
Proc. of the Alife XII Conference, Odense, Denmark, 2010 479

Importance of the rearrangement rates on the organization of genome
transcription

David P. Parsons1,3, Carole Knibbe2,3 and Guillaume Beslon1,3
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Abstract

The organization of genomes shows striking differences
among the different life forms. These differences come along
with important variations in the way genomes are transcribed,
operon structures being frequent in short genomes and the
exception in large ones, while ncRNAs are frequent in large
genomes but rare in short ones. Here, we use the digital ge-
netics model “aevol” to explore the influence of the mutation
rates on these structures, showing that their diversity can be
accurately reproduced when varying the rearrangement rate.
This result points us to the mutational burden hypothesis as
one of the main explanation. In this view, a specific level
of mutational robustness indirectly leads to genome and tran-
scriptome streamlining.

Introduction
Genome organization is well known to be very different
throughout the different domains of life. On one extreme,
viral genomes can be as short as 400 base-pairs long (Gago
et al., 2009) and are usually very dense, with nearly no
non-coding sequences and a lot of overlapping genes, al-
though some exceptions were reported (Raoult et al., 2004).
Eukaryotic multicellular organisms on the other extreme,
have very long genomes (billions of base-pairs), a huge
proportion of which is composed of non-coding sequences.
These differences come along with variations in the way the
genome is transcribed: On the one hand, short genomes, that
are almost entirely transcribed, are commonly transcribed
into long RNAs that can contain several genes. In extreme
cases, the whole genome can be transcribed in only a couple
of RNAs (Zheng and Baker, 2006). On the other hand, long
genomes usually give rise to short RNAs (after splicing),
very few of which contain more than one single gene and
most containing no genes at all. These non-coding RNAs
have received a great deal of attention in the last few years
(Ponjavic et al., 2007; Will et al., 2007), in particular micro-
RNAs that are thought to play a major role in the regulation
of gene expression (Mattick and Makunin, 2006; Kapranov
et al., 2007).

What mechanisms are responsible for these variations
in the organisation of transcripts and their relative impor-
tance remain open questions. Most efforts in these matters

have been focused in understanding the evolution of operon
structures. Operons are very interesting RNA structures
where several coding sequences (often functionally-related)
are packed together on a single RNA. Operons have been the
subject of a great number of studies resulting in a set of theo-
ries that try to explain their assembly and maintenance. The
following summarizes the most defended of these theories:

• The coregulation model is the original theory that came
along with the discovery of the operon structure (Jacob
et al., 1960). It claims that packing several functionally
related genes together on the same RNA is beneficial be-
cause they share their regulation sites, which means that
mutations on the promoter will preserve the relative ex-
pression levels of the gene products. According to this,
genes within an operon should be likely to be function-
ally related.

• The selfish operon theory postulates that clustering genes
for weakly selected functions together is beneficial for
the genes themselves as it allows them to be horizontally
transferred as a whole (fully functional unit), hence con-
ferring a better advantage to the receiver than they would
have provided individually (Lawrence, 1999). In the light
of this theory, horizontal transfer is a necessary condition
for the emergence of operons, which should contain pref-
erentially genes that are functionally related.

• Finally, the mutational burden theory propounds that it is
the mutational hazard that constrains the total amount of
DNA: The larger the amount of excess DNA (intergenic
DNA, 3’ and 5’ UTRs, ...), the higher the probability of
a mutation (or rearrangement) to occur within it, poten-
tially inactivating coding sequences or else disturbing the
dynamics of existing genes. Following this idea, a pop-
ulation subject to high mutation rates will face a pres-
sure for making genomes denser (Lynch, 2006; Knibbe
et al., 2007). In some cases, this densification may reach
a point where transcribed regions can actually merge or
where a transcribed region can contain several translated
sequences thus composing an operon. In extreme situa-
tions, genes can even share a part of their sequence and
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overlap. This further reduces the size of the mutational
target of the phenotype. This second order selective pres-
sure for “streamlining” makes no assumption regarding
gene function or horizontal transfer, operons should then
be able to arise in the absence of transfer, putting together
genes “working together” as well as functionally unre-
lated genes. In this view, the presence of operons must
depend on the mutation rates, the selection strength and
the population size.

Each of these theories have received evidence both for
and against it. For instance, Pál and Hurst (2004) argue that
the gene composition of operons in E. Coli is incompatible
with the selfish operon theory but Hershberg et al. (2005)
and Rensing (2002) suggest that it can explain at least some
operon structures. As a matter of fact, it is very difficult
to validate any of these models either in vivo or in vitro as
the underlying processes are complex and act on a very long
time scale. Comparative genomics approaches are a way to
circumvent this difficulty. However, they are based upon the
static snapshots of the contemporary sequences and have to
infer their evolutionary past.

Artificial life and in silico simulations have shown to be
very useful in such cases, providing us with insights into
complex mechanisms and shedding light onto second-order
pressures that would have been difficult to identify other-
wise (Wilke et al., 2001; Adami, 2006; Misevic et al., 2006;
Knibbe et al., 2007; Beslon et al., 2009). They provide a dy-
namic view of the evolutionary process in a reasonable time
and with a near-to-absolute control over parameters. In this
paper, we propose to investigate the organization of tran-
scripts using a modelling-simulation approach.

Aevol: A digital genetics model
To study the evolution of genome structure, we have devel-
oped an integrated model, Aevol, that simulates the evolu-
tion of a population of N artificial organisms. Although a
description of the model has already been published (see
Knibbe et al. (2008) and its supp. mat.), we provide here
an overview of the most important principles that are neces-
sary to have a good understanding of the results presented
here.

Overview
In Aevol, each artificial organism owns a genome whose
structure is inspired by prokaryotic genomes. It is organized
as a circular double-strand binary string containing a vari-
able number of genes separated by non-coding sequences
(figure 1). At the beginning of the run, all organisms are ini-
tialized with a same random sequence (of 5,000 base-pairs
here) containing at least one gene. Genes are identified and
decoded thanks to predefined signalling sequences and to
an explicit transcription-translation process. Then, an ab-
stract “folding” process gives rise to artificial “proteins” that

are able to realize or deflect a particular range of abstract
“biological functions”. The interaction of all these proteins
yields the set of functions the organism is able to perform,
which will in turn be compared to an environmental target
to determine how well-adapted this individual is.

Double stranded genome 
with scattered genes

Shine-Dalgarno

START

STOP

Coding DNA Sequence

Promoter

Terminator

Figure 1: In Aevol, each individual owns a circular double-
stranded binary genome upon which coding sequences are
identified thanks to predefined signalling sequences: Pro-
moters and terminators mark the boundaries of transcribed
sequences and, inside these transcribed regions, coding se-
quences can exist between a START signal and an in-frame
STOP codon (see figure 2 for the genetic code).

The best adapted individuals have higher chances of re-
production: At each generation, N new individuals are cre-
ated by reproducing preferentially the best individuals of
the parental generation which is then completely replaced.
During the replication process, the chromosome can un-
dergo different kinds of modifications: local mutations (sin-
gle base substitutions, small insertions and small deletions),
but also large chromosomal rearrangements (duplications,
deletions, translocations and inversions).

From genotype to phenotype
The way a genotype is mapped to a phenotype in Aevol has
been inspired by the prokaryotic transcription and transla-
tion processes. We defined a set of signalling sequences that
enable us to identify the sequences that will be transcribed
into RNAs and those that will be translated into proteins.
Besides, a simple “folding” process was defined that allows
us to interpret a protein’s primary sequence as a set of “bio-
logical functions”.

Transcription In prokaryotes, transcription initiates at
particular sites, called promoters, where the RNA-
polymerases recognize a consensus sequence to which they
can bind and begin the RNA synthesis process. In Aevol,
we defined a long consensus sequence, a promoter being a
sequence whose Hamming distance d with this consensus is
less than or equal to dmax. In the experiments presented
here, the consensus was the 22-base-pairs (bp) sequence
0101011001110010010110 and up to dmax = 4 mismatches
were allowed. This consensus sequence is long enough to
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ensure that random, non-coding sequences have a low prob-
ability to become coding by a single mutation event. It is
not a palindrome, meaning that a given promoter can initiate
transcription on only one strand.

When a promoter is found, the transcription goes on until
a terminator is reached. Terminators must be more frequent
than promoters to limit the overlapping of transcribed se-
quences. Thus, if we had used a consensus sequence as for
promoters, this sequence would have had to be very short.
This would have forbidden this short motif to be present in
any coding sequence, hence heavily constraining the evo-
lutionary process. We therefore defined terminators as se-
quences that would be able to form a stem-loop structure,
as the ρ-independent bacterial terminators do. In these ex-
periments, the stem size was set to 4 and the loop size to 3,
terminators thus had the following structure: abcd∗∗∗dcba,
where a, b, c, d = 0 or 1.

The probability of a random 22-bp long sequence to be a
promoter (i.e. of being at most 4 mismatches away from the
consensus) is of roughly 1/460, which means that the av-
erage distance between two promoters that can be expected
in a random double-stranded sequence is of 230 bases. Ter-
minators should be much more frequent: An 11-bp long se-
quence has a probability of 1/16 to be a terminator.

The expression level e of an RNA is determined accord-
ing to its promoter sequence. The closer the promoter is
from the consensus, the higher the expression level: e =
1− d

dmax+1 . This modulation of the expression level models
in a simplified way the basal interaction of the RNA poly-
merase with the promoter, without additional regulation. It
provides duplicated genes with a way to reduce temporarily
their phenotypic contribution while diverging toward other
functions. It also induces a link of co-regulation between
the coding sequences of a same transcribed region, which is
a necessary property to test the coregulation hypothesis.

Translation Transcribed sequences (RNAs) do not neces-
sarily result in a protein. The translation process of an RNA
takes place when a Shine-Dalgarno-like sequence is found,
followed, a few base-pairs away, by a START codon (see
genetic code on figure 2). We thus defined the translation
initiation signal as the motif 011011 ∗ ∗ ∗ ∗000. When-
ever this signal is found, the following sequence is read three
bases (one codon) at a time until the termination signal (the
STOP codon 001) is found on the same reading frame. Each
codon lying between the initiation and termination signals is
translated into an abstract “Amino-Acid” using an artificial
genetic code, therefore giving rise to the protein’s primary
sequence (figure 2).

As in real organisms, and because we read our genetic
sequences three bases at a time, genes can be found on six
different reading frames (three on each strand), giving the
possibility for the organisms to evolve out-of-phase overlap-
ping genes, which are commonly found in bacterial operons

Genetic code

000 START
001 STOP
100 M0
101 M1
010 W0
011 W1
110 H0
111 H1

…001…0101…0110…0010…0110110011000101111011101110011010001…

…100…1010…1001…1101…1001001100111010000100010001100101110…
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Figure 2: Overview of the transcription-translation-folding
process in Aevol. Transcribed sequences are those that start
with a promoter (consensus sequence) and end with a ter-
minator sequence (hair-pin), not shown on the figure. Cod-
ing sequences (genes) are searched within the transcribed
sequences; They begin with a Shine-Dalgarno-START se-
quence and end with a STOP codon. An artificial genetic
code (right) is used to convert a gene into the primary se-
quence of the corresponding protein and a “folding process”
enables us to compute the metabolic activity of this protein
(functional abilities).

(Johnson and Chisholm, 2004; Palleja et al., 2008).

Protein “folding” and phenotype computation To
model the activity of proteins and the resulting phenotype,
we defined a simple “artificial chemistry” (Dittrich et al.,
2001) that describes the organism’s metabolism in a mathe-
matical language. In our simplified artificial world, we as-
sume that there is an abstract, one-dimensional space Ω =
[0, 1] of possible metabolic processes (that is, in this model,
a metabolic process is just a real number). In this “metabolic
space”, each protein is involved in a subset of processes (ei-
ther realising it or preventing other proteins from realising it)
which is described using the fuzzy set formalism: A given
protein can be involved in a metabolic process with a possi-
bility degree lying between 0 and 1. A protein is thus fully
characterized by a mathematical function that associates a
possibility degree to each metabolic process. For simplic-
ity, we use piecewise-linear functions with a symmetric, tri-
angular shape (figure 2). In this way, only three numbers
are needed to characterize the metabolic activity of a pro-
tein: The position m (m ∈ Ω) of the triangle on the axis,
its half-width w and its height h (positive when realizing a
function, negative when inhibiting it). This means that the
protein contributes to the range [m−w,m+w] of metabolic
processes, with a preference for the processes closest to m
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(for which the highest efficiency, h, is reached). Thus, vari-
ous types of proteins can co-exist, from highly efficient and
highly specialized ones (small w, high h) to polyvalent but
poorly efficient ones (large w, low h).

In this framework, each protein’s primary sequence is de-
composed into three interlaced binary subsequences that will
in turn be interpreted as the values for them,w and h param-
eters. For instance, the codon 010 (resp. 011) is translated
into the single amino acid W0 (resp. W1), which means
that it contributes to the value of w by adding a bit 0 (resp.
1) to its binary code. Small mutations in the coding se-
quence (substitutions, indels, possibly causing frame shifts)
will change these parameters, resulting in a modification of
the protein’s metabolic activity.

Once all the proteins encoded on the genotype of the
organism have been identified and characterized, their ac-
tivities are combined into a fuzzy set representing the in-
dividual’s phenotype P , using Lucasiewicz’ fuzzy opera-
tors. This phenotype indicates to what extent the individual
can realize each metabolic process in our abstract metabolic
space.

Environment, adaptation and selection
In Aevol, the environment is represented by a phenotypic
target: The fuzzy set E defined on Ω that represents the op-
timal degree of possibility for each “biological function”.
To evaluate an individual, we compare its phenotype P to
the optimal phenotype E. The “metabolic error” g is com-
puted as the geometric area between these two sets (figure
3). The lower the metabolic error, the better the individual.
This measure penalizes both the under-realization and the
over-realization of each function.

Figure 3: Measure of an individual adaptation. Dashed
curve: Environmental targetE. Solid curve: Phenotypic dis-
tribution P (resulting metabolic profile obtained after com-
bining all the proteins). Dark grey filled area: Metabolic
error g. The part of the phenotype that is located inside the
neutral zone (light grey) is not considered as being part of
the gap. This allows for the evolution of non-essential genes.

In the current version of Aevol, the population size is con-
stant (here N = 1, 000 individuals) and the population is

entirely renewed at each generation. A probability of re-
production is assigned to each individual according to its
metabolic error and a multinomial drawing determines the
actual number of offsprings each individual will have. In the
experiments presented here, we used an exponential ranking
selection (Blickle and Thiele, 1996). The individuals are
sorted by decreasing metabolic error so that the worst indi-
vidual has rank r = 1 and the best r = N . The probability
of reproduction of an individual is then given by s−1

sN−1
sN−r,

with s = 0, 998 being the intensity of selection in all the ex-
periments presented here.

Genetic operators
During their replication, genomes can undergo seven differ-
ent kinds of modifications, three of which are local muta-
tions (single nucleotide substitutions and insertions or dele-
tions of 1 to 6 bp) and the four others, chromosomal rear-
rangements (duplications, deletions, translocations and in-
versions). The breakpoints for these rearrangements are ran-
domly chosen on the chromosome.

Mutations and rearrangements affect the genome but do
not necessarily have a phenotypic effect. For instance, a
mutation that takes place in an untranscribed region will be
completely neutral unless it creates a new promoter, which
is reasonably rare given the size of the consensus sequence.

The rates at which each type of genetic modification i oc-
curs (µi) are parameters of the model. They are defined
as the per-base, per-replication probability of each type of
modification to take place. Although horizontal transfer is
possible in Aevol, we disabled it entirely in these experi-
ments to avoid the assembly of operons due to the selfish
operon effect.

Aevol is hence a digital genetics model in which the struc-
ture of the genome is free to evolve. It integrates major ge-
netic features and mechanisms, introducing a transcription-
translation level between the genetic and the phenotypic lev-
els and allowing both local mutations and large chromo-
somal rearrangements. These particularities make Aevol a
model that is particularly suited for the study of genome or-
ganization.

Results
The typical use of digital genetics models is very close to ex-
perimental evolution procedures (Elena and Lenski, 2003):
Populations of organisms are initialized and left to evolve
in controlled conditions. By observing the products and the
dynamics of the evolutionary process in different conditions
and by comparing them, we can unravel the direct or indirect
pressures that constrain the structure of the organisms.

We let 147 populations of 1,000 individuals evolve dur-
ing 20,000 generations in near identical conditions where
the only changing parameters were the mutation rate and the
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rearrangement rate (one common rate µm for the three dif-
ferent types of local mutations and one, µr, for the four types
of rearrangements) for which values ranged from 1.10−6 to
1.10−4 per base-pair (7 rates tested). Each combination of
mutation and rearrangement rates was tested with 3 indepen-
dent seeds.

These populations evolved in identical environments
composed of a single Gaussian curve placed on the right
hand side of the metabolic axis (figure 3). The central
zone of the axis was neutralized, meaning that the organ-
isms receive no penalty for evolving proteins in that zone
(even though they are of no use). This will enable us to
test whether non-essential genes can be packed together with
other genes in an operon structure.

This experiment was designed as a null-experiment for the
selfish operon theory: The populations evolved in a strictly
clonal framework where no horizontal transfer was allowed.
According to the selfish operon theory, operons should not
be observed in such conditions. Operons that would arise
nevertheless could be explained by either the co-regulation
or the mutational burden hypotheses. The variations of mu-
tation and rearrangement rates will enable us to test the mu-
tational burden hypothesis, and the co-regulation theory can
be tested by analysing the functional relatedness of genes
organized in operons.

Evolution of the structure of the genome
During the evolutionary process, the organisms progres-
sively acquire new genes and modify them in such a way
that the whole gene repertoire fulfils the task the organisms
are selected for. All the simulations proceed qualitatively in
a similar way, evolving quickly in the first stage of evolution
(rapid gene acquisition mostly by duplication-divergence)
then slowing down the process of gene acquisition while
optimizing the sequence of existing genes and promoters.
However, looking at the evolution of the size of the genome
and the number of genes, we can see a clear trend for in-
dividuals evolving under lower rearrangement rates to have
larger genomes containing both more genes and a greater
proportion of non-coding sequences (figure 4). The rate of
rearrangements is the major factor explaining the variability
of genome compactness, the rate of small mutations has a
much lower effect. Interestingly, the genome size stabilizes
even though there is no direct cost for neither the replication
of the genome nor for its expression.

As we have already shown, these effects are the conse-
quence of the long-term selection of a specific level of muta-
tional robustness (Knibbe et al., 2007). Indeed, we have esti-
mated the fidelity of the replication for each of the 147 final
best individuals, by a mutagenesis-like experiment: We let
each of them reproduce 10,000 times and counted the num-
ber of offspring that had retained the ancestral fitness, in or-
der to estimate the fraction of neutral offspring, Fν . Figure
5 shows that in all cases, the genome had evolved in such

a way that Fν was greater than 1/2.31. Thus, on the 2.31
offsprings expected for the best individual during the runs
(given the selection intensity), at least 1 of them would re-
tain the ancestral fitness, while the other ones would explore
other phenotypes. This reflects the indirect selection of an
appropriate trade-off between exploitation and exploration:
under a high mutation rate per base-pair, the only way to
reach a good trade-off is to keep the genome small. This
phenomenon, known as an “error threshold” effect (Eigen,
1971), sets an upper bound to the total coding length, but
also, here, on the non-coding length. Indeed, when rear-
rangements are taken into account, non-coding sequences
are actually mutagenic for the genes they surround, because
they provide breakpoints for large duplications or deletions
(Knibbe et al., 2007).
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Figure 4: Genome size, proportion of excess DNA, number
of genes and metabolic error for the best individual of each
simulation after 20,000 generations. The fittest individuals
are those with the lowest metabolic errors. Excess DNA in-
cludes here the intergenic DNA (between two coding RNAs)
and the untranslated regions of the RNAs.

Evolution of the structure of transcripts
Looking more specifically at transcription-related features,
our attention was drawn by the clear trend for higher re-
arrangement rates to favour long RNAs (figure 6(a)). The
dynamics that leads to this lengthening of transcripts is very
interesting: Indeed, as figure 7 shows, only the terminators
seem to be gotten rid of during the whole evolutionary time,
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best individual, after 20,000 generations of evolution.

the promoter density remaining stable after the first stage of
evolution.
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Figure 6: Evolution of the average size of RNAs (regardless
of whether they are coding or non-coding) and the average
number of genes per coding RNA (RNAs containing at least
one CDS). For clarity purpose, the data displayed here has
been averaged over the different small mutation rates and
seeds. Each line is hence the average value of the 21 simu-
lations that were run under the same rearrangement rate.

Selection against terminators under high rearrangement
rates leads to a lengthening of RNAs. But why are long
RNAs selected for? What are the benefits of postponing
transcription termination? The answer apparently resides in
the packing of coding sequences: On average, RNAs be-
longing to organisms that evolved under high rearrangement
rates own way more genes than those under low rates (figure
6(b)).

Figures 8 and 9 show the translation and transcription or-
ganization of the best individuals (after 20,000 generations)
of 2 typical simulations with respectively high and low mu-
tation and rearrangement rates. Under low rearrangement
rates, almost every single CDS is transcribed by a different
RNA. On the contrary, the individual that evolved under high
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Figure 7: Evolution of the average density of promoters
(a) and terminators (b) for the different rearrangement rates.
See figure 6 for details about data aggregated.

rearrangement rates has but one RNA containing only one
gene, all the other transcripts carrying at least two. These
figures also show a great difference regarding non-coding
RNAs. At high mutation rates, a huge proportion of RNAs
are ncRNAs whereas they become rare at high rearrange-
ment rates, this reproduces what is observed in real organ-
isms, eukaryotes having way more ncRNAs than prokary-
otes have. Putting the focus on this aspect of our data, we
found a clear scaling law between the rearrangement rate
and the proportion of ncRNAs (data not shown). This scal-
ing is a direct consequence of the proportion of non-coding
sequences on the genome.

(a) RNAs (b) CDSs

(c) Zoom on operon (1) with its 5 genes

Figure 8: Genome of the best individual of generation
20,000 of a typical simulation with mutation and rearrange-
ment rates of 1.10−4 per base-pair. In subfigure (a), coding
RNAs are represented in black and ncRNAs in grey.

Discussion
In the experiments presented here, the organization of the
genomes after 20,000 generations of evolution reproduces
the whole range of genome organizations observed in real
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(a) RNAs (b) CDSs

Figure 9: Genome of the best individual of generation
20,000 of a typical simulation with mutation and rearrange-
ment rates of 1.10−6 per base-pair. In subfigure (a), coding
RNAs are represented in black and ncRNAs in grey.

organisms. In our simulations, we observed a clear tendency
for organisms having evolved under low rearrangement rates
to have a eukaryote-like genome and for those under high
mutation rates to resemble prokaryotic genomes.

Although a very small proportion of eukaryotic genomes
is translated into proteins, a substantial fraction of these
genomes is transcribed into non-coding RNAs. Not all of
these ncRNAs have a known function and a great deal of
effort is put into identifying these putative functions. In
our model, ncRNAs have absolutely no function, yet they
are very common when rearrangement rates are low. Inter-
estingly, they are found at a proportion close to that which
would be expected in a random sequence. Hence, it seems
that ncRNAs are naturally present in intergenic regions mak-
ing them available for acquiring new functions. It is tempt-
ing to suggest that these RNAs constitute a good substrate
for the appearance of novel genes but this question will re-
quire a precise analysis of the dynamics of gene acquisition.

Another interesting feature we have observed is the emer-
gence, under specific conditions (i.e. under high rearrange-
ment rates), of operon structures.

Since operons appeared in a total absence of horizontal
transfer, the selfish operon theory can easily be discarded as
an explanation of the emergence of these operons. Indeed,
horizontal transfer is a central and necessary feature of the
selfish operon theory.

One of the remaining candidates to account for the emer-
gence of the observed operons is the co-regulation model,
under which hypothesis genomes should be more modular
than expected at random. To compute the functional mod-
ularity of a genome, we conducted a pairwise comparison
of the proportion of functionally related genes within oper-
ons and on the whole genome. Two genes were considered
functionally related when they shared a subset of metabolic
functions, i.e. when their corresponding phenotypic trian-
gles overlapped. Given that the individuals evolved in a sta-
ble environment, no regulation is needed whatsoever. Mod-

ularity was shown to promote evolvability in the presence
of inter-individual recombination (Pepper, 2000). However,
here, reproduction was strictly clonal, which makes it diffi-
cult to imagine how the modularity of a genome could im-
prove a lineage’s evolutionary fate.

Yet, the results show a moderate tendency to pack func-
tionally related genes together on the same operon: The pro-
portion of pairs of functionally-related genes within operons
was 1.26-fold higher (median value) than the same propor-
tion on the whole genome. Although the effect is small, the
ratio is significantly different from 1 (non parametric sign
test, p-value = 7.10−4).

These results do not allow us to conclude either in favor of
or against the co-regulation theory and further experiments
and analyses will be necessary to tackle this question.

According to the results presented in figure 6(b), there
seems to be a threshold in the rearrangement rate above
which operons become the rule rather than the exception.
This is relevant when considered in the light of the muta-
tional burden theory: As we have previously stated, the se-
lection for a correct level of mutational robustness that was
unravelled by Knibbe et al. (2007) leads to a strong pres-
sure on the genome size. The higher the rearrangement rate,
the smaller the genome must be to be transmitted faithfully
to the offspring. Besides, the selection of the individuals
that best fulfil the metabolic task (i.e. approximate the tar-
get) gives rise to a pressure for having many genes. Taken
together, these two pressures result in the emergence of a
composed pressure on the density of genes.

At medium rearrangement rates, the optimal gene density
can be achieved by simply reducing the proportion of non-
coding sequences, the coding sequences themselves remain-
ing mostly unaffected. However, when the rates are really
high, the amount of excess DNA (inter-RNA sequences, 3’
and 5’ UTRs, ncRNAs) shrinks to nearly nothing. At high
rates, a further compaction can be done by several means
such as making genes overlap (either on the same strand or
on both strands) or getting rid of some of the transcription
signals (promoters and terminators), hence merging consec-
utive RNAs into one single RNA (thus creating an operon).

We therefore expected to observe both overlapping genes
and a lengthening of transcript length under high rearrange-
ment rates. We indeed observed both of these phenomena
(figures 8 and 6(a)) but were surprised by the dynamics lead-
ing to RNA lengthening: When the density of promoters ap-
pears to be stable over time, suggesting that they are not
selected against, the density of terminators is constantly de-
creasing. Terminators fragment the genome, forbidding the
sequences directly downstream from them (on both strands)
to be translated, until a promoter is found. There is hence
unmistakably a loss of gene density for each terminator on
the genome. The solution that evolution found to efficiently
pack genes together is then to limit this loss by decreas-
ing the number of terminators on the genome, leading to a
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lengthening of the average size of RNAs which in turn facil-
itates the emergence of operons.

Conclusion
In this paper, we have presented results that clearly repro-
duce features of genome organization that are observed in
real organisms, in particular the structuration of genes in
operons. The emergence of these operons specifically un-
der high rearrangement rates points us to the mutational bur-
den hypothesis, where a second-order pressure for a specific
level of mutational robustness leads to genome streamlin-
ing. We now plan to conduct further experiments to investi-
gate the role of horizontal transfer and how it interacts with
this second-order pressure. We also plan to determine to
what extent the co-regulation model can participate in the
creation and maintenance of operon structures. Finally, we
would like to analyse the role of non-coding RNAs in gene
acquisition and to test whether they are innovation hot spots.
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