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Abstract

In games that model cooperative dilemmas, if players are able
to choose with whom they will play, they will seek out coop-
erative partners while escaping free riders. In this paper we
recast the problem of selecting with whom to play as a prob-
lem of finding the right combination of players. With this
approach, we present a model suitable to anyn-player game.
The model is adaptive and we present three update policies.
If a player has enough cooperative partners, then with our
model a player is able to only select them. We show informal
proofs of our claim and illustrate our model under different
scenarios.

Introduction
Cooperative dilemmas have been modelled by several
games, for instance Iterated Prisoner’s Dilemma (IPD), Ul-
timatum, Investment, Centipede, and Public Good Provision
(PGP) (Gintis, 2000b; Fudenberg and Tirole, 1991; Axel-
rod, 1997). Theoretical analysis of these games predicts
the prevalence of free-riders, exploiters, and other typesof
non-prosocial behaviour (Gintis, 2000b). Despite this, ex-
periments involving people show significant pro-social be-
haviour. Several theories, trust management, reputation,
norms, punishments, have been put forward to explain these
results under different forms. However these theories are
usually attached to particular games.

In this paper we focus on partner selection. It has been re-
ported in human experiments (Coricelli et al., 2004; Ehrhart
and Keser, 1999) that if players are able to select their part-
ners they will seek cooperative partners while escaping free
riders. We present a model of partner selection tailored for
any n-player game that allows a player to select the most
favourable combination of partners. In contrast with previ-
ous results, our model relies solely on private information.

The model we present should be used by a player during
its life cycle when it has to play a game. The player uses
private information gathered from previous games to select
partners to play a game. Although with our model a player
can in some conditions only select cooperative partners, we
do not prevent it from being selected by uncooperative play-
ers.

The goal of our model is to allow cooperative players to
tentatively select cooperative partners. We assume that a se-
lected player cannot refuse to play and therefore it can be
selected by uncooperative players. This situation is not un-
like neighbourhood choice, for instance. Someone chooses
a neighbourhood for its general reputation but she may not
refuse to have any new neighbour no matter how the new-
comer is uncooperative.

Related Work
Volunteering is a form of partner selection where a player
can choose to participate in a game or not, Aktipis (2004);
Hauert et al. (2002); Orbell and Dawes (1993). For each in-
teraction, it introduces the possibility of not playing. How-
ever the payoff for not playing lays between the maximum
and minimum payoffs obtainable in the game. This relation
alters the equilibria in the original game and thus creates new
ones. This is the case in Orbell and Dawes (1993) where the
payoff for not playing is zero (in their game there are posi-
tive and negative payoffs). They justify their choice of this
value because people can evaluate and compare game ac-
tions that lead to positive or to negative payoffs. The same
happens in Hauert et al. (2002). They focused on the PGP
game. Players that do not play get a payoff that is higher than
the payoff obtained by a defector in a group of defectors but
lower than the payoff obtained by a cooperator in a group
of cooperators. They found out that their system exhibits a
rock-scissors-paper dynamics where players with the option
of participating cyclally appear and disappear from the pop-
ulation. In both works players do not have memory of past
encounters nor can identify other players. In Price (2006)
the author refers that in experiments involving human sub-
jects, people usually cooperate when they can choose their
interaction partners, and they cooperate when they perceive
altruistic behaviour.

Model Description
In a n-player game, a player has to selectn − 1 partners to
play a game from a population ofm candidates. Its problem
is to find those combinations that yield the highest utilities.
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We assume that the player has access to thosem candidates,
but our model can easily be adapted to a scenario where can-
didates may enter or leave the population. We assume that
the population may contain candidates that behave stochas-
tically, namely, they sometimes cooperate but they also free
ride.

For largem andn it may not be feasible for a player to
process all the possible combinations. Therefore, a player
maintains a poolc of l combinations that is updated as it
plays games. Each combination has a probability to be se-
lected. These probabilities are stored in a vectorw. Finally,
the player has a utility thresholdu

T
. Representing a strategy

by s, a player is then characterised by a 4-tuple:

α = (s, c,w, u
T
) . (1)

When a player has to play a game, it selects a combination
from vectorc using the probability vectorw. It compares
the utility obtained withu

T
and decides if it should update

the two vectors. If it is lower, then other combination should
be favoured.

In the following discussion, we will assume thatk is the
slot index of the selected combination. We will now discuss
some vector update policies.

Drastic Update – Policy A
If the selected combination yields a utility lower thanu

T
, its

probability is multiplied by a factor,δ, lower than 1.

wt+1

k =

{

δwt
k if u < u

T

wt
k if u ≥ u

T

. (2)

The probabilities of other combinations are updated as
follows:

wt+1

i =







wt
i +

(1 − δ)wt
k

l − 1
if u < u

T

wt
i if u ≥ u

T

, (3)

wherei 6= k, in order to maintain sum to unit.
In slot k of vectorc a randomly drawn combination re-

places the selected combination in case it yielded a lower
utility:

ct+1

k =

{

rnd(C \ {ct
i : 1 ≤ i ≤ l}) if u < u

T

ct
k if u ≥ u

T

,

(4)
whereC is the set of all combinations ofn − 1 elements
out of m candidates, andrnd is a function that given a set
returns a random element.

The initial probability vector,w0, may have random val-
ues or constant valuel−1. It has been shown that the choice
of w

0 does not change game dynamics (Mariano et al.,
2009a). In order to give a fair chance to all initial combi-
nations, we prefer the uniform distribution.

The rationale for the drastic update is that combinations
that contain free riders, exploiters, etc., are removed from
the pool. It explores new combinations because it is always
replacing lower ones. Although the replacing combination
has initially a lower probability to be selected, it may absorb
the probabilities of other lower combinations. An impor-
tant aspect is that combinations with only cooperators never
leave the pool and absorb the probabilities of lower com-
binations. This means that in the long run, the probability
mass of combinations with cooperators approaches1.

If there are no good combinations, then the pool will never
stabilise, with combinations constantly entering. Their time
in the pool will be proportional to their cooperation level.

Smooth Update – Policy B
This update policy has a parameterǫ < 1 that determines
when the combination vector is updated. Whenever a com-
bination yields a utility lower thanu

T
, its probability de-

creases as it is multiplied by a factorδ lower than 1. If the
probability reaches valueǫ we consider that the correspond-
ing combination should leave the pool. It will be replaced by
a new randomly generated combination. In order be fair, the
new combination is assigned probabilityl−1. This means
that we have to decrease the other combinations’ probabili-
ties. We opt for a decrease proportional to their value. For-
malising, the probability to select combinationck is updated
as:

wt+1

k =











l−1 if u < u
T
∧ wt

k ≤ ǫ

δwt
k if u < u

T
∧ wt

k > ǫ

wt
k if u ≥ u

T

, (5)

and the probability to select the other combinations is:

wt+1

i =



























wt
i

1 − l−1

∑

j 6=k

wt
j

if u < u
T
∧ wt

k ≤ ǫ

wt
i +

(1 − δ)wt
k

l − 1
if u < u

T
∧ wt

k > ǫ

wt
i if u ≥ u

T

. (6)

The combination vector is updated as follows:

ct+1

k =

{

rnd(C \ {ct
i : 1 ≤ i ≤ l}) if u < u

T
∧ wt

k ≤ ǫ

ct
k otherwise

(7)
The first probability vector,w0 is initialised with constant

valuel−1, in order to give a fair chance to all initial combi-
nations.

As long as the pool size is smaller than the number of
good combinations, in the long run, the pool will only con-
tain those combinations. Again, a good combination is never
replaced. If the pool size is higher, then bad combinations
will always have in the long run a probability of being se-
lected ranging fromǫ to l−1.
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Drastic Proportional Update – Policy C
The probability of a good combination is only indirectly in-
creased by the update policies we have described. A bet-
ter solution is a probability proportional to the utility ob-
tained with the corresponding combination. Even among
good combinations there can be differences due to different
types of cooperators in the population. For instance, some
candidates may behave stochastically in terms of their coop-
erativeness.

In this policy, vectorw is best described as a weight vec-
tor. Whenever a combination is selected, if the utility ob-
tained,u, is higher than thresholdu

T
its weight is updated in

order to approach the true combination utility. If the utility
obtained is lower thanu

T
, a random combination is selected

and the weight reset to some value.
Like in previous policies, we opt for having an initial

weight vector with identical values,w0
k = u

T
− u. The de-

cision thresholdu
T

is used when a new combination enters
the pool. Parameterδ < 1 is used to gradually approximate
the true utility of a combination. Formalising, the update
policy is:

wt+1

k =

{

δwt
k + (1 − δ)(u − u) if u ≥ u

T

u
T
− u if u < u

T

, (8)

where u is the lowest utility obtained by a player. The
combination vector is updated using the policy described by
Equation (4).

This policy is general enough to encompass games with
negative utilities. To guarantee this, weights assigned tonew
combinations are shifted byu.

As in the previous vector update policies, if the pool size
is smaller than the number of good combinations, in the long
run the pool will only contain those combinations. Again,
a good combination is never replaced. If the pool size is
higher, then bad combinations will always have, in the long
run, a non-zero probability of being selected, which is less
thanl−1 and higher than:

u
T
− u

u
T
− u + (l − 1)(u − u)

(9)

which corresponds to the limit probabilities of a pool with
l − 1 perfect combinations. Although this value is inversely
proportional tol, if we increasel but other parameters re-
main constant (in particular number of good combinations),
the probability mass of good combinations decreases.

Adaptive Utility Threshold
As the goal of this model is for cooperative players to only
select their kin, the ideal value for thresholdu

T
is the utility

obtained by a strategy profile composed of only cooperative
strategies. We will use parameteru

P
to represent this value.

It may happen that a player does not have enough pure co-
operative partners. Therefore, no single partner combination

will remain forever in vectorc. In this case, the player could
lower thresholdu

T
in order to reach a stable regime.

The player should raise the threshold if vectorc is stable.
But we must take care in order to guarantee that the thresh-
old does not oscillate too much. We opt for a regime similar
to the thermal one used in a Simulated Annealing algorithm
(Kirkpatrick et al., 1983).

The rule to update the utility threshold is based on the
number of changes that occurred in the combination vector
in the lasth games. The rationale being that a high number
of changes, larger thanh

T
, means that there are not enough

cooperative candidates and the threshold should decrease.
On the other hand, no changes means that the threshold can
increase in order to select better cooperators. The model
has additional parameters that control the change in utility
threshold,β andγ. The utility threshold update policy is:

ut+1

T
=











(1 − βe−γt)ut
T

+ βe−γtu
P

if #c = 0

(1 − βe−γt)ut
T

+ βe−γtu if #c > h
T

ut
T

otherwise
(10)

where#c represents the number of changes in the combina-
tion vector in the lasth games. Parameterβ ∈ [0, 1] con-
trols the magnitude of change inu

T
. Forβ = 0 there is no

change. The value ofγ ∈ [0, 1] controls the decay ofu
T

with the number of games. Forγ = 0 there is no decay and
for other values we may consider that the threshold stabilises
after10/γ games.

The initial utility threshold is set to the Pareto utility,
u0

T
= u

P
. The threshold can never go bellow the lowest

utility obtained by a player,u.

Discussion
We have presented three policies of partner selection suit-
able for anyn-player game with stochastic players. We
stress the fact that in the three models a player selects part-
ners based only on private information. This information
consists on the utilities obtained in each game. The utility
is not necessarily equal to the payoff a game ascribes to a
player. It may depend on the payoff of all players, as in the
utility of homo equalitarium(Gintis, 2000a).

Update policy A is identical to the policy presented
in Mariano et al. (2009a). However here we extend that
model to select partner combinations instead of a single part-
ner. Moreover we can handle stochastic strategies. Update
policy A only requires one combination of good partners
while update policies B and C requirel combinations of
good partners. If there are fewer, then with update policiesB
and C there will be bad combinations in the pool with non-
zero probability. While this is a drawback, update policy B
does not promptly remove bad combinations from the pool,
but only removes them when their probabilities are lower
than thresholdǫ. This allows combinations with stochas-
tic players to remain longer in the pool. As for policy C,
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the probability of a partner combination is proportional to
their utility, thus the best combinations are favoured over
bad ones.

All models aim at keeping the combinations that yield the
highest utility in the long run. Despite the computational
effort needed by the policies, it is rational for a player to
follow one of them instead of randomly selecting partners.

The vector update policy is performed by the player that
selects partners, but it can also be performed by players that
are selected. In particular, if the combination, from the view-
point of the partner exists in his pool, then he can apply one
of the three update policies. This is an improvement over
previous work (Mariano et al., 2009b) as the partner selec-
tion model was only used by the player that selected part-
ners. In 2-player games, if the player has enough computa-
tional resources its pool can cover the entire population of
candidates.

This paper also introduces an adaptive process to mod-
ify the utility threshold used in all the policies. The goal of
this adaptation is to stabilise the contents of the combina-
tion vector while maintaining a higher probability to select
the best possible combinations. For instance, if the num-
ber of pure cooperators is scarce, a player should accept, as
good, combinations with stochastic cooperators, which pro-
vide sub-optimal utilities (less thanu

P
). Also, the adaptive

process may recover from a situation where the threshold is
low and new good candidates appear.

Experimental Analysis

We have performed simulations using the PGP game (Boyd
et al., 2003; Hauert et al., 2002). This game is commonly
studied to analyse cooperative dilemmas. Moreover, it is a
n-player game. We analysed the games played by a particu-
lar player paying special attention to the evolution of vectors
w andc and the number of games played with every candi-
date.

Simulation Description

In the PGP game, a player that contributes to the good, in-
curs in a costc. The good is worthg for each player. Let
x be the proportion of players that provide the good. The
payoff of a player that provides the good isgx − c while
players that defect getgx. The game has a single iteration.
The strategy used by players is probabilistic and is defined
by parameterp which is the probability to provide the good.
We assume that the utility of a player is equal to its payoff.
In the simulations we setg = 10 andc = 4. The number of
players in a game varied between three and five.

Partner candidate population composition was chosen in
order to illustrate interesting behaviour of update policies:
with update policy A the population has fewer thann − 1
cooperative partners; with update policies B and C the num-
ber of combinations with only cooperative partners is less

Players
3 4 5

C
an

d
id

at
es 10 45 120 210

30 435 4060 27405
50 1225 19600 230300

100 4950 161700 3921225

Table 1: Number of available partner combinations for dif-
ferent number of candidates and players in the PGP game.

id strategies
P1 2 (p = 1) 8 (p = 0.5)
P2 3 (p = 1) 7 (p = 0.5)
P3 4 (p = 1) 6 (p = 0.5)
P4 2 (p = 1) 18 (p = 0.5)
P5 3 (p = 1) 17 (p = 0.5)
P6 4 (p = 1) 16 (p = 0.5)

Table 2: Candidate populations used in the simulations.

thanl. Table 1 lists the number of available partner combi-
nations per population size and players.

Different hand-tailored partner candidate populations
were used. They varied in the number of cooperative strate-
gies and population size. Table 2 presents the candidate pop-
ulations used. The number of cooperative partners varied
between two and four. The rest of the population was filled
with mixed strategies that cooperated with probability0.5.
Population size was either ten or twenty. The size of the
population of candidates was chosen to reflect the size of
small communities (Price, 2006).

Pool size, represented by parameterl, was selected from
set{10, 20, 30}. A higher value means more combinations
may be analysed, but there will be more bad combinations
in the pool.

The player that was used to analyse the partner selection
algorithm used a pure cooperative strategy(p = 1). The
player ran the algorithm duringR = 1000 games. After
each game, we measured vectorsw andc, the selected com-
bination, utility thresholdu

T
and the player payoff.

All probability vector update policies usedδ = 0.5. Re-
garding update policy B extra parameter,ǫ, instead of using
an absolute value, in the simulations we usedǫ = l−1ǫ′, with
ǫ′ ∈ {0.2, 1}.

Regarding the adaptive utility threshold policy, for update
policies A and C a history size of 20 was used. Since up-
date policy B only updates the probability vector when the
probability is lower than parameterǫ different history sizes
and values for parameterǫ were tested in order to observe
any relevant behaviour. History size was taken from set
{20, 40, 60, 80, 100}. As for the remaining parameters, we
setβ = 0.1, γ = 0.002 andh

T
= 8.

To obtain statistically significant results, 30 simulations
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were performed for each parameter combination. The ap-
pendix describes the implementation of the vector update
policies and other relevant details.

Result Analysis

Figure 1 shows the average and standard deviation per each
parameter combination of the following values: average
payoff, number of changes in combination vector and last
utility thresholduR

T
. The key is shown separately in Fig-

ures 1a and 1b.
Average payoff is higher with policy A mainly due to bad

combinations having a low probability value. Recall that
in this policy the probability of good combinations never
decrease. This causes bad combinations to have a proba-
bility approaching zero. In contrast, policies B and C de-
crease the probability of combinations (good ones included)
when a new combination enters the pool. Therefore, in these
two policies, bad combinations will always have a non-zero
probability of being selected. Average payoff increases with
the number of cooperators in the candidate population while
in most parameter combinations it decreases with pool size.
The bigger is the number of cooperators the higher is the
number of available partner combinations. The bigger is the
pool size the higher is the probability to select bad combina-
tions. Average payoff is inversely proportional to candidate
population size. The reason being the higher number of un-
cooperative partners.

As for changes in the probability vector, update policy A
has lower values compared with the other update policies.
A higher number means that a player takes longer to find a
suitable combination of partners. There is not a clear trend
on the number of changes versus other parameters: in some
settings the number of changes is proportional to pool size.
In update policy A in particular, when the number of coop-
erators is equal to or higher thann, the number of players in
a game, there are few changes. There are simulations with
candidate population size equal to 20 (results not shown)
where the number of changes inc, the combination vector,
is higher then the corresponding parameter combination but
with size equal to 10. The reason being the higher number
of uncooperative partners.

The plots ofuR
T

, the last utility threshold, show that up-
date policy A has slightly larger values than policy C. In sim-
ulations where the number of cooperative partners is equal
to n − 1, the best payoff a cooperative player can get is
g(n − 1)/n − c. This is a reasonable value foru

T
as it

guarantees a combination of partners where all but one are
cooperative. For other values of the number of cooperative
partners and number of players, Table 3 presents the best
payoff a cooperator can obtain.

The simulations where the number of cooperators in can-
didate population is equal or higher thann − 1 are a special
case for update policy A. This policy is able to find a com-
bination of only cooperative partners, thus the threshold is

Players
3 4 5

C
o

o
p

er
at

o
rs

2
2g

3
− c

2g

4
− c

2g

5
− c

3 g − c
3g

4
− c

3g

5
− c

4 g − c g − c
4g

5
− c

Table 3: Best payoff obtained by a cooperative player per
number of players and number of cooperators in candidate
population.

-1

 0

 1

 2

 3

 4

 5

 6

 3  4  5

players

policy B, last threshold

Figure 2: Plot of average and standard deviation ofuR
T

from
simulations where negative values where observed. Results
from simulations with update policy B,ǫ′ = 1, population
size is 20 and history size is 60.

nearerg − c = 6.
We comment the results of update policy B separately be-

cause of its rule to update the combination vector. Since
an update is only triggered when the probability is lower
thanǫ, if the probability is very low, then the correspond-
ing combination is selected infrequently. Thus changes in
the probability vector are rare. In particular, when history
size is 20 andǫ′ = 0.2, no changes occur. Despite this, av-
erage payoffs are similar to those obtained by a player that
uses update policy C. When we increase history size and use
ǫ′ = 1 then there are simulations were changes occur, but
in a lower quantity when compared to the other policies. As
for utility threshold, we observed simulations with negative
values (see Figure 2). This is due to a large history size. Let
hs be history size. If there areh

T
consecutive rounds with

changes inc, then in the followinghs−h
T

roundsu
T

will be
decreased towards the minimum utility obtained in a game.
Recall that the minimum utility in PGP isg/n − c ≈ −1
(all players do not cooperate except one). When changes are
scarce, the utility threshold remained atu

P
.

The plots in Figure 1 only show an inversely relation be-
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 0

 1

 2

 3

 4

 5

 6

 3  4  5

players

policy A, average payoff

2 cooperators
3 cooperators
4 cooperators

(a)

 0

 1

 2

 3

 4

 5

 6

 3  4  5

players

policy B, average payoff

pool size 10
pool size 20
pool size 30

(b)

 0

 1

 2

 3

 4

 5

 6

 3  4  5

players

policy C, average payoff

(c)

 0

 1

 2

 3

 4

 5

 6

 3  4  5

players

policy A, last threshold

(d)

 0

 1

 2

 3

 4

 5

 6

 3  4  5

players

policy B, last threshold

(e)

 0

 1

 2

 3

 4

 5

 6

 3  4  5

players

policy C, last threshold

(f)

Figure 1: Results from the simulations with population sizeequal to 10 and history size equal to 20. Plots on the left column
are from update policy A, the middle column has plots with update policy B withǫ′ = 1 while the rightmost refers to update
policy C. Error lines show the average and standard deviation of, from top to bottom, average utility, number of changes in
combination vector,c, and last utility threshold,u1000

T
. Due to layout reasons, the key is displayed in Figures 1a and1b. Line

style represents pool size, from left to right: bold solidl = 10, mild solid l = 20, dottedl = 30. Point style represents number
of cooperators in candidate population, from left to right:square#(p = 1) = 2, circle 3, triangle 4.
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tween average payoff and pool size. In order to search for
other relations between parameters, we performed signifi-
cance tests for the product-moment correlation coefficientat
0.5% level between parameters and measured values. We
have found that average payoff is directly proportional to
the number of cooperators (in the partner candidate popula-
tion) and inversely proportional to the number of players in
a game (Tables 4a and 4b). As for the number of changes
of the combination vector and the last value of the utility
threshold,uR

T
, we did not find a clear correlation. However,

analysing in more detail, we could see that, for policies A
and C, there is an inversely proportional correlation between
the average payoff and the pool size. Also, for policies A and
C, uR

T
is correlated with the number of cooperators and the

number of players. It is directly proportional to the number
of cooperators and inversely proportional to the number of
players. For most of policy B cases there is no correlation.
This can be explained by its use of parameterǫ. For instance,
whenǫ′ is 0.2 the chance of a combination being replaced is
so low that the utility threshold mostly remains unchanged.

In Table 4d we see the results obtained while maintaining
all parameters and varying only the update policy. There is
a clear correlation between the policy and changes, average
payoff anduR

T
. It indicates that policy B has the worst results

and that policy A is the best. Nevertheless we made a deeper
comparison between policies A and C (in Tables 4e and 4f).
The result observed in Table 4d while still favouring policy
A is not so clear. Policy C in a few cases obtains better
results and in some more is comparable to A.

Conclusions
We have recast partner selection inn-player games, with
stochastic strategies, as a problem of selecting the right com-
bination of players. To support this approach, each player
maintains a pool of partner combinations and a probability
it associates to each combination. We have presented three
policies to update probabilities and to replace player combi-
nations. We have given informal proofs of how a player will
only select combinations with cooperative players. One of
these policies, A, is able to increasingly select a single good
combination, if there is only one. We have also presented a
model that updates a threshold for policy replacement used
by the three policies. This update aims at adapting a player
to situations were there are not enough cooperative partners.

The experimental part focused on the interesting be-
haviour of a player, which is the situation of not having
sufficient cooperative partners. Results show that with the
threshold update policy a player was able to select combi-
nations mostly with good cooperators. Results also showed
that the threshold converged to a reasonable value.

A drastic update policy, A, is able to obtain better results
in most cases. This confirms that the capacity of policy A
to increase the probability of selecting a good combination,
even if it is the only one in the pool, is a significant advan-

tage for partner selection inn-player games.
As for future work, we aim at improving the selection of

partner combination. Instead of randomly picking partners
to the new combination, a proportional selection should be
done. We plan to assign to each partner a probability of
entering a combination.

We are currently investigating the conditions that favour
the evolution of partner selection.

As we have said, our model does not prevent a player from
begin selected by uncooperative. We also plan to investigate
the possibility of refusal. However, this raises the question
of the refusal payoff. As we have mentioned some authors
chose a payoff higher than the minimum payoff in the origi-
nal game, thus altering the equilibria in the game.
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changes avg payoff uR
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T
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(f) Correlation with update policies A and
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Table 4: Correlation significance tests at0.5% level except in 4f. The values represent the number of parameter combinations
with + positive,− negative and× no correlation. All possible parameter combinations were used except for history size fixed
at 20.
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Appendix
Implementation Details of the Probability Vector
Update Policy
The probabilities in vectorw where represented as partial sums of
31 bit integers. The motivation to use integers is due to the fact that
floating point division can yield approximate values and thus the
sum of the probabilities may not add up to1. As we used integers,
whenever a probability was decreased, the others were incremented
by the quotient of the division presented in the policy equations
(see for instance Equation (3)). As for the remainder, a random
probability was chosen.

The use of partial sums allows a faster algorithm, with time com-
plexity O(log l), to select a combination to play with. A random
integer in the range[0, 231] was chosen and then a binary search
was performed. Although updating the probability vector has time
complexityO(l/2), because on average half partial sums must be
updated, when the vector converges only selections take place.

As for the pseudo-random number generator, we used an im-
plementation of the Mersenne Twister, a uniform generator with a
large period (Matsumoto and Nishimura, 1998).


