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Abstract

Simulation experiments are conducted on simple continuous
double auction (CDA) markets based on the experimental
economics work of Vernon Smith. CDA models within exper-
imental economics usually consist of a sequence of discrete
trading periods or “days”, with allocations of stock and cur-
rency replenished at the start of each day, a situation we call
“periodic” replenishment. In our experiments we look at both
periodic and continuous-replenishment versions of the CDA.
In this we build on the work of Cliff and Preist (2001) with
human subjects, but we replace human traders with Zero In-
telligence Plus (ZIP) trading agents, a minimal algorithm that
can produce equilibrating market behaviour in CDA mod-
els. Our results indicate that continuous-replenishment (CR)
CDA markets are similar to conventional periodic CDA mar-
kets in their ability to show equilibration dynamics. Secondly
we show that although both models produce the same be-
haviour of price formation, they are different playing fields,
as periodic markets are more efficient over time than their
continuous counterparts. We also find, however, that the vol-
ume of trade in periodic CDA markets is concentrated in the
early period of each trading day, and the market is in this
sense inefficient. We look at whether ZIP agents require dif-
ferent parameters for optimal behaviour in each market type,
and find that this is indeed the case. Overall, our conclusions
mirror earlier findings on the robustness of the CDA, but we
stress that a CR-CDA marketplace equilibrates in a different
way to a periodic one.

Introduction
The Continuous Double Auction (CDA) is a market insti-
tution that plays a fundamental role in the world economy.
It is the principal trading format for commodity markets,
equity exchanges, foreign exchange, and derivatives mar-
kets. Real-world examples of CDA-based markets include
the NYSE and the Chicago mercantile exchange. Although
we have a great deal of observational data on these markets,
it would be both difficult and illegal to manipulate them ex-
perimentally. Our understanding of how CDAs work has
therefore been greatly enriched first by the discipline of ex-
perimental economics (Smith, 1962), in which human sub-
jects participate in economic games in the laboratory. More
recently CDAs have been studied using the methods of ar-
tificial life: in agent-based computational economics (see

Tesfatsion, 2002, for a review) the behaviour of a simu-
lated market emerges from the interactions of many rela-
tively simple trading agents.

Our particular interest is in how the temporal structure
of a CDA can affect both overall market performance and
the optimal strategies for agents participating in that market.
We look at two variant CDAs: one is an explicitly periodic
market in which there is a discrete trading period with daily
opening and closing points; we refer to this as the day-based
or periodic-replenishment (PR) market. The second variant
involves a non-periodic or continuous-replenishment (CR)
market which allows for trading without interruption. We
refer to the continuous-replenishment variant of the CDA as
the CR market. These two types of CDA have important
real-world exemplars: most stock exchanges are day-based,
for instance, whereas the global foreign exchange markets
are continuous-time. Intuition suggests that these markets
are significantly different playing fields. Our goal is to use
an agent-based model to find out how different these two
CDA variants really are.

Experimental economics
The motivation of experimental economics is to model eco-
nomic phenomena using human participants in controlled
laboratory situations. Smith (1962) conducted pioneering
studies in which a small number of inexperienced human
traders participated in a CDA and were able to reach a
competitive equilibrium price and equilibrium quantity of a
traded commodity. Smith derived a qualitative indication of
the relationship of supply and demand curves in producing
equilibrating transaction prices and presented results sug-
gesting the replication of classical microeconomic theory,
all from a surprisingly simple model.

Smith’s studies are recognized as the standard modelling
framework for CDAs and the simplicity of Smith’s con-
cept has been integral to its success. Recent research has
focused on establishing the robustness of Smith’s general
findings and examining the fidelity with which these exper-
iments reproduce phenomena from real CDA markets. The
reproducibility of economic phenomena is important as it
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means that on the one hand market makers (e.g., a regu-
latory agency setting up a new marketplace) can use these
experiments to develop fairer and more robust market mech-
anisms. On the other hand, traders (and the operators or
regulators of financial institutions) can use results from ex-
perimental economics to identify and exploit strategic niches
in their existing marketplaces.

Computational economics
If we take the human traders of the experimental economics
paradigm and replace them with programs representing dif-
ferent trading strategies, we get agent-based computational
economics (ACE) (Gode and Sunder, 1993; Cliff, 1997; Tes-
fatsion, 2002). An important aspect of this research has been
finding the simplest algorithm capable of producing equili-
brating market dynamics in a similar fashion to human par-
ticipants. Cliff (1997) introduced the Zero-Intelligence Plus
trading agent (ZIP) as an algorithm with minimal intelli-
gence that nevertheless produced market behaviour that was
very close to that of human traders. ZIP trading agents are
a modified version of an earlier agent known as ZI (Zero In-
telligence), created by Gode and Sunder (1993). ZI traders
are simply stochastic agents that announce random prices
for bids and offers. ZIP is able to model CDA price forma-
tion based on an intuitive heuristic “decision tree” algorithm
coupled with elementary machine learning techniques (Cliff,
1997).

Computationally lightweight autonomously adaptive
(“intelligent”) trading agents (such as ZIP) are extremely
significant given the emergence of virtual market-places. On
the side of the market designer, iterative economic simula-
tions using ZIP allow experiments to be conducted faster and
yield significant results insofar as the ZIP trader can be seen
as a realistic model. On the side of financial institutions that
act within the market there is an incentive to replace human
traders with automated trading agents. A fair chunk of work
in ACE modelling to date concerns the use of agents inspired
by the ZIP architecture in CDA markets. Studies have con-
centrated on evolving more robust agents and trading strate-
gies. A basic ZIP agent acting in a periodic-replenishment
(PR) CDA market with fixed supply and demand curves (as
in the classic Smith experiment) has been used by a num-
ber of authors as the de facto benchmark for demonstrating
equilibrating price formation with artificial agents.

The impact of replenishment in markets
Past work using intelligent agents in CDA markets has
rarely explored the importance of the replenishment sched-
ule within the market model. Round-the-clock 365-days-
per-year environments are emerging at a fast rate in the
real world, and yet continuous-replenishment modelas are
perhaps one of the least discussed CDA variants (Cliff
and Preist, 2001) in experimental economics. The stan-
dard Smith CDA model is conducted over discrete intervals

known as trading days, and the dynamics of the market are
centered around this day-trading structure. As not all real
CDA markets are periodic the applicability of a day-based
model to these variants is dubious. In what we believe to
be the first human-based experimental economics studies to
address this issue, Cliff and Preist (2001) explored the ef-
fect of removing periodicity from the standard CDA model
by allowing continuous trading — i.e., switched from PR
to CR CDA models. Cliff and Preist’s general conclusion
was that the ability of a CDA market to reach an equilibrium
price did not seem to be affected by the switch from PR to
CR. However, due to the inherent difficulties in human ex-
perimentation, the sample size in these experiments is really
rather small.

Experimental aim
Our goal is to look at whether PR and CR markets produce
different trading dynamics, and ultimately we would like to
examine optimal trading behaviour across a wide range of
different replenishment structures of the marketplace. In this
paper we directly extend the work of Cliff and Preist (2001)
by developing both continuous- and periodic-replenishment
markets with ZIP traders instead of humans. We are es-
pecially interested in potential differences between the two
market types that may have been too subtle to be detected
given Cliff and Preist’s limited sample size.

Method
We wrote computer simulations recreating the methods
of Cliff (1997) and Cliff and Preist (2001), which are
both adaptations of the experimental economics methods of
Smith and Williams (1983). The method is a static model of
a continuous double auction: i.e., supply and demand curves
are fixed, and market participants (“traders”) each privately
know how many units they are willing to trade and the cost
or value of each of their units, but not the allocations of any
other traders.

There are 22 trader-agents in the simulated market: 11
buyers and 11 sellers. Each individual agent is allocated a
private fixed limit price. The limit price specifies, for sell-
ers, the minimum price at which they can sell, and for buy-
ers, the maximum price at which they can buy. The differ-
ence between an agent’s limit price and the actual transac-
tion price they may achieve for the commodity is their utility
— “profit” for sellers, “savings” for buyers. Limit prices for
each of the agents are different, i.e., the agents vary in how
much the commodity is worth to them. Limit prices range
between $0.75 and $3.25 as shown in figure 1.

At the start of the experiment the 11 buyers and 11 sell-
ers enter the market, with the sellers each in possession of
one unit of the commodity, and the buyers each seeking to
purchase one unit. We refer to these units as the agents’ en-
titlements to buy or to sell. A single experiment — in the
standard, periodic-replenishment case — consists here of a
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Figure 1: Stepped market Supply curve S and demand curve
D, for 11 buyers and 11 sellers. Vertical axis is price in
cents ($0.50 to $4.00); equilibrium price P0 = $2.00. Supply
and demand curves are fixed and symmetrical for all experi-
ments. Figure is reproduced from Cliff (1997).

sequence of 20 trading periods, referred to as days. Each day
is separated into 120 trading intervals (referred to as ticks).
A tick is a discrete boundary of time at which a complete
trading interaction can be executed (i.e., up to 120 attempted
trades can take place during a day). Buyers and sellers nor-
mally have their entitlements reset to at the start of each
trading day, by replenishing money to buyers and stock to
sellers.

The arrangement of buyer and seller limit prices creates
a stepped supply and demand curve for the imaginary com-
modity with a theoretical equilibrium price (P0 = $2.00) and
theoretical equilibrium quantity (Q0 = 6) of units traded.
Economic theory suggests that for rational agents participat-
ing in such a market, trading dynamics will show the com-
petitive equilibration colloquially known as “the laws of sup-
ply and demand”. In excess demand (trading taking place
below the equilibrium) there is an incentive for the buyers
to raise their bids to ensure they make a trade, and in excess
supply (trading taking place above equilibrium) there is an
incentive for sellers to lower offers to ensure a successful
trade with a buyer (Cliff, 1997).

Trading process
With the market set up as described, buyers and sellers then
engage in a CDA, in which they are free to announce and
accept bids and offers for the commodity. The auction pro-
cedure is the same as that used by Cliff (1997).

1. At each tick a randomly selected agent quotes a price. This will
be a bid if the agent is a buyer or an offer if the agent is a seller.
The quoted price is made public to all agents from both com-
munities and is the future transaction price for the trade. The
agent’s choice of price to quote is a function of its strategy.

2. Agents of the “contraside” (i.e., buyers responding to an offer,
or sellers responding to a bid) make an assessment on whether

dealing at the quoted price would be profitable for them. Again,
this decision is a function of the agent’s strategy. For ZIP agents,
the decision will be influenced by their limit price but also by
their current estimated valuation which is based on the recent
history of successful trades in the marketplace.

3. If no willing agents are present in the market, i.e., the quoted bid
is too low or the offer is too high, that tick-step is designated as
a failed trade, and the market progresses onto the next tick.

4. If an agent decides that the shouted price is acceptable, it desig-
nates itself as a willing agent.

5. Prices of willing agents are arranged into a queue similar to
NYSE rules (i.e., a trader makes a bid or offer at any time, but
once made it is persistent until the trader alters it for a better
price or it is accepted).

6. An agent is chosen from the queue, and the quoted price is the
transaction price for the trade. The entitlements of both agents
decrease by one and the profit and bank balances of the agents
are adjusted according to the transaction price.

7. Finally, agents are assessed on their market activity state.
Agents with no remaining entitlements to trade drop out of the
market (although entitlements may later be reset, e.g., at the be-
ginning of the next trading day).

A day’s trading can be terminated prematurely if there are
no active agents remaining in the market. Otherwise the
market is open for 120 ticks, the duration designated for a
trading day. For our markets we arbitrarily set the number
of trading days to 20, to measure market performance over a
reasonable period of time.

The periodic CDA
The replenishment schedule in a CDA market model effec-
tively determines how and when the buying and selling en-
titlements of traders are reset. The periodic-replenishment
(PR) variant is the default condition that has been described
above; this is a replication of the Smith and Williams (1983)
and Cliff (1997) models. The PR market forces the simulta-
neous and uniform renewal of all trading entitlements at the
start of each day.

The continuous-replenishment CDA
For the continuous-replenishment (CR) CDA we recreate the
market model of Cliff and Preist (2001) where there is no
division of time into trading days. Once opened, the mar-
ket continues for 2400 ticks until the end of the experiment.
Every 120 ticks (the equivalent time frame for a day in peri-
odic market) the entitlements for each agent are updated in-
dependently and with staggered phases. In short, the market
is always open, and although agents temporarily drop out of
trading after successfully buying or selling their single unit,
they will return to trading at a randomly determined point in
the future.

We have implemented two variations of the staggered
renewal of agent entitlements, one referred to as peri-
odic continuity or continuous(P) and the second referred to
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Figure 4: Modelization of an example of the Gene Regula-
tory Network. A, B, C and D are 4 actions with their effi-
ciency coefficient. The transfer coefficients are given by the
arrows.

experiment consists in developing a system able to move
substrates in the environment whereas the second one cre-
ates simple shapes like starfish or jellyfish.

To find the creature the most adapted to a specific prob-
lem, we use a genetic algorithm. Each creature is coded with
a genome composed of three different chromosomes:

• The list of available actions, a subset of the environment
possible actions. This list allows the cell to activate or
inhibit some actions.

• The action selection system that contains a list of rule to
apply actions.

• The gene regulation network that allows cell specification
during duplication.

The creature is tested in its environment that returns the
score at the end of the simulation. To increase the genetic
algorithm power, we use a computational grid parallelized
genetic algorithm. This parallelization allows the computa-
tion of hundreds of creatures at the same time.

Experiments
Developing a transfer system
The first experimentation consists in developing a simple or-
gan : a transfer system. In other words, the cell structure

must be able to transport substrate from one point to an-
other. To do that, we imagine an environment composed of
2 substrates:

• The red is the substrate that must be moved by the organ-
ism. This substrate has the specificity not to spread in the
environment, in order not to impact on the organism work.

• A gray that will be used by the cell as fuel and duplication
material.

The cell can perform the following actions:

• duplicate (needs one gray substrate and vital energy),

• absorb or reject substrate (consume vital energy),

• transform one gray substrate in vital energy.

We place 10 red substrate units into a specific cross of
the grid (at the top left of the environment) and diffuse gray
substrate all over the environment. The creature’s score is
given by the squared sum of the red substrate distance to
the goal point (at the bottom right of the environment). The
parameters of the genetic algorithm are:

• selection: 7 tournament competition with elitism,

• mutation rate: 5%; crossover rate: 65%,

• substitution: worst individuals,

• population size: 500 individuals,

Figure 6 shows the convergence curve of the genetic algo-
rithm. It shows the variation of the minimum, the average
and the maximum fitness of the population for each gener-
ation. The genetic algorithm’s aim is to maximize fitness,
which is the creature score. A relevant organism appears
quickly. After 3 generations, the organism is able to move
the red substrates but not in the right direction. After 10
generations, it is able to move closer to the goal point. The
genetic algorithm converges after 22 generations (the aver-
age fitness is close to the best).

Figure 5 shows the development of the best organism1.
We can see that only the cells on the way from the initial
point to the end point are created. Moreover, the organism
uses absorption and rejection actions to transfer the substrate
gradually. Cells that overtake the final point die quickly so
as not to interact in the transfer. During the convergence of
the genetic algorithm, it is interesting to observe the evolu-
tion of the organism strategy towards the best solution. The
first step is to learn to survive in the environment, absorbing
gray substrate and transforming it in vital energy. The next
step is to learn to duplicate in the right direction. Intermedi-
ate solution organisms are able to transport the red substrate

1Videos of all presented creatures in this paper are available on
the website http://www.irit.fr/∼Sylvain.Cussat-Blanc
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Figure 2: Mean transaction price over time (days or pseudo-days) for 500 ZIP experiments, for symmetrical supply and demand
(P0 = $2.00) in a PR CDA (left), and a CR CDA with stochastic renewal (right). Dashed lines indicate the mean upper and
lower transaction price boundaries at each day.

to occur in a range of prices around the equilibrium P0 rather
than convergence on the theoretical optimum price. Cliff and
Preist (2001), in their continuous-time markets with human
participants, found impressively low values of α that were
below 0.1 within 600 seconds of the start of the experiment.
Our overall data shows a failure to reach average α-values as
low as 0.1, although we occasionally see single experimental
runs with these low values.
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Figure 3: Mean α values over time (days or pseudo-days)
for 500 ZIP market experiments: one periodic- and two
continuous-replenishment CDA variants shown. Note that
α values are very high (up to 20) in the earliest days of the
experiments.

Hypothesis 3: CR markets exhibit greater experimen-
tal late-phase stability than PR markets. To investigate
this question we split our data sets and looked only at re-
sults from the second half of each experimental run, i.e.,
days 11–20. This means we can look at market equilibra-
tion — effectively, long-term market efficiency — without
the initial transients distorting the picture. We measure ef-
ficiency using both Smith’s α and another measure, “profit
dispersion”. Gode and Sunder (1993) describe profit dis-

persion as the cross-sectional root mean squared difference
between actual profits and equilibrium profits of an individ-
ual trader. For a group of n traders profit dispersion is given
by

√
1
nΣ(ai − pi)2 where ai is the actual profit earned by

trader i and pi is p0 for that trader. The more efficient the
market, the lower the profit dispersion.

Figure 4 shows both mean α and mean profit dispersion
for late-phase markets. Periodic-replenishment markets are
consistently more efficient according to Smith’s α, which
means that transactions occur at prices closer to P0 than
in continous markets. There is also a very low variance
in α-values for periodic markets. In terms of α perfor-
mance the continuous markets with periodic renewal per-
form marginally better than the stochastic renewal version.
In contrast, profit dispersion levels for all three market vari-
ants are approximately equal. This indicates that individ-
ual traders are not any more or less likely to trade at prices
further from their personal equilibrium price in one type of
market or another.

Hypothesis 4: Price formation in periodic markets is dis-
tributed around the opening of the market. We defined
the “morning” period as being the first 25% of each trading
day or pseudo-day, i.e., ticks 1–30. The trading volume dur-
ing the morning period was approximately 3.5 times higher
in periodic markets compared to continuous ones. This is
not unexpected, as in the periodic CDA the entitlements of
all traders are reset simultaneously as the market opens. This
leads to an opportunity for many deals to be done immedi-
ately. More interestingly, despite the influx of entitlements
to a morning market the transaction prices for periodic mar-
kets have a mean of 2.0147 (σ = 0.037). The transaction
prices for both continuous markets in the morning period
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Figure 4: Mean convergence statistics for late-phase mar-
kets (days 11–20) with 500 ZIP experiments for each mar-
ket model. Results for α indicate that the PR CDA is the
most efficient, followed by the CR CDA with periodic re-
newal, and then the CR CDA with stochastic renewal. Av-
erage profit dispersion is roughly equal for all three types of
replenishment.

are at a mean of 1.72 (σ = 0.047). Morning trade activ-
ity in periodic markets is very close to the equilibrium price
despite the higher volume of trading. Approximately 79%
of all experimental transaction occurs in the morning for a
periodic market model, whereas in continuous markets the
“morning” period has no particular significance and so ob-
viously it accounts for 25% of trading.

Hypothesis 5: The optimal parameters for trading
agents will take on different values depending on the
market type. The behaviour of ZIP agents depends on a
number of different parameters. Several different variables
dictate the speed with which a ZIP trader modifies its price
in the market, but the two most important are the Widrow-
Hoff momentum (γ) and the agent learning rate (β). Preist
(1999) demonstrates the significance of these variables. We
looked at the effectiveness of different γ and β values in
both periodic and continuous markets by creating surface
plots of market efficiency, measured by Smith’s α, for ho-
mogeneous communities of ZIP agents: see figure 5. We
find that the resulting profiles of market efficiency are dif-
ferent for periodic and continuous CDAs. In other words, if
I am a ZIP agent, the optimal settings for my core parameter
values will depend on the market type I am in. In a periodic
market, a value of β = 0.2 will produce the most efficient

equilibrating market performance. Momentum γ, which acts
to damp the oscillations for heuristic adjustments, can then
vary across the range of 0.1–0.5 and this makes little differ-
ence to performance if β = 0.2 (see figure 5, left panel).
In continuous-replenishment markets, the best example of
market equilibration results from ZIP traders with β = 0.1.
Continuous markets react more than periodic markets when
γ is varied over the range 0.1–0.5. In a continuous market
ZIP agents with lower momentum result in more efficient
market behaviour (figure 5, right panel).

Intuitively we might expect that fast learning (a high value
of β) and strong damping of adjustment oscillations (a high
value of γ) would produce ZIP agents with more efficient
market behaviour. Instead the trend for both markets is the
opposite. Of course, we should be aware that ZIP parame-
ters are not limited to γ and β. Our rationale for using these
variables was not to find the most efficient ZIP trading strat-
egy, but merely to illustrate that market replenishment style
affects the way a ZIP trader should best operate.

It is also noteable from these results that some of our com-
binations of fixed γ and β ZIP variables produce markets
that are almost 50% more efficient than those of the pop-
ulations of ZIP agents used in the main set of experiments
that featured the random assignment of parameters. This ev-
idence is suggestive that there may be a market efficiency
gain if all traders are uniform agents and consequently can
be said to share the same idea of rational behaviour.

Discussion
Our experiments are, as far as we know, the first studies
conducted with adaptive artificial trading agents operating
in a simulation of a continuous-replenishment CDA. We
have demonstrated the robustness of the CDA institution in
fair price formation, by showing that groups of ZIP trading
agents can consistently converge to the competitive equilib-
rium price and quantity governed by the supply and demand
curves of the market. These results validate the observation
of Cliff and Preist (2001) that both periodic and continuous
markets can reach an equilibrium price. The use of simula-
tion methods allows us to examine price formation variables
more easily than in human-based experiments and we have
therefore compared and contrasted the two CDA variants in
more detail than was possible for Cliff & Preist in 1998.

Firstly, we found that profit dispersion between markets is
almost identical in the later phase of the market for all three
of our CDA variants. Secondly, we examined the α statistic
over time, which calculates the divergence of market activ-
ity from the competitive equilibrium price. A comparison
between the α values of periodic and continuous markets
over time suggests that periodic markets equilibrate more ef-
ficiently over the long run than do continuous-replenishment
markets. Comparing markets in late-phase allows measure-
ments that are free from the effects of initial market turbu-
lence, and thus facilitates a fair comparison between peri-
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Figure 5: Surface plot of α against different values for γ (momentum) and β (learning rate) in a homogeneous ZIP agent
community. The periodic market is shown on the left and the continuous market on the right. Results were generated over 500
experiments with all other agent parameters remaining at default values for ZIP version 1 (Cliff and Bruten, 1998). Note that
the two surfaces are quite different, indicating that the two market types produce different optimal strategies.

odic and continuous markets. With no difference in profit
dispersion across the three market types but with periodic
markets achieving the most impressive (i.e., lowest) α val-
ues, this suggests that periodic markets represent a (near)
Pareto-optimal solution to the problem of market design,
with respect to our two measures of market efficiency.

Our original intuitions about the likely relationship be-
tween market efficiency and temporal structure were, in fact,
the direct opposite of our results. We expected that the re-
occuring event of an opening and closing of the market for
our periodic variant would be enough to bring about a mini-
fluctuation in the movement of opening prices each day and
that possibly this pattern of trading would lead to oscilla-
tions around the equilibrium price at daily intervals. For CR
markets, our intuition was that competitive price formation
would occur early on and be maintained without such inter-
ruptions. Our original expectations can be summed up by
the analogy that an engine that is continually restarted runs
less smoothly than one that only starts once.

While it is not immediately clear why periodic markets
over time deviate less from the competitive equilibrium price
when compared to continuous markets, we can illustrate one
reason for this behaviour from the perspective of the propor-
tion of active agents within the market. The aggregate move-
ment of price formation towards transactions at the equilib-
rium price only occurs if an agent is active within the market.
For PR markets there is no potential delay in an agent being
active for any given day, as by default all agents are deemed

active at the start of each day. In a CR market, agents may
in theory wait for a maximum time period equivalent to two
days before being active within the market. An agent can
only make meaningful contributions to the movement of the
current trading price when it is active. Therefore in periodic
markets, in which all agents start the day as active partic-
ipants in the market, the collective action of all agents in
reaching the equilibrium price will be maximally efficient.
It may be that this activity being concentrated in time leads
to the improved α values of the periodic market in compari-
son to the continuous ones.

Our average α-values for both the CR and PR variants
of the market compare poorly to the reported α-values ob-
tained by Cliff and Preist (2001) with human traders. This
may well indicate relative inefficiency on the part of our ZIP
agents, but it is also possible that the α-values reported by
Cliff and Preist were the result of a regrettably small sample
size.

The majority of PR market transactions occur within the
“morning” period (i.e., the first 25% of the trading day),
whereas in CR markets the trading activity is unsurprisingly
spread across the trading day as the morning has no special
significance. After the rush of morning trading, the remain-
der of the day in a periodic market is an empty trading envi-
ronment, although quotes are still continuously made. In a
sense, our PR markets “waste” most of the time of their par-
ticipant traders, as (in these experiments) there isn’t enough
market surplus to fulfill the desired shouts; and so on average
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our PR markets were nonuniformly — and arguably ineffi-
ciently — used over the duration of each day. In contrast,
the CR market successfully facilitates continuous trading.
Many of these dynamics may be attributable to the assump-
tion that each trader makes only one trade per day. How-
ever, even if agents traded many units per day we believe
that a concentration of trading volume in the morning would
remain characteristic of periodic markets as opposed to con-
tinuous. Empirically testing this belief remains a topic for
further work.

How does periodicity of replenishment affect the agent?
Our results suggest that groups of agents with uniform trad-
ing heuristics perform differently in each market. Therefore,
each market requires a different trading strategy to produce
the greatest efficiency or to extract the greatest utility. From
the agent perspective, these two styles of market replenish-
ment create two different playing fields. Results show that
each market is capable of reaching the equilibrium price
with intelligent trading agents, but it is important to empha-
size that the greatest market efficiency is achieved by differ-
ent agent strategies in the different marketplaces.

Questions concerning which of PR or CR as a market
model is more efficient and which model offers the fairest
profit distribution are hard to clarify. Indeed, if these ques-
tions were easy to answer, we assume that all real-world
CDA markets would have converged to the optimal market
model. The distinction between market types exists because
each possesses different practical features in their own right.

Further work
While the results presented in this report illustrate new work
on the CR market model, there are still many ways in which
our experiments could be extended. Firstly, we limited our
ZIP agents to handling only a single trade per day. Cliff
and Preist worked with traders with multiple entitlements
per day, who were also able to buy or sell multiple units in
one transaction. The rationale for allowing our ZIP traders
multiple daily entitlements would be to look at whether more
sophisticated trading takes place, based on accumulated en-
titlements being filled at a later time in a continuous market.

We have kept our models of agents and markets simple
in the interests of clarity. However, there are numerous fea-
tures of the trading agent behaviour that could be improved.
ZIP agents are unable to formulate a decision process that
considers waiting in the market and making full use of con-
tinuous time (i.e., they cannot make a decision as to whether
waiting is better than buying now). The ZIP agents used
here are the original 1997-vintage “Version 1.0”, now re-
ferred to as ZIP08 (Cliff, 2008). One consideration would
to implement an optimising ZIP60 agent (Cliff, 2008) based
on a genetic algorithm, to properly observe how different the
optimised variables would be in each market. This would be
a full extension of Hypothesis 5. Additionally a ZIP agent
could also be made sensitive to CR markets by receiving

more informative signals on how long the market has been
running, and through greater temporal awareness being able
to exploit strategies such as delaying the sale of a commod-
ity in order to exploit a shortage and higher prices later on.

We could also be more rigorous in creating a framework
that is completely free from synchronous behaviour. This
is obviously desirable because of the asynchronous nature
of real markets. The rate at which our agents update their
price information is synchronised in our models, at each
tick. It is possible that experimenting with an asynchronous
and varied update rate for each agent could capture the asyn-
chronous intelligence of real-world populations of traders.
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