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Abstract

With the present study we report the first application of a
recently proposed model for realistic microbial fuel cells
(MFCs) energy generation dynamics, suitable for robotic
simulations with minimal and extremely limited computa-
tional overhead. A simulated agent was adapted in order
to engage in a viable interaction with its environment. It
achieved energy autonomy by maintaining viable levels of
the critical variables of MFCs, namely cathodic hydration
and anodic substrate biochemical energy. After unsupervised
adaptation by genetic algorithm, these crucial variables mod-
ulate the behavioral dynamics expressed by viable robots in
their interaction with the environment. The analysis of this
physically rooted and self-organized dynamic action selec-
tion mechanism constitutes a novel practical contribution of
this work. We also compare two different viable strategies, a
self-organized continuous and a pulsed behavior, in order to
foresee the possible cognitive implications of such biological-
mechatronics hybrid symbionts in a novel scenario of ecolog-
ically grounded energy and motivational autonomy.

Introduction
Over the past decade, the perspective on what constitutes
adaptive behavior in living organisms and robots has evolved
from one of embodiment entailing solely the study of sen-
sorimotor activity to one that incorporates internal bodily
dynamics (e.g. Pfeifer and Scheier, 1999; Wilson, 2002;
Ziemke, 2003). This century, the increased emphasis on
internal dynamics to behavior has led some researchers to
suggest that non-neural activity – of the type that is sub-
stantially affected by whole organism interaction with an
external environment – is indispensable for garnering fur-
ther insights into the nature of adaptive behavior (cf. Parisi,
2004; Ziemke, 2008; Ziemke and Lowe, 2009). Further-
more, the integration between non-neural internal compo-
nents and sensorimotor activity may be at the heart of related
concepts such as autonomy, emotion and agency.

The importance of non-neural internal (bodily) variables
to behavioral dynamics was well appreciated by Ashby
(1960). A leading figure in the British cybernetics move-
ment in the 40s and 50s, Ashby emphasized the importance
of feedback to control systems and, drawing on the work of

Cannon (1915), applied the biological notion of homeostasis
to an engineered artifact, the homeostat. The essential cog-
nitive feature of the homeostat is that it purportedly provides
a demonstration of what makes a system truly adaptive, or
ultrastable. According to Ashby, a requisite feature of adap-
tive living and artificial organisms is that their behavior is
governed not just by a first order reactive sensorimotor loop
but also by a second order loop. In the case where envi-
ronmental changes occur such that the value of a set of es-
sential variables (e.g. blood glucose level) deviate from an
ideal/viable bounded region, the 2nd order loop may be en-
acted. This 2nd order loop entails random changes in some
of the system parameters that affect organism-environment
interactive coupling, i.e. inducing a remapping of the sen-
sorimotor activity. Only when the reconfiguration of the pa-
rameter values, altering the sensorimotor activity, permits
essential variable values to be re-established within their
ideal bounds, the stable/viable organism-environment inter-
active coupling will be likewise re-established.

Robotics investigations and research into adaptive sim-
ulated agents has been increasingly embracing the role of
bodily dynamics regarding autonomous and adaptive be-
havior. Robot controllers utilizing homeostatic and non-
neural modulatory mechanisms for cognitive shaping have
been applied to navigation problems (Moioli et al., 2008,
– neuroendocrine control), foraging (McHale and Hus-
bands, 2006, – system-level energy constraints), compet-
itive two-resource problems (Avila-Garcı́a and Cañamero,
2004, – synthetic hormones). Other minimalist and dy-
namic systems centred approaches have investigated the
effects of ‘energy’ or ‘essential variables’ that link agent
viability to adaptive environmental interactions in terms
of: action selection and anticipation (Montebelli et al.,
2008, 2009), environment-contingent ‘bodily’ monitoring
(Saglimbeni and Parisi, 2009), internal expression in re-
source competitive scenarios (Lowe et al., 2005) and also
with regard to a minimal cognitive robotics interpretation of
Ashby’s ultrastability concept (Di Paolo, 2003). This whole
body of work, relevant to system level energy constraints
and neuro-physiological homeostatic control, has invariably



Proc. of the Alife XII Conference, Odense, Denmark, 2010 750

assumed abstract (or even arbitrary) metabolic dynamics.
The homeostatic dynamics and their impact on robot behav-
ior is rooted in designer-specified requirements and means
of fulfillment, rather than on any bio-chemical reality.

A real-world instantiation of ‘artificial metabolism’, that
can provide wheeled robots with (electrical) energy for be-
havioral performance as constrained by actual bio-chemical
essential variable dynamics, exists in the form of Microbial
Fuel Cell (MFC) technology (cf. Melhuish et al., 2006;
Ieropoulos et al., 2007; Logan et al., 2006). MFC technol-
ogy has the capacity to produce bioelectricity from virtually
any unrefined renewable biomass (e.g. wastewater sludge,
ripe fruit, flies, green plants) using bacteria. This provides
robots with a degree of energy autonomy concerning choice
of (non-battery) ‘energy recharging’ resource. Individual
cells consist of anode and cathode compartments. Owing
to the need for persistent rehydration of the electrode in the
cathode compartment and the provision of substrate to be
‘metabolized’ in the anode compartment, the MFC electric
energy wielding power can be said to depend on the dynam-
ics of biochemical energy and water, essential variables of
the system. Ongoing work in this area has led to generations
of this MFC-powered robot demonstrating increasing inde-
pendence from outside (human) control. The present incar-
nation EcoBot-III, for example, is able to circulate water and
substrate intake according to a number of actuators (pumps)
that also require a modicum of electric energy ‘overhead’.
Given the present state of the art, a critical limitation of
this robot, motored by a biological-mechatronic symbiotic
metabolism, is energy requirement. Individual robots are
required to wait long-intervals between bursts of motor ac-
tivity. Many minutes may be required for relatively little
movement. Simulations based scenarios offer a means to
overcome such performance constraints whilst simultane-
ously providing a tool for offering new insights and future
direction. Moreover, the application of a (simulated) phys-
ically constrained metabolic dynamic on robotic behavioral
competences, offers opportunities for investigating the sig-
nificance of forms of homeostatic dynamics, provisioning
adaptive behavior as it emerges from sensorimotor, internal
and agent-environment interactions.

In the remainder of this article we will firstly present a
MFC model pitted at a level of abstraction suitable for rela-
tive robotic platform independence and mathematically de-
scribed. Secondly, we describe an abstract experimental sce-
nario, and methodological approach used, in which a sim-
ulated robot is required to balance its MFC essential vari-
able levels in order to remain viable. Thirdly, we report
results from this experiment according to the evolutionary
emergence of sensorimotor strategies tightly coupled to es-
sential variable needs and environmental resource availabil-
ity. Finally, we provide a discussion on the potential for
simulations-based MFC-robotics applications to uncovering
new breakthroughs in the physical domain.

Method
The MFC model
The core element of our experimental setup is constituted
by the model of MFC recently reported by Montebelli et al.
(2010a). The model has been derived from real experimen-
tal data generated by EcoBot-II, a prototype robot devel-
oped at the Bristol Robotics Lab and described in detail in
Melhuish et al. (2006). The MFCs implemented for this
robotic setup were characterized by oxygen-diffusion based
cathodes. This choice critically constrainted the maximum
energy performance. Nevertheless, it was fundamental to
provide the robots with a long term self-sustainable energy
source, thus promoting the conditions for genuine energy
autonomy. With respect to other MFC models currently
available in the scientific literature, e.g. in Picioreanu et al.
(2007) and Marcus et al. (2007), our model was intentionally
built at a high level of abstraction. This allows us to cap-
ture the characteristic energy generation dynamic of a MFC
without the burden of details that would be non-crucial for
our robotic simulations. In its simple formulation, the model
works as a plug-in that can be easily implemented on any
robot platform in simulation, and can endow robotic agents
with realistic MFC energy production dynamics with mini-
mal and extremely limited computational overhead.

As we direct the reader to the exhaustive description of
the model in Montebelli et al. (2010a), we will here specify
the details for its full implementation. We essentially de-
veloped a simple resistance-capacitance (RC) model (Fig.
1). Two of its physical parameters, namely the electromo-
tive force (V ) and internal resistance (Ri) of the MFC, fully
characterize the MFC as an electric generator. These pa-
rameters crucially depend on the level of hydration of the
cathode and on the chemical energy available in the sub-
strate biomass of the anodic chamber. This dependency was
extracted using system identification techniques from the ex-
perimental data. Therefore, once provided with the current
level of hydration and of substrate richness, the model sim-
ulates realistic MFC energy generation dynamics, quantita-
tively similar to the ones produced by 8 MFCs connected
in series. With reference to Fig. 1, the electromotive force
V generates the electric current that through the internal re-
sistance Ri buffers energy in the external capacitor C. The
presence of this latter element is an arbitrary choice of the
robot designers at the BRL to endow the system with an en-
ergy reservoir. This gives a partial solution to the strong
electric constraints deriving from the low power rates that
typically emerge from a MFC. This part of the circuit, fully
platform-independent, describes the energy generation pro-
cess and is specifically addressed by the MFC model. As
soon as the difference potential across the capacitor reaches
an upper threshold (V cmax = 2.9V ) the electronic switch
(S) is triggered and the energy stored in the capacitor is mo-
bilized towards the robot sensors/actuators and to its control
electronics. This second part of the circuit, described by the
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Figure 1: Electric schema of our model of energy genera-
tion in MFCs. The electromotive force (V ) and the internal
resistance (Ri) of the MFC depend on the current level of
cathode hydration and on the biochemical energy in the sub-
strate. This determines the dynamic of energy generation,
buffered on the external capacitance (C). The dashed rect-
angle highlights the platform-dependent resistive load.

resistive load in Fig. 1, constitutes the energy distribution
process and is completely platform-dependent. It cannot be
addressed in general terms and must be tailored to the spe-
cific robot design. When the difference potential across the
capacitor falls below a lower threshold (V cmin = 2.03V )
then the switch S is opened and the capacitor is recharged
up to its upper threshold. This event closes the logical loop
of the charge/discharge hysteresis cycle.

Using elementary electromagnetism we can describe the
model in more analytical terms. The starting point is the first
order linearly differential equation representing the electric
current balance at node α in Fig. 1:

V − VC
Ri

= C
dVC
dt

+ IM (1)

where IM represents the current drainage of the resistive
load, while the meaning of all the other symbols has al-
ready been introduced. As anticipated, the quantity IM , be-
ing platform-dependent, will be specified in the next section
together with the other details regarding the specific robotic
setup.

Under normal operating conditions, oxygen-diffusion
cathode based MFCs are subject to water evaporation. Con-
currently, although slower in time, the concentration of bio-
chemical energy in the anodic substrate decays as a result of
the bacterial activity. Linear laws describe the relations be-
tween: 1) the current level of hydration (hyd) and the time
from the last full cathode hydration (th); 2) the chemical en-
ergy of the substrate (subst) and the time from the last anode
replenishment with fresh substrate (ts):

hyd = − th
τh

+ 1 (2)

subst = − ts
τs

+ 1 (3)

where τh and τs (with τh << τs) respectively determine the
time scales of the cathode dehydration and of the substrate
biochemical energy decay.

The dependence of V and Ri with th is summarized by
the following equations:

Ri = Ri0 + kRith (4)

V = V0 + kV th (5)

The effect of ts is expressed by:

Ri0 = qR +mRts (6)

kRi = a2t
2
s + a1t

1
s + a0 (7)

V0 = qV +mV ts (8)

The dynamic of Ri0 is limited to values above 450. Nu-
meric values for all the remaining symbols are: C = 0.0282,
kV = −0.14, qR = 642, mR = −0.022, a2 = 2.41e − 8,
a1 = −1.1036e − 4, a0 = 0.1207, qV = 3117V , mV =
−0.0166, τh = 2500, τs = 7000 1.

Finally, the energy currently stored in the capacitor
(ε) can be easily derived from the current tension of the
capacitor (VC):

ε =
1

2
CV 2

C . (9)

In conclusion, the differential equation 1, and equations
4–9 specify the model. Equations 2 and 3 allow the (equiv-
alent) descriptions of the system in terms of time domain or
as a function of the current levels of cathode hydration and
substrate biochemical energy. According to this model, well
hydrated MFC with fresh substrate can generate energy at
a significantly higher rate than in dehydrated and ’starving’
conditions. The system is particularly sensitive to the hy-
dration level. A serious dehydration as well as an exhausted
substrate determine the disruption of the charge-discharge
cycle previously described and the energy generation mech-
anism collapses.

The robotic setup
In our experiments, a commercial e-puck robot simulated
with the program Evorobot* (Nolfi and Gigliotta, 2010)
could freely move in a square arena (measuring 1000 mm
x 1000 mm), bound by opaque walls all around its perimeter
(Fig. 2, central panel). Centrally located in the arena were
two circular recharging areas (radius 120 mm). Upon en-
tering in the lower circle, in whose center is placed a light
source, the robot instantaneously received full cathode hy-
dration (i.e. water was injected so to fill the capacity of its

1In order to limit the duration of each trial, we anticipated the
kick in of the substrate effect by reducing the physical value of τs
by a factor 3. Refer to Montebelli et al. (2010a) for details about
the appropriate physical dimensions.
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Figure 2: Central panel- Representation of the simulated arena. Upon entering the upper/lower circle (respectively, food/water
recharging areas) the e-puck robot was fed with fresh substrate or fully rehydrated. Left panel- Feedforward ANN controller
with no hidden layers. The ANN receives inputs from the robot’s infrared and light sensors (I0-7 and L0-7), from its micro-
phones (P0-2) and from the food and water level sensors (F and W). It outputs the motor activation signals of the robot’s left
and right motors (M0-1). Right panel- Feedforward ANN controller 5 hidden neurons and direct input-output connections.

cathode). On entering of the upper circle, landmarked by
a continuous sound source, the robot received a complete
and instantaneous refill of its anodic chamber with fresh sub-
strate.

The simulated e-puck robot was provided with its stan-
dard 8 infrared sensors, 8 light sensors (activated by the light
source) and 3 microphones (reacting to the sound source
with an intensity that is inversely proportional to the square
distance of the microphone from the sound source). A small
quantity of noise was injected in the system. Customized
water and food level sensors were included in the robot’s
sensory capabilities, providing information about the current
level of cathode hydration and of the chemical energy stored
in the anodic substrate.

The robot’s motors were controlled by the activation of an
artificial neural network (ANN). We tested several different
standard architectures of discrete time ANNs, but in this re-
port we will refer to only two of them for reasons of space.
The first (Fig. 2, left panel) was a feedforward ANN with no
hidden layer. The second (Fig. 2, right panel) was a feedfor-
ward ANN with five hidden neurons and direct input-output
connections. In our setup, the robot’s motor activation di-
rectly determined the energy drainage through the resistive
load. The current IM , i.e. the leakage term in equation 1,
can be estimated as a function of the motor activation based
on the robot’s motor data sheets. Quantitatively:

IM = 0.36|mact| (10)

where mact is the current level of activation for each of the
two motors, with values in the interval [-0.5 0.5], as imposed
by the controlling ANN.

The energy production took place continuously (i.e. in
any instant an electric current was flowing from the MFC to
node α in Fig. 1) as long as the MFC was sufficiently hy-
drated and provided with fresh substrate. On the other hand,
the energy distribution took the form of a hysteresis cycle.

When the tension across the capacitor, VC , reached its up-
per threshold an electric current flowed to power the robot’s
motors. When VC fell below its lower threshold, the motor
activity was suddenly inhibited and the robot remained still
until VC would be recharged above its upper threshold again.
Accordingly, the current hydration level and the chemical
energy of the substrate represent, in Ashby’s terminology,
the essential variables of the system.

We chose to boost the rate of energy generation character-
istic of a series of 8 MFCs (the configuration that we used
in order to identify the parameters of our MFC model) by a
factor 100. That means that we considered a parallel elec-
tric connection of 100 elements constituted by 8 MFCs con-
nected in series. Comments about this choice are left for the
following discussion.

The free parameters of the ANN controller (synaptic
weights and biases) were adapted in order to allow the robot
to viably cope with its environment using a standard genetic
algorithm (Goldberg, 1989) implemented in the Evorobot*
simulator. We ran 10 replications of the evolutionary pro-
cess, over 1500 generations with elitist selection. Each indi-
vidual was on trial for 1000 simulated seconds (10000 time
steps), and tested on 4 different trials from random start-
ing position. The fitness function was intentionally rather
generic: it integrated at each time step the absolute value
of the current level of activation of the two motors, but only
outside the recharging area. The rationale behind this choice
was that we wanted the robot to consume the energy accu-
mulated on its capacitor by demonstrating movement. On
the other hand, similar to previous experiments by Floreano
and Mondada (1996) and Montebelli et al. (2007, 2008), we
wanted to avoid the affordance of clues about the existence
of the light and sound sources, their relation to the recharg-
ing areas, their critical relations with the robot’s hydration
and food sensors, implicitly with the robot’s energy genera-
tion rate and hence with its own overall viability.
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We conclude this section with a few comments. Firstly,
we emphasize the simplicity of our setup. A minimal setup
focuses our attention on the object under study and allows a
deeper mathematical exploration of the properties of the sys-
tem. Secondly, in such a simple scenario a viable behavior
might be imposed on the system by explicit design. Never-
theless, of all the options our choice was to adapt ANNs by
using an evolutionary algorithm. The reason for our prefer-
ence was twofold. On the one hand, we consider this alter-
native more liable to scaling up to more complex and less
predictable circumstances (e.g. dynamically changing envi-
ronments). On the other hand, we reckon on the flexibility
of the fitness functions in evolutionary techniques for un-
supervised adaptation, compared to other machine learning
methods. This is functional to our focus on versatile robot
autonomy within general and unpredictable environments,
rather than on domain specific optimization.

Results
Continuous behavior
All of the considered ANN architectures managed to evolve
viable behaviors for this simple task. In all cases the evolu-
tionary process was liable to failures. Nevertheless, several
classes of viable strategies were created during the evolu-
tionary process for the best evolved individuals.

In the present and following sections we report the
evolved behavior of the simplest control architecture that
we considered, the feedforward ANN with no hidden layer
sketched in Fig. 2, left panel. The continuous behavior of
the best individual is shown in Fig. 3, left panel. The robot
could move without sudden stops, as it would maintain a sta-
ble balance between the energy income from the MFC gen-
erator and the energy drained by its own motors (i.e. only
seldom VC fell below its lower threshold). The onboard ca-
pacitor provided a little energy buffer, but only episodically
the robot had to stop and wait for its recharge.

During the initial transient period, the robot navigated in
the environment, looking for a direct engagement with the
water recharging area. Once reached its initial goal (Fig. 3,
left panel), it maintained its engagement, looping around the
water recharging area (associated with the light source) and
systematically entering in it for hydration. After three loops
around the light source, a fourth, larger loop would also
encapsulate the food recharge area (marked by the sound
source), entering which would instantaneously replenish the
robot with fresh anodic substrate. This resulted in a sta-
ble and viable behavior: its timing maintained both essential
variables within ideal bounds.

Essential variables as dynamic neuromodulators
By using a neuroscience-inspired clamp technique, similarly
to Montebelli et al. (2008, 2009), we emphasized how the
activation of the robot’s water and food sensors was crucial
for the emergence of the behavior. We clamped the values

Figure 3: Examples of viable behaviors. After exhaustion
of the initial transient, the robots enter in a stable, although
not stereotypical loop, constituted of several passages across
the water recharging area followed by one passage through
the food area. Left panel- In the case of the continuos be-
havior generated by the ANN with no hidden layer (Fig. 2,
left panel) the ratio between water and food access is 4 : 1.
Right panel- For the pulsed behavior of the ANN with hid-
den layer (Fig. 2, right panel) it is 3 : 1. In both cases the
trajectory of the robot is plotted for 1200 time steps.

of the two inputs F and W to arbitrary levels for the whole
trial (i.e. we nullified the whole energy mechanism: the wa-
ter and food levels remained constant at the selected value
and the two recharging areas had no effect on the system).
By systematically exploring different combinations of the
clamped levels of hydration and substrate biochemical en-
ergy, we discovered that (after exhaustion of the transient
period) these two essential variables, statistically determined
the ratio between the numbers of accesses to water and food
resources in the robot trajectories (W:F ratio). Ratios be-
tween 5 : 1 and 1 : 1 were observed (Fig. 4), and once
mapped as a function of the values of the essential variables
they showed a significant regularity (Fig. 5). In a tiny region
of the essential variable state space, characterized by very
high values of both F and W (both around 0.98), the system
manifested bistability. The robot kept looping around either
one or the other recharging area (Fig. 4, top and central
right panels), depending on its starting position and on the
integrated effects of noise. Behavioral transitions from one
basin of attraction to the other were observed, although sta-
tistically rare (Fig. 4, bottom right panel). This persistence
rapidly faded for different values of F and W, that modulated
the height of the separation between the two different basins
of attraction and the relative depth of the basins. For high
values of F with subcritical levels of W (e.g. around 0.65)
we noticed a maximal bias towards water, and accordingly a
higher W:F ratio. Finally, in the vast area where the ratio is
mapped to 0, we observed nonviable monostable behaviors,
i.e. the robot would remain on a single behavioral attractor,
without systematically entering any of the two recharging
areas.

Detailing how the two essential variables (directly related
to realistic MFC dynamics) modulated the behavioral dy-
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Figure 4: Examples of robot trajectories (behavioral attrac-
tors), for different clamped values of inputs W and F as spec-
ified on each panel, demonstrate different water to food ac-
cess ratios. Top and central left panels- Examples of ratio
1 : 1 and 4 : 1. Bottom left panel- Unviable behaviors
dominate lower levels of activation of the W and F sensors.
Top and central right panels- Local behavioral attractors
in the bistable regime. Bottom right panel- Random transi-
tion from one behavioral attractor to the other.

namics of this simple and purely reactive neurocontroller
constitutes the main and novel practical contribution of this
work. During normal interactions with its environment (the
evolved task) the system relies on a dynamic action se-
lection mechanism, self-organized during evolution without
any hardwired rule.

Continuous vs. pulsed behavior
The behavior of the robot analyzed in the previous sections
will here be compared to a qualitatively different pulsed be-
havior observed in the case of the feedforward ANN with 5
hidden neurons and direct input/output connections (Fig. 2,
right panel). The robot always moved at its maximal speed,
thus draining more energy than instantaneously provided by
the MFC generator. Therefore, it systematically exhausted
the energy stored on the capacitor and exploited the energy
distribution hysteresis cycle previously described.

As in the previous case, the best evolved individual moved
towards the water recharging area first. Once its stable be-
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Figure 5: Water to food-access ratio (W:F ratio) as a func-
tion of the essential variables W and F. The area hidden un-
der the highest peak is a region of bistability characterized
by rare transitions between the two attractors. The dark area
with 0 ratio represents dysfunctional behaviors: the robot
cannot maintain its essential variables within a viable region.

Figure 6: Average and standard deviation for the absolute
value of the motor activation during continuous and pulsed
behavior. Data from 2000 time steps of actual movement.

havior is reached, the robot engaged in regular loops from
the water recharging area to the wall on the left side of the
arena and back to the recharging area (Fig. 3, right panel).
Every two loops, a third loop would emerge with a broad-
ened width encapsulating the food recharging area. The
robot apparently acted by integrating the information from
all its sensory modalities. This behavior also qualifies as
stable and viable, actually performing across the different
trials equally well as the continuous behavior.

Fig. 6 quantitatively demonstrates the different nature
of the continuous and pulsing behaviors. The continuously
moving agent had its motors activated at about 77% of their
maximal speed, with high variability, as demonstrated by the
plot of the standard deviation. On the other hand, consider-
ing only the time intervals during which the robot was actu-
ally moving, the pulsing behavior was performed at 91% of
the motor speed maximum, with a very low standard devia-
tion.



Proc. of the Alife XII Conference, Odense, Denmark, 2010 755

Discussion
One of the most intriguing properties of computer simula-
tions is the possibility to anticipate the forcefully slow pace
of technological progress. As such, it should be used with
full awareness and attention. In our study we multiplied by
a factor 100 the basic electric performances of the modeled
MFC energy generator. There are at least two important jus-
tifications for this choice. The first is experimental: prelim-
inary studies (Ieropoulos et al., 2008) produced significant
evidence that smaller MFCs might generate energy more ef-
ficiently, i.e. with a higher level of energy density. The sec-
ond is theoretical, as it has been argued that the implemen-
tation of micron-level biofuel cells is possible in principle,
and prototypes have been implemented (Kim et al., 2003).
Although more research is necessary, the progressive minia-
turization of MFCs seems to suggests an extremely alluring
future scenario. With our choice of the multiplicative factor
we anticipated the possibility to carry on board of our sim-
ple robot 800 single MFCs. The state of the art prototype of
MFC powered robot, EcoBot-III, is currently endowed with
a stack configuration of 48 basic MFCs. This number, lim-
ited for obvious practical reasons, is nevertheless destined
to grow. Following these considerations, the factor 20 be-
tween the current physical implementation and our simula-
tion seems appropriate.

This said, the selected multiplicative factor endowed our
work with the power to foresee a crucial bifurcation in the
development of MFC technology for robotic applications.
The prospective historical period on which our investigation
resides is the moment of transition from pulsed to contin-
uos behaviors in MFCs powered robots. In other words, the
moment when enough power is generated in order to sup-
port a sub-maximal motor activation in continuous mode.
This is not to rule out the possibility of interesting pulsed
behaviors. As already mentioned in Melhuish et al. (2006),
for more complex cognitive architectures and environments,
the intervals of stillness during energy recharge might be the
perfect place to start dealing with cognition in terms of plan-
ning for thoughtful action selection, where ‘mental activity’
might be energetically less demanding than actual overt be-
havior. A similar approach, although still at a larval phase
of development has been considered by Lowe et al. (2010).
In this novel work, during the idle motor intervals, the robot
can capitalize on active ‘sensing’ by executing energetically
inexpensive visual saccades, rather than actual physical nav-
igation.

Finally, why should we abandon the engineering perspec-
tive of robots that could turn to virtually unlimited sources
of energy (in form of power sockets or batteries), a perspec-
tive largely inherited by cognitive roboticists? As a matter
of fact, we just analyzed a not even too futuristic scenario
where MFCs will converge towards offering the MFC pow-
ered robots the option of continuous action, simply consid-
ering appropriate stack configurations of basic miniaturized

MFCs. Furthermore, if pragmatic results will support the
theoretical expectations, MFC miniaturization might create
a sort of limit situation, allowing a fully distributed energy
generation system reminiscent of biological cellular energy
generation strategies, where energy constrains would be cru-
cially relaxed. A serious answer to this question has to do
with our idea of autonomy. Future MFC powered robotic
agents, through the development of a viable behavior in their
environment, will be ecologically rooted in their environ-
mental context. They will depend on food and water re-
sources that are available as long as the robots can live in
a sustainable and meaningful ‘ecological relation’ to their
environment. This property, novel and original in robotics,
represents an exciting new scenario for future research.

Conclusions
This work, jointly with the mentioned paper by Lowe et al.
(2010), represents the first effort aimed to put to the test the
MFC model for robotic simulations presented in Montebelli
et al. (2010a). Its aim, beyond the mere demonstration, is to
ground previous work related to the dynamic neuromodula-
tory role of non-neural internal variables (Montebelli et al.,
2007, 2008) in a realistic simulation of physical energy con-
straints. The robot is energetically autonomous insofar as
it can sustain a viable interaction with its environment by
maintaining its essential variables. Within this tight agent-
environment interaction, our analysis emphasized the neu-
romodulatory role played by the essential variables for dy-
namic action selection with no hardcoded rules. We also
pointed to the possible coexistence of several viable strate-
gies, different both in qualitative and quantitative terms and
to their possible cognitive implications in a novel scenario of
‘ecologically grounded’ energy and motivational autonomy.

In future work we will further investigate these findings.
The 2 resource problem has been characterized in McFar-
land and Spier (1997), where a robot was expected to nego-
tiate between an environmental resource critical to its sur-
vival (fuel) and the execution of a task that some external
supervisor considered useful (work). We are extending our
experimental setup for a fully fledged 3 resource problem,
where the exploitation of food and water will be functional
to the execution of physical work in a dedicated area. In ad-
dition the experimental setup appears suitable for a deeper
exploration of the concept of embodied anticipation (i.e.
the capacity to profit from the non-neural neuromodulatory
characteristics achieved during evolutionary and ontogenetic
adaptation in order to perform swift readaptation to novel
situations) as proposed in Montebelli et al. (2009, 2010b).
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