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Abstract

In this paper we introduce a new ant-based method that takes
advantage of the cooperative self-organization of Ant Colony
Systems to create a naturally inspired clustering and pattern
recognition method. The approach considers each data item
as an ant, which moves inside a grid changing the cells it goes
through, in a fashion similar to Kohonen’s Self-Organizing
Maps. The resulting algorithm is conceptually more simple,
takes less free parameters than other ant-based clustering al-
gorithms, and, after some parameter tuning, yields very good
results on some benchmark problems.

Introduction and State of the Art
Clustering is performed naturally by some types of ants at
least in two different ways. First, ant colonies recognize by
odour other member of their colony (as mentioned in the
paper by Labroche et al. (2003)) leading to a natural clus-
tering of ants belonging to the same nest, which is a con-
sequence of nurturing and also has some genetic support;
second, ants do physically cluster their larvae and dead bod-
ies, putting them in piles whose position and size is com-
pletely self-organizing, as described by Deneubourg et al.
(1991). Ant algorithms inspired by these models such as
those proposed by Bonabeau et al. (1998); Abraham and
Ramos (2003); Labroche et al. (2003); Ramos and Merelo
(2002) have been applied to clustering and classification.
In general, these methods follow the second clustering be-
havior: data for training the clusters is represented as dead
bodies, which ants have to pick up (with a certain proba-
bility, and following some rule) and drop (also following
some rule), while at the same time dropping and follow-
ing pheromones. This results in the introduction of a few
artifacts in the method: while the number of dead bodies
(data items) to sort is natural, grid size, number of ants,
pheromone following behavior and the rest is not. This re-
sults in a certain amount of parameter tuning for obtaining
good results, but in any case is farther away from natural
inspiration.
In this paper we present KohonAnts, an Ant algorithm

that merges the biologically inspired concepts in Kohonen’s
Self-Organizing Map (proposed and described in Kohonen

(1988, 2001)) and Chialvo and Millonas (1995) ant algo-
rithm (both will be introduced in next section). It is based
in several new ideas. First, as in the above-mentioned
Labroche et al. model, every ant represents a data item.
Ants move in a grid dropping vectorial pheromones. The
grid is filled with initially random vector pheromones (of
the same dimension as the data), and every time an ant falls
in a cell, it changes the pheromone following a method sim-
ilar to that used in Kohonen Self-Organizing Map, making
the cell pheromone closer to the data item stored in the ant
itself.
Since ants move around in the grid, ant position and

pheromone content co-adapt, so that eventually ants with
similar data items are close together in the grid (a nesting be-
havior), and the grid itself contains vectors similar to those
stored in the ants on top of them. The grid can then be used
to classify in the same way as Kohonen’s Self-Organizing
Map (but with better results), while ants can be used to vi-
sually identify the position of the clusters.
The interesting part of this method is that self-

organization comes through stigmergy: ants change their
environment (pheromones stored on the grid), and that in-
fluences the behavior of the rest of the ants (that follow a
path changed by their cluster-siblings). There are less non-
natural parameters (grid size is one of them), and, finally,
results obtained are quite competitive with other methods
tested.
In this paper, after presenting all concepts used in

our method in section Preliminary Concepts, after it, we
will describe the KohonAnts model itself in section Self-
Organizing Ants Model, followed by the experiments in sec-
tion Experiments and Results. Finally, we will conclude our
description in section Conclusions and Future Works with a
discussion of the obtained results and future lines of work.

Preliminary Concepts
Before describing KohonAnts, we would like to introduce
the algorithms in which it is based on for the unfamiliar
reader. First, Ant Colony Optimization (ACO) algorithms
are presented in subsection ACO, followed by Kohonen’s
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Self-Organizing Map in subsection SOM. Finally, Chialvo
and Millonas’ model is presented in subsection Ant System
Model.

ACO
The ACO is a meta-heuristic inspired by the behavior of
some species of ants that are able to find the shortest path
from nest to food sources in a short time. The method is
based in the concept of stigmergy, that is, communication
between agents using the environment. Every ant, while
walking, deposits a substance called pheromonewhich other
ants can sense. The ants tends to follow pheromone (it evap-
orates after some time) so, in intersections between several
trails, an ant moves with high probability following the high-
est pheromone level. This metaheuristic was introduced by
Dorigo et al. in 1991 (see Dorigo and Caro (1999) and
Dorigo and Stützle (2002) for more details).
ACO algorithms take this behavior as inspiration to solve

combinatorial optimization problems, using a colony of ar-
tificial ants as computational agents that communicate each
other using pheromones. The problem to be solved using
ACOmust be transformed into a graph with weighted edges.
In every iteration, each ant builds a complete path (solution),
by travelling through the graph. At the end of this construc-
tion (and in some versions, during it), each ant leaves a trail
in the visited edges depending on the fitness of the solution
it has found. This is a measure of desirability for that edge
and it will be considered by the following ants. In order to
guide its movement, each ant uses two kinds of information
that will be combined: pheromone trails, which correspond
to ’learnt information’ changed during the algorithm run, de-
noted by τ ; and heuristic knowledge, which is a measure of
the desirability of moving to the next node, based in previ-
ous knowledge about the problem (does not change during
the algorithm run), denoted by η. The ants usually choose
edges with better values in both properties, but sometimes
they may ’explore’ new zones in the graph because the algo-
rithm has a stochastic component, that broadens the search
space to regions not previously explored. Due to all these
properties, all ants cooperate in order to find the best solu-
tion for the problem (the best path in the graph), resulting in
an global emergent behavior. There are lots of variants and
new methods, but we introduce Ant Colony System (ACS)
because our model takes some features of it.
The building of solutions is strongly based in the state

transition rule (called pseudo-random proportional state
transition rule in ACS), since every ant uses it to decide
which node j is the next in the construction of a solution
(path), when the ant is at the node i. This formula calculates
the probability associated to every node in the neighbour-
hood of i, and is as follows:
If (q ≤ q0)

j = arg max
j∈Ni

u∈Ni

τ (i, u)α
· η(i, u)β (1)

Else

P (i, j) =

τ (i, j)α
· η(i, j)β

u∈Ni

τ (i, u)α
· η(i, u)β

if j ∈ Ni

0 otherwise

(2)

Where q is a random number in [0,1] and q0 is a parame-
ter which set the balance between exploration and exploita-
tion. If q ≤ q0, the best node is chosen as next (exploita-
tion), on the other hand one of the feasible neighbours is se-
lected, considering different probabilities for each one (ex-
ploration). α and β are weighting parameters to set the rela-
tive importance of pheromone and heuristic information re-
spectively, and Ni is the current feasible neighbourhood for
the node i.
There is a global pheromone updating, which is only per-

formed for the edges of the global best solution, so for every
edge (i, j) in SGlobalBest is:

τ t(i, j) = (1 − ρ) · τ t−1(i, j) + ρ · ∆τ (i, j)GlobalBest (3)

t marks the new pheromone value and t-1 the old one. ρ in
[0,1] is the common evaporation factor and∆τ is the amount
of pheromone deposited depending on the quality of the best
solution.
There is also a local pheromone updating, which is per-

formed by each ant, every time that a node j is added to the
path which it is building. This formula is:

τ t(i, j) = (1 − ϕ) · τ t−1(i, j) + ϕ · τ0 (4)

Where ϕ in [0,1] is the local evaporation factor and τ0 is
the initial amount of pheromone (it corresponds to a lower
trail limit). This formula results in an additional exploration
technique, because it makes the edges traversed by an ant
less attractive to the following ants and helps to avoid that
many ants follow the same path.

SOM
The Self-Organizing Map (SOM) was introduced by Teuvo
Kohonen in 1982 (see Kohonen (2001) for details). It is a
non-supervised neural network that tries to imitate the self-
organization done in the sensory cortex of the human brain,
where neighbouring neurons are activated by similar stim-
ulus. It is usually used either as a clustering/classification
tool or as a method to find unknown relationships between
a set of variables that describe a problem. The main prop-
erty of the SOM is that it makes a nonlinear projection from
a high-dimensional data space (one dimension per variable)
on a regular, low-dimensional (usually 2D) grid of neurons
(see Figure 1).
Since this type of network is distributed in a plane (2-

dimensional structure) it can be concluded that the projec-
tions preserve the topologic relations while simultaneously
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Figure 1: SOM Grid structure. There is an input layer (with
the input samples) and a process layer (where the neurons of
the network are) which takes a grid shape.

creating a dimensional reduction of the representation space
(the transformation is made in a topologically ordered way).
The SOM processes a set of input vectors (samples or pat-

terns), which are composed by variables (features) typify-
ing each sample, and creates an output topological network
where each neuron is associated also to a vector of variables
(model vector) which is representative of a group of the in-
put vectors. Note in Figure 1 that each neuron of the net-
work is completely connected to all the nodes (each node
is a sample) of the input layer. So, the network represents
a feed-forward structure with only one computational layer
formed by neurons or model vectors.
There are four main steps in the processing of the SOM.

Excepting the first one, the others are repeated until a stop
criteria is reached:

• Initialization of model vectors. Usually it is made by as-
signing small random values to their variables, but there
are some other possibilities as an initialization using ran-
dom input samples.

• Competitive process. For each input pattern X , all the
neurons (model vectors) V competes using a similarity
function in order to identify the most similar or close to
the sample vector. The most usual function is a distance
measure (as Euclidean distance). The winner neuron is
called the best matching unit (BMU).

• Cooperative process. The BMU determines the centre of
a topological neighbourhood where those neurons inside
it will be updated (the model vectors) to be even more
similar to the input pattern. There is a neighbourhood
function used to determine the neurons to consider. If the
lattice where the neurons are is rectangular or hexagonal,
it is possible to consider as neighbourhood rectangles or
hexagons with the BMU as centre. Although it is more
usual to use a Gaussian function to assure that the farther
the neighbour neuron is, the smaller the updating to its
associated vector is. In this process, the neurons inside a
vicinity cooperate all of them to learn.

• Learning process. In this step the variables of the model
vectors inside the neighbourhood are updated to be closer

to those of the input vector. It means doing the neuron
more similar to the sample. The learning rule used to
update the vector (V ) for every neuron i in the neighbour-
hood of the BMU is:

V t
i = V t−1

i + αt
· N t

BMU (i) · (X − V t−1

i ) (5)

Where t is the current iteration of the whole process, X
is the input vector,NBMU is the neighbourhood function
for the BMU, which returns a high value (in [0,1]) if the
neuron i is in the neighbourhood and close to the BMU (1
if i = BMU ), and a small value in the other case (0 if i is
not located inside the neighbourhood). α is the learning
rate (also in (0,1]). Both (neighbourhood and learning
rate) depends on t, since it is usual to decrease the radius
of the first one and the value of the second in order to
make higher updating at the beginning of the process and
almost none in the latter.

The consecutive application of Equation 5 and the update
of the neighbourhood function, has the effect of ’moving’
the model vectors, Vj from the winning neuron towards the
input vector Xi. It is, the model vectors tend to follow the
distribution of the input vectors. Consequently, the algo-
rithm leads to a topological arrangement of the characteris-
tic map of the input space, in the sense that adjacent neurons
in the network tend to have similar weights vectors.
As a consequence, looking at the display of a SOM, it is

possible to recognize some clusters as well as the metric-
topological relations of the data items (vectors of variables
of the problem) and the outstanding variables.

Ant System Model
In Chialvo andMillonas (1995), the authors presented a sim-
ple ant model where trails and networks of ant traffic emerge
without impositions by any special boundary conditions, lat-
tice topology, or additional behavioral rules. In this model,
the state of an ant can be expressed by its position r and ori-
entation θ. Since the response at a given time is assumed
to be independent of the previous history of the individual,
it is sufficient to specify a transition probability from one
place and orientation (r, θ) to the next (r∗, θ∗) an instant
later. Initial papers byMillonas (1992, 1994) transition rules
were derived and generalized from noisy response functions,
which in turn were found to reproduce a number of exper-
imental results with real ants. The response function can
effectively be translated into a two-parameter transition rule
between the cells by using the pheromone weighting func-
tion showed in Equation 6:

W (σ) = 1 +
δ

1 + σ · δ

β

(6)

This equation measures the relative probabilities of moving
to a cell r with pheromone density σ(r). The parameter β
is associated with the osmotropotaxic sensitivity proposed
in Wilson (1971). In practical terms, this parameter con-
trols the degree of randomness with which each ant follows
the gradient of pheromone: for low values of β, pheromone
concentration does not greatly affect its choice, while high
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values cause it to follow pheromone gradient with more cer-
tainty, as proved in Chialvo and Millonas (1995). The sen-
sory capacity 1/δ describes the fact that each ant’s ability
to sense pheromone decreases somewhat at high concentra-
tions. In addition to the former equation, there is a weight-
ing factor w(∆θ), where ∆θ is the change in direction at
each time step, i.e. measures the magnitude of the differ-
ence in orientation. This weighting factor ensures that very
sharp turns are much less likely than turns through smaller
angles; thus each ant in the colony have a probabilistic bias
in the forward direction. A discretization of the model is
necessary in order to perform simulations and test some as-
sumptions: Chialvo and Millonas created a square lattice
where ants can move around, taking one step at every it-
eration. The decision (where to go) is made according to the
pheromone concentration in all eight neighboring cells (Von
Neumann neighborhood) and the weighting factor w(∆θ),
using Equation 6, and computing the transition probabilities
via Equation 7:

Pik =
W (σi) · w(∆i)

j/k

W (σj) · w(∆j)
(7)

This equation represents the transition probabilities on the
lattice to go from cell k to cell i and notation j/k indicates
the sum over all the cells j which are in the local (Von Neu-
mann) neighborhood of k. ∆i measures the magnitude of
the difference in orientation for the previous direction at time
t − 1. As an additional condition, each individual leaves a
constant amount η of pheromone at the cell where it is lo-
cated at every time step t. This pheromone decays at each
time step at a rate k. Toroidal boundary conditions are im-
posed on the lattice to avoid boundary effects. Please note
that there is no direct communication between the organisms
but a type of indirect communication through the pheromone
field. In fact, ants are not allowed to have any memory and
the individual’s spatial knowledge is restricted to local infor-
mation about the whole colony pheromone density.
This model has been applied in many different works, for

instance in Ramos and Almeida (1994), the authors adapted
it by placing the ants ’over’ a gray-scale image. So, they
evolve reinforcing pheromone levels around pixels with dif-
ferent gray levels yielding pheromone maps that may be a
suitable support for edge detection and image segmentation.
This last model was improved in Fernandes et al. (2005a) by
introducing a mechanism to eliminate and create ants along
the evolution process, which means a self-regulated popu-
lation size and it results faster and also more effective in
creating pheromone trails around the edges of the images.

Self-Organizing Ants Model
The algorithm presented in this paper is an ant algorithm
with some common features with the Ant System of Chialvo
et al., nevertheless it also includes some other features in-
spired by the Kohonen’s SOM. It is called, for this reason,
KohonAnts (or KANTS).
KANTS has been designed as a clustering and classifica-

tion algorithm, so it is capable to group a set of input samples

(training dataset) into clusters with similar features. In addi-
tion it behaves as a good classification algorithm. It works in
a non-supervised (self-organizing)way, without considering
the class of the input patterns during the process.
The main idea is to assign each input sample (which is

a vector) to an ant, and put them into an habitat which is
a toroidal X · Y grid. Then, they move around in the lat-
tice changing the environment, which is a stigmergic mecha-
nism. Every cell of the grid that constitutes the environment
also contains a vector of the same dimension and range as
the training set. The factor of change of the environment)
depends on the values of the ant’s vector, and, since every
ant tends to move towards those zones in the grid which are
more similar to themselves (to their associated vectors), ant
position and pheromone content co-adapt. This means that
eventually, ants with similar data items will be close together
in the grid, and the grid itself will contain similar vectors to
those stored in the ants on top of them.
Then, the grid can be used as a classification tool (in the

same way as the resulting map after training using Koho-
nen’s SOM), while ants will be grouped in clusters of similar
individuals.
In the following paragraphswe present the most important

features of the algorithm.

Decide Where to Go Rule
This is the most important function in the algorithm. It is
used by every ant placed at cell i to decide which is the next
cell j to move.
This function is based in Chialvo’s Ants System

pheromone weighting function and pseudo-random propor-
tional rule of ACS, so it is:
If (q ≤ q0)

j = arg max
j∈Ni

W (σij) (8)

Else

Pij =

W (σij)

u∈Nt
i

W (σiu)
if j ∈ N t

i

0 otherwise

(9)

In that rule, q0 ∈ [0,1] is the standard ACS parameter and
q is a random value in [0,1]. Ni is the neighbourhood of the
cell i, which is a function similar to the one used in SOM.
It also has associated a neighbourhood radius, nr which di-
minish along the running, so the neighbourhood is different
at every iteration t. This function returns ’1’ if the cell is
included in the neighbourhood and ’0’ otherwise.
σ is defined by the following equation:

σij = Vi(v)2 − CTRj(v)2 ∀v = 1..nvars (10)

Where Vi is the vector associated to the cell i and CTRj

is the centroid of a zone centered in the cell j. It is a vec-
tor where each value takes the arithmetic mean of the cor-
respondent values of the vectors associated to the cells in-
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cluded within a centroid radius, cr. The formula is equiv-
alent to calculate the Euclidean distance between the vector
associated to the cell i and the centroid vector for the cell j,
both vectors have a number of variables nvars.
Finally, in the decide where to go rule, W (σ) is the Ant

System pheromone weighting function (Equation 6).
The rule works as follows: when an ant is building a so-

lution path and is placed at one node i, a random number
q in [0,1] is generated, if q ≤ q0 the best neighbour j is
selected as the next node in the path (Equation 8). Other-
wise, the algorithm decides which node is the next by using
a roulette wheel consideringPij as probability for every fea-
sible neighbour j (Equation 9).
Notice that the second part of the rule (Equation 9) is sim-

ilar to the transition probability defined by Chialvo et al.
(Equation 7), but considering a weighting factor w(∆θ) =
1, so, all the neighbour cells have the same probability in
advance (before considering the σ value). We tested the al-
gorithm with some other weighting values, but the results
are not clearly improved. Further research will be focused
on this issue.
In addition, there is an important factor to mark, which is

that the ants are capable to move to cells far more than one
hop from the cell where they are currently located. It means
that they can ’jump’ or ’fly’ as some real-world ant species
are able. This property is vanishing along the algorithm run-
ning because the neighbourhood radius is decreased until it
takes a value of ’1’ (ants only move from one cell to a one
hop distance neighbour).

The Updating Function
This process is usually performed in classical ant algorithms
as a pheromone trail deposition. At every step, each ant k
updates the cell iwhere is placed, using an updating formula
similar to the learning function of SOMs (see Equation 5).
Bearing in mind that every sample/ant and cell in the grid is
a vector of nvars variables, the formula is as follows:

V t
i (v) = V t−1

i (v) + R · [ak(v) − V t−1

i (v)] ∀v = 1..nvars
(11)

Where Vi is the vector associated to the cell i, t is the current
iteration, and ak is the vector associated to the ant k. R is
the reinforce of the update, which is described as:

R = α · (1 − D(ak, CTRi)) (12)

α is the learning rate factor typical in SOM (which is con-
stant in this algorithm),CTRi is again the centroid of a zone
centered in the cell i. Finally, D is the mean Euclidean dis-
tance between the ant’s vector and the centroid vector. It
is:

D =

nvars

v=1

ak(v)2 − Ci(v)2

nvars
(13)

The Evaporation Function
As in all the ant algorithms, it is a very important process
in which the environment reverts to its previous (or initial)

state. This process is performed,for every cell i, once all the
ants have moved and updated the environment in the current
iteration.

Vi(v) = Vi(v) − ρ · Vi0(v) ∀v = 1..nvars (14)

Where ρ is the usual evaporation factor and Vi0 is the initial
vector associated to the cell i. It means that the function
changes the values of the vector in order to be similar to
the initial, which can be interpreted as an evaporation of the
trails in the environment.

Pseudocode
The pseudocode of our model is presented in Algorithms 1
and 2. Here we consider each cell as a pair of coordinates,
because the algorithm works using a grid.

Algorithm 1 KANTS Algorithm
initialize randomly grid vectors
place randomly ants in grid
for N iterations do
for each ant a at cell (x, y) do

j = decide where to go(a,(x, y))
end for
update grid // Using Equation 11
evaporate grid // Using Equation 14
update neighbourhood radio

end for

Algorithm 2 Decide Where To Go (a,(i, j))
for all cells (x, y) in neighbourhood of (i, j) do
// Probability = Euclidean Distance to centroid
σij,xy = ED((i, j),centroid((x, y)))
computeW (σij,xy) and Pij,xy // Using Equations 6 and 9

end for
// Ant Colony System/Ant System. Equations 8 and 9
q = random(0,1)
if q ≤ q0 then
// selected cell = the one with maximum probability
(k, l) = MAX(Pij,xy)

else
// selected cell = roulette wheel
(k, l) = roulette wheel(Pij,xy)

end if

Experiments and Results
This section presents the data sets used to train and test
KANTS algorithm (Subsection The Datasets), followed by
the results obtained in clustering (Subsection Clustering)
and classification (Subsection Classification).

The Datasets
The datasets used to test and validate the model are some
well-known real world databases:
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• IRIS contains data of 3 species of iris plant (Iris Setosa,
Versicolor and Virginica), 50 samples of each one and
4 numerical attributes (the sepal and petal lengths and
widths in cms.). The first class is linearly separable from
the others while the other two are not.

• GLASS contains data from different types of glasses stud-
ied in criminology. There are 6 classes, 214 samples (un-
evenly distributed in classes) and 9 numerical features
related to the chemical composition of the glass. This
database is difficult to classify (and depending on the al-
gorithm, also difficult to cluster), since some classes are
represented by just a few samples (3-10), and some other
classes not being linearly separable.

• PIMA. This is the Pima Indians Diabetes database which
contains data related to some patients (indians of that
tribe) and a class label representing their diabetes diag-
nostic according to the world-wide health organization’s
criterion. There are 768 samples with 8 numerical fea-
tures (medical data). Again, this is a hard to process
database, because many samples of the two classes takes
close values for the same variables.

In each of the three databases, we have consider 3 sets
built by transforming the original into 3 disjoint sets of equal
size. The original class distribution (before partitioning) is
maintained within each set. Then we consider 3 pair of
datasets ’training-test’ by splitting the 3 previous into half
size ones, they are named including the text 50tra-50tst. In
addition, 3 other pairs are created, but considering a distribu-
tion of 90% of samples for training and 10% for test. These
sets are named including 90tra-10tst.

Clustering
In Chialvo and Millonas (1995), the authors performed a
study on the distribution of ants with different configura-
tions in the β-δ parameter space. Three types of behavior
were observed when looking at the snapshots of the system
after 1000 iterations: disorder, patches and trails.
The results obtained with their method follow theoreti-

cal prediction: a second order phase transition is observed,
when a region of the parameter space which gives rise to dis-
order regimes “turns into” a region where trails are formed.
Moving away from the order-disorder line, the system loses
its ability to evolve lines/trails of ants and patches gradually
appear. In addition, another experiment was conducted: the
system was tuned to a region in the parameter space were
trails emerge. After the traffic network was formed, β was
decreased in order to tune the system bellow the transition
line; then, the ants started executing random walks and left
their previously formed trails. Once β was set again to the
initial value, the ants self-organized again on a similar traffic
network.

A similar test was performed with KANTS, but since Iris
dataset was used (and due to it is not very complex), we have
run the algorithm only a few iterations.

Figure 2: Snapshots of the ants in the system after 100 itera-
tions for different β and δ values. The straight lines roughly
delimit the region where clusters emerge.

Parameters β and δ were varied, and the resulting ants’
distribution after 100 iterations is depicted in Figure 2. Pa-
rameters α, neighbourhood radius (nr) and centroid radius
(cr), were set to 1, 1 and 3, respectively. From the figures
it is not possible to distinguish three different types of be-
havior, as in Chialvo and Millonas’ experiments with the
original model, but it is clear that there is a transition line
from a disordered state, where ants/data do not cluster, and
a ordered state where cluster start to emerge. Further away
from the transition line, the model’s ability to form clusters
gradually starts to decay (again). In the same way as in the
original model, there is only a small region of the param-
eter space that gives rise to a self-organized behavior, but
while Ant System forms trails, KANTS emerge clusters of
ants that are actually data samples.
Considering this results, KANTS appear to be a promis-

ing tool for data clustering. With a simple mechanism and
proper tuning of β and δ, data represented by (and behaving
as) ants form clusters that are easily distinguishable in the
grid. Even if some kind of local search is eventually neces-
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sary in order to tackle real-world problems, KANTS by now
come forward as a core model where hybridization may be
performed and the resulting algorithms applied to hard prob-
lems.
In Figure 3 an example of the ants evolution (movement

during the run) in the grid is showed.

Figure 3: Evolution of position of ants in the grid for the
IRIS problem. It shows the situation at the beginning (top-
left), at step 50 (top-right) and 100 (bottom-left) and at step
150 (bottom-right).

Looking at the snapshots of the grid at different iterations,
it is possible to notice that every ant tends to move to a group
of ants of the same class (they have similar values for the
features). So, starting from a random initial configuration,
in a few steps, the ants forms visible clusters.

Classification
In order to classify with KANTS, we introduce a parameter:
the number of neighbours to compare with the test sample.
So, the algorithm searches for the K nearest vectors in the
grid (using the Euclidean distance) to the vector correspon-
dent to the sample which it wants to classify. It assigns the
class of the majority.
It is similar to the one used in K-Nearest Neighbours

method (see Fix and J. L. Hodges (1989) for details), but
we use it once the grid has been trained (using the training
dataset) and many times the algorithm works very well even
consideringK = 1.
Since KANTS is a stochastic approach, 10 runs were

made considering each pair of datasets (training and test).
Results are presented in Table 1, where mean, standard de-
viation, and best of the resulting percentages in classification
are given. We compare the results with those yielded using
the traditional deterministic method K-Nearest Neighbours
(KNN).

IRIS KANTS KNN
Dataset Best Mean Best Mean

50tra-50tst-Set1 98.67 98.00±0.67 97.30 -
50tra-50tst-Set2 98.67 97.60±0.53 96.00 -
50tra-50tst-Set3 100.00 98.80±0.40 94.60 -
90tra-10tst-Set1 100.00 100.00±0.00 100.00 -
90tra-10tst-Set2 100.00 99.33±2.00 93.33 -
90tra-10tst-Set3 100.00 100.00±0.00 93.33 -

GLASS KANTS KNN
Dataset Best Mean Best Mean

50tra-50tst-Set1 68.22 65.42±1.62 62.60 -
50tra-50tst-Set2 67.29 64.86±1.52 64.40 -
50tra-50tst-Set3 74.77 71.03±2.17 64.40 -
90tra-10tst-Set1 69.57 65.65±1.30 47.80 -
90tra-10tst-Set2 73.91 73.48±1.30 60.80 -
90tra-10tst-Set3 91.30 83.48±3.25 82.60 -

PIMA KANTS KNN
Dataset Best Mean Best Mean

50tra-50tst-Set1 75.52 74.32±0.61 70.03 -
50tra-50tst-Set2 77.34 76.61±0.58 71.80 -
50tra-50tst-Set3 77.60 75.13±0.85 72.90 -
90tra-10tst-Set1 83.12 80.52±1.42 64.90 -
90tra-10tst-Set2 79.22 75.32±1.42 73.60 -
90tra-10tst-Set3 84.42 80.65±2.05 70.10 -

Table 1: Classification results with Iris, Glass and Pima
databases (6 different datasets each time).

The results are very good when comparing them with
a traditional clustering and classification method such as
KNN, even yielding 100% in many cases. We would like to
enphasize the fact that the Glass and Pima datasets usually
obtain a low classification rate (both are difficult databases,
as we previously commented), while KANTS achieves in
some cases a rate 10% higher than KNN. The results are
even more encouraging considering that KANTS is a non-
supervised algorithm.
In addition, it is important to comment that the algo-

rithm’s running time is just a few seconds, depending on
the dataset size, so for these results it takes 8 seconds in Iris,
10 seconds in Glass and 20 seconds in Pima. All the experi-
ments have been performed in a Pentium 1.6 GHz.

Conclusions and Future Work
This paper presents KohonAnts, a new method for cluster-
ing and data classification, based on an hybridization of Ant
Algorithms and Kohonen Self-Organizing Maps. The new
model turns n-variable data samples into artificial ants that
evolve in a 2D toroidal grid paved with n-dimensional vec-
tors. Data/Ants act on the habitat vectors by pushing the val-
ues towards their own. In addition, ants are attracted by re-
gions were the vector values are closer to their own data. In
this way, similar ants tend to aggregate in common regions
of the grid. There is indirect communication between ants
through the grid (stigmergy) leading, with a proper setting of
the model’s parameters, to the emergence of data clusters. In
addition, ants’ actions (pheromone deposition) over the grid
and pheromone evaporation creates a kind of cognitive field
which has turned out be very effective for classification pur-
poses.
It has been demonstrated that KANTS model is useful for
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clustering and classification tasks, yielding very good results
in both kind of problems. The concept it is based on is quite
simple and naturally inspired, but even so results obtained
are quite good compared with traditional clustering meth-
ods (such as KNN). It is also a fast method, not needing a
lot of computation time for obtaining the results mentioned
above. As should be the spirit of publicly-funded research,
we maintain all sources for the project as well as data used in
experiments in the public repository https://forja.rediris.

es/websvn/wsvn/geneura/KohonAnts/, under a GPL license1.
As future short-term lines of work, we will perform fur-

ther tests on the algorithm, comparing it with more specific
clustering and classification methods. We will also try to
streamline ant movement rules, and compare among differ-
ent options.
In addition, a lot of enhancements are still possible in the

original KANTS model presented in this paper. A neigh-
bourhood function may be considered, similar to the one
used in Self-Organizing Maps for updating the environment
in a radius. As in Fernandes et al. (2005a) and in Fernandes
et al. (2005b), reproduction may improve speed and accu-
rateness of the algorithm. Chialvo and Millonas probability
equation was not fully explored since weights w(∆θ) dif-
ferent of ‘1’ yield worse solutions, so an in-depth study in
this issue will be performed. Finally, a stopping criteria is
needed in order to avoid unnecessary iterations in the pro-
cess.
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