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Abstract

The question of how autonomous robots could be part of our
everyday life is of a growing interest. We present here an
experiment in which an autonomous robot explores its envi-
ronment and tries to familiarize itself with the features avail-
able using a neural-network-based architecture. The lack of
stability of its learning structures increases the arousal level
of the robot, pushing the robot to look for comfort from its
caretaker to reduce the arousal. In this paper, we studied
how the behavior of the caretaker influences the course of
the robot exploration and learning experience by providing
certain amount of comfort during this exploration. We then
draw some conclusions on how to use this architecture to-
gether with related work, to enhance the adaptability of au-
tonomous robots development.

Introduction
The question of how autonomous robots could be part of
our everyday life is of a growing interest. To approach this
goal, many questions remain unanswered, from what kind
of hardware would be needed, to what kind of architectures
would be appropriate in order to promote socially situated
robot that would fit in our environment. We are especially
interested in the latter issue.

To design such an ideal robot, it is argued that taking an
epigenetic approach would be a suited solution (Cañamero
et al., 2006). Indeed, this approach would help the robot dis-
cover and learn affordances in the environment in which it
is situated, including the agents it interacts with, as opposed
to an approach where the designed architectures would need
prior knowledge about the environment. The concern that
arises with this approach is to find what sort of built-in
mechanism a robot needs to be able to develop its cogni-
tive and social capacities. To be precise, what are the inner
drive(s) and basic principle(s) which will push the robot to-
wards situations in which it will learn what it needs to in
order to be fully operational in the given environment. This
problem has many of similarities with the development of in-
fants. Psychological evidence suggests that caretaker-infant
attachment bonds are vital to the cognitive and emotional
development of infants (Hofer, 2006), especially during the

first years of life. Indeed, as John Bowlby (1969) discov-
ered during his studies on mother-infant interactions, the
primary caretaker, usually the mother, is utilized by the in-
fant as a secure base in his/her early life, especially during
stressful and/or unusual episodes. Furthermore, as stressed
in (Schore, 2001), if the primary caretaker doesn’t act ac-
cordingly to the infant’s demands in term of interactions, the
mental development of the child can be impaired, leading to
emotional and cognitive disorders. Therefore, identifying
the factors that are particularly relevant during these interac-
tions, as well as their dynamics, is important to understand
how the development of a child can lead to many different
and uneven outcomes.

Our work also took inspiration from work done in the au-
tonomous robotics research area, such as (Avila-Garcia and
Cañamero, 2004), for affective (hormonal) modulation of
behavior selection in the case of action selection in a com-
petitive scenario; and especially (Blanchard and Cañamero,
2006; Cañamero et al., 2006), modeling the caretaker in the
case of a perception used to modulate the robot’s affect and
thus its behavior. Drawing on these ideas, we have devel-
oped a robotic architecture to explore a new environment
and learn from it using the robot’s caretaker as a secure base,
i.e. providing “comfort” to reduce the robot’s distress. Nu-
merous scenarios in terms of caretaking style are then pos-
sible to try to enhance the robot’s experience and especially
its learning process.

In the remainder of this paper we introduce an experiment
illustrating how a caretaker can help to modulate the arousal
of an infant-like robot by interacting with it and providing it
with comfort. The architecture used here allows the robot to
discover and learn information about its environment, more
specifically getting used to meeting certain patterns of stim-
uli and classifying them in a stable manner. During that ex-
ploration, its arousal is stimulated by the novelty and the
lack of stability of the patterns it senses. When this arousal
level is high, the robot looks for comfort from the caretaker.
The arousal thus modulates the behavior of the robot, and
the caretaker modulates its arousal.
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Robotics Model
Our architecture can be described in three main steps. The
robot first learns the features encountered in its exploration
of the environment, and gets habituated to them and classi-
fies them. Then the convergence and stability of these struc-
tures are evaluated to calculate the arousal level; this arousal
level reflects the degree of surprise and mastery of the robot
in the current sensorimotor situation. Finally, an appropriate
action is selected and executed.

Exploring and Classifying the Environment
To explore and categorize the environment, our architecture
uses two different learning systems. First, a Hopfield-like
associative memory neural network is used to learn the pat-
terns of stimuli encountered during the experiment. The sys-
tem is based on models of associative memory (Davey and
Adams, 2004). The network is a two-dimensional grid of N
binary neurons, with a state or output Si, locally connected
to their four nearest neighbors and randomly connected to
four other units of the network with a symmetric connection
matrix of weightswij . The connectivity is a blend of the two
configurations represented in Fig. 1. This model is a modi-
fication of the standard Hopfield network. The local field hi
of a unit i is given by:

hi =
N∑
i 6=j

wijSj

then the next state of the unit i is calculated as:

Si =

 1 if hi > 0
−1 if hi < 0
0 if hi = θi

In our network we use asynchronous random-order updates.
Then to learn the presented input pattern vector, we use a
modified version of the following procedure from (Davey
and Adams, 2004):

Begin with a zero-weight matrix

Repeat either until all local fields are correct or for M time
steps

Set the state of the network to one of the input patterns ξ

For each unit i in turn

Calculate hiξi

If this is less than a threshold T, then change the weights
between unit i and all

other connected units j, according to:

∀j 6= i w
′

ij = wij + ξiξj

N

The point in which our algorithm differs from the origi-
nal (Davey and Adams, 2004) is the repetition until all local
fields are correct. In our experiment the number of steps
used to learn the current pattern is fixed (10 steps in the
current settings). Therefore, the pattern is learned correctly
and completely if the robot stays in its current position, in
front of the exact sensory input pattern; if all the local fields
are correct before ten time steps, then learning stops as de-
scribed above.

Figure 1: Associative memory network connectivity (locally
connected on the left and randomly connected on the right,
from (Calcraft et al., 2007))

The second learning algorithm is a classical Kohonen
Self-Organizing map (Kohonen, 1997). The goal of this
module is to classify the patterns of stimuli encountered dur-
ing exploration. We used the classical algorithm, but here we
don’t have a decreasing learning rate or neighborhood size
over time; therefore, the map is constantly learning but has
nevertheless a satisfying stability for already encountered
patterns and keeps its plasticity.

Arousal Model
To compute the arousal of the robot we use two different
contributions. First, we evaluate the discrepancy between
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Figure 2: The robot explores and classifies the environment
using a Hopfield-like associative memory and a Kohonen
Map.
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Figure 3: Entire Architecture

the current pattern of stimuli and the output of the asso-
ciative memory, a value we call surprise Surt, since it de-
creases as a function of the familiarity of the current pattern
of stimuli. Indeed, since the associative memory has a fixed
number of time steps to learn the pattern, more than one
presentation is needed. When a pattern is familiar enough,
the network converges fast and the surprise value is close to
zero. We also use Mast, a value we call Mastery, which
is the sum of the variations of the weights of the Kohonen
map. This value shows the ability of the robot to classify the
current pattern and how these classes evolve. Formulas of
how these values are calculated are displayed in Fig. 2. At
each time step, the arousal of the robot is computed as:

At =
{

Surt+Mast
2 if TCare = 0

A(t− 1)− α · TCare otherwise

where TCare takes the value 0.5 when the caretaker is in
sight, 0.8 when he/she touches the back sensors, 1 when both
conditions are met, and 0 otherwise. Here α is the decay rate
of the instantaneous arousal when the caretaker is interacting
(set to 0.2). A(t) is then used to evaluate a smoothed value
of the arousal that we call instantaneous arousal, as follows:

Ainst(t) = τa·Ainst(t−1)+A(t)
τa+1

This value allows us to calculate an average of this arousal,
called sustained arousal,

Asus(t) =






τsus·Asus(t−1)+Ainst(t)
τsus+1

if TCare = 0 and Ainst(t) > 0.4
0 otherwise

where τa = 30 is the time window on which the instan-
taneous arousal is calculated, as an average of Ainst(t), and
τsus = 10, the time window on which the sustained arousal
is calculated, as an average of the instantaneous arousal.

Figure 4: Our Experimental Setup

Choice of Actions
The actions the robot takes are based on the levels of both,
instantaneous and sustained arousal. The robot can turn in
only one direction, to discover a new pattern of stimuli when
the arousal is low and the robot is in a “bored state”. If the
arousal is neither low nor high the robot remains still and
tries to learn the current pattern of stimuli. If the arousal
level is high, the robot barks to attract the caretaker’s atten-
tion, and if the arousal is high and sustained, the robot looks
for the caretaker by moving is head from top to bottom and
left to right, trying to attract the caretaker in sight. Numer-
ically speaking, the actions described above are taken when
the conditions below are met:





if Ainst < 0.25 ⇒ turn to explore
if Ainst > 0.25 and Ainst < 0.7 ⇒stay still and learn
if Ainst > 0.7 ⇒ bark to attract attention
if Ainst > 0.7 and Asus > 0.6 ⇒ search for the caretaker

Experimental setup and Results
In our experiments we used an Aibo robot on play mat,
adding three cylindrical objects of different colors, as shown
in Fig. 4. The robot uses three sensory modalities: color
(the main color in the center of its visual field projected into
the RGB color space), distance ( the distance measurements
provided by three distance sensors located in front of the
robot), and contact (from one contact sensor on the top of
its head and three on its back). Each sensor value (including
the 3 RGB components of the color of the centre of its visual
field) is discretized and projected into a vector containing ten
binary elements. To summarize, the robot has to habituate
to a vector aggregating all the element of the sensory space,
i.e. 100 binary elements (30 for the color, 30 for the distance
sensors, 30 for the back sensors, and 10 for the head sensor).
The caretaker can provide comfort to the robot either by ap-
pearing in its visual field and staying in sight or by touching
the sensors on its back. The robot recognizes the caretaker
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Figure 5: Evolution of (from top to bottom): instantaneous arousal, sustained arousal, caretaker interventions, associative
memory error, and variations of the Kohonen map’s weights. The graphs on the left-hand side correspond to an experiment
with a caretaker only available at the beginning of the experiment whereas the ones on the right-hand side correspond to an
active caretaker often providing comfort to the robot.

using the color of its clothes (this is hardcoded in this ex-
periment, the caretaker is wearing a black top as it is the
only color absent from the experiment room). At every time
step, we recorded the values described in the model section,
namely instantaneous arousal, sustained arousal, caretaker
interventions, associative memory error, and variations of
the Kohonen map’s weights.

We have represented the results of two typical experi-
ments in Fig. 5 with two different caretaking styles: an ac-
tive caretaker, responding almost constantly to the robots de-
mands (results on the right-hand side of the figure), always
staying on the right of the robot to appear in sight every time
the robot is looking for him/her, and a caretaker who only in-
teracts at the beginning and then leaves the robot on its own
and only intervenes few times (once every two minutes).
The beginnings of both experiments are the same. When the
robot is put on the play mat, it is almost instantly asking for
the caretaker, since all the features are new and highly stim-
ulating its arousal. Then the caretaker appears in sight and
touches its back sensors to calm it down. We can observe
on the graphs that for both caretaking styles, the Mastery
value and Surprise value are high and sustained in the case
of the non-caring caretaker, since the “non-caring” caretaker
then backs away immediately after putting the robot down.
Whereas for the other type of caretaking, the experimenter
stays close during the whole experiment. In the case of the

Style M̄asσ (Mas) ¯Surσ (Sur)

Caring 0.5987 0.0355 0.3456 0.0565
Not Caring 0.6427 0.0407 0.6455 0.0324

Table 1: Results for 10 runs for each caretaking style

non-intervening caretaker, the robot is surprised and quickly
stimulated by the new environment, and the levels of arousal
(sustained and instantaneous) urge it to look for the caretaker
quickly. By doing this, the robot actually sees the colors of
the upper environment, which are novel stimuli, and tries to
learn them, and this results in an even higher increase of its
arousal levels. As for the experiment with an active care-
taker, since he interacts and provides comfort, the arousal
levels are lower and the robot can explore without . To find
out how the two different caretaking styles differ, in terms
of stability and performance of the exploration and classifi-
cation system, we ran our experiment 10 times for each of
the scenarios. The results for the average values and stan-
dard deviations for Mastery (Kohonen Map weights vari-
ations), Surprise (associative memory error)and Sustained
arousal for the entire experiment are presented in Table 1.
These values are used as a measurement of the quality of
the learning process, to evaluate how each caretaking style
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affect the learning experience of the robot. Each run lasted
50,000 timesteps and started from the exact same position.
We can see that in terms of the Kohonen Map stability (the
Mastery value), the caring caretaker behavior does not out-
perform the non-caring one by a large difference. However,
there is a large difference in terms of Surprise (the associa-
tive memory’s performance) between the different caretak-
ing styles. The sustained arousal gives coherent results since
the robot without the caretaker has to deal on its own to re-
duce its arousal by mastering the situation and getting habit-
uated to the patterns. We can only conclude with this small
sample that both behaviors are not optimal and that finding
the correct trade-off between staying close and not caring
needs further investigations. As an end result, in all our runs
the robot had learned and classified all the encountered pat-
terns meaning therefore its arousal always remained under
the lowest threshold and kept turning fast in the arena in the
“bored state”, looking for new features to learn.

Discussion
The architecture we used in our experiment allows a robot
to explore an unknown environment as a function of the dy-
namics of its interactions with the caretaker and the behavior
of this latter. We have seen that even using such a simple ar-
chitecture, the outcomes of every experiment are different
depending on the type of interactions. The developmental
approach we have followed reproduces mother-infant inter-
actions. However, what needs to be underlined is the diffi-
culty experienced during tuning the parameters of the archi-
tecture, namely the decay rates of the arousal levels. Indeed,
to obtain a behavior oscillating between exploring, learning,
and demanding the caretaker’s presence, we needed to ex-
plore several configurations of the parameters. Nevertheless,
these results show how using the caretaker as an arousal —
and indirectly as a behavioral— modulator is actually pos-
sible without having a complex architecture. Furthermore,
apart from these two opposite caretaking styles, our archi-
tecture allows to actively choose whether a situation, pattern
of stimuli, has to be learned or avoided. Indeed, if the care-
taker wants the robot to really learn the pattern, he/she can
provide a small amount of comfort for the robot to have its
instantaneous arousal in the middle level, between the two
thresholds. This way the robot remains in its current posi-
tion, without looking for the caretaker or moving away. In
the opposite case, the caretaker can provide comfort to the
robot so that it continues to look for another situation, keep-
ing the instantaneous arousal below the lowest threshold, so
that the robot does not learn one situation that is judged ir-
relevant by the caretaker.
As for the related work, a comparable model of arousal
modulation and mother-infant interaction, although, not ap-
plied to robotics, can be found in (Smith and Stevens, 1996,
2002). In these contributions, the authors used a similar
approach to modulate arousal based on neurophysiological

data (Hofer and Sullivan, 2001) regarding how endogenous
opioids modulate arousal in infants. However, their architec-
ture did not have any cognitive system related to the interac-
tions and their qualities, but was focused on the dynamics of
the dyadic interaction. Another contribution can be related
to this work. In (Likhachev and Arkin, 2000), the notion
of comfort and object of attachment is used by a robot to
remember its “comfort zones”. What differs between the
work presented here is that the object is a person, and also
the comfort of the robot is not a function of the distance be-
tween the robot and the object of attachment.

Finally, in (Thomaz and Breazeal, 2007), an interesting
experiment is described showing how a human can help a
robot learn a certain task. In this contribution, a robot can
explore and learn on its own but has also the opportunity to
use human guidance to adapt to new tasks, changes in the
environment, and to generalize one task to similar ones. The
robot communicates its internal state with basic facial ex-
pressions and gestures. This “Socially Guided Exploration”
presents similar features with the work presented here; in
both experiments the interactions with a human are used to
enhance the learning process, and also in both cases the hu-
man teacher/caretaker has to pay attention to the feedback
from the robot in order to intervene to help and guide the
robot. However, what differs between the two experiments
is the modalities the human uses to interact with the robot.
In the experiment presented in this paper, the human care-
taker orients the robot’s behavior by touching its back sensor
to reduce its arousal level in order for the robot to move to
another sensorimotor context, or appear in sight, whereas in
the contribution discussed here, the human teacher can either
point with his/her finger to a certain region of the environ-
ment or even give verbal instructions to the robot. We argue
that the simple non-verbal way of interacting we used in our
experiment is sufficient to bias the behavior and improve the
learning process of an autonomous robot.

Conclusion and Future Work
In the experiments described above, we have shown how it
is possible to modulate the exploratory behavior of an au-
tonomous robot using notions like surprise and mastery to
take into account its cognitive development, and especially
using a caretaker as a secure base to provide comfort and
reduce its arousal. To provide a more autonomous and adap-
tive solution, we could use material from previous work,
modeling the imprinting phenomenon, using a perception or
a compound of them as “desired perceptions” (Blanchard
and Cañamero, 2005; Hiolle et al., 2007). These percep-
tions could be the voice of the caretaker and his/her face.
We could then to add to our architecture the possibility for
the robot to learn how to attract the attention of the care-
taker and keep him/her close enough, as has been done in
(Hiolle and Cañamero, 2007). However, finding the cor-
rect parameters for the architecture to obtain a balanced be-
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havior was not easy and we experienced what was stressed
in (Kaplan, 2001):“Fixing the satiation level and the speed
of decay in order to obtain the right behavior remains the
tricky thing”. We think that using even earlier experiences
of the robot could help evaluate these parameters. Using this
as grounding for an early shaping of the personality of the
robot would help us build a more realistic robot, and assess
its attachment style using an Ainsworth-like Strange Situa-
tion Test (Ainsworth, 1969). To improve the autonomy of
our robot’s development, adding a curiosity drive (Oudeyer
et al., 2007) would guide the robot’s exploration towards
more interesting situation, acting in order to increase its
“learning progress”. Another possibility would be to mod-
ify our architecture using the arousal, or a variable related
to it (first derivative for instance), to directly modulate the
cognitive abilities of the robot. More precisely, this value
could modulate the learning rate, and/or the neighborhood
of the Kohonen map. The robot could then exhibit vari-
ous behaviors depending on the situation, and the dynamics
of the system would certainly be different, perhaps closer
to what happens with infants. On another level, what also
needs to be done is to come up with accurate and consis-
tent metrics to qualify and even quantify the behavior of the
caretaker. We would also like to measure how a caretaker
is interacting and possibly assess the effects of the differ-
ent caretaking styles. We could then even point out what
definitely should not be done based on the behavior and per-
sonality of the robot. We would also like to investigate how
a robot could develop bonds with several caretakers and ex-
hibit preferences for a given caretaker as a function of the
given context or situation.
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