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Abstract

This paper discusses asynchronous parallel universal com-
putation and self-replication based on a computation model,
called a logic molecular model, or a parallel production sys-
tem (PPS). The program in this model consists of extended
Horn clause rules, which are used for forward deduction of
unit clauses, called molecules, from unit clauses in work-
ing memory. All possible deductions in the system are asyn-
chronously executed in parallel. This formalism is also effec-
tive in representing a broad class of speed-independent asyn-
chronous computation and systems including parallel parsing
and cellular automata. It is shown that for any PPS program
P , there is a set of molecules that contains the coded program
of P , which replicates itself by asynchronous parallel compu-
tation in time proportional to log n, where n is the number of
rules in P .

Introduction
The self-replication of complex systems is universal in biol-
ogy, as cell division and propagation are essential to living
organisms. Many biologists believe that the appearance of
self-replicating molecules marked the origin of life. Several
hypothetical models of the first self-replication have been
presented and discussed in evolutionary biology (Dawkins,
2004). In information science, there have been several theo-
retical models of self-replication intended to clarify the prin-
ciples and conditions of self-replication (Hutton, 2003; Sip-
per, 1998). Some of these models can be applied to artificial
self-organization in complex systems including amorphous
computing (Abelson et al., 2007) and molecular computing.

Von Neumann adopted a cellular automaton (CA) model
of self-replication and presented a two-dimensional (2-D)
29-state CA with universal computation power and self-
replicating processes in his last note titled “Theory of Self-
Reproducing Automata” (von Neumann, 1966). A CA is es-
sentially a parallel system used as a model of parallel com-
putation. Transitions in von Neumann’s CA, however, are
serial and sequential because the universal computation and
self-replication are based on a universal Turing machine.
After von Neumann, lot of work focused on the parallel
computation power of CAs and self-replication on CAs (Sip-

per, 1998). Nevertheless, there has been little work on par-
allel universal computation and parallel self-replication, not
only using CAs but also with other computation models. Al-
bert and Culik (1987) showed a 1-D CA with parallel uni-
versal computation power in the sense that the CA can sim-
ulate any 1-D CA in linear time. Nakamura (1997) showed
a 1-D CA with parallel self-replication processes and paral-
lel universal computation power in a similar sense. Nehaniv
(2002) showed an asynchronous cellular automaton with a
self-reproducing pattern known as “Langton’s loop.”

This paper proposes a parallel computation model, called
a logic molecular model, or a parallel production system
(PPS), and shows that this simple formalism is effective in
modeling a broad class of asynchronous parallel computa-
tions and biological systems. This model is intended to be a
simple and general basis not only for parallel universal com-
putation such as universal Turing machines for serial com-
putation but also for the modeling of self-replication in bio-
logical systems.

The logic molecular model proceeds as follows.

1. Every global state of the system is represented by a multi-
set of molecules, which are data tokens in working mem-
ory from the point of parallel computation.

2. A program in PPS is a set of production rules, or simply
rules. The rules specify the interactions of the molecules
by forward, data-driven deduction. Deduction by the rules
is a kind of hyper-resolution (Robinson, 1992); each rule
is described as an extended Horn clause rule and every
molecule in the system as a unit clause.

3. All applicable deductions are asynchronously executed in
parallel. Therefore, the computation needs to be speed-
independent to reach a definite result in spite of the indef-
inite orders of the transitions of the elements.

Since the pioneering work of von Neumann, CAs have
been used for modeling not only biological systems but also
other complex systems. However, modeling using CAs has
the following limitation.
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• In a CA model, the arrangements of the cells and the in-
terconnections among cells are strictly regular and fixed.
This restriction prevents us not only from using CAs to
model general parallel systems but also from applying
CAs to parallel computers.

• Most standard CA models are synchronous systems. Syn-
chronization generally simplifies the construction of de-
terministic systems. Nevertheless, it is a fundamentally
accepted principle that asynchronous systems are gener-
ally faster than synchronous systems in large scale paral-
lel systems, because the synchronization period is deter-
mined by the maximum delay in the system. As there
are no specific synchronous biological systems, asyn-
chronous systems are more appropriate for modeling self-
replication.

There has been some researches into extensions of CAs. The
Lindenmayer system (or L-system) (Lindenmayer, 1968)
is an extended CA where every cell can propagate itself;
the L-system is intended to model biological development.
Nakamura (1981) showed that any synchronous d-D CA
(d = 1, 2, · · · ) can be transformed into an asynchronous d-D
CA while preserving its parallel computation power.

Recently, there have been several models other than CAs
called biologically-motivated systems or natural computing.
The chemical abstract machine (CHAM) (Berry and Boudol,
1992) and the GAMMA language (Baâtre and Métayer,
1993) based on multiset transformation have some proper-
ties similar to our model. In these formalisms as well as in
the logic molecular model, every global state of the system
is a multiset of data elements. In CHAM, the global state
can be considered a solution of molecules that interact with
each other. CHAM and GAMMA, in which no data element
is deleted from the global states, are intended to provide a
simple paradigm of parallel computation. They are not in-
tended to describe speed-independent asynchronous parallel
processes as does the logic molecular model.

The logic molecular model integrates several paradigms
including logic programming, production systems, and
functional data-flow programming. Some explanation of
the relations between these paradigms is essential. Hyper-
resolution (Robinson, 1992) is closely related to unit res-
olution (Chang, 1970) and, has been studied for bottom-
up computation with large data sets including deductive
databases. The current work is intended to use deduction
in logic programming to represent a broad class of asyn-
chronous parallel computation.

In contrast to logic programming, most production sys-
tems, such as OPS-5 (Cooper and Wogrin, 1988), mainly
employ forward deduction. Although the purpose and the
control mechanisms are essentially different, our computa-
tion model has some similarities to production systems: the
unit clauses in the global state correspond to data tokens in
the working memory, unification to pattern matching and the

extended Horn clause rules to production rules for forward
deduction.

The control of our computation model is closely related
to that used in data-flow programs (Dennis, 1975), as the
operations are evoked by data tokens. Our PPS programs
are more general and more powerful than the data-flow pro-
grams because each rule represents a general pattern of sym-
bolic operations based on unification and unit resolution.

This paper is organized as follows. The next section
describes the basic model and its asynchronous transition.
The rules and their application to data are defined by us-
ing the notions in logic programming. The transitions of
the global states are based on asynchronous circuit theory.
The third section describes the decomposition of general
rules into simpler rules, and extensions of the basic rules
so that we can use the models for parallel functional pro-
cesses. The fourth section shows a PPS that simulates a 1-
D bounded synchronous CA. This result is closely related
to the synchronous-to-asynchronous transformation of CAs.
The fifth section describes a universal computation by the
PPS. Based on this universal computation, the sixth section
shows several parallel self-replicating molecules and self-
replicating programs. The final section gives brief conclud-
ing remarks.

The Basic Model and Parallel Derivation
We use basic notions of logic programming such as unifica-
tion and most general unifier to describe the pattern match-
ing and application of the rules.

Parallel Production Systems
We use the notations and syntax of standard Prolog for vari-
ables, terms, lists and operators. A constant is either a num-
ber or an identifier (an atom in Prolog) that starts with a
lower-case character, and a variable starts with an upper-case
character and the underscore “ ”. A term is either a constant,
a variable, or a complex term of the form f(t1, · · · , tk),
where f is an identifier (a function or predicate symbol),
and each ti is a term. An atom is a term of the form ei-
ther p(t1, · · · , tk), or p when k = 0, where p is a predicate
symbol, and each ti is a term.

A substitution θ is a mapping from a set of variables to
a set of terms. For any term t, an instance tθ is a term in
which each variable X defined in θ is replaced by its value
θ(X). For any terms s and t, we say that s and t are variants
of each other, if t is an instance of s and t is an instance of s.
A unifier for two terms s and t is a substitution θ, such that
sθ = tθ. The unifier θ is the most general unifier (mgu), if
for every other unifier σ of s and t, sσ and tσ are instances
of sθ and tθ, respectively.

A parallel production system (PPS) is defined by its pro-
gram and its initial global states. The program is a set of
rules of the form

B1, · · · , Bm → C1, · · · , Cn, m, n ≥ 0, m + n ≥ 1.
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where each of Bi and Cj is either an atom or a variable. The
variable in a rule is instantiated to an atom, when the rule
is applied as will be described later. The global state, or the
working memory, of the PPS is the multiset of unit clauses
(or atoms) called molecules. The initial global set generally
contains the input information.

A rule R = (B1, · · · , Bm → C1, · · · , Cn) is applicable
to molecules A1, · · · , Am in a global state W , if and only if
there is a most general unifier θ such that: Aiθ = Biθ for all
1 ≤ i ≤ m. In this case, we write W ⇒ W ′ for the result
W ′ of the application defined by

W ′ = (W − {B′
1θ, · · · , B′

mθ}) ∪ {C ′
1θ, · · · , C ′

nθ}.

The relation ⇒∗ denotes the reflective and transitive closure
of “⇒”. For any initial global state W0, every global state
W with W0 ⇒∗ W is called a derivable global state of S.

The application of rule R to molecules A1, · · · , Am is
equivalent to the simultaneous hyper-resolution of n Horn
clause rules,

C1 ← B1, · · · , Bm, · · · Cn ← B1, · · · , Bm,

and the m unit clauses A1, · · · , Am, except that these unit
clauses are deleted from the global state. Hence, each resul-
tant unit clause is a logical consequence of the unit clauses
in the global state and the Horn clauses.

Asynchronous Transition and Speed-Independence
Asynchronous systems generally must be speed-
independent to achieve definite computation results in
spite of the indefinite order of operations. We represent
asynchronous transition in PPSes by applying the termi-
nology of asynchronous circuit theory (Muller and Burtky,
1959) as in defining asynchronous cellular automata (Naka-
mura, 1981). As several different terms are used for similar
notions in term rewriting system (TRS) theories, we have
added some comments on these terms in parentheses.

An allowed sequence in a PPS is a finite or infinite se-
quence W0,W1,W2, · · · of the global states such that Wi ⇒
Wi+1 for i = 0, 1, 2, · · · and there is no subscript i0 ≥ 0
such that a rule is applicable to a subset of molecules in Wi

for all i ≥ i0. (This notion corresponds to fair computa-
tion in TRS.) This condition states that all the delays in the
application of the rules are arbitrary but finite.

The class G of global states in a PPS is partitioned into
subclasses by the equivalence relation W ⇒∗ W ′ and
W ′ ⇒∗ W for any W,W ′ ∈ G. The equivalence class
(“strongly connected components” in TRS) is partially or-
dered by the relation ⇒∗. A PPS S is speed-independent,
if and only if for all allowed sequences W0,W1,W2, · · ·
starting with an initial global state W0, there is an integer
j0 such that all global states Wj , j ≥ j0 are in a common
equivalence class. In a speed-independent system, if there is
a finite allowed sequence W0, · · · ,Wt, then all the allowed

sequences starting with W0 terminate with Wt, which we
call the terminal state.

A PPS S is race-free, if and only if for any derivable
global states W and W ′ such that a rule R is applicable to
some molecules in W and W ⇒ W ′, either W ′ has the re-
sult of the application of R, or R is still applicable to the
same molecules in W ′.

A PPS S has the Church-Rosser (diamond) property, if
and only if for any derivable global states W,X and Y with
W ⇒ X and W ⇒ Y , there is a global state Z such that:

W

Y Z.

X=⇒

=⇒
‖∨ ‖∨

Proposition 1 Any race-free PPS is Church-Rosser, and
any Church-Rosser PPS is speed-independent. The con-
verses of these relations do not hold.

Proof It is obvious from the definitions that any race-free
PPS is Church-Rosser. We omit the proof that any Church-
Rosser PPS is speed-independent because it is similar to the
corresponding propositions in asynchronous circuit theory
(Muller and Burtky, 1959) and in the theory of TRS.

To prove that the converse does not hold, consider the PPS
with program, p, q → s; s, r → u; q, r → t; p, t → u,
and initial global state {p, q, r}. This system is Church-
Rosser but not race-free. Consider another PPS with pro-
gram, p, q → s; s, r → u; p, q, r → u, and initial global
state {p, q, r}. This system is speed-independent, but not
Church-Rosser. 2

Synchronous Transition
A synchronous transition sequence of a PPS is a subse-
quence W0,W1,W2, · · · of an allowed sequence such that
all applicable rules in Wi, and no other rule, have applied
in Wi+1 for i = 0, 1, 2, · · · . In any race-free PPS, there
is a unique synchronous transition sequence for any initial
global state. The length of the synchronous transition se-
quence represents the number of steps, or time, of asyn-
chronous computation where all applications of the rules re-
quire a constant time.

Example: Parallel Parsing of a CFL
The first example is parallel bottom-up parsing of the paren-
thesis languages, i.e, the set of strings with the same number
of a’s and b’s such that no prefix contains more b’s than a’s.
Each rule in the following program represents a production
rule for a context free grammar, as in definite clause gram-
mars (DCGs) (Imada and Nakamura, 2010).

[Parsing parenthesis language]
a(I,J), b(J,K)→ s(I,K,s(a,b)).
s(I,J,P),s(J,K,Q)→ s(I,K,s(P,Q)).
a(I,J),s(J,K,P),b(K,L)→ s(I,L,s(a,P,b)).
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Suppose that the initial global state contains the following
molecules representing the string aababb.

a(0,1).a(1,2).b(2,3).a(3,4).b(4,5).b(5,6).

The computation proceeds as follows and terminates with a
molecule that has a term representing the derivation tree.

a(0,1),a(1,2),b(2,3),a(3,4),b(4,5),b(5,6)
⇒ a(0,1),s(1,3,s(a,b)),a(3,4),b(4,5),b(5,6)
⇒ a(0,1),s(1,3,s(a,b)),s(3,5,s(a,b)),b(5,6)
⇒ a(0,1),s(1,5,s(s(a,b),s(a,b))),b(5,6)
⇒ s(0,6,s(a,s(1,5,s(s(a,b),s(a,b))),b))

This computation is speed-independent and terminates with
a single molecule having the definite derivation tree for any
initial state representing a string in the language. As the
grammar is ambiguous, the computation with other initial
global states, for example, those for parsing a string ababab,
cannot be speed-independent. Nevertheless, parsing termi-
nates with a final molecule containing one of the possible
derivation trees.

Extensions of the Basic Model
This section describes transformations and extensions of the
rules in the basic model. Transformed PPSes simulate the
original PPSes in the following sense. A PPS S′ simu-
lates a PPS S, if and only if there is a computable func-
tion c : U ′ → U , where each of U and U ′ is the class
of global states of S and S′, respectively, such that if for
any allowed sequence W0,W1,W2, · · · in S′, the sequence
c(W0), c(W1), c(W2), · · · is an allowed sequence in S, pro-
vided that we ignore any repetitions.

Decomposition of Rules

Any rule B1, · · · , Bm -> C1, · · · , Cn with m > 2 and/or
n > 2 can be decomposed into simpler rules with at most
two atoms on each of the left and right hand sides. First
we recursively transform a rule B1, · · · , Bm → C1, · · · , Cn

with m > 2 into the following three rules.

B1, · · · , Bm/2 → r1(X1, · · · , Xk),
Bm/2+1, · · · , Bm → r2(X1, · · · , Xk),
r1(X1, · · · , Xk), r2(X1, · · · , Xk) → C1, · · · , Cn

where r1 and r2 are unique predicate names and
X1, · · · , Xk is a list of all the variables in the rule. Secondly,
we recursively decompose the rule of the form B1, B2 →
C1, · · · , Cn with n > 2 into the three rules with unique
predicate names q1 and q2:

B1, B2 → q1(X1, · · · , Xk), q2(X1, · · · , Xk),
q1(X1, · · · , Xk) → C1, · · · , Cn/2,

q2(X1, · · · , Xk) → Cn/2+1, · · · , Cn.

Non-Deleting Molecules
We can extend the basic rule so that any molecule matching
with an atom on the left side of the rule remains undeleted
from a global state. Any molecule unifying the atom with
the prefix operator *, as in

B1, · · · , ∗Bi, · · · , Bm → C1, · · · , Cn,

is the non-deleting molecule, which is not deleted from the
global states when this rule is applied. The asterisk can be
prefixed in any atoms on the left-hand side. This rule can be
replaced by the rule

B1, · · · , Bi, · · · , Bm → Bi, C1, · · · , Cn.

We can apply this transformation to any number of non-
deleting molecules in the program. Note that any PPS in
which all atoms are non-deleting is race-free.

Evaluable Predicates and Terms
We can extend the use of programs in PPS from pure logical
deduction to functional computation by adding some func-
tions to test conditions and evaluate the arithmetic expres-
sions. For the first extension, atoms on the left side can be
terms with “external predicates” to test conditions and con-
verting data term. In this paper, we represent these atoms by
deterministic Prolog goals with the prefix operator #, e.g.,
the term #(X > Y+1), where operator > is the external
predicate. These terms are evaluated after all necessary vari-
ables in the condition have been instantiated. We consider
the term to be a non-deleting atom and the system to have an
implicit model of the external predicate, a possibly infinite
set of ground unit clauses.

For the second extension, we allow the rules to contain
evaluable terms of arithmetic expressions with the prefix $
in the atoms, e.g., $(2.0*X+1.0). The arithmetic expres-
sion can be placed on both the left and right hand sides of a
rule, and it is evaluated and replaced by its value when the
rule is applied.

Simulating 1-D Cellular Automata
This section shows a PPS that simulates a 1-dimensional
synchronous cellular automaton (1-D CA) and has an identi-
cal computational result. We suppose that the CA is bounded
in the sense that the leftmost and rightmost cells are fixed
and have the special boundary state \. The CA with three
neighbors is defined by a set Q of cell states including \ and
a local function f : Q3 → Q. We represent n cells by
the numbers 1, 2, · · · , n and each configuration at time i by
\qi

1 qi
2 · · · qi

n\.
We construct a PPS PZ simulating a 1-D CA Z as follows.

1. For all even time points t ≥ 0, the state qt
j of each cell

j, 2 ≤ j ≤ n − 1 is represented by three molecules
c(j, qt

j), l(j, q
t
j), r(j, q

t
j), and the state of the leftmost
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Figure 1: A hypothetical data flow diagram of PPS PZ for
simulating a 1-D CA.

and rightmost cells 1 and n by cl(1, qt
1), l(1, q

t
1), and

cr(n, qt
n), r(n, qt

n), respectively. For all odd time points
t, the state qt

j of each cell is represented similarly, except
that the predicate symbols c, l and r are replaced by c′, l′

and r′, respectively.

2. The initial global state is the set of the following
molecules, which represents the initial configuration
\q0

1 q0
2 · · · q0

n\.

(a) cl(1, q0
1), l(1, q0

1).
(b) l(j, q0

j ), c(j, q0
j ), r(j, q0

j ), 2 ≤ j ≤ n − 1.

(c) r(n, q0
n), cr(n, q0

n).

3. The program of PZ is the set of the following rules, where
(V is f(L,C,R)) is a Prolog expression that unifies V
with the value of the local function f .

[Program of PZ for simulating 1-D CA]

cl(1,C),r(2,R),#(V is f(\,C,R))→
cl′(1,V),l′(1,V).

c(J,C),#(2 ≤ J ≤ n − 1),l($(J-1),L),
r($(J+1),R),#(V is f(L,C,R))→

r′(J,V),c′(J,V),l′(J,V).
cr(n,C),l(n − 1,R),#(V is f(L,C,\))→

cl′(n, V),r′(n,V)).
cl′(1,C),r′(2,R),#(V is f(\,C,R))→

cl(1, V),l(1,V).
c′(J, C),#(2 ≤ J ≤ n − 1),l′($(J-1), L),

r′($(J+1),R),#(V is f(L,C,R) →
r(J,V),c(J,V),l(J,V).

cr′(n,C),l′(n − 1,R),#(U is f(L,C,\))→
cl(n,V),r(n,V).

Fig. 1 shows a hypothetical data flow diagram for transi-
tions in PZ .

Proposition 2 If the synchronous transition in the 1-
D CA Z terminates at time t with the configuration
\qt

1 qt
2 · · · qt

n\ = \qt+1
1 qt+1

2 · · · qt+1
n \, then all the allowed

sequences in the PPS PZ fall into the final equivalence class,
in which every global state represents this configuration.

Proof (Outline) We can prove the following two lemmas by
mathematical induction on the number of applications of the
rules.

1. The proposition holds, if we restrict the allowed se-
quences to one that includes the synchronous transition
sequence.

2. The PPS PZ is race-free, i.e., all the applications of rules
to two molecules and three molecules are not affected by
the other operations.

These lemmas imply that the proposition is true for all al-
lowed sequences by Proposition 1. 2

We restrict the 1-D CA to the bounded CA in order to
simplify the construction of PZ . It is not difficult to extend
the CA model to a more general one such that the boundaries
expand with time.

Parallel Universal Computation
A universal program U for PPS is an interpreter such that
for any program P , U inputs molecules for a coded pro-
gram of P and (coded) data molecules D and outputs the
molecules that are equivalent to the result of the computa-
tion of P for D. The universal program not only describes
how the programs are computed, but also makes it possi-
ble to easily extend the language. Furthermore, using the
universal program, PPS programs can generate programs to
be executed later. In particular, the universal program for
PPS provides an environment with fixed interaction rules, in
which the codes of rules are active molecules that interact
with the data molecules.

In this section, we show a universal program for race-
free PPSes. We represent the internal code of a rule
B1, · · · , Bm → C1, · · · , Cn without evaluable predicates
by the molecule,

rbc([B1, · · · , Bm], [C1, · · · , Cn]),

where the list can be an empty list [ ] when m = 0 or n = 0
and [B1] or [C1] are also written B1 and C1. For example,
*rbc(B,C) and *rbc(B, [ ]) are codes for B → C and
B →, respectively. We represent a rule having an atom #P
with an evaluable predicate by

rbpc([B1, · · · , Bm], P, [C1, · · · , Cn]),

The following universal program uses list operations in
Prolog to process sequences of atoms.

[Parallel universal program]
*rbc([B|L],CL),B → rbc(L,CL).
rbc([],[]) →.
rbc([],[C|L]) → C, rbc([],L).
rbc([B|L],CL),B → rbc(L,CL).

*rbpc([B|L],P,CL),B → rbpc(L,P,CL).
rbpc([],P,[C|L]), #P → C, rbc([],L).
rbpc([B|L],P,CL),B → rbpc(L,P,CL).
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Consider that the global state contains a coded rule
rbc([B1, · · · , Bm],[C1, · · · , Cn]) and molecules
B′

1, · · · , B′
m. If Bi unifies with B′

i for each i by an
mgu θi, the universal program generates molecules
(C1, · · · , Cn)θ1 · · · θm. This process proceeds correctly in
race-free computation of a PPS.

Self-Replication
In this section, we show not only small simple self-
replicating sets of molecules, but also self-replication
of coded programs composed of a number of labelled
molecules, such that each replicated molecule is a variant of
the original molecule except that the label is different from
that of the original. By labeling groups of molecules, the
global state can have two or more groups of equivalent coded
programs working independently. We add a common label
to either the first element of coded rules or the first argument
of molecules in a group.

A set S of molecules is self-replicating, if and only if there
are a simple “start command” molecule p and a set S′ of
molecules such that:

1. S ∪ {p} ⇒∗ S ∪ S′, and S ∪ S′ is a terminal state; and

2. each member in S′ is either a variant, or a variant with dif-
ferent label, of a member of S and vice versa, and hence,
S′ is also a self-replicating set.

In this section, we represent the coded rules using the
more readable form ([B1, · · · , Bm], #P → [C1, · · · , Cn]) in
stead of the form rbpc([B1, · · · , Bm], #P, [C1, · · · , Cn]).

Simple Self-Replicating Molecules
One common method of self-replicating programs is based
on the doubling of a part within a program.

[Self-replication by doubling a term]
rep → p((p(R)→[(rep → p(R)),R])).
p(R)→ (rep → p(R)), R.

When the molecule rep is given, the first rule generates
the molecule p((p(R)→[(rep→p(R)),R])). From this
molecule, the second rule generates a pair of molecules,
which is a variant of the coded program.

Self-Replicating Molecules with Labels
We can transform the simple self-replicating program above
to a self-replicating set of molecules identified by a unique
label.

Because of the restriction known as single assignment
rule in logic programming, it is not straightforward to
change part of a term without reconstructing the term. To
assign the labels in the molecules to different labels, we use
mutable terms, which are proposed to realize global vari-
ables in Prolog (Nakamura, 2009). We consider the muta-

ble term as a variable with assignable values1. We repre-
sent mutable terms with a value v by $mt(v), and suppose
that its value can be changed to v′ by evaluating the term
alter($mt(v), v′).

The following rules constitute self-replicating molecules
with label l.

[Self-replication with labels by doubling a term]
rep($mt(l),L1) → p($mt(l),L1,

(p($mt(l),L1,R), #alter($mt(l),L2) →
[(rep($mt(l),L2)→ p($mt(l),L2,R)),R])).

p($mt(l),L1,R),#alter($mt(l),L1)→
(rep($mt(l),L2)→ p($mt(l),L2,R)),R.

For the starting molecule rep($mt(l),m), this program
generates two molecules that are equivalent to the original
program except that the mutable term $mt(l) is changed
to $mt(m). We can repeat this self-replication process by
giving the starting command rep($mt(m),n).

Self-Replication by Copying Molecules
Another common method for self-replicating programs is
copying such that each part of the program alternately copies
the other parts or a program code exists with the capability
to inspect and copy itself (Laing, 1976; Ray, 1992; Hutton,
2003).

In the following self-replicating program, two coded rules
copy each other.

[Self-replication by copying]
rep,*([rpl|B]→D)→([rpl|B]→D),rpl
rpl,*([rep|B]→D)→([rep|B]→D).

Note that the term ([rpl|B]→ D) on the left side of the
first rule unifies with the second rule. For the starting com-
mand rep, the first rule generates a replicated coded rule
of the second rule and the molecule rpl, which starts the
second rule. The second rule generates a copy of the first
rule.

There is also another type of self-replicating molecules
that use copying.

[Parallel self-replication by copying]
rep → rpa,rpb.
rpa,*([rpb|B]→D)→([rpb|B]→D).

rpb,*([rpa|B]→D),*([rep|B1]→D1) →
([rpa|B]→D),([rep|B1]→D1).

For the starting command rep, the first rule generates two
molecules rpa and rpb, which start the second and third
rules, respectively. The second and third rules generate
copies of the third and second rules. As this process can
run in parallel, the second and third molecules can be used

1The mutable terms can be realized by using lists terminated by
variables so that the last element Ek of the list [E1, · · · , Ek|X]
represents the value. This method is simple but not efficient.
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%%%%%%%%%%%%%% Rule 1 %%%%%%%%%%%%%%%%%%%
repj($mt(l),L)→

rpaj($mt(l),L),rpbj($mt(l),L).

%%%%%%%%%%%%%% Rule 2 %%%%%%%%%%%%%%%%%%%
rpaj($mt(l),L),
*([rpbj($mt(l),L)|B],#P → D),
*([rule2j−1,$mt(l)|B1]→D1),
*([rule2j,$mt(l)|B2]→D2),
#alter($mt(l),L)
→
([rpbj($mt(l),L1)|B],#alter($mt(l),L1)→D),
([rule2j−1,$mt(l)|B1]→D1),
([rule2j,$mt(l)|B2]→D2),
rep2j($mt(l),L), rep2j+1($mt(l),L).

%%%%%%%%%%%%%% Rule 3 %%%%%%%%%%%%%%%%%%%
rpbj($mt(l),L),
*([repj($mt(l),L1)|B] →D),
*([rpaj($mt(l),L1)|B1],#P →D1),
#alter($mt(l),L)
→
*([repj($mt(l),L1)|B],#alter($mt(l),L1)→D),
([rpaj($mt(l),L1)|B1],#alter($mt(l),L1))→D1).

Figure 2: Three rules in module Mj for self-replication of
the coded program.

simultaneously as rules and objects of the operation. There-
fore, the second and third rules should be non-deleting to
keep this PPS race-free.

Self-Replication of Coded Programs
Based on the self-replication by copying shown in the last
subsection, we can transform a labelled PPS program to a
self-replicating set of molecules.

Let P be any program of N rules. We sup-
pose that each j-th rule in P is unified with the term
([rulej ,$mt(l)|B]→D) with the initial label l. The
transformed program is the union of M1,M2, · · · ,MN/2

and P , where Mj is a module of the three rules in Fig. 3
for 1 ≤ j ≤ N/2, and the second rule contains:

1. the term ([rule2j ,$mt(l)|B2]→D2) in both sides
of the rule, if and only if 2j ≤ N ; and

2. the terms in the right hand side rep2j($mt(l),L)and
rep2j+1($mt(l),L), if and only if j ≤ N/2.

For the starting command repj($mt(l),m), each rule
in Mj works as follows:

1. The first rule generates molecules rpaj($mt(l),m)
and rpbj($mt(l),m);

2. The second rule replicates the (2j − 1)-th rule and the
2j-th rule of P , if 2j ≤ N , and generates the molecules
rep2j($mt(l),m) and rep2j+1($mt(l),m), if j ≤
N/2; and
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Figure 3: A data flow diagram for the self-replication of a
coded program with 20 rules. Each of 10 modules replicates
two program rules and three rules of the module itself.

3. The third rule replicates the first and second rules.

Fig.3 illustrates the data flow in the self-replication of
program T for the case N = 20. Each modules
Mj , with 1 ≤ j ≤ 4 generates two molecules
rep2j($mt(l),m)and rep2j+1($mt(l),m), while
M5 generates only rep10($mt(l),m). Every module
replicates two rules in P and three rules of the module.

The following proposition summarizes the discussion in
this section.

Proposition 3 For any PPS program P , we can construct a
set T of labelled molecules such that

1. |T | ≤ 2.5 · |P |.

2. T contains a coded program equivalent to P .

3. T replicates itself in time O(log |P |) by race-free compu-
tation of T and the start command molecule: it generates
all the modules each of which is a variant of the corre-
sponding element in T with a different label .

We can reduce the factor of 2.5 for the size |T | to less than
2 by changing the module to copy three or more rules.

Concluding Remarks
In this paper, we discussed asynchronous parallel univer-
sal computation and self-replication based on a computation
model, called the logic molecular model, or the parallel pro-
duction system. The model is based on the parallel applica-
tion of production rules, which is forward deduction based
on extended Horn clauses.

We showed that for any PPS program, there is a set of
molecules that contains the coded program, which repli-
cates itself by asynchronous parallel computation in time
proportional to log n, where n is the number of rules in
the program. This type of self-replication is important for
a theoretical model of biological systems, in which the most
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processes including self-replication seem asynchronous and
parallel.

The essential features of the molecular model are summa-
rized as follows.

• The PPS is a simple model for parallel functional compu-
tation as well as for parallel logical deduction.

• The programs in the PPS are compact, as the rules repre-
sent patterns of deductions and do not specify the order of
the deductions. The PPS is effective for specifying several
parallel computations, including parallel parsing, simulat-
ing 1-D CA and universal computation.

• As a universal Turing machine and universal programs
for sequential computation, the parallel universal program
suggests the generality and the computation power of the
parallel computation model. By the universal program,
the molecules are not only data tokens but also coded
rules that can generate other molecules of coded rules.
The coded rules are similar to enzymes in biological sys-
tems because these molecules control the interactions of
other molecules.

We tested several PPS programs including parallel sorting
using bitonic sort in addition to the example programs in this
paper by using a serial interpreter of PPS in Prolog.

An interesting question regarding self-replication is the
cost required to transform a coded program into a self-
reproducing set of molecules. The transformed self-
replicating coded program in the previous section requires
extra 1.5N rules for a program with N rules. Reducing the
number of rules in parallel self-reproducing programs is a
topic for future work to address. Other future problems in-
clude:

• implementation of PPS in a concurrent environment;

• machine learning of self-replicating PPSes by extending
methods of learning definite clause grammars (DCGs)
(Imada and Nakamura, 2010); and

• application of this paper’s approaches to amorphous com-
puting (Abelson et al., 2007), to DNA and molecular com-
puting and to chemical kinematics.
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