.68 6.36 5.42 4.89 4.56 4.32 4.00 3.67 3.29 2.87

16.58 11.34 9.34 8.25 7.57 7.09 6.47 5.81 5.10 4.31

16 4.49 3.63 3.234 3.01 2.85 2.74 2.59 2.42 2.24 2.01
8.53 6.23 5.29 4.77 4.44 4.20 3.89 3.55 3.18 2.75

16.12 10.97 9.00 7.94 7.27 6.80 6.20 5.55 4.85 4.06

17 4.45 3.59 3.20 2.96 2.81 2.70 2.55 2.38 2.19 1.96
8.40 6.11 5.18 4.67 4.34 4.10 3.79 3.45 3.08 2.65

15.72 10.66 8.73 7.68 7.02 6.56 5.96 5.32 4.63 3.85

18 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.15 1.92
8.28 6.01 5.09 4.58 4.25 4.01 3.71 3.37 3.01 2.57

15.38 10.39 8.49 7.46 6.81 6.35 5.76 5.13 4.45 3.67

19 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.31 2.11 1.83
8.18 5.93 5.01 4.50 4.17 3.94 3.63 3.30 2.92 2.49

15.08 10.16 8.28 7.27 6.61 6.18 5.59 4.97 4.29 3.51

20 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.28 2.08 1.84
8.10 5.85 4.94 4.43 4.10 3.87 3.56 3.23 2.86 2.42

14.82 9.95 8.10 7.10 6.46 6.02 5.44 4.82 4.15 3.38

21 4.32 3.47 3.07 2.84 2.68 2.57 2.42 2.25 2.05 1.81
8.02 5.78 4.87 4.37 4.04 3.81 3.51 3.17 2.80 2.36

14.59 9.77 7.94 6.95 6.32 5.88 5.31 4.70 4.03 3.26

22 4.30 3.44 3.05 2.82 2.66 2.55 2.40 2.23 2.03 1.78
7.94 5.72 4.82 4.31 3.99 3.75 3.45 3.12 2.75 2.30

14.38 9.61 7.80 6.81 6.19 5.76 5.19 4.58 3.92 3.15

23 4.28 3.42 3.03 2.80 2.64 2.53 2.38 2.20 2.00 1.76
7.88 5.66 4.76 4.26 3.94 3.71 3.41 3.07 2.70 2.26

14.19 9.47 7.67 6.70 6.08 5.65 5.09 4.48 3.82 3.05

24 4.26 3.40 3.01 2.78 2.62 2.51 2.36 2.18 1.98 1.73
7.82 5.61 4.72 4.22 3.90 3.67 3.36 3.03 2.66 2.21

14.03 9.34 7.55 6.59 5.98 5.55 4.99 4.39 3.74 2.97

25 4.24 3.38 2.99 2.76 2.60 2.49 2.34 2.16 1.96 1.71
7.77 5.57 4.68 4.18 3.86 3.63 3.32 2.99 2.62 2.17

13.87 9.22 7.45 6.49 5.89 5.46 4.91 4.31 3.66 2.89

(Continued)



Van Emden: “A002” — 2008/1/31 — 10:21 — PAGE 318 — #5

318 Appendix 2

Table A2.3 Continued

d.f. for
smaller
Mean
Square

d.f. for larger Mean Square

1 2 3 4 5 6 8 12 24 ∞

26 4.22 3.37 2.98 2.74 2.59 2.47 2.32 2.15 1.95 1.69
7.72 5.53 4.64 4.14 3.82 3.59 3.29 2.96 2.58 2.13

13.74 9.12 7.36 6.41 5.80 5.38 4.83 4.24 3.59 2.82

27 4.21 3.35 2.96 2.73 2.57 2.46 2.30 2.13 1.93 1.67
7.68 5.49 4.60 4.11 3.78 2.56 3.26 2.93 2.55 2.10

13.61 9.02 7.27 6.33 5.73 5.31 4.76 4.17 3.52 2.75

28 4.20 3.34 2.95 2.71 2.56 2.44 2.29 2.12 1.91 1.65
7.64 5.45 4.57 4.07 3.75 3.53 3.23 2.90 2.52 2.06

13.50 8.93 7.19 6.25 5.66 5.24 4.69 4.11 3.46 2.69

29 4.18 3.33 2.93 2.70 2.54 2.43 2.28 2.10 1.90 1.64
7.60 5.42 4.54 4.04 3.73 3.50 3.20 2.87 2.49 2.03

13.39 8.85 7.12 6.19 5.59 5.18 4.65 4.05 3.41 2.64

30 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.09 1.89 1.62
7.56 5.39 4.51 4.02 3.70 3.47 3.17 2.84 2.47 2.01

13.29 8.77 7.05 6.12 5.53 5.12 4.58 4.00 3.36 2.59

35 4.12 3.26 2.87 2.64 2.48 2.37 2.22 2.04 1.83 1.57
7.42 5.27 4.40 3.91 3.59 3.37 3.07 2.74 2.37 1.90

12.89 8.47 6.79 5.88 5.30 4.89 4.36 3.79 3.16 2.38

40 4.08 3.23 2.84 2.61 2.45 2.34 2.18 2.00 1.79 1.52
7.31 5.18 4.31 3.83 2.51 3.29 2.99 2.66 2.29 1.82

12.61 8.25 6.60 5.70 5.13 4.73 4.21 3.64 3.01 2.23

45 4.06 3.21 2.81 2.58 2.42 2.31 2.15 1.97 1.76 1.48
7.23 5.11 4.25 3.77 3.45 3.23 2.94 2.61 2.23 1.75

12.39 8.09 6.45 5.56 5.00 4.61 4.09 3.53 2.90 2.12

50 4.03 3.18 2.79 2.56 2.40 2.29 2.13 1.95 1.74 1.44
7.17 5.06 4.20 3.72 3.41 3.19 2.89 2.56 2.18 1.68

12.22 7.96 6.34 5.46 4.90 4.51 4.00 3.44 2.82 2.02

60 4.00 3.15 2.76 2.52 2.37 2.25 2.10 1.92 1.70 1.39
7.08 4.98 4.13 3.65 3.34 3.12 2.82 2.50 2.12 1.60

11.97 7.77 6.17 5.31 4.76 4.37 3.87 3.31 2.69 1.90

70 3.98 3.13 2.74 2.50 2.35 2.23 2.07 1.89 1.67 1.35
7.01 4.92 4.07 3.60 3.29 3.07 2.78 2.45 2.07 1.53

11.80 7.64 6.06 5.20 4.66 4.28 3.77 3.23 2.61 1.78

80 3.96 3.11 2.72 2.49 2.33 2.21 2.06 1.88 1.65 1.31
6.96 4.88 4.04 3.56 3.26 3.04 2.74 2.42 2.03 1.47

11.67 7.54 5.97 5.12 4.58 4.20 3.70 3.16 2.54 1.72

90 3.95 3.10 2.71 2.17 2.32 2.20 2.04 1.86 1.64 1.28
6.92 4.85 4.01 3.53 3.23 3.01 2.72 2.39 2.00 1.43

11.57 7.47 5.91 5.06 4.53 4.15 3.87 3.11 2.50 1.66



Van Emden: “A002” — 2008/1/31 — 10:21 — PAGE 319 — #6

Statistical tables 319

Table A2.3 Continued

d.f. for
smaller
Mean
Square

d.f. for larger Mean Square

1 2 3 4 5 6 8 12 24 ∞

100 3.94 3.09 2.70 2.46 2.30 2.19 2.03 1.85 1.63 1.26
6.90 4.82 3.98 3.51 3.21 2.99 2.69 2.37 1.98 1.39

11.50 7.41 5.86 5.02 4.48 4.11 3.61 3.07 2.46 1.61

∞ 3.84 3.00 2.60 2.37 2.21 2.09 1.94 1.75 1.52 1.00
6.64 4.62 3.78 3.32 3.02 2.80 2.51 2.18 1.79 1.00

10.83 6.91 5.42 4.62 4.10 3.74 3.27 2.74 2.13 1.00

Table A2.4 Values of the statistic Fmax. (From Biometrika Tables for Statisticians, vol. 1,
eds E.S. Pearson and H.O. Hartley (1958), published by Cambridge University Press, by
kind permission of the publishers and the Biometrika Trustees.)

Divide the largest of several variances by the smallest to obtain the statistic Fmax. If
this value is smaller than the value in the table (where the n of n − 1 is the number of
replicates of each treatment), the variances can be assumed to be homogenous.

n − 1 Number of treatments

2 3 4 5 6 7 8 9 10 11 12

2 39.0 87.5 142 202 266 333 403 475 550 626 704
3 15.4 27.8 39.2 50.7 62.0 72.9 83.5 93.9 104 114 124
4 9.60 15.5 20.6 25.2 29.5 33.6 37.5 41.1 44.6 48.0 51.4
5 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9
6 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7
7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8
8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7
9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7
10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34
12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48
15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93
20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59
30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39
60 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36
∞ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table A2.5 Values of the statistic χ2. (Abridged with kind
permission from NIST/SEMATECH e-Handbook of Statistical Methods –
www.itl.nist.gov/div898/handbook, June 2003.)

d.f. Probability of exceeding the critical value

0.10 0.05 0.025 0.01 0.001

1 2.706 3.841 5.024 6.635 10.828
2 4.605 5.991 7.378 9.210 13.816
3 6.251 7.815 9.348 11.345 16.266
4 7.779 9.488 11.143 13.277 18.467
5 9.236 11.070 12.833 15.086 20.515
6 10.645 12.592 14.449 16.812 22.458
7 12.017 14.067 16.013 18.475 24.322
8 13.362 15.507 17.535 20.090 26.125
9 14.684 16.919 19.023 21.666 27.877
10 15.987 18.307 20.483 23.209 29.588
11 17.275 19.675 21.920 24.725 31.264
12 18.549 21.026 23.337 26.217 32.910
13 19.812 22.362 24.736 27.688 34.528
14 21.064 23.685 26.119 29.141 36.123
15 22.307 24.996 27.488 30.578 37.697
16 23.542 26.296 28.845 32.000 39.252
17 24.769 27.587 30.191 33.409 40.790
18 25.989 28.869 31.526 34.805 42.312
19 27.204 30.144 32.852 36.191 43.820
20 28.412 31.410 34.170 37.566 45.315
21 29.615 32.671 35.479 38.932 46.797
22 30.813 33.924 36.781 40.289 48.268
23 32.007 35.172 38.076 41.638 49.728
24 33.196 36.415 39.364 42.980 51.179
25 34.382 37.652 40.646 44.314 52.620
26 35.563 38.885 41.923 45.642 54.052
27 36.741 40.113 43.195 46.963 55.476
28 37.916 41.337 44.461 48.278 56.892
29 39.087 42.557 45.722 49.588 58.301
30 40.256 43.773 46.979 50.892 59.703
35 46.059 49.802 53.203 57.342 66.619
40 51.805 55.758 59.342 63.691 73.402
45 57.505 61.656 65.410 69.957 80.077
50 63.167 67.505 71.420 76.154 86.661
60 74.397 79.082 83.298 88.379 99.607
70 85.527 90.531 95.023 100.425 112.317
80 96.578 101.879 106.629 112.329 124.839
90 107.565 113.145 118.136 124.116 137.208
100 118.498 124.342 129.561 135.807 149.449
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Solutions to “Spare-time
activities”

The aim of these “solutions” is not only to provide the end answer, but also
sufficient of the working towards that answer to enable you to identify – if
you have gone wrong – exactly at what stage in the computation you have
lacked the necessary understanding of the calculation involved.

However, pushing buttons on a calculator can be rather error prone.
Don’t be surprised if a wrong answer turns out not to be your failure to
grasp the statistical procedures but merely “human error”!

Answers will also differ slightly depending on how many decimal places
you keep when you write down intermediate answers from a calculator and
use it for further calculations (look at Box A3.1 if you need convincing).
So don’t expect total agreement with my numbers, but agreement should
be close enough to satisfy you that you have followed the correct statistical
procedures.

Chapter 3

1 Here are 9 numbers totalling 90; the mean for calculating the deviations
is therefore 10.

The 9 respective deviations from the mean are therefore −1, 0, +3,
−4, −2, +2, +3, 0, and −1. Squaring and adding these deviations
should give the answer 44 (minus deviations become + when squared).

The variance of the numbers is these summed squared deviations from
the mean divided by the degrees of freedom (n − 1), i.e. 44/8 = 5.50.

2 The total of the 16 numbers is 64; the mean is 4.
Squaring and adding the 16 deviations from the mean (−3, −1, −2,

+2, etc.) = 40.
Variance = 40/(n − 1) = 40/15 = 2.67.
Standard deviation = √

2.67 = 1.63.
Mean ± standard deviation = 4 ± 1.63.
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BOX A3.1

On the left are different versions of the figure 5.555556 rounded (up in this
case) to decreasing numbers of decimal places, and on the right the result of
squaring that figure, with the answer rounded to the same number of decimal
places:

5.555556 squared = 30.864202
5.55556 squared = 30.86425
5.5556 squared = 30.8645
5.556 squared = 30.869
5.56 squared = 30.91
5.6 squared = 31.4

This is the result of just one operation! With successive further mathematical
steps then involving that number with others, additional variations in the digits
will develop.

8 is a deviation of 4 from the mean. It is therefore 4/1.63 = 2.45
standard deviations from the mean.

Chapter 4

1 (a) Correction factor
((∑

x
)2

/n
)

= 902/9 = 900.

Added squares
∑

x2 = 92 + 102 + 132 + · · · + 92 = 944.

Sum of squares of deviations from the mean
(∑

x2 − (∑
x
)2

/n
)

=
944 − 900 = 44.

Variance = 44/8 = 2.67. Checks with solution for exercise in
Chapter 3.

(b) Correction factor
((∑

x
)2

/n
)

= 642/16 = 256.

Added squares
∑

x2 = 12 + 32 + 22 + · · · + 22 = 296.

Sum of squares of deviations from the mean
(∑

x2 − (∑
x
)2

/n
)

=
296 − 256 = 40.

Variance = 40/15 = 5.5. Checks with solution for exercise in
Chapter 3.

2 Mean = 2.47. Variance = 0.0041. Standard deviation (s) = 0.084.
2.43 = mean−0.045 = mean−(0.045/0.064)s = 2.47−0.703s.
2.99 = mean + 0.515 = mean + (0.515/0.064)s = 2.47 + 8.05s.
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Chapter 7

The key to these calculations is to realize that the variance gives you
s2/n, which when doubled gives 2s2/n. The square root of this will be
the standard error of differences between two means.

1 (a) Variance (of means of 10 plants) = 1633.
Therefore if s2/10 = 1633, then s2 (i.e. variance of individual

plants) is 1633 × 10 = 16,330.
(b) Variance (of means of 10 plants) = 1633.

Therefore variance of differences between two means = 3266.
Therefore s.e.d.m. = 57.15.
The actual difference (223.1 g on one side and 240 g on the other

side of the path) is 16.9 g, only 0.3 s.e.d.m. worths!
We can therefore conclude that the two areas could be

combined.
2 Variance (of means of 5 guesses per observer) = 285.5.

Therefore variance of differences between two means = 571.
Therefore s.e.d.m. = 23.9.
Thus any guess of 2 × 23.9 = 47.8 higher for any observer would

safely suggest a larger number of seeds.
As the true mean of the first sample was 163, any observer should

be able to distinguish between 163 and (163 + 47.8) = 211 seeds
in a mean of five guesses.

3 (a) Standard deviation = √
37.4 = 6.12, so mean + 2 s = 135 +

12.24 = 147.24 g.
(b) Standard error of 5 leeks = √

37.4/5 or 6.12/
√

5 = 2.73, so mean
– 0.7 s.e. = 135 − 1.91 = 133.09 g.

(c) 1.4 × 6.12 = 8.57 g.
(d) s.e.d.m. for means of 8 leeks = √

2 × 37.4/8 = 9.35, therefore a
mean of 8 leeks of 135− (2×9.35) = 116.3 g is the maximum
weight significantly lower than 135 g.

Chapter 8

1 Var. A Var. B

Mean 4.100 4.484
Difference 0.384
Sum of squares 5.540 3.565
Pooled variance 0.253
s.e.d.m. 0.163
Calculated t 2.354
t for P = 0.0536 d.f. 2.030 (35 d.f. is nearest

lower value in table)
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Var. B significantly (P < 0.05) outyields Var. A by 0.384 kg
per plot.

2 Compost Soil

Mean 42.67 28.90
Difference 13.77
Sum of squares 318.00 92.90
Pooled variance 15.804
s.e.d.m. 1.568
Calculated t 8.780
t for P = 0.0526d 2.056
Even at P < 0.001, the grower can be satisfied that bought-in

compost gives superior (about 52%) germination of Tagetes to
his own sterilized soil.

3 Constituent A Constituent B

Mean 5.88 5.00
Difference 0.88

Working on differences between A and B:

Correction factor 10.173 (keeping + and − signs)
Sum of squares 9.337
Variance 0.7814
Variance of means of 0.0601 (= 0.7814/13)
13 differences

s.e.d.m. 0.2451
Calculated t 3.590
t for P = 0.0512 d.f. 2.179
The experimenter can be 99% sure (P < 0.01) that he has

shown that constituent B does not run as far (mean of 13 runs is
0.88 cm less) as constituent A. It can therefore be deduced that
the two constituents have different physicochemical properties,
i.e. they are different compounds.

Chapter 11

1 Sweet corn – a randomized block experiment
Correction factor = 15,311.587

Source d.f. Sum of squares Mean square Variance ratio P

Density 4 380.804 95.201 36.124 <0.001
Block 4 64.491 16.123 6.118 <0.01
Residual 16 42.166 2.635

TOTAL 24 487.461
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s.e.d.m. = √
2 × 2.635/5 = 1.03

t (P = 0.05) for 16 d.f. = 2.12

Therefore any means differing by more than 1.03 × 2.12 = 2.18 are
significantly different.

20/m2 25 30 35 40
Means 17.58 < 23.64 < 27.18 = 28.20 = 27.14

2 Potatoes – a fully randomized experiment
Correction factor = 1206.702

Source d.f. Sum of Mean Variance P
squares square ratio

Species 3 372.625 124.208 29.394 <0.001
Residual 36 152.122 4.226

TOTAL 39 524.747

s.e.d.m. = √
2 × 4.226/10 = 0.92

t (P = 0.05) for 36 d.f. = 2.04

Therefore any means differing from the mean of B by more than
0.92 × 2.04 = 1.88 are significantly different.

A B C D
Means 1.30 5.11 5.65 9.91

Mean A is significantly lower and mean D significantly higher
than the mean of B. However, in the test D–B, we are not testing
two means adjacent in order of magnitude (5.65 lies in between).
This increases the probability of the difference arising by chance and a
multiple range test (see much later in Chapter 16) should really be used.

3 Lettuces – a randomized block experiment
Correction factor = 360.622

Source d.f. Sum of Mean Variance P
squares square ratio

Variety 5 1.737 0.347 115.667 <0.001
Block (= student) 7 0.056 0.008 2.667 ns
Residual 35 0.094 0.003

TOTAL 47 1.887
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It is clear that students (= blocks, i.e. also position) have had no
significant effect on lettuce yields, whereas seed packets have had a
highly significant effect.

4 Zinnia plants – a fully randomized experiment
Correction factor = 183,384.14

Source d.f. Sum of Mean square Variance P
squares ratio

Treatment 2 406.157∗ 203.079 2.004 ns
Residual 36 3647.700 101.325

TOTAL 27∗ 4053.857

An LSD test is not necessary – neither growth promoter signifi-
cantly accelerates flowering at least with this amount of replication!
The means are 75.8 days for P-1049 and 80.7 for P-2711, compared
with 85.3 days with no promoter.

∗Effect of missing data for P-1049. Total plots are 28, giving 27 degrees
of freedom. The added squares need to be calculated separately for each
treatment as there will be a different divisor:

Sum of squares for treatments = 8532

10
+ 6062

8
+ 8072

10
− Correction factor

Chapter 13 – Viticulture experiment

Correction factor = 2270.898

Source d.f. Sum of Mean square Variance P
squares ratio

Variety 3 178.871 59.624 34.27 <0.001
Training 1 11.057 11.057 6.35 <0.05
Interaction 3 13.560 4.520 2.60 ns

Treatments 7 203.488 29.070 16.71 <0.001

Blocks 4 14.247 3.562 2.05 ns
Residual 28 48.710 1.740

TOTAL 39 266.445

The interaction is NOT significant. All four varieties therefore
respond similarly to the two training systems.
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Chapter 14 – Plant species with fungicides and soils

Correction factor = 264,180.17

Source d.f. Sum of Mean Variance P
squares square ration

Species 2 9,900.11 4,950.06 52.60 <0.001
Soils 2 16,436.11 8,218.06 87.33 <0.001
Fungicide 1 1,932.02 1,932.02 20.53 <0.001
Species × Soils 4 658.44 164.61 1.75 ns
Species × Fungicides 2 194.03 97.02 1.03 ns
Soils × Fungicides 2 1,851.14 925.57 9.84 <0.001

Species × Soils × Fungicides 4 1,069.65 267.41 2.84 <0.05
Treatments 17 32,041.50 1,894.79 20.03 <0.001
Replicates 2 356.77 178.39 1.90 ns
Residual 34 3,199.40 94.10

TOTAL 53 35,597.67

The numbers already calculated for you when you were presented with
the original data are shown in italics.

The ONE significant two-factor interaction is that between Soils
and Fungicides.

Chapter 15 – Potato experiment

Correction factor = 98,790.125

Source of Degrees of Sum of Mean Variance P
variation freedom squares square ratio

Main plots
Ridging 1 840.500 840.500 24.566 <0.01
Replicates 7 1017.875 145.411 4.250 <0.05
Main plot residual 7 239.500 34.214
Main plot total 15 2097.875

Sub-plots
Tuber size 1 1800.000 1800.000 69.25 <0.001
Ridging × Tuber size 1 36.125 36.125 1.39 ns
Sub-plot residual 14 363.875 25.991
Sub-plot total 16 2200.000

TOTAL 31 4297.875

The interaction (Ridging × Tuber size) is far from significant.
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Chapter 16

1 The analysis of variance backwards – the lentil watering regime
experiment.

For the solution to this exercise, I’ll go into rather more detail than
usual, as the route to the solution and the order of the steps involved is
as much part of the solution as the final analysis table.

If you’ve succeeded with the exercise, you can skip the rest and go
straight to the table to check your solution!

Step 1. Convert the table of means to a table of totals and supertotals,
based on each figure in the original table being the mean of four repli-
cates. Give each figure the appropriate subscript, showing how many
plots contribute to the total:

Water regimes

W1 W2 W3 W4 W5
Planting
dates
D1 92.04 88.04 103.64 116.84 112.84 513.220
D2 86.44 133.64 122.04 128.84 82.84 553.620
D3 52.84 80.04 76.04 90.04 80.04 378.820

231.212 301.612 301.612 335.612 275.612 1445.660

Step 2. Calculate the correction factor: 1445.62/60 = 34, 829.321
Step 3. Compose the lead line: 3 planting dates × 5 watering regimes

(= 15 treatments) × 4 replicates = 60 plots and from this the skeleton
analysis of variance table:

Correction factor = 34,829.321
Source d.f. Sum of Mean Variance P

squares square ratio

Dates 2
Waterings 4
Interaction 8

Treatments 14

Replicates 3
Residual 42

TOTAL 59

Step 4. This is where we start going backwards, by beginning with
PHASE 3. Remember that Phase 3 in a factorial experiment uses
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nothing else but the supertotals shown in italics at the ends of the
columns and rows in the table of totals above. So we can do the SqADS
in Phase 3 for the main effects of Dates and Waterings.

Step 5. PHASE 2. Again, remember Phase 2 utilizes only the replicate
and individual treatment totals. We have the latter, so we can SqADS
for treatments. By subtraction, we can then find the sum of squares for
the interaction, the last item in the Phase 3 part of the analysis. We have
to leave the replicate line blank. So far this gives us the following table
(the numbers against each source of variation give the suggested order
of calculation):

Correction factor = 34,829.321
Source d.f. Sum of Mean square Variance P

squares ratio

➀ Dates 2 837.511
➁ Waterings 4 500.785
➃ Interaction 8 435.903

➂ Treatments 14 1774.199

Replicates 3
Residual 42

TOTAL 59

Step 6. THE RESIDUAL SUM OF SQUARES. Normally, we find the
residual sum of squares by subtraction, but we cannot do this with-
out the replicate sum of squares. So we have to work out the residual
backwards from the LSD. If you remember, the LSD is:

t(P=0.05for the 42 residual d.f.) × s.e.d.m.

where s.e.d.m. = √
(2 × residual mean square)/n

2.021 is the nearest t in tables, and means are of 4 plots. Therefore the
LSD, which is given as 5.7 = 2.021 × √

(2 × residual mean square)/4.
If we square everything, the equation becomes: 32.49 = 4.084 × 2 ×
RMS/4. Now we have the RMS as the one unknown, which we can
solve as:

2 × RMS = 32.49
4.084

× 4 = 31.822 so RMS = 15.911

This is then calculation ➄ in the table, and multiplying it by the
residual d.f. (42) gets us backwards to calculation ➅, the residual sum
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of squares. The rest of the analysis table can then be completed:

Correction factor = 34,829.321
Source d.f. Sum of Mean Variance P

squares square ratio

➀ Dates 2 837. 511 418.756 26.319 <0.001
➁ Waterings 4 500.785 125.196 7.869 <0.001
➃ Interaction 8 435.903 54.488 3.425 <0.01

➂ Treatments 14 1774.199 126.729 7.965 <0.001

Replicates 3 cannot be calculated
Residual 42 ➅ 668.262 ➄ 15.911

TOTAL 59 cannot be calculated

I have done a full multiple range test on the data, and (arranging the
means in order of magnitude of the main date and watering means)
the following table of means and significant differences (as shown by the
a,b,c . . . notation) results:

Water regimes

W4 W2 W3 W5 W1

Planting dates
D2 32.2 33.4 30.5 20.7 21.6

a a ab cdef bcdef

D1 29.2 22.0 25.9 28.2 23.0
abc bcde abcd abcd bcd

D3 22.5 20.0 19.0 20.0 13.2
bcd cdef ef cdef g

It is hard to find any general points to make from this table, other
than that watering regimes do not significantly improve the nodula-
tion of lentils planted on D1 in comparison with the unirrigated control
(W5), and that high irrigation at either the vegetative (W3) or reproduc-
tive (W2 or W4) phase improves the nodulation of D2 plants over the
control. The results for D3 plants are especially hard to interpret. High
irrigation throughout (W4) givers superior nodulation to high irriga-
tion only in the vegetative stage (W3), but the very low nodulation in
W1 (low irrigation throughout) compared with the unirrigated control
seems a strange phenomenon.
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2 The viticulture experiment in Chapter 13.
(a) As there is no interaction, there cannot be evidence that different

varieties do better under different training systems.
(b) For (b) it is worth having available the overall means of the two

factors:

Traditional 7.01. High-wire 8.06 F-test shows these means differ significantly.

For variety, LSD = 2.021 × √
(2 × 1.74)/10 = 1.19, so separation of means is:

Huchselr. 9.69 Pinot B. 9.16 Semillon 6.98 Müller-Th. 4.32
a a b c

With no interaction, the significant overall effect of training systems
means that the superiority of the high-wire system will increase the
yield of both varieties. But this could be cancelled out by the lower yield
of Pinot Blanc than Huchselrebe. The two means to test are 8.37 (the
5 plots of Trad. Huchs.) and 9.39 (the 5 plots of High W. Pinot). The
difference is 1.02 more on High W. Pinot. The appropriate LSD is now
that for means of 5, not 10, values. We therefore need to replace the 10
in the equation above for the LSD with 5 to get 1.69. We cannot therefore
say the 1.10 tonnes/ha increase from switching is real.

3 The fungicidal seed dressing experiment in Chapter 14.
You were asked to interpret the Soils × Fungicides interaction rep-

resented by the following table of 6 means, each the mean of
9 plots.

The means are as follows (again arranged in order of magnitude of
the main effects of the two factors):

Sand Silt loam Clay

With Fungicide 86.88a 81.00ab 59.89c
Untreated 85.78a 74.44b 31.67d

The LSD is 2.04 × √
(2 × 94.10)/9 = 9.33. There are no differences

between nonadjacent means that require a multiple range test, and the
means separate as shown by the letters on the table above.

The important horticultural feature of the interaction is that fungi-
cide increases germination (compared with the untreated) significantly
ONLY in clay soil. This is because the increased moisture-holding capac-
ity of clay makes seed-rotting fungi more prevalent, i.e. there is not really
a problem for the fungicide to control in lighter soils! Another less impor-
tant element in the interaction is that, whereas per cent germination is
significantly better in loam than sand with untreated seeds, the effect is
not significant where fungicide has been used.
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4 The Chapter 15 split-plot potato experiment
As the interaction is not significant, and both factors are only at two

levels, the F-tests in the analysis of variance are all that is needed to show
that ridging yields significantly more tubers per plot (mean 60.69) than
planting on the flat (mean 50.44) and that significantly more tubers
per plot (mean 63.06) are produced by sowing large than small tubers
(mean 48.06).

Chapter 17

1 Regression of weight (y) of bean seeds on length (x).

Regression coefficient (b) = 0.7397
Intercept at x = 0 (a) = −0.4890 (note the negative intercept; a bean
of zero length weighs less than nothing!)

Therefore regression equation is Weight in g = −0.4890 + (0.7397 ×
length in cm). To draw the graph we use this equation to calculate 3
values of y from 3 values of x. The first is easy, for mean x (2.04) the
value of y will be mean y (1.02).

The other two x values are up to you, but I usually use two fairly
extreme values within the range of the data; here I pick x as 1.6
and 2.4:

For x = 1.6, y = −0.4890 + (0.7397 × 1.6) = 0.695
For x = 2.04, y = −0.4890 + (0.7397 × 2.4) = 1.286

Figure A3.1 is the graph you should have drawn.
To test the significance of the slope (b), we have to carry out an analysis

of variance:

Source d.f. Sum squares Mean Variance P
square ratio

Regression 1 0.3196 0.3198 33.313 <0.001
Deviations 8 0.0764 0.0096

TOTAL 9 0.3960

Thus the slope of the regression is highly significant.
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Fig. A3.1 Regression line of bean weight on bean length for “spare-time activity” 1
of Chapter 17. Closed circles, data points; open diamonds, points calculated in order to
draw the regression line.

The regression has accounted for 0.3196 out of 0.3980 of the total
variation (as sum of squares) of seed weight giving a coefficient of
variation (r2) of 0.8030.

2 Predicting yield of strawberry plants from number of flower heads.

Regression coefficient (b) = 0.0498
Intercept at x = 0 (a) = 0.4637

Therefore regression equation is Yield (kg) = 0.4637 + (0.0498 ×
number of flower heads)

To answer the second question, we have to carry out an analysis of
variance:

Source d.f. Sum squares Mean Variance P
square ratio

Regression 1 0.3667 0.3667 18.592 <0.001
Deviations 13 0.2564 0.0197

TOTAL 14 0.6231

Thus the regression has accounted for 0.3667 out of 0.6231 of the
total variation (as sum of squares) of yield from the mean yield. This
is only 58.9%. Therefore, the relationship between yield and number of
flower heads is not adequate to substitute a count of flower heads for a
measurement of yield, given that 80% accuracy was required.
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Chapter 18

1 Inspection and washing leaves for counting aphids.
Expected values will be the number in an instar found by washing ×

total by inspection ÷ total by washing:

Instar 1 2 3 4 Adult

Observed 105 96 83 62 43
Expected 133.2∗ 94.4 70.4 52.1 38.9
χ2 (4d.f.)

= ∑ (O−E)2

E

5.99 0.03 2.26 1.88 0.43 = 10.56 (P < 0.05)

∗ i.e. 389 × 161/470

The observed data therefore deviate significantly from the expected.
The largest χ2 value is for the first instar, therefore run the test again
with the first instar omitted. Expected values will now reflect the smaller
inspection and washing totals 284 and 309 respectively.

Instar 2 3 4 Adult

Observed 96 83 62 43
Expected 104.8∗ 78.1 57.9 43.2
χ2 (3 d.f.)
= ∑ (O−E)2

E

0.74 0.31 0.29 0.00 = 1.34 (ns)

∗ i.e. 284 × 114/309

The observed and expected values now fit well. Clearly, inspection
underestimates the proportion of aphids in the first instar (probably
because some of these very small aphids are missed by eye).

2 Movement of snails on a brick wall
This analysis for χ2 with heterogeneity involves numbers less than

10, so Yates’ correction for continuity should be applied:

Trial Upwards Downwards Expected value χ2 (1 d.f.)

1 7 3 5 0.90∗
2 5 4 4.5 0.00
3 4 4 4 0.00
4 6 4 5 0.10
5 5 5 5 0.00
6 7 2 4.5 1.78

χ2(6 d.f.) 2.78

Overall 34 22 28 χ2 (1 d.f.) 2.16

∗Example calculation for 7 versus 3, expected value 5 = 2 × (2−0.5)2

5 = 0.90
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Analysis table:

d.f. χ2 P

Overall 1 2.16 ns
Heterogeneity 5 0.62 ns

Total 6 2.78

Neither the overall or heterogeneity χ2 values are anywhere near sig-
nificant. In spite of the apparent preference for snails to move upwards,
the data are fully consistent with the hypothesis that movement is equal
in both directions, and there seems no significant variation in this result
between the trials. The number of snails is probably too small for this to
be a convincing experiment.

3 Survival/mortality of a fly leaf miner
These data fit a 3 by 4 contingency table, which will therefore have

2 × 3 = 6 d.f. The expected values (based on the column and row end
totals as well as the grand total, see page 290) for each cell are shown in
italics and in brackets:

Top Middle Bottom Total
Healthy larva 9 (14.62) 41 (35.02) 18 (18.36) 68
Healthy pupa 11 (8.60) 21 (20.60) 6 (10.80) 40
Parasitoid pupa 8 (10.97) 19 (26.27) 24 (13.77) 51
Eaten by bird 15 (8.82) 20 (21.12) 6 (11.07) 41

Total 43 103 54 200

With two expected values below 10, it is appropriate to apply theYates’
correction for continuity in calculating the χ2 values for each cell (added
in bold and in square brackets):

Top Middle Bottom
Healthy larva 9 (14.62) [1.79] 41 (35.02) [0.86] 18 (18.36) [0.00]
Healthy pupa 11 (8.60) [0.42] 21 (20.60) [0.18] 6 (10.80) [1.71]
Parasitoid pupa 8 (10.97) [0.56] 19 (26.27) [1.74] 24 (13.77) [6.88]
Eaten by bird 15 (8.82) [3.66] 20 (21.12) [0.02] 6 (11.07) [1.89]

The total of these χ2 values is 19.71 for 6 d.f. (P < 0.01). There
are clearly some significant associations between the frequencies of the
fate of larvae and particular tree strata. Inspection of the table suggests
the largest χ2 values associate bird predation with the top of trees, and
parasitization with the bottom. The results presumably reflect that birds
and parasitoids search particularly in different tree strata.
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The Clues (see “Spare-time activity” to Chapter 16,
page 236)

Here are your two clues:

1 The figures in the table are MEANS of 4 replicates. So, when multiplied
by four, they convert to the treatment TOTALS with a “4” subscript.

2 Since you cannot calculate the total sum of squares without all the
original data, you will not be able to find the residual sum of squares by
subtraction. However, you are given the LSD, and the formula for the LSD
(page 215) includes the residual mean square as one of the components.
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Introduction

Just to repeat what I said in Chapter 1. This bibliography is no more than a
list of a few books I have found particularly helpful over the years. The large
number of different statistics books that have been published inevitably
means that the vast majority are therefore not mentioned because I have
no personal experience of using them – and it’s virtually impossible to
judge a statistics book in a library or bookshop. There you are alas more
likely to find the books I haven’t mentioned than the ones I have! Because
my interest in statistics started a long time ago, this applies increasingly
the more recently a book has been published! Even the books I mention
will often have had more recent editions. However, even the oldest book I
mention is still available secondhand on the internet.

Campbell, R.C. (1974). Statistics for Biologists, 2nd edition.
Cambridge University Press: Cambridge, 385 pp.

This is the book I reach for to carry out nonparametric tests. I find straight-
foward worked examples to follow, and the book also contains the tables for the
related significance tests.

Goulden, C.H. (1952). Methods of Statistical Analysis, 2nd edition.
John Wiley: New York, 467 pp.

This is the first statistics text I treated myself to, and its battered state shows
how often I have consulted it. The worked examples are very easy to follow, and
so I have used it mainly to expand my experience of statistical procedures,
e.g. for calculating missing values in the analysis of variance, and multiple
and nonlinear regression. It would be a good book for seeing if someone else’s
explanation will help where you find difficulty in my book.

Mead, R., Curnow, R.N. and Hasted, A.M. (1993). Statistical
Methods in Agriculture and Experimental Biology, 2nd edition.
Chapman and Hall: London, 415 pp.
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Has good and well laid out examples and an excellent chapter on “Choosing
the most appropriate experimental design.” Otherwise the book is rather diffi-
cult for beginners in the reliance it places on statistical notation in describing
procedures.

Schefler, W.C. (1983). Statistics for Health Professionals. Addison-
Wesley: Reading, Massachusetts, 302 pp.

I have only recently come across this book, and I think you would find this
one particularly helpful as a source of explanations of statistical theory by
another author. It is perhaps also an excellent “next step” from my book to
more advanced texts. I can particularly recommend the section on chi-square.

Snedecor G.W. and Cochran, W.G. (1967). Statistical Methods, 6th
edition. Iowa State University Press: Ames, Iowa, 593 pp.

This is one of my standard reference books for calculation formulae as well
as descriptions and worked examples of more advanced statistical techniques.

Steel, R.G.D. and Torrie, J.H. (1960). Principles and Procedures
of Statistics with Special Reference to the Biological Sciences.
McGraw-Hill: New York, 481 pp.

This is my favorite standard reference work for reading up the theory and
reminding myself of computational procedures. I find it particularly easy to
locate what I want without having to browse large sections of text. It is,
however, rather algebraic in approach.
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additivity, 145
analysis of covariance, 272–3
analysis of variance (Anova), 83,

88–114
constraints, 103–7
degrees of freedom in see degrees of

freedom, in analysis of variance
example, 89–101

End Phase, 97, 99–100
Phase 1, 91–2
Phase 2, 92–3
results, 96

experimental designs, 115–42
factorial experiment effect on, 150–2

see also factorial experiments
fully randomized design, 116–21

interpretation of results, 120–1,
226–7

Latin square design, 130–8
interpretation of results, 135–6,

229–30
multiple squares, 137–8

lattice designs, 127–9
phases, 91, 97, 115–16, 150–1
randomized block design, 121–7,

139–40
incomplete, 127–9
interpretation of results, 127,

227–8
split plot design derivation from,

195–8
split plot design vs, 206–9

for regression slope, 262
sum of squares in, 89

in Phase 3 (factorial part), 160–2,
178–9

t-test in see t-test, in Anova

t-test vs, 88–9
table for 4-factor experiment, 184
treatment means comparison, 107–8
see also least significant difference;

randomized block design; split plot
design

angular transformation, 40
Anova see analysis of variance
arcsin transformation, 40
association χ2, 289–94

background variation, 43
Bartlett’s test for homogeneity between

variances, 104
blocking, 121–2

for uniformity, 122
see also randomized block design

cause and effect, 239
chi-square (χ2) tests, 277–95

association (contingency), 289–94
for goodness of fit, 280–8

more than two classes, 282–4
with heterogeneity, 284–6

with “covariance”, 286–7
low frequencies problem, 279
table of values of χ2, 320
when to use, 278–9
Yates’ correction for continuity,

279–80
coefficient of determination (r2), 262–4,

266, 275
confidence limits, 60, 63
contingency tables

2 × 2, 289–91
Fisher’s “exact test” for, 291–2
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contingency tables (cont’d.)
interpretation, 293–4
larger, 292–3

correction factor, 22, 33, 113
for Latin squares, 138

correlation, 263–6
example, 264–6

correlation coefficient (r), 245, 262, 263
characteristics, 246
derivation, 263–4
statistical significance, 264

correlation line, 266
covariance, 249

analysis of, 272–3
covariates, 272, 273
cross products, 251

see also sum of cross products

degrees of freedom, 15, 16
in analysis of variance, 97–9

fully randomized design, 118
Latin square design, 133, 136–8
randomized block design, 124

for interaction, 150–1
pooled, 68
in populations of disparate variance,

71–3
in split plot analysis, 198–200
in 2-factor factorial experiments,

159–60
dependent variable, 245
deviation, 33

total, 13
see also mean deviation; standard

deviation
discontinuity, 279

estimates, parameters vs, 8
extrapolation, beyond range of data, 239

F-statistic see variance ratio (F)
F-test

in analysis of variance, 83–4, 277
two-tailed, 84–5
see also variance ratio (F)

factorial (mathematical term), 171, 292
factorial experiments, 127, 143–53

definition, 143
effect on analysis of variance, 150–2

4-factor example, 172–86
interpretation of results, 184–5,

232–5
more than two factors, 170–93

Phase 1, 175
Phase 2, 175
Phase 3, 176–83
prelims, 173–5
To the End Phase, 183–6

with split plots see split plot design
2-factor, 154–68

allocation of degrees of freedom in
Phase 3, 159

analysis, 155–63
example, 154–5
interpretation of results, 163,

230–2
with unequal replication, 163–5

factors, 143
main, 171, 176

sum of squares for, 180–1
total, 171

first order interactions, 171, 176–7
interpretation of interaction table,

184–5
sum of squares for, 179–81, 186–9

Fisher’s “exact test” for 2 × 2 table,
291–2

frequencies, 278–9
frequency distributions, 25
Friedman two-way analysis, 305
fully randomized design, 116–21

interpretation of results, 120–1,
226–7

goodness of fit, 262, 263, 289
χ2 test for, 280–8

more than two classes, 282–4
gradients, 121

multiple, 130
grouping, 40

incomplete blocks, 127–9
independent variable, 245
interaction, 124–5, 145–50

degrees of freedoms for, 150–1
orders of, 171–2, 176–7

see also first order interactions;
second order interactions; third
order interactions

residual variation and, 151–2
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transport example, 145–8
interaction sum of squares, 152–3

first order interactions, 179–81,
186–9

as remainders, 152–3, 170, 178
second order interactions, 182–3,

189–92
intercept (a), 253–4

calculation example, 257

Kendall’s rank correlation coefficient (r),
297, 301–2, 305

Kolmogorov–Smirnov two-sample test,
304

Kruskal–Wallis analysis of ranks, 301–2,
304

test statistic (H), 297, 302

Latin square design, 130–8
interpretation of results, 135–6,

229–30
multiple squares, 137–8

lattice designs, 127–9
lead line, 115, 118, 159, 174
least significant difference (LSD),

108–10, 142, 215–16
caveat about using, 110

levels in factorial experiments, 143
linear regression see regression
log(arithmic) transformation, 38
LSD see least significant difference

main factors/effects, 171, 176
sum of squares for, 180–1

main plots, 197, 198
Mann–Whitney test, 304
mean

definition, 8
notation, 10–11

mean deviation, 13–14
mean square, 99
multiple linear regression, 270–2
multiple nonlinear regression, 272
multiple range tests, 216–22

operating, 217–22
relation of tables to tables of t, 217
table of multipliers for, 315

using, 220–1

nested design see split plot design
nonadditivity, 145
nonlinear regression, 269–70

multiple, 272
nonparametric methods, 296–305

advantages, 298–9
analysis of more than two replicated

treatments, 304–5
analysis of two replicated treatments,

304
correlation of two variables, 305
data organization for, 300–3
disadvantages, 299–300

normal distribution, 25–33
relevance to biological data, 35–41,

298
normality, checking for, 37–8
null hypothesis, 59

“proving”, 313

ordinal data, 299
orthogonal polynomials, 270

paired t-test, 75–9
pairing when possible, 78–9

parameters, 296–7
estimates vs, 8

parametric methods, 296–8
advantages, 299–300
disadvantages, 298–9

points of inflexion, 27
polynomials, orthogonal, 270
pooled degrees of freedom, 68
pooled sum of squares, 68
pooled variance, 64–8, 88
probability, 31
probit, 241–2

random distribution, 38
normalization, 38

random number tables, 106–7
randomization, 106
randomized block design, 121–7,

139–40
incomplete, 127–9
interpretation of results, 127, 227–8
split plot design derivation from, 195–8
split plot design vs, 206–9

range, 13
regression

analysis of covariance, 272–3
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regression (cont’d.)
linear, 238–63, 274–5

definition, 244–5
traps to beware of, 239–44
worked example, 255–63

multiple linear, 270–2
multiple nonlinear, 272
nonlinear, 269–70

regression coefficient (b), 245, 247–8
calculating, 248–53

example, 256
characteristics, 246
in nonlinear regression, 269–70

testing significance of, 258–62
regression equation, 253–4, 274–5

multiple, 270
regression line

drawing, 257–8
sum of squares for, 261

replicates, 97, 143
number needed, 306–13

“cheap and cheerful” calculation,
310–11

more accurate calculation, 311–13
underlying concepts, 306–10

replication, unequal, 163–5
residual mean square, 99–100, 108, 142

as divisor in variance ratios, 163
residual sum of squares, 111, 112

interaction and, 151–2
root mean square deviation see standard

deviation
row variability, 95, 112

samples
grouping, 40
number needed, 40–1, 306–13

sampling variation, 80
second order interactions, 171, 177

sum of squares for, 182–3, 189–92
s.e.d.m. see standard error of difference

between two means
set size, 171
sigmoid curve, 241
sign test, 300–1, 304

t-test vs, 299–300
size of experiment, 103

see also replicates, number needed
skeleton analysis table, 115
spare-time activities, 4

Spearman’s rank correlation coefficient,
305

split plot design, 127, 137–8, 194–212
advantages, 194
degrees of freedom, 198–200
deriving from randomized block

design, 195–8
interpretation of results, 206, 235–6
numerical example, 201–6
randomized block design vs, 206–9
uses, 209–11

SqADS, 93–6, 112–13, 114
square root transformation, 38–9
standard deviation, 17–19, 33

calculation, 19, 24
definition, 17
as estimate of frequency, 31
importance, 33–4

standard deviations worths, 18–19
normal distribution, 27–9

standard error (s.e.), 44, 47
standard error of difference between two

means (s.e.d.m.)
definition, 43
derivation, 45–52, 56
importance, 52
mnemonic, 52
paired t-test, 77
relevance to experiment size, 307–10
standard t-test, 68
t-test when variances unequal, 70

standard t-test, 64–9
procedure, 64–8

statistical significance, 52, 59
statistics, definition, 8
straight lines, appropriateness, 239–43
Student’s t-distribution, 61

see also t-test
sub-plots, 197, 198–9
sum of cross products, 249–53, 274
sum of squares, 15, 33, 113, 250

in analysis of variance, 89
in Phase 3 (factorial part), 160–2,

178–9
calculation, 10, 32

calculation method, 21–3
for deviations from mean y, 260
for main factors/effects, 180–1
pooled, 68
for regression line, 261
in split plot experiment, 202–5
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see also interaction sum of squares;
residual sum of squares

supertotals, 160, 166, 178, 180–1

t-test, 58–82, 277
in Anova, 213–37

interpretation of results of
experiments, 225–36

presentation of results of tests,
223–5

testing differences between means,
222–3

see also multiple range tests
in Anova treatment means

comparison, 107–8
Anova vs, 88–9
for means associated with unequal

variances, 69–75
paired, 75–9

pairing when possible, 78–9
principle, 58–9
relevance to experiment size, 307–12
sign test vs, 299–300
standard, 64–9

procedure, 64–8
in statistical terms, 59–60
table of values of t, 314
tails, 86
variance ratio (F) and, 101–3
see also Student’s t-distribution

tailed tests, one or two, 83–7
third order interactions, 171, 177
total variability, 93, 111, 112
transformation, 38, 41, 241, 313
treatments, 143

equality of variance between, 103–4

Type I error, 60
Type II error, 60

variability
distribution of, 244
total, 93, 111, 112
see also variation

variance, 14–16, 33
calculation, 15–16, 24
definition, 15
of difference between means, 51, 56
of differences, 48–9
equality between treatments, 103–4
homogeneity testing, 104
of means, 45–6
pooled, 64–8, 88
see also analysis of variance

variance ratio (F), 83, 85, 100
in factorial experiments, 162–3, 184
t-test and, 101–3
table of values of F, 316–19
table of values of Fmax, 319

variation, 12
background, 43
residual, 151–2, 275

see also residual sum of squares
sampling, 80
summaries of, 13–16
see also variability

Wilcoxon’s signed rank test, 304

Yates’ correction for continuity, 279–80
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