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Abstract

The thesis Streaming Surface Reconstruction from Real Time 3D Measurements pre-
sents a robust method for the fast generation of 3D surface models, its verification,
and current and potential applications. The method is designed as an in-the-loop
processing approach, which enables the use in a visual feedback system that assists
operators of manual scanner systems. It outperforms recent approaches to streaming
surface reconstruction in its ability to process dynamic, unorganized point data from
real time streams.
The presented method iteratively generates a dense and homogeneous triangle mesh
by inserting sample points from a real time data stream and refining the surface
model locally around each new sample point. A spatial data structure ensures a fast
access to growing point sets and continuously updated meshes without restrictions
to object size or number of sample points. Thus, a user can scan objects without any
a priori knowledge concerning the object’s size. Further, the generated model can be
accessed any time and thus directly visualized to the user.
This method is suitable for unorganized point sets and is not limited to a certain type
of scanner, as the measurements enter the surface reconstruction process as a serial
stream of 3D points. The method enables the instant processing of real world data
generated with scanner systems, requiring additional per-point attributes that further
characterize each measurement. Therefore, a general description of manual scanner
systems is developed concerning geometric properties, temporal synchronization, and
accuracy.
The method is verified by simulated scans of virtual scenes in order to assess process-
ing time and influences of different process parameters. The virtual scenes represent
typical real world situations, including e.g. scans of sharp edges or concavities. Fur-
ther, sensor noise is applied to the data. This way, the robustness of the method
is evaluated, at the same time, its limitations are identified. The interrelation of the
parameters is discussed and for each, values are optimized.
The method is verified by simulated scans of virtual scenes in order to assess process-
ing time and influences of different process parameters. The virtual scenes represent
typical real world situations, including e.g. scans of sharp edges or concavities. Fur-
ther, sensor noise is applied to the data. This way, the robustness of the method
is evaluated, at the same time, its limitations are identified. The interrelation of the
parameters is discussed and for each, values are optimized.
Two exemplary applications prove the versatile applicability of the method: the in-
tegration of the method into a visual feedback application for the DLR Multisensory
3D Modeler and the processing of huge data sets in the context of cultural heritage
preservation.
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Zusammenfassung

In der Arbeit Streaming Surface Reconstruction from Real Time 3D Measurements -
Schritthaltende Oberflächenrekonstruktion aus 3D Messungen in Echtzeit wird eine ro-
buste Methode zur schnellen Erstellung von 3D Oberflächenmodellen sowie deren
Verifikation und ausgewählte Applikationen behandelt. Die Methode ist als iterativer
Prozess aufgebaut und ermöglicht die Realisierung einer schnellen visuellen Rück-
kopplung für manuelle Scannersysteme, die den Benutzer bei seiner Arbeit unter-
stützt. Im Gegensatz zu bisherigen Methoden der Oberflächenrekonstruktion ermög-
licht der Ansatz eine schritthaltende Verarbeitung von dynamischen und ungeord-
neten Punktewolken während deren Erfassung mittels eines manuellen Scannersys-
tems.
Mit der präsentierten Methode wird iterativ ein dichtes und homogenes Dreiecksnetz
erstellt, indem kontinuierliche Messpunkte aus dem Echtzeit-Datenstrom eingefügt
werden und damit das bestehende Netz lokal verfeinert wird. Dabei ermöglicht eine
dynamische, räumliche Datenstruktur einen schnellen Zugriff auf die Daten. Der Be-
nutzer eines manuellen Scanners wird in die Lage versetzt, 3D Modelle zu erstellen,
ohne vorher die räumliche Ausdehnung der Objekte zu kennen. Das 3D Modell ist
jederzeit verfügbar und kann direkt visualisiert werden.
Die Methode setzt keine Ordnung in der gemessenen Punktemenge voraus und ist
nicht auf eine bestimmte Art von Scannersystem beschränkt, da die Messungen zu-
nächst in 3D Punkte umgewandelt werden und als solche nacheinander dem Re-
konstruktionsprozess zugeführt werden. Die Methode ermöglicht die schritthaltende
Verarbeitung realer Messungen von 3D Scannern und benötigt daher für jeden Mess-
punkt zusätzliche Kenngrößen. In der vorliegenden Arbeit wird eine generalisierte
Beschreibung von manuellen Scannersystemen hinsichtlich Messgeometrie, Zeitver-
halten und Genauigkeit entwickelt, die eine einheitliche Berechnung der Kenngrößen
ermöglicht.
Der Oberflächenrekonstruktionsprozess umfasst zwei Stufen, die Schätzung der Ober-
flächennormalen und die Generierung des Dreiecksnetzes. Dabei wird für jeden einge-
fügten Messpunkt die zugehörige Oberflächennormale geschätzt. Weiterhin wird die
Dichte der Punktewolke global begrenzt. Die Generierung des Dreiecksnetzes verwen-
det diese geschätzten Normalen, um das Dreiecksnetz lokal auf eine 2D Ebene zu
projizieren und es dort zu verfeinern. Eine Verifikation der geschätzten Oberflächen-
normalen vor der Weiterleitung zur Netz-Generierung stellt sicher, dass Fehlschät-
zungen verworfen werden.
Die Methode wird anhand von simulierten Scans von virtuellen Szenen verifiziert, um
den Einfluss der einzelnen Prozessparameter auf das Ergebnis und die Rechenzeit
aufzuzeigen. Die gewählten Szenen entsprechen Situationen, wie sie auch mit realen
Objekten zustande kommen können, z.B. scharfe Kanten, Ecken oder auch Konkavi-
täten. Des Weiteren wird Sensorrauschen in den Daten simuliert, um die Robustheit
der Methode zu beurteilen und Grenzen aufzuzeigen. Die Wechselbeziehung zwischen
den Einflussgrößen wird diskutiert und optimale Parameter erarbeitet.
Zwei exemplarische Anwendungen zeigen die Vielseitigkeit der Methode: Die Integra-
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tion in eine Applikation mit dem DLR Multisensoriellen 3D Modellierer und visueller
Rückkopplung des Prozessfortschritts, sowie die Bearbeitung von sehr großen Daten-
sätzen zur Erhaltung kulturellen Erbes.



Acknowledgment

This Ph.D. Thesis was written during my employment at the Institute of Robotics and
Mechatronics at the German Aerospace Center (DLR) in Oberpfaffenhofen, Germany.
I received a lot of support while writhing this thesis and I am deeply grateful for that.

Firstly, I would like to thank the Head of the Institute, Prof. Gerd Hirzinger, for giving
me the opportunity to work in this Institute and for always encouraging my work. I
also like to thank Prof. Georg Färber from the Institute for Real-Time Computer Sys-
tems (RCS) at the Technical University of Munich for supervising this Ph.D thesis and
for offering invaluable support and advice on many occasions.

The Institute of Robotics and Mechatronics has assembled some really amazing peo-
ple, and I have had the opportunity to work and become friends with many of them.
Many thanks to all my colleagues in the Institute and especially to the people of the
3D sensing and modeling group - it was a lot of fun working together.

I owe a lot of thanks to Michael Suppa for always supporting me and urging me in my
work - even if I got lost in details and other projects. Special thanks also to Christian
Rink for extensive discussions, critical opinions, and for continuous proofreading -
especially for his valuable suggestions on the right notations. Further, I would like
to thank Rainer Konietschke and Mareike Döpke for a fruitfully discussions and for
extensive proofreading.

I would also like to thank the members of the service team and the IT group of the
Institute - they always helped to overcome any bureaucratic and technical obstacle.

Finally, I would like to than my friends and my family for encouraging me during the
last years. Last but not least, thanks to my wife Sylvia for unceasing support, trust,
and love.

Munich, June 2009 Tim Bodenmüller

ix



x



Contents

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Analysis of Manual Scanner Systems 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Range Sensor Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 View Alignment and Synchronization . . . . . . . . . . . . . . . . . . . . . 18
2.4 Measurement Errors and Accuracy . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Streaming Surface Reconstruction 29
3.1 Geometric Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Density Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Estimation of Surface Normals . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Selection and Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Localized Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Spatial Data Structures 51
4.1 Dynamic Space Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Application to Streaming Modeling . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Verification of Method 65
5.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Manual Digitization 83
6.1 The DLR Multisensory 3D Modeler System . . . . . . . . . . . . . . . . . . 83
6.2 Visual Feedback for Manual Scanning . . . . . . . . . . . . . . . . . . . . 87
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Large Object Modeling 97
7.1 Data Acquisition and Preprocessing . . . . . . . . . . . . . . . . . . . . . . 98
7.2 Surface Reconstruction and Post-Processing . . . . . . . . . . . . . . . . 101
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xi



xii CONTENTS

8 Conclusion 107
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A Computational Geometry 111
A.1 Distance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.2 Description of general rotations in 3D space . . . . . . . . . . . . . . . . . 112
A.3 Intersection of Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

B Calculation of Reference Sample Density 115
B.1 Helper Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
B.2 Cartesian Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
B.3 Perspective Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
B.4 Cylindrical Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
B.5 Spherical Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Bibliography 119



List of Figures

1.1 Automatic and manual scanning with 3D modeling . . . . . . . . . . . . 2
1.2 Streaming surface reconstruction processing pipeline . . . . . . . . . . . 4

2.1 Principal components of a manual scanner system . . . . . . . . . . . . . 10
2.2 Relation between image coordinates and Cartesian space . . . . . . . . . 13
2.3 Relation between the reference sample densities . . . . . . . . . . . . . . 16
2.4 Sample density on a tilted reference plane . . . . . . . . . . . . . . . . . . 17
2.5 Comparison of different sample densities for a rotatory DoF . . . . . . . 17
2.6 Concept of sensor synchronization and data labeling . . . . . . . . . . . . 20
2.7 Concept of view alignment and serialization . . . . . . . . . . . . . . . . . 22
2.8 Difference between real and measured sample point . . . . . . . . . . . . 25
2.9 Measurement of the ray error e∗ on a known reference plane . . . . . . . 26

3.1 The RT-SSR process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Edge data structure in a triangle mesh . . . . . . . . . . . . . . . . . . . . 32
3.3 Gaps between points in a limited point set . . . . . . . . . . . . . . . . . . 34
3.4 Normal estimation at sharp edges . . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Calculation of the minimum neighborhood radius . . . . . . . . . . . . . 40
3.6 Flipped surface normals due to noise and flat line-of-sight . . . . . . . . 42
3.7 Violations of the variance criteria . . . . . . . . . . . . . . . . . . . . . . . 43
3.8 Local update of triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.9 The signed tetrahedron volume. . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Definition of a voxel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Binary search tree representation of a voxel space . . . . . . . . . . . . . 55
4.3 Basic concept of an octree . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Access to the children of an octree voxel . . . . . . . . . . . . . . . . . . . 56
4.5 Construction of the Extendable Octree . . . . . . . . . . . . . . . . . . . . 57
4.6 Neighborhood query with linked neighboring voxels . . . . . . . . . . . . 60
4.7 Complexity of octree traversal . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.8 Relation between query of voxels and edge neighborhood . . . . . . . . . 62

5.1 Distance-dependent polynomial deviation . . . . . . . . . . . . . . . . . . 66
5.2 Virtual scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3 Generated scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Progress of mesh generation for Scan S1E-N . . . . . . . . . . . . . . . . . 70
5.5 Surface Reconstruction results . . . . . . . . . . . . . . . . . . . . . . . . 71
5.6 Density limitation with different radii . . . . . . . . . . . . . . . . . . . . . 72
5.7 Comparison of simple limitation and replacement limitation . . . . . . . 73
5.8 Replacement limitation for two scans with similar noise . . . . . . . . . . 74
5.9 Influence of Rmin and kn on the normal estimation . . . . . . . . . . . . . 75
5.10Rejection of points due to a too small value of k . . . . . . . . . . . . . . . 75

xiii



xiv LIST OF FIGURES

5.11Rejection of incorrect surface normals . . . . . . . . . . . . . . . . . . . . 76
5.12Flipped surface normals caused by a flat line-of-sight . . . . . . . . . . . 76
5.13Interaction between regular selection and fast selection . . . . . . . . . . 77
5.14Coupling between Remin and Remax during mesh generation . . . . . . . . 78
5.15Computational effort for neighborhood queries . . . . . . . . . . . . . . . 80
5.16Voxelization on Scan S2-N . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1 The DLR Multisensory 3D Modeler . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Function of the 3DMo-LSP sensor . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Precisions of the 3DMo range sensors . . . . . . . . . . . . . . . . . . . . 87
6.4 Concept of the 3DMo visual feedback system . . . . . . . . . . . . . . . . 90
6.5 Mesh generation and augmented visualization of the progress . . . . . . 91
6.6 Generated 3D model of a putto statue . . . . . . . . . . . . . . . . . . . . 92
6.7 Scans and 3D models of two busts . . . . . . . . . . . . . . . . . . . . . . 93
6.8 Photorealistic 3D models for different applications . . . . . . . . . . . . . 94
6.9 Registration of scanned faces with MRI data . . . . . . . . . . . . . . . . . 95
6.10Inspection of the registration for a wooden workpiece . . . . . . . . . . . 96

7.1 Z+F Imager 5003 and Panoramic Camera . . . . . . . . . . . . . . . . . . . 98
7.2 Automatic filtering of range images . . . . . . . . . . . . . . . . . . . . . . 100
7.3 Modeled parts of Neuschwanstein Castle . . . . . . . . . . . . . . . . . . . 103
7.4 Model of the king’s room in the gatehouse . . . . . . . . . . . . . . . . . . 104
7.5 Texturing of the models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.6 Throne room of Neuschwanstein Castle . . . . . . . . . . . . . . . . . . . 105
7.7 Reconstruction of a roof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.8 Model of a factory building . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



Abbreviations and Symbols

Abbreviations

3DMo Multisensory 3D Modeller

AABB Axis-aligned bounding box

CCD Charge-coupled Devices

CMM Coordinate Measurement Machine

DoF Degree of Freedom

DLR Deutsches Zentrum für Luft- und Raumfahrt
(German Aerospace Cener)

GPU Graphics processing unit

IMU Inertial Measurement Unit

LRS Laser Range Sensor

LSP Light Stripe Profiler

MLS Moving least squares

RT-SSR Streaming Surface Reconstruction from Real Time Data

SCS Stereo Camera Sensor

SGM Semi Global Matching

SSR Streaming Surface Reconstruction

ToF Time-of-Flight

Mathematical Notation

a Scalar value

a Vector

A Matrix

a× b Cross product

〈a,b〉 Dot product

‖a‖ Vector length or euclidean norm

X = {x1, . . . , xn} Set with n elements

xv



xvi LIST OF FIGURES

List of Symbols

Description of Scanner Systems

dmin, dmax Minimum and maximum values of distance measurements

u(i), v(j) Grid coordinates of a distance pixel

u0, v0 Offsets of grid coordinates

∆u,∆v Sample widths of grid coordinates

dij Distance measurement at i-th row and j-th column

D Range image i.e. matrix of all distance pixel

pij Sample point corresponding to distance measurement dij

PD Set of all sample points from the range image D
wTs Transformation from sensor coordinates to world coordinates
lTs Transformation from sensor coordinates to local coordinates

(pose measurement)
wTl Transformation from local coordinates to world coordinates

(calibration matrix)

p A sample point

s Line-of-sight or ray direction

o Ray origin

dray Ray length

δ Reference sample density

σ Expected deviation

Parameters of the RT-SSR method

Rmin Limitation radius of density limitation

Rn0, Rnuser Initial neighborhood radius

Rnuser User override for the initial neighborhood radius

kn Maximum number of neighboring points

αsmax Maximum valid grazing angle

αnmax Maximum fast selection angle

nsmin Minimum number of selected neighbors

Remin Minimum edge length and limitation radius

Remax Maximum edge length and neighborhood radius

Estimation of Surface Normals and Selection

p,q Sample points



LIST OF FIGURES xvii

n Surface normal

P Set of sample points in the normal estimation

NR(q,P) Point ball neighborhood of q in P

NR,k(q,P) k-in-R point neighborhood of q in P

PN Set of neighboring points for normal estimation

Cov Covariance matrix of point neighborhood

c Mean (center) of point neighborhood

v1,v2,v3 Eigenvectors of Cov

λ1, λ2, λ3 Eigenvalues of Cov

c0, c1, c2, c3 Selection criteria

cfast Fast selection criterion

σ2
1, σ

2
2, σ

2
3 Variances of normal estimation

αsmax Maximum valid grazing angle

αnmax Minimum required number of selected points for fast selection

nsmin Maximum directional difference for fast selection

βmin Minimum change in normal direction for tracking

Mesh Generation

v Vertex of a mesh

e = ab Edge connecting two vertices a and b in a mesh

t = ∆(a,b, c) Triangular face connecting three vertices a, b, and c in a mesh

M Mesh
VM Set of vertices ofM

EM Set of edges ofM

TM Set of triangles ofM

E(v) Edges that are connected to the vertex v

N VR (q,M) Vertex ball neighborhood of a vertex q in the meshM

N ER(q,M) Edge ball neighborhood of a vertex q in the meshM

ER(q,M) Set of edges in the edge ball neighborhood N ER(q,M)

V(ER(q,M)) Set of vertices in the edge ball neighborhood N ER(q,M)
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1
Introduction

In recent years, different 3D scanner systems that allow for fast and precise digi-
tization of real objects have been developed. Many of them are manually operated
systems i.e. a human user moves the system along the surface. These systems are
more flexible compared to automatic systems, since the operator can freely move the
device and thus is able to digitize challenging surfaces that require a complex scan
path. However, the user needs a visual feedback in order to monitor the digitization
progress.
In this thesis, a novel streaming 3D surface reconstruction method for visual feedback
that generates a triangular mesh directly from a 3D point stream measured by a
manual scanner systems in real time is presented. The proposed algorithm features
the fast and dynamic generation of a triangular mesh directly from a stream. Neither
a priori knowledge about the size or shape of the digitized scene is assumed nor a
spatial order of the incoming points is required.
In the following sections, the motivation for streaming 3D surface reconstruction in
the context of manual scanning and its major challenges are described. Further, the
contribution of this thesis is presented and previous work is summarized.

1.1 Problem Statement

The rapid generation of 3D models of arbitrary objects and environments is highly
requested in various fields. Applications range from workpiece inspection and rapid
prototyping in automation to virtual catalogs for e-business or the design of scenes
for games and film industry. In the domain of robotics and automation, fast and
dynamic generation of 3D models for work cell exploration, collision avoidance, and
grasp planing are needed.
Various commercial and research 3D scanner systems that meet these requirements
have been developed in recent years. Systems can be categorized into volumetric
scanners such as CT1 or MRT2 systems and surface scanners that sample the sur-
face of an object. The latter are subject of this work. Surface scanner systems range

1CT=computer tomography
2MRT=magnetic resonance tomography

1
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Figure 1.1: Automatic and manual scanning with 3D modeling: The range sensor is mounted onto a positioning
device (gray box). The views of the range sensor are merged with the pose data to generate globally aligned 3D points.
The 3D modeling process is fed with this 3D point stream and updates the 3D model. In the case of manual scanning
(black path), the 3D model is transfered into a real time visualization. The operator uses the rendered model for view
planning and moving the device. In case of automatic scanning (gray path), the view and path planning is performed
autonomously.

from very high precision systems for digitizing small objects up to large laser radars
for the acquisition of whole buildings. The systems differ e.g. in working range, size,
precision, and measurement rate. Depending on the application, different attributes
of the sensors are important. As an example, for rapid prototyping and reverse engi-
neering, precision is the dominant criterion, while in the field of robotics, size, weight,
and measurement rate outrank the precision. The core component of every surface
scanner is a range sensor that measures an ordered set of distance values w.r.t. its
native sensor coordinate system. However, multiple measurements from different
view points are needed to sample a surface completely. Hence, the sensor has to be
moved relative to the scanned surface, either manually or autonomously.

Simple automatic systems either move the scanner system or the scanned object
along a single DoF, examples are turn-table systems or body scanners with a linear
axis. These systems usually have a very restricted scan path and a limited workspace,
enabling 3D modeling by simple and fast volumetric reconstruction methods that uti-
lize the limitations of the device concerning the workspace. If the shape of an object
is more complex, these simple scanning systems often fail to sample the complete
surface e.g. due to occlusions, holes, or local concavities. Autonomous systems with
many DoF, e.g. industrial robots, can overcome these restrictions. However, a com-
plex view and path planning has to be performed to guarantee a complete coverage of
the surface. This approach requires a loop closure from the distance measurements
to the pose commanding, i.e. an instant integration of new measurements into a 3D
model and the planning of new views based on this model. This concept, also known
as autonomous exploration and inspection, as described e.g. by Suppa [SKL+07], is
illustrated in Fig. 1.1 (gray dotted path).

Alternatively, manually operated scanner systems can be used to digitize complex
objects, e.g. hand-guided systems or other manually commanded devices. Here,
complicated planning stages are not needed, as the systems benefit from the human
operator that performs the view and path planning. The user has to keep track of
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the sufficiently scanned surface parts and those that remain to be sampled. Conse-
quently, a real time visualization that supports the operator at this planning task is
required. The loop from the measurement to a scanner movement through the opera-
tor is closed by visual feedback. In Fig. 1.1 this closed system is depicted (black path)
in comparison to an autonomous system.
Providing a suitable visual feedback to the user requires an in-the-loop integration
and processing of range measurements. The rendering of the raw measurement data
is the most simple way of providing visual feedback, however, it results typically in a
poor visualization, as no reasonable shading of the data is possible and it is difficult
for a user to judge the quality of a potential 3D model that is generated afterwards.
Hence, it would be beneficial for the user to generate the desired 3D model in-the-loop
and to visualize it in real time.
An in-the-loop 3D modeling directly from a manual scanner system’s real time stream
has several challenges: First, no a priori knowledge concerning the shape and the size
of the scanned objects is available and no spatial ordering of the incoming stream data
can be assumed. In detail, two consecutive measurements can be acquired from dif-
ferent views or can sample a completely different part of the scene. Newly measured
data has to be integrated dynamically and rapidly by extending and refining the ex-
isting 3D model incrementally. This requires data structures that integrate new data
dynamically and enable fast access to the stored data. Due to the manual movement
of the device, the sampling of the surface is not necessarily homogeneous or at least
sufficiently dense in all regions. Especially hand-held scanner systems that allow for
a full 6 DoF motion are difficult to direct at a constant speed for a human operator
and thus a uniform movement of the device can not be guaranteed. Here the chal-
lenges are twofold: On the one hand, undersampled regions and mismeasurements
have to be detected. The integration of such data into the 3D model has to be delayed
until enough sample points are available. On the other hand, at least a coarse model
for visualization has to be generated as rapidly as possible.

1.2 Contribution of the Thesis

In this work, the in-the-loop generation of a 3D model for visual feedback in the con-
text of manual scanning is tackled by a streaming surface reconstruction (SSR) ap-
proach. A dense and homogeneous triangular mesh is generated incrementally from
a real time stream of 3D measurements, denoted as real time streaming surface re-
construction (RT-SSR). The method takes scanner characteristics into account, but
is not limited to a certain scanner system. Moreover, it features a spatial data struc-
ture that allows for fast access to growing point sets and changing meshes without
restriction in object size or number of sample points. A user can instantly begin scan-
ning objects and does not need to parametrize the work space before. Further, the
generated model is available at any time and no additional post-processing is required
for visualization.
The proposed surface reconstruction incrementally generates a homogeneous trian-
gular mesh by extending and refining the surface model with every newly inserted
point. A generalized description of scanner systems, concerning geometry, spatial and
temporal alignment of views, and accuracy is developed and used to derive general-
ized per-point attributes that are attached to each point. These additional attributes
are used during reconstruction to control the process parameters locally w.r.t. to the
sensor properties but without the loss of generality. The processing implicitly filters
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Figure 1.2: Streaming surface reconstruction processing pipeline: The surface reconstruction is fed by a stream of
3D points from a manual scanner system. The system is defined to consist of a range sensor and a pose sensor. The
data of both sensors is synchronized and merged to 3D points. The surface reconstruction consists of two principal
stages, the normal estimation and the mesh generation.

outliers and rejects undersampled regions until enough sample points are available.
The surface reconstruction is divided into two principal steps: the normal estimation
stage and the mesh generation stage. In Fig. 1.2, the principal processing pipeline
with the embedded reconstruction steps is illustrated. Here, the stream of aligned 3D
points is generated from a scanner system that consists of a range sensor and a pose
sensor. Both are temporally synchronized and provide measurements at a constant
rate. The two outgoing data streams are used to generate a single stream of globally
aligned 3D points that is fed into the reconstruction stage.
The reconstruction method is supported by a spatial data structure that provides
fast access to the stored data, contrary to volumetric surface reconstruction methods
that use the discretized volumes for reconstruction. Hence, the resolution of the data
structures is low and requires only little memory. The used data structure grows
dynamically with the stored data and has no limitations in size or in the number of
data elements. Consequently, a scanned object can be assumed as a priori unknown
in shape and size. The reconstruction method operates only on local subsets of the
sample point set, thus the required global operations on the complete data set are
minimized. The computational complexity is kept low but not constant due to the
generality concerning object and data size. However, restrictions of the method and
the data structure towards a hard real time processing are also discussed.
The RT-SSR method is verified with simulated sensor data and the influence process
parameters have on the resulting mesh are shown. Moreover, two applications to
the streaming surface reconstruction method are presented. The first is the manual
scanning of small objects, which is the primary scope of this work. Here, the inte-
gration of the visual feedback with the DLR Multisensory 3D Modeler scanner system
is shown. As second applications, an application beyond manual scanning is pre-
sented: The out-of-core modeling capabilities for large objects and huge data sets,
using a long-range laser radar are demonstrated.
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1.3 Related Work

In past years, the problem of surface reconstruction from unorganized point sets has
been in the focus of computer graphics and vision research. A variety of methods for
different applications has been published. Most of them are either designed for the
generation of a 3D model in a post processing step (e.g. [Hop94], [GKS00], [LCOL07]),
or are streaming processing methods in the context of out-of-core processing of huge
data sets (e.g. [Paj05], [ACA07]). Classical approaches convert the complete point set
into a surface model after acquisition. In terms of signal processing this approach
is denoted as off-line method. For the processing of huge data sets so-called out-
of-core methods that incrementally build a model from a (file-) stream of ordered
3D points are used. Consequently, the input points must not be kept in memory
completely, only a small part is loaded at once. These SSR methods are differ from
the RT-SSR method applied in this work, since the processed data set is static i.e.
the extension and the number of points are known a priori and the amount of data
does not grow during processing. Further, the data sets are often assumed to be at
least partially spatially ordered, e.g. sorted along an axis. Other methods process the
data in-the-loop and are denoted as on-line method (e.g. [HI00], [RHHL02], [ZSK06]).
These approaches are mostly used for processing measurements of a certain type of
acquisition system or to generate a set of disconnected surface patches.
In the following, an overview of existing surface reconstruction methods is given. The
methods are divided into general methods for unorganized point sets, and methods
that use the local spatial order of the range data and hence are specifically designed
to measurements of a certain scanner system.

1.3.1 Methods for Unorganized Point Sets

Some methods focus on the generation of topologically correct and closed surfaces
from an unorganized point set that represents a fully sampled object. In the works
of Edelbrunner [EM94] and Bajar et al. [BBX95] the so-called α-shapes for creating a
close and topologically correct surface from a point set are used. A work of the same
category has been published by Attene and Spangnuolo [AS00], which extends the
sculpturing algorithm of Boissonnat [Boi84] by graph-based constraints. More recent
methods are the Tight Cocone algorithm published by Dey et al. [DG03] and the Power
Crust algorithm by Amenta et al. [ACK01]. All of these methods are limited to point
sets of closed surfaces. Hence, they are hardly suitable for streaming surface recon-
struction, since the scanned surface is typically incomplete: only a part is digitized,
and moreover, the sample point set grows dynamically.
An early approach to surface reconstruction of non-closed surfaces with arbitrary
topology was presented in the work of Hoppe [Hop94]. This method can be divided in
three processing steps: (1) the generation of a dense, homogeneous mesh that coarsely
fits the point set, (2) an optimization of the vertex positions and mesh topology, and
(3) the generation of a piecewise smooth subdivision surface of the mesh and the
input point set. In the context of this thesis the generation of an initial homogeneous,
dense mesh is relevant (first published in [HDD+92]). First local surface information
is estimated by fitting tangent planes for every point of the input point set, resulting
in corresponding surface normals. These are used to define an implicit function and
generate a discretized volumetric representation. Finally, a homogeneous mesh is
generated, using the marching cubes algorithm from Lorensen and Cline [LC87]. In
the work of Wang et al. [WOK05] another volumetric approach that is more robust to
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irregular and sparse sample data is presented. Here, first the point set is voxelized
and a topological thinning is applied. Finally, a surface is generated by using an
extended version of the algorithm of Azernikov et al. [AMF03].
Contrary to the approach of Hoppe, the Localized Delaunay Triangulation method of
Gopi [GKS00] does not make use of a voxelization but generates a mesh directly from
the point set. For every point a surface normal is estimated first, followed by a local
triangulation for all points. During the triangulation, the spatial neighboring points
for each point are mapped to the tangent plane of the respective point. So-called
candidate points that are potential direct neighbors on the surface, are searched and
used to generate a local Delaunay triangulation. Further, Gopi focuses on finding
sampling conditions for an optimal neighborhood in the triangulation stage.
A different approach is presented by Alexa et al. [ABCO+03]. Here, a local approxima-
tion of the surface with polynomials using the Moving Least Squares (MLS) is used to
generate a smooth and homogeneous point set that can instantly be used for render-
ing. Fleishman et al. [FCOS05] present a MLS-based approach based on the work of
Levin [Lev03]. The method features a piecewise smooth surface reconstruction from
potentially noisy point sets. Lipman et al. [LCOL07] extend the MLS reconstruction
by an indicator for local singularities, resulting in a faithful surface reconstruction
with scattered data and local discontinuities.
Recent methods also tackle the problem of out-of-core surface reconstruction from
huge data sets where the point set is not completely kept in memory but partially
loaded from file. Pajarola [Paj05] presents a general framework for stream-based
processing of large data sets, using a sweep plane approach, i.e. the point set in the
file is assumed to be sorted along the z-axis. Hence, the point set can be processed by
sliding a window volume over it, keeping only the points inside the window’s volume
in memory. Basic stream operations, e.g. normal estimation, curvature estimation,
or smoothing, are presented. In the work of Allègre et al. [ACA07] a streaming surface
reconstruction algorithm for closed surfaces that bases on the convection technique
of Chaine [Cha03] is presented. The input data must be organized into a stack of
slices along a coordinate axis.

1.3.2 Approaches using Organized Range Data

The second category of methods is directly related to scanner systems, as they use
the local ordering of the measured data for reconstruction of local surfaces. Most
approaches are limited to 2D range images (2.5D images), i.e. the measured data
is a 2D grid of distance values. Such methods work for data generated by stereo
reconstruction or structured light systems but exclude single-stripe systems (e.g. light
stripers) or touch probes.
Common approaches of this category first generate local surfaces from each range
image and merge the surfaces into a single 3D model afterwards. The first step can
be processed on-line, the second step is always performed off-line. In the work of
Rusinkiewicz et al. [RHHL02] a manual structured light system is presented that
generates 2D range images. The images are registered during the acquisition i.e. in
real time, requiring strongly overlapping areas in the images. For visual feedback, the
raw point data is visualized using a point splatting algorithm [RL00]. The generation
of a single, final mesh is entirely performed as a post-processing step, generating
an initial triangulation for each range image and subsequently zippering [TL94] the
meshes to a single 3D model.
A similar approach is chosen in the work of Hilton and Illingworth [HI00]: 2.5D range
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images are separately meshed in 2D using a step discontinuity triangulation. The
initial range image triangulation is performed on-line, providing a visual feedback
to the operator. The approach is extended to 1D laser-stripe systems by merging
adjacent stripes into a 2D range image. In a post-processing step, a merged 3D model
is generated using a volumetric approach.
Zach et al. [ZSK06] combine the above approach with the work of Curless and Levoy
[CL96]. Instead of creating an implicit volumetric description, the polygonal represen-
tation is used directly. The resulting approach overcomes limitations in memory and
can be implemented on a GPU, resulting in rapid processing.
A different approach to the generation of 3D models from multi-view stereo recon-
struction using region growing is presented by Habbecke and Kobbelt [HK07]. In this
approach the surface is approximated by planar discs. First an initial seed of discs
is created. The discs are grown and new discs are added until the approximation is
sufficient. This method is primarily designed to overcome problems of sparse range
image reconstruction caused by untextured regions. Finally, Fiorin et al. [FCS07]
present an MLS-based approach to the reconstruction of a triangle mesh from huge
2.5D range images.
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1.4 Outline of the Thesis

In Chapter 2, manual scanner systems are in detail analyzed w.r.t. geometrical prop-
erties, system synchronization, and sensor accuracy. A standardized description of
mapping into Cartesian space is derived and common per-point attributes are defined.
Further, the alignment with a corresponding pose as well as the temporal synchro-
nization between pose and distance measurements are discussed. Finally, the sensor
accuracy is analyzed and a per-point quality criterion is defined.
Chapter 3 describes the RT-SSR method. Its two principal stages, the normal esti-
mation and the mesh generation, are detailed and the functional steps and process
parameters are explained.
In Chapter 4, concepts for spatial data structures and their properties are discussed.
Further, the rapid access to dynamic data sets by spatial data structures in the con-
text of the streaming surface reconstruction is detailed.
The verification of the surface reconstruction method applying simulated measure-
ments is presented in Chapter 5. The coupling between the process parameters is
analyzed and their influence on reconstruction process and processing time is dis-
cussed. In Chapter 6, the design of a visual feedback system with the streaming
surface reconstruction for an actual manual scanning system is explained. In the
subsequent Chapter 7, an application beyond manual scanning is shown. Here, the
reconstruction algorithm is applied for modeling of large objects, using the example
of modeling building interiors from data of a long-range laser radar.
Chapter 8 summarizes and concludes the thesis. An outlook to future work is pre-
sented.



2
Analysis of Manual Scanner Systems

The concept of a 3D scanner system is used for various types of digitizing systems. A
general definition is as follows: ‘A 3D scanner is a device that analyzes a real world
object or environment to collect data on its shape and possibly color’1. However, this
definition is too unspecific for the manual scanning applications addressed in this
work.
Generally, manual scanning is the task of sampling the surface of an object by man-
ually moving a scanner device along a scan trajectory w.r.t the surface. A manual
scanner system consists of a range sensor that measures a set of distances and a
pose sensor that measures the pose of the scanner system w.r.t. a global coordinate
system, as illustrated in Fig. 1.2.
In this chapter, an overview of recent scanner systems is given and the components
of manual scanner systems are analyzed. Further, a generalized geometric descrip-
tion that enables the calculation of globally aligned 3D coordinates and per-point
attributes from multiple views is derived. Moreover, the temporal synchronization of
sensor data and the matching of range images with their corresponding poses, as well
as the accuracy of scanner systems are addressed.

2.1 Introduction

Today, a large variety of range sensors and complete 3D scanning systems exists.
The systems are designed for miscellaneous tasks and therefore vary in measurement
principle, size, accuracy and resolution. Not all scanner systems are suitable for
manual scanning applications. In Fig. 1.1 the concept of manual scanning has been
introduced. The presented closed-loop concept of manual scanning implicates that
the components generate measurements at a constant rate and can provide the mea-
sured data in real time. Hence, temporal synchronization of hardware components
and measurement data is necessary. In Fig. 2.1, the principal components of such a
synchronized manual scanning system are illustrated.
One core component of a manual scanner system is the range sensor i.e. a device
measuring the distance to all surfaces in its field of view. Many commercial and re-

1From Wikipedia at http://en.wikipedia.org/wiki/3d_scanner, 2008
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Figure 2.1: Principal components of a manual scanner system: It consists of two core components, a range sensor
and a pose sensor, both continuously measuring. The fusion of both measurements results in a stream of globally
aligned 3D points. Sensors and data fusion are additionally connected by a data synchronization module.

search range sensors are promoted as scanner systems. However, they do not comply
with the definition as used in this work, as a single shot or a single view of a range
sensor is generally not sufficient to sample an object’s surface completely. Thus, mea-
surements of multiple views have to be aligned into a common space. In the context
of manual scanning, this alignment must be performed in real time. Consequently,
the second mandatory component of a manual scanner system is a pose sensor that
measures the location and orientation of the scanning device for each range image.

Range Sensors

Miscellaneous approaches to a contactless measurement of distances exist. In this
work, only optical systems are regarded while other techniques are also possible. They
range from small, high precision digitizers for rapid prototyping (e.g. the T-Scan22) to
large laser-radars (e.g. the Imager 50033) as used for land surveying and archiving of
cultural heritage.
Range sensors can be categorized w.r.t. the physical measurement principle. The
most common are triangulation-based systems and Time-of-Flight systems (ToF). A
good comparison of different measurement principles is found in the early work of Besl
[Bes88]. Triangulation-based systems measure distances by determining the height
of a triangle, spanned by two non-parallel rays onto the same sample point. They can
be further divided into active and passive triangulation systems. Active triangulation
systems use their own light source, i.e. the measurement triangle consists of the
ray of the light source on the sampled surface and the reflected ray that is captured
by an optical sensor. Examples for this type of systems are structured light sensors
that project a 2D light pattern onto the surface, light stripe sensors that use a single
laser line, or systems with point-wise measurements. Structured light systems are
described in the work of Young et al. [YBD+07], Ishii et al. [IYDT07], or Takei et al.
[TKH07]. A commercial system is the Comet IV system4. Light stripe sensor systems
are described by Suppa et al. [SKL+07] and Winkelbach et al. [WMW06]. This is also
the most popular commercial system, examples are the Metris Modelmaker5 or the
Faro Laser Line Probe6.
In contrast, passive systems consist of two camera sensors and match the reflected
light of the global illumination in both images. The corresponding method is de-

2Steinbichler T-Scan2, see http://www.steinbichler.de, 2009
3Zoller+Fröhlich Imager 5003 see http://www.zf-laser.com, 2009
4Steinbichler Comet IVhttp://www.steinbichler.de, 2008
5Metris Modelmaker http://www.metris.com, 2009
6Faro Laser Line Probe http://www.faro.com, 2009

http://www.steinbichler.de
http://www.zf-laser.com
http://www.steinbichler.de
http://www.metris.com
http://www.faro.com
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noted as stereo reconstruction, e.g. used in the Point Grey Bumblebee 27. A public
comparison and benchmark of recent stereo reconstruction algorithms is provided
by Scharstein and Szeliski8. Recent approaches to triangulation-based range sens-
ing combine the passive stereo reconstruction and active methods, e.g. the systems
described by Deng et al. [DNZ06], Davis et al. [DNRR05], or Weise et al. [WLG07].
ToF systems measure the time between sending a beam from a pulsed light source
and receiving its reflection. The measured time or phase shift directly corresponds to
the distance between the sensor and the object. Commercial systems of this type are
e.g. the Sick LMS 2009, the SR-300010, or the PMD[vision] 19k11.
A range sensor can also be classified w.r.t. its sensor properties. The most important
ones for 3D modeling are the type of image coordinate system and geometric mapping,
the image resolution, and the sensor accuracy. Usually, the distance measurements
of a single view are a 2D ordered set, i.e. for every view a matrix of distance pixels is
measured. This matrix is called range image. The image coordinate system is the na-
tive coordinate system the range image geometrically refers to. The image resolution
encodes the size of the range image, i.e. the number of samples per view. Sensors
can be divided into two dimensional sensors i.e. sensors measuring a (2D) matrix of
distances, one dimensional sensors providing a (1D) stripe of distances, and scalar
sensors that acquire a single value per measurement or view. The geometric mapping
defines the mapping between the image coordinate system and the corresponding
Cartesian coordinate system. For example, the mapping for camera-based systems
can be described by a pin hole model or a perspective transformation respectively.
The general description of range sensors using sensor geometry and resolution is de-
tailed in Section 2.2. Temporal properties of sensors, e.g. measurement rate or com-
munication delays, are important w.r.t. real time operations and will be discussed
in Section 2.3. Another important property is the accuracy of the sensor which is
discussed in Section 2.4. Further attributes such as size, weight, or interface are
important criteria for the suitability for a specific application. However, they do not
influence the measured data and thus are not further examined in this work.

Pose Sensors

The pose of a scanning device can be measured in several ways. Usually, external
devices are used, however, algorithms that use the sensory data of the range sensor
itself to determine the pose are also possible.
A variety of external devices exists that can be used for pose measurement. This in-
cludes optical tracking systems, Coordinate Measuring Machines (CMM), and robotic
manipulators. Optical systems are used, if a large working volume is required or a
hand-guided system that is not attached to any additional device is requested. Exam-
ples are the ARTtrack12 system or the Polaris tracker13. For applications that require
a high accuracy, CMMs are used, e.g. the Faro Platinum arm14 or the MicroScribe15.

7Point Grey Bumblebee 2 http://www.ptgrey.com, 2008
8The comparison of stereo reconstruction algorithms is found at the vision group of the Middlebury

college http://vision.middlebury.edu/stereo/, 2009
9Sick LMS 200 http://www.sick.com, 2008

10Swissranger SR-3000 http://www.swissranger.ch, 2008
11PMDTech PMD[vision] 19k http://www.pmdtec.com, 2008
12A.R.T. ARTtrack system, see http://www.ar-tracking.com,2009
13NDI Polaris, see http://www.ndigital.com, 2009
14Faro Platinum arm, see http://www.faro.com, 2009
15RSI MicroScribe, see http://www.rsi-gmbh.de, 2009

http://www.ptgrey.com
http://vision.middlebury.edu/stereo/
http://www.sick.com
http://www.swissranger.ch
http://www.pmdtec.com
http://www.ar-tracking.com
http://www.ndigital.com
http://www.faro.com
http://www.rsi-gmbh.de
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Robotic manipulators are actuated measurement systems and are traditionally used
for automatic scanning. However, robotic manipulators allow also for hand-guided
operations. Recent concepts pursue approaches towards a robotic co-worker.
Algorithms for pose estimation from the range sensor data are registration methods,
e.g. the real time system presented by Rusinkiewicz et.al. [RHHL02], or image-based
ego motion estimators that uses the camera images to calculate the movement of the
device, e.g. the monocular method of Burschka [Bur06], among others.
In the following sections, the range sensor geometry, the view alignment and transfor-
mation to 3D points using the sensor pose and the challenges in data synchronization
between range sensor and pose sensor are further analyzed and a general description
is derived.

2.2 Range Sensor Description

In this section a geometrical description of range sensors is evolved. A detailed clas-
sification of a range sensor concerning the type of image coordinate system and a
description of the geometric mapping to Cartesian space w.r.t. its type is introduced.
Further, geometrical per-point attributes are derived from this standardized descrip-
tion.

2.2.1 Geometric Mapping

The type of image coordinate system can be used to derive a standardized set of map-
pings for range images into Cartesian coordinates. In this work, four types covering
the most range sensor types are identified:

• Cartesian type - The sensor emits parallel beams or uses a linear axis to actuate
the device perpendicularly to the sensor beam.

• Perspective type - the sensor is described by a pin hole camera model. All beams
intersect at one focal point.

• Cylindrical type - The sensor measures using a rotatory DoF and optionally a
translatory DoF.

• Spherical type - The sensor measures using two rotatory DoF.

In Fig. 2.2 the relation between image coordinates and Cartesian space for each type is
illustrated. In the following, a basic description of range images is introduced and the
mapping of a distance pixels to Cartesian space for each of the four types is derived.

Let D denote the (n ×m)-matrix of a range image and let dij be a distance pixel, i.e.
the value of D at the i-th row and j-th column within the working range of the sensor

0 < dmin ≤ dij ≤ dmax .

It is assumed that the coordinates of the range image are equidistant w.r.t. the image
coordinate system. Hence, the grid locations or physical pixel coordinates u(i) and
v(i) of a distance pixel dij in the image coordinate system can be described by the
offsets u0, v0 and the sample widths ∆u,∆v,

u(i) = u0 + i ·∆u; i ∈ Nm

v(j) = v0 + j ·∆v; j ∈ Nn ,
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Figure 2.2: Relation between image coordinates and Cartesian space: For each of the four image coordinate system
types, the mapping to Cartesian space is illustrated, as defined in Equations (2.2)-(2.5). The image coordinates are
defined by the u-, v-, and distance-directions w.r.t the xyz-directions of the Cartesian space. The image plane in
Cartesian space is illustrated as gray region. Further, the Cartesian point pij is shown for an exemplary pixel dij
with grid locations u(i) and v(j).

with the domains

Nm = {0, . . . ,m− 1}
Nn = {0, . . . , n− 1} .

Generally, the mapping of a distance value d at the grid coordinates (u, v) into Carte-
sian space is

p : R3 → R
3 ; (u, v, d) 7→ p(u, v, d) . (2.1)
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The mapping depends on the geometric type of the sensor. The mapping for each of
the previously defined four types is given by:

Cartesian: p(u, v, d) :=

 u
v
d

 (2.2)

Perspective: p(u, v, d) :=

 d · u
d · v
d

 (2.3)

Cylindrical: p(u, v, d) :=

 d · sinu
v

d · cosu

 (2.4)

Spherical: p(u, v, d) :=

 d · sinu cos v
d · sinu sin v
d · cosu

 (2.5)

The corresponding Cartesian point pij of a distance pixel dij ∈ D at the i-th row and
j-th column can be abbreviated by

pij := p(u(i), v(j), dij) .

This relation between pij and dij is further illustrated in Fig. 2.2.
Finally, the set of mapped points PD of the range image D is given by

D 7→ PD := {pij ∈ R3|i ∈ Nm, j ∈ Nn} .

The two angles of the spherical coordinate system have (u, v)-ordering. A second
spherical type with (v, u)-ordering is required for completeness of the classes, because
the two types are not convertible to each other without losing the local ordering of the
range image. This additional type is detailed and used in Chapter 7.

2.2.2 Line-of-Sight and Surface Normal

The surface normals for every distance pixel can be estimated directly from the range
image. However, this image-based surface normal is not used in this work, since a cal-
culation is limited to 2D range images and can result in bad estimates due to sparse
or noisy measurements. This especially applies when large distances are measured,
as the distance between two adjacent sample points is high and thus the sample
density is low.
However, the line-of-sight (LoS) in Cartesian space for each point p ∈ PD is required
in the surface reconstruction for estimation of a surface normal from a multi-view
point set. In detail, the line-of-sight s of a pixel with distance value d and grid coordi-
nates (u, v) is the normalized connection vector between the corresponding Cartesian
coordinate p = p(u, v, d) and the point-specific ray origin o = p(u, v, 0),

s :=
p− o
||p− o||

(2.6)

Substituting point p in Equation (2.6) by Equations (2.2)-(2.5) results in a rapidly
computable representation of the line-of-sight s = s(u, v) depending only on the grid
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coordinates (u, v) for each geometric type:

Cartesian: s(u, v) =

 0
0
1


Perspective: s(u, v) =

 u
v
1

 · 1√
u2 + v2 + 1

Cylindrical: s(u, v) =

 sinu
0

cosu


Spherical: s(u, v) =

 sinu cos v
sinu sin v

cosu


The above equations show the geometric differences of the different image coordinate
systems. Translatory axes result in a line-of-sight that is independent of the pixel
location. This characteristic is reflected in the Cartesian geometry and in the transla-
tory axis of the cylindrical geometry. In contrary, rotational axes have a single center
from which the distance rays originate, as seen e.g. in the spherical geometry. The
perspective geometry is a special case, as here the distance value d of a pixel does
not represent the length of the corresponding point from its origin. Thus, the line-
of-sight must be normalized w.r.t. the grid location. Hence, the relation between
a distance pixel d at the grid coordinates (u, v) and its corresponding sample point
p(u, v, d), as principally defined in Equation (2.1), in Cartesian space can be alterna-
tively expressed by the ray equation

p = o + dray s , (2.7)

with the ray length

dray =
{
d ·
√
u2 + v2 + 1 for perspective type

d for all other types
.

Both the origin and the line-of-sight depend on the grid coordinates only, not on the
distance.

2.2.3 Reference Sample Density

For surface reconstruction, the generated sample density or spatial resolution of the
sample points on the surface is more interesting than the range image resolution,
because the surface has to be sampled with sufficient density to enable a proper re-
construction. The sampling density depends on sensor resolution, local shape of the
surface, and field of view of the sensor relative to the surface. The sample density po-
tentially decreases with an increasing distance to the object and also with increasing
grazing angles between the measurement rays and the surface normal. Hence, the
reference sample density δ attribute is defined in this work as the sample density
on a reference surface at a measured distance d. Thus, it is used as expected density
at a sample point p produced by a single view or range image.
Let di denote the i-th distance measurement of a 1D range image with the correspond-
ing sample point pi and line-of-sight si. Further, let ∆ denote the sample width w.r.t.



16 CHAPTER 2. ANALYSIS OF MANUAL SCANNER SYSTEMS

Reference
plane

pi pi+1

δd=δp

di di+1

∆

oi

-1 -1

(a)

Reference
plane

pi

pi+1

δp

di di+1

δd

∆

oi
-1

-1

(b)

Figure 2.3: Relation between the two definitions of reference sample density: both definitions are equal for parallel
measurement rays (a), both depend on the angular sample width ∆ in the case of a central ray origin (b).

the type of image coordinate system. The reference sample density δ at point pi is the
reciprocal of the distance between pi and the point pi+1 of the direct neighboring pixel
on a reference surface,

δ :=
1

‖pi+1 − pi‖
. (2.8)

Consequently, the reciprocal δ−1 is the distance between two adjacent sample points
on the reference surface. In the following, this distance is used to illustrate the
definition of reference sampling density and in Chapter 3 it is used to parametrize
the RT-SSR method.
Two assumptions for the definition of the reference surface and thus for the reference
sample density are compared:

• Reference sample density δp on a tangent plane:
Both sample points pi and pi+1 are measurements on the same reference plane,
which is perpendicular to the line-of-sight si

• Reference sample density δd at equidistant measurements:
Both sample points pi and pi+1 result from equidistant distance measurements
di = di+1 = d

In Fig. 2.3 both approaches are illustrated for a sensor with parallel measurements
rays and for one with measurements from a central origin. Both definitions result in
the same resolution for parallel measurement rays,

δp = δd = ∆−1 , (2.9)

with a translatory sample width ∆. In the case of a central ray origin, the distances
are related by

δp
δd

=
cos ∆
cos ∆

2

, (2.10)

with an angular sample width ∆ ∈ (0◦, 90◦). The derivation of the above equation is
presented in Appendix B.
The definition of sample density on a reference plane can be extended to the density
δpα on a plane that is tilted by an angle α to the original plane, representing the change
of sample density at an increasing grazing angle. The relation between δpα and δp is



2.2. RANGE SENSOR DESCRIPTION 17

pi

pi+1

di=d

∆

oi

δp

δpα

-1

-1

α

(a)

pi

pi+1

δp

di=d

δpα

∆

oi
α

-1

-1

(b)

Figure 2.4: Sample density on a tilted reference plane: The inverse densities or distances respectively δ−1
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are illustrated for parallel rays (a) and for a central origin (b). In both cases the density decreases with higher values
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Figure 2.5: Comparison of the different sample densities for a rotatory DoF: The plot shows δd, δp, and δpα for
α = {10◦, 30◦, 45◦} with respect to the angular sample width ∆ = [0◦, 20◦] and at a distance di = 1.

illustrated in Fig. 2.4. The relation between the definitions in the case of parallel
measurement rays δpα is

δpα = δp cosα = δd cosα ,

and the equation for a central ray origin is

δpα = δp
cos(α+ ∆)

cos ∆
= δd

cos(α+ ∆)
cos ∆

2

.

In Fig. 2.5, the reference densities for δd, δp, δp10◦, δp30◦, and δp45◦, are plotted for an
angular sample width ∆ = [0◦, 20◦] and at a distance di = 1 . The sample density
is constant for parallel rays and decreases with an increasing distance for a central
origin. The different definitions are related by a constant factor and differ only mini-
mally for small values of ∆. Hence, the sample density whose calculation can be most
simplified w.r.t. the description of a range image is used for generating attributes for
every point p ∈ PD. In this work, the sample density at equidistant measurements is
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used as per-point attribute

δ := δd

because of its fast computability.
The reference sample density δu, δv for the u− and v−directions of a sample point pij
that has been generated from the i-th row and j-th column of a range image D can be
calculated by modifying Equation (2.8) to

δu :=
1

‖pi+1,j − pi,j‖
(2.11)

δv :=
1

‖pi,j+1 − pi,j‖
. (2.12)

The overall expected density δ is the minimum of the directional densities

δ := min{δu, δv} .

Further, the directional densities δu and δv can be expressed as functions that di-
rectly depend on the measured distance d and the geometric sensor parameters ∆u
and ∆v, w.r.t. the geometric type of the sensor. Therefore, the sample points in
Equation (2.11) and Equation (2.12) are substituted by the type specific mappings
from Equations (2.2)-(2.5). This results in the following calculations for the different
geometric types:

Cartesian: δ = min{|∆u−1|, |∆v−1|} (2.13)

Perspective: δ = min{(d|∆u|)−1, (d|∆v|)−1} (2.14)

Cylindrical: δ = min{(2d| sin ∆u
2
|)−1, |∆v−1|} (2.15)

Spherical: δ = min{(2d| sin ∆u
2
|)−1, 2d| sinu sin

∆v
2
|)−1} (2.16)

The full derivation of the above equations is given in Appendix B.
For a spherical geometry the density not only depends on the sample widths ∆u and
∆v but on the absolute pixel position u. This reflects the fact that the two DoF of the
spherical geometry are coupled and the density increases (δu 7→ ∞) at the domes of
the spherical workspace. The perspective geometry is a special case, as the ray length
is not equal to the distance (see the previous section). This type has a central ray
origin but the sample widths are the distances between two pixels at d = 1 and not an
angular value.

2.3 View Alignment and Synchronization

For the alignment of measured range images or views in real time, the pose of the
scanner device at the range image’s measurement time is required. In this work the
measurement of the pose is modeled by a principal pose sensor unit, depicted in
Fig. 2.1 on page 10. However, pose measurement is not necessarily performed syn-
chronously to the acquisition of range images. The problem of assigning the correct
pose for every range image is discussed in this section and a general synchronization
and interpolation concept is introduced.
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2.3.1 Geometric Description of Pose Data

The pose of a rigid body in the Cartesian space is mathematically described by a
rotation and a translation, denoted as rigid motion transformation. Unlike the
variety in system specific representations of such transformations, the representation
as a 4× 4 homogeneous matrix

T =
(

R t
0′ 1

)
.

with the 3× 3 rotational matrix R and the translational vector t is used. This notation
is commonly used in the field of robotics and computer graphics. Detailed information
concerning transformations and homogeneous coordinates are e.g. given by Craig
[Cra89] or Akenine-Moeller [AMH02].
Let wTs(τ) denote the pose of the range sensor in a global coordinate system, i.e. the
transformation from the Cartesian sensor coordinate system (s) to the world coor-
dinate system (w) at a measurement time τ . This pose is typically not measurable
directly, e.g. the native coordinate system of a camera is not accessible, as it is inside
the system. Instead, a local coordinate system (l) is measured by the transformation
lTw(τ) that has a rigid connection to the sensor coordinate system. An additional
transformation lTs connects the sensor coordinates to the local coordinate system.
The transformation is usually estimated during system calibration and is specific to
the systems’s particular combination of a range sensor and a pose sensor.
Consequently, a sample point ps(τ) ∈ PD at a measurement time τ is transformed to
a point p in global space by(

p
1

)
= wTs(τ)

(
ps(τ)

1

)
= wTl(τ) lTs

(
ps(τ)

1

)
. (2.17)

Accordingly, the corresponding line-of-sight ss is transformed to s by(
s
0

)
= wTs(τ)

(
ss
0

)
.

2.3.2 Sensor Synchronization and Data Labeling

The measurements of pose and range image can operate at different frequencies or
are phase shifted. Phase shift means that measurements are performed at the same
frequency but the measurement time differs by a constant shift. The problem of dif-
ferent cycle rates can occur when an external device is used for pose measurement,
e.g. a robot or an optical tracking system. External devices usually have an internal
measurement frequency independent of the range sensor’s cycle rate. Even if the de-
vices theoretically have the same cycle rate, in practice, the measurement frequencies
of independent systems always differ slightly, resulting in a continuous drift of the
measurements.
The cycle time and the measurement time of both sensors for each period can be
coupled by externally triggering the hardware components, denoted as sensor syn-
chronization. This trigger is either implemented as electrical pulse (hardware syn-
chronization) or as a communication package (software synchronization). Not all
hardware components support an external trigger and therefore this concept is not
applicable to all scanner systems.
Beside the different measurement times, the communication and subsequent pro-
cessing of raw measurement data for calculation of pose and range image result in a
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Figure 2.6: Concept of sensor synchronization and data labeling: The raw data from the hardware components of
the scanner system is transfered to the host system with possible communication delay. The synchronization bridge
labels the raw data and synchronizes the measurement times in the hardware components, if applicable. Finally, the
labeled data streams are used to calculate or to provide range images and poses.

delayed data availability. Hence, for the alignment of a range image using the mea-
sured poses, a consistent temporal data labeling of all measured data is mandatory,
so that the range images and pose data can be matched.
In Fig. 2.6, the general concept of data labeling and possible sensor synchronization
is illustrated. All incoming data streams of the hardware components are labeled by
a synchronization bridge, providing global time stamps for all data. If the respective
component supports this feature, the hardware components are also synchronized by
the bridge. Accordingly, range images and poses are calculated from the respective
raw data streams. Here, calculation consists of at least a marshalling step that pre-
pares the raw data for the transfer to subsequent processing. This general concept
has already been described by Bodenmüller et al. [BSSH07].
For correct labeling of the data the communication and processing delay must be
known. If all data is measured at the same rate i.e. the system is synchronized, only
the phase shift and the delay in cycle rates is required. Consequently, if synchroniza-
tion is not available, the system is less robust against a jitter in the delay, resulting in
less accurately aligned 3D point data. If labeling is performed on a distributed system,
it is important that the time stamp used for labeling is generated by a system-global
clock. Bodenmüller et al. [BSSH07] uses a global consecutive counter with an ad-
ditional offset as time stamp, generated by a hardware component and distributed
to all systems. Another approach is the direct use of a real time clock i.e. the use
of an absolute time as time stamp. For distributed systems, the clocks have to be
synchronized using the Network Time Protocol (NTP) or Precision Time Protocol (PTP)
service.

2.3.3 Pose Interpolation and Stream Generation

Synchronization and data labeling allow for matching pose data and range images
temporally. In order to transform the range image into a set of 3D points, the sensor’s
pose at the measurement time of each pixel has to be determined. Depending on the
measurement principle of the range sensor, the distances in a range image are not
necessarily measured at the same time but sequentially. Consequently, the following
measurement modes must be distinguished:

• synchronous - All data is acquired at once, i.e. at the same time.

• line-sequential - The range image is measured stripe-wise in u- or v-direction.

• field-sequential - The range image is measured pixel-by-pixel, either row-major
or column-major.
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The pose has to be determined once per range image, for every stripe, or for every pixel
respectively, depending on the measurement mode. In the following, an interpolation
scheme is presented that determines the required pose.
Let dij(τm) denote a distance pixel measured at the time τm and let wTl(τm) be the
corresponding pose that has to be determined. Different approaches to estimating
the desired pose wTl(τm) are possible. The choice of method depends on the temporal
relation between pose and range images. If both are measured at the same rate
and without any phase shift, the pose at time τm can directly be extracted from the
stream of labeled pose data. If the rate differs or a phase shift is present, the pose
at time τm has to be interpolated from the measured poses. The suitability of an
interpolation method depends on the frequencies of range and pose measurement
and on the movement rate of the sensor between two cycle periods. In the following
three common interpolation strategies are discussed:

Nearest Pose The nearest pose method uses the pose that is measured temporally
closest to the range image. This method only results in reliable corresponding poses
if the time between measurements of range image and pose is small in relation to the
movement rate of the device. This applies if either the frequency of pose measurement
is significantly higher than the frequency of the range sensor or if both measurements
are synchronous or with only a small phase shift.

Linear Pose Interpolation The linear pose interpolation is more accurate than the
nearest pose strategy, yet it is still fast computable. It allows for an accurate pose
interpolation at a faster movement of the scanner device w.r.t. the measurement rate
and for phase shifted pose signals.
Let τm denote the measurement time of range image D(τm) and let τk and τk+1 denote
the measurement time of k-th and (k+1)-th pose measurements wTl(τk) and wTl(τk+1)
with

τk ≤ τm ≤ τk+1.

Further, let ∆τm denote the normalized time of range measurement defined by

∆τm =
τm − τk
τk+1 − τk

∈ [0, 1] .

The connecting transformation between the poses wTl(τk) and wTl(τk+1) is denoted as

∆T =
(

∆R ∆t
0′ 1

)
:= wT−1

l (τk) wTl(τk+1) .

The rotation ∆R can be transformed into an axis-angle representation (see Appendix
A.2):

∆R 7→ (n∆R, α∆R) α ∈ [0◦, 180◦) .

The linear interpolated pose Tτm at the range measurement time τm is

wTl(τm) = wTl(τk)
(

∆Rτm ∆tτm
0′ 1

)
with the relative translation

∆tτm = ∆t∆τm
and the relative rotation

∆Rτm = Raa(n∆R, α∆R ·∆τm)

with the transformation of an axis-angle pair to a rotation matrix Raa(n, α) (see Ap-
pendix A.2).
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Figure 2.7: Concept of view alignment and serialization towards a 3D point stream: The received labeled images are
transformed to 3D points in the local sensor coordinate system and stored in a point history. The labeled poses are
also stored in a history module. If for a point all necessary poses are available the required pose is interpolated and
the point is transformed to global space, using the interpolated pose.

Advanced Pose Interpolation The linear pose interpolation scheme can result in
poor estimates if the movements between the poses are significant i.e. if the measure-
ment rate of the pose sensor is slow w.r.t. the movement rate of the scanner device. In
this case, advanced pose interpolations by higher-order polynomials or splines have
to be used. However, these concepts are not used in this work, as the cycle rate of the
pose sensor is assumed to always be sufficiently high.

Fig. 2.7 illustrates the processing concept of pose interpolation and view alignment.
The incoming labeled poses are stored in a history queue and are used as sources for
the interpolation unit. The labeled range images are transformed into 3D points as
described in Equations (2.2)-(2.5). Additionally, corresponding per-point features are
calculated as presented in Section 2.2. An additional attribute σ̃ represents the esti-
mated accuracy of the point and is discussed in Section 2.4. The 3D points and the
corresponding attributes are also stored in a point history queue. The point history
fulfills two functions: First, the set of 3D points per range image is transformed into
a serial stream of single 3D points. Second, the subsequent global alignment of a 3D
point can be delayed until all necessary poses are available. The interpolation unit
is fed with the current pose history, providing the interpolated pose at the required
time τm. Finally, a globally aligned 3D point and corresponding attributes are calcu-
lated from the local data from the point history and the corresponding pose from the
interpolation unit, as described in Equation (2.17).
Generally, an extrapolation strategy for pose estimation is an alternative to interpo-
lation. Extrapolation predicts the required pose from the N last poses. Thus, delays
in processing due to a delayed pose stream can be avoided. This strategy is preferred
in the context of feedback control, because additional delays can cause system in-
stabilities. However, additional delay is uncritical in the context of a visual feedback
for manual scanning. Hence, the more simple and accurate interpolation strategy is
used in this work.

2.4 Measurement Errors and Accuracy

The accuracy of every scanner system is limited due to measurement errors. In single-
view applications and in methods that process range images individually only errors
in the distance measurements are relevant. When multiple range images are aligned
and merged into a single point set, the accuracy of the pose estimation must also be
considered. In off-line applications the misalignment caused by a pose error can be
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minimized by a preceding optimization step, e.g. bundle adjustment or point registra-
tion. However, manual scanning with a real time data processing, a minimization of
pose errors is not possible, thus they influence the measurements and the accuracy
of the system.

2.4.1 Range Sensor Errors

While the geometry of a range sensor can easily be generalized, measurement errors
highly depend on the physical principle of the range measurement, on the proper-
ties of the measured object (e.g. reflectivity, micro structure), and on environmental
settings. However, object properties and the environment are usually unknown.
The descriptions of the errors of range sensors are typically specialized to a certain
sensor type or to the application the system is used for. In the work of Curless
[Cur97], the physical error sources for active triangulation systems are summarized
in the context of 3D modeling, while Fuchs and Hirzinger [FH08] list error sources
of on-chip ToF systems in the context of optimal system calibration. More general
sensor models for autonomous robot work cell exploration are examined in the work
of Suppa [Sup07]. Here, the models are general w.r.t. the measurement principle but
specialized w.r.t. the application, i.e. the model is optimized for deciding whether a
volume element is free or occupied considering a noisy sensor.
A range image is the synchronous or sequential measurement of its distance pixel, as
already stated in the previous sections. Hence, potential errors and limitations can
generally be modeled per pixel. The overall measurement error of each distance pixel
can be divided into a positional error and a distance error w.r.t. the geometric descrip-
tion in Section 2.2.1. Here, the distance error is the composition of all physical errors
and technical limitations of the measurement principle applied, the sensor hardware
and the surface properties. This includes e.g. sensor noise, quantization errors, and
effects caused by the reflectivity and micro structure of the scanned surface. A posi-
tional error reflects an error between the measured or expected16 grid coordinates of a
distance pixel and the real values. Examples for this kind of error are the inaccurate
measurement of the position of a rotating axis, or a distortion in the camera image.
In this work, it is assumed that a range sensor is always intrinsic calibrated, i.e.
systematic errors are compensated. Consequently, the relation between the real pixel
vector (u, v, d)T and the measured values (ũ, ṽ, d̃)T can be described as ũ

ṽ

d̃

 =

 u
v
d

+

 eu
ev
ed

 .

In most range sensors, the error ed increases with an increasing distance d, whereas
the positional errors (eu, ev) are typically independent of the distance. The overall
error is often modeled as an ellipsoidal Gaussian distribution that increases with the
distance, e.g. in the work of Hirschmüller [Hir03] for a stereo vision system.

2.4.2 Pose Sensor Errors

A pose error, i.e. a position error or orientation error, influences the entire range
image; contrary to range sensor errors, which are modeled pixel-wise. Pose errors

16In many systems, the grid coordinates are not measured but represent a physical coordinate, e.g. a
pixel in a camera.
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can have very different characteristics depending on the sensor. External measure-
ment devices, e.g. coordinate measurement machines or optical tracking systems,
are independent of the range measurement, but they typically have complex error
distributions that potentially depend on the absolute pose and the movement speed
of the scanner device. Contrary, pose estimation methods that use the same sensor
hardware as the range sensor have pose errors that are correlated with the depth
measurement.
In the work of Scott et al. [SRR02], the impact of position and orientation errors
on the precision and sensor coverage is described, in the context of next best view
planning. Following this argumentation, pose errors can be divided into positioning
errors, axis errors, and twist errors. A pose error always results in the misalignment
of the corresponding range image, decreasing the overall accuracy of the merged point
set.
Generally, the pose error can be modeled as a location error and an orientation er-
ror w.r.t. the measured coordinate frame. Hence, the measured pose wT̃l can be
described w.r.t. to the real pose wTl by

wT̃l := wTl

(
Rrpy(er) et

0′ 1

)
,

with a location error et and a rotation error er in each local axis. The latter is mod-
eled as roll-pitch-yaw (rpy) angles (see Appendix A.2). Moreover, the extrinsic calibra-
tion lTs is typically determined experimentally, e.g. by an eye-in-hand calibration17.
Hence, the estimated calibration lT̃s possibly differ from the real transformation lTs.
Consequently, the (measured) transformation from sensor coordinates to global space
wT̃l is given by

wT̃s := wTl

(
Rrpy(er) et

0′ 1

)
lT̃s .

This leads to the conclusion that a pose error implicates that the measured position
and view direction of the range sensor differ from the real values. Hence, an area on
the object’s surface is measured that is not the expected part. In the next section,
this coupling between pose errors and distance measurement is further analyzed.

2.4.3 Overall Error and Per-Point Accuracy

In the previous sections, the errors of a scanner system are described component-
based. However, in the context of streaming surface reconstruction in 3D, a scalar
per-point quality criterion that represents the overall accuracy of a single distance
measurement is desired. Hence, the measurement errors of range and pose sensor
must be modeled as a combined error for each sample point. Thus, the description
of a sample point as a measurement ray in global space is used to model an overall
measurement error, the error in the ray length is used as a metric for a per-point
quality.
As introduced in Equation (2.7), a sample point ps in the Cartesian sensor space
can be described by a measurement ray of length dray that starts in the ray origin os
and has the direction ss. The corresponding point p in global space is calculated by
applying the transformation wTs, described in Equation (2.17). Hence, the globally
aligned ray equation is given by

p = o + dray s ,

17See e.g. the work of Strobl and Hirzinger [SH06] for details on eye-in-hand calibration methods.
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with the global origin (
o
1

)
= wTs

(
os
1

)
and ray direction (

s
0

)
= wTs

(
ss
0

)
.

As described in the previous sections, the measured distance, grid coordinates, and
global pose are possibly affected by noise and thus are error-prone. These errors
result in a measured ray origin õ, ray direction s̃, and ray length d̃ray that differ from
the real values. This results in a erroneous sample point

p̃ = õ + d̃ray s̃ .

The ray’s origin and direction are influenced by errors in the grid coordinates and
the global pose, but are independent of errors in distance measurement. In contrast,
the ray length is influenced by all errors, as it depends on the distance measurement
and is also coupled to possible errors in ray origin and direction. This problem is
illustrated in Fig. 2.8. An error-prone ray origin or direction results in a point p on
the surface along the real ray (o,s) being sampled that does not correspond to the
expected sample point p∗ along the measured ray (õ,s̃). As the distance is measured
w.r.t. the real ray origin and direction, the measured distance does not correspond
to the measured ray origin and direction. Let d∗ray denote the distance of the ray from
the measured origin õ to the expected sample point p∗ along the measured direction
s̃. The measured ray length d̃ray can be described as

d̃ray := d∗ray + e∗ .

The ray error e∗ integrates all errors caused by range sensor and pose measurement,
thus it differs from the distance error ed. Generally, the ray error e∗ is a function of
all error-prone variables and the unknown surface18, i.e.

e∗ = e(d, u, v,wTs, S) .

18In detail, the error depends on the shape of the surface and its optical properties (e.g. reflectivity,
micro-structure, etc.)
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Figure 2.9: Measurement of the ray error e∗ on a known reference plane: The shortest distance between the mea-
sured sample point p̃ and the reference plane Sref is calculated. The error e∗ is thus given by the triangle spanned
by the reference plane, the ray direction s̃, and the plane normal nref .

In this work, the ray error e∗ is used to define a scalar quality attribute that can be
calculated for every sample point. It is assumed that the scanner system is calibrated,
i.e. systematic errors are compensated. The remaining error depends at least on the
distance d and is thus modeled by a Gaussian zero-mean distribution

e∗(d) ∼ N(0, σ(d)) ,

with the distance-dependent deviation σ(d).

The distance-dependent deviation σ(d) can be estimated experimentally by performing
measurements from different viewpoints on a fixed reference plane with a known
global pose. Let Sref denote the reference plane, defined by the plane normal nref and
the distance dref ,

Sref := {x ∈ R3 | 〈nref ,x〉 − dref = 0 , dref > 0 , ‖nref‖ = 1} .

Further, let l denote the shortest distance between a measured sample point p̃ and
Sref ,

l = 〈nref , p̃〉 − dref ,

and let α denote the angle between the measured ray direction s̃ and the plane normal
nref

α = | 〈nref , s̃〉 | .

Hence, the ray error e∗(p̃) of the measured sample point p̃ is given by

e∗(p̃) =
l

α
=
〈nref , p̃〉 − dref
| 〈nref , s̃〉 |

.

This concept is illustrated in Fig. 2.9. The deviation σ(d) can be estimated from the
measured data by statistical methods, i.e. the measured data is sorted by the dis-
tance value and the deviation is calculated either by a sliding window technique or by
partitioning the data. Finally, an analytic description for σ(d) can be approximated by
fitting a polynomial of order n through the calculated deviation values, resulting in a
description of the type

σ(d) :=
n∑
i=0

aip
i .
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Exemplary results of this procedure using a certain scanner system, the DLR Multi-
sensory 3D Modeler, is presented in Chapter 6.
Since the real distance is not known when measuring an arbitrary surface, it is as-
sumed that the deviation of the measured distance σ(d̃) is a suitable approximation
of σ(d),

σ(d̃) ≈ σ(d) .

The deviation σ := σ(d̃) is used in the following chapters as per-point accuracy at-
tribute.

2.5 Summary and Discussion

This chapter analyzes the properties of manually operated 3D scanner systems. A
manual scanner system is defined to consist of a range sensor, capturing an ordered
set of distance pixels, and a pose sensor, measuring the pose of the scanner device
in a global coordinate system. A general sensor model is derived, considering three
aspects: geometric properties, synchronization, and accuracy.
The geometric properties of a range sensor are categorized concerning the type of
mapping between image coordinates and Cartesian space. The calculation of global
3D points from a range image is derived for each of the four defined types, also consid-
ering the device pose and a possible extrinsic calibration. A set of per-point attributes
is defined that is used in the subsequent reconstruction process.
The geometrical description that is introduced covers most types of range sensors,
including 2D range sensors (e.g. structured light or stereo reconstruction systems)
1D sensors (e.g. light stripe sensor), and scalar sensor (e.g. single point measurement
units). However, it is limited to sensors providing the data on a rectangular grid, with
constant step width between neighboring pixels in the local sensor coordinate system.
Hence, data with inhomogeneous ordering, e.g. using undistorted image coordinates,
is not covered. A homogenization of the range image can be used to convert the
image into the required format, however, this possibly decreases the accuracy of the
measurement. It is also possible to use a different geometric model that allows for
extracting the same attributes, as the subsequent surface reconstruction does not
depend on the model itself, but requires only an input stream of 3D points with the
introduced attributes attached, as shown in Fig. 1.2.
The temporal description covers the synchronization of measurements and the as-
signment of the correct pose to every range image or distance pixel. Here, a syn-
chronization of all hardware components in combination with a labeling of all data is
suggested. The labeling guarantees a correct assignment of all data, even in delayed
or non-real-time processing, and is thus mandatory. The synchronization is optional
and increases the robustness of the system. The labeling enables an interpolation
of the correct pose for the required measurement time of the respective range image.
The range images are transformed into a set of globally aligned 3D points, using the
interpolated poses. The resulting 3D points and the additional per-point features are
finally transfered to subsequent processing i.e. to the RT-SSR processing, as a serial
stream.
The principal synchronization and labeling methods have to be adapted to the hard-
ware and methodologies used. If the processing or communication delay have a large
jitter, it is difficult to calculate the measurement time in relation to the time of recep-
tion. In this case, a synchronization of the hardware components is recommended.
Hardware synchronization is more precise than software synchronization, because
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the signal on a data bus can jitter, especially if the full bandwidth of the bus is used.
Contrary, a software synchronization does not require additional cabling to all hard-
ware components.
The description of accuracy for a manual scanner systems is covered by defining
a scalar per-point quality attribute. The quality represents the distance-dependent
deviation into the expected measurement direction. This metric implicitly integrates
errors from range image measurement and pose measurement. The key advantage
of this description is that it can be determined experimentally, e.g. by performing
measurements on a known reference plane.
In summary, this chapter presents a general description of manual scanner systems
and their characteristics. For each distance pixel of a measured range image, the
coordinate of the resulting sample point as well as corresponding attributes describing
the expected resolution, accuracy, and line-of-sight are calculated. The resulting
stream of 3D points with corresponding attributes is used as input for the RT-SSR
processing in the next chapter.



3
Streaming Surface Reconstruction

In this chapter, the Real Time Streaming Surface Reconstruction (RT-SSR) algo-
rithm is described in detail. The goal is to build a dense triangle mesh by incremen-
tally inserting 3D points from a real time stream. In most surface reconstruction
algorithms, including the one presented here, it is essential to know the surface nor-
mal for every sample point. Consequently, surface normals have to be estimated be-
fore the mesh generation. The resulting reconstruction pipeline thus consists of two
principal processing stages: The normal estimation stage and the mesh generation
stage, as illustrated in Fig. 3.1:

Mesh GenerationNormal Estimation
Surf. Normal

Update
(Ch. 3.3)

Density
Limitation
(Ch. 3.2)

p-insertN-query

<p,n>N(p) Selection/
Tracking
(Ch. 3.4)

P

<p,s,δ,σ> <p,s,δ,σ> Localized
Triangulation

(Ch. 3.5)

M

e-insert
N-query

Density
Limitation
(Ch. 3.2)

p-insert

<p,n>

(Ch. 4) (Ch. 4)

Figure 3.1: The RT-SSR process consists of two principle stages: Sample points are first processed in a normal
estimation stage. Subsequently, points with an assigned surface normal are used for an incremental generation of a
triangle mesh.

The incoming 3D points from the stream are defined by a coordinate p, a line-of-sight
s, a reference sample density δ, and an expected deviation σ as described in Chap-
ter 2. This point data is received in the Density Limitation step. The point density is
limited here, so the sample density and the computational effort in successive stages
can be controlled. The points that pass the limitation step are stored in a suitable
data structure. The surface normals of this new point and the points it influences
are estimated in the successive Surface Normal Update step. The estimated normals
are validated in the Selection and Tracking module and are rejected if not plausible.
Additionally, changes in the direction of the estimated normals are tracked and noti-
fied to successive stages. The outgoing stream of points with corresponding surface

29
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normals enters the mesh generation stage. Again, the incoming points are stored as
the vertices of the generated mesh. An additional Density Limitation controls the
resolution of the final mesh. The stored vertices represent the vertices of the mesh
that is generated and refined in the Localized Triangulation.

3.1 Geometric Definitions

This section introduces the geometric definitions used in the subsequent sections.

3.1.1 Point Sets

Definition

Let P denote the set of sample points

P := {p1, ...,pn ∈ R3}

in the 3D Cartesian space. Further, for each point p ∈ P, a line-of-sight s, an expected
deviation σ, and a reference sample density δ, as described in Chapter 2, exist.

Point Neighborhood

Let NR(q,P) denote the ball point neighborhood or euclidean point neighborhood
of a query point q ∈ R3 within a point set P

NR(q,P) := {p ∈ P | d2
p(q,p) ≤ R2} (3.1)

with the neighborhood radius R. The function dp(q,p) is the unsigned distance be-
tween two points and is further defined in Equation (A.1) in Appendix A. A similar
definition of a ball neighborhood is presented in the work of Floater [FR01]. Point q is
not necessarily part of P. If q is part of P, it is also included in its own neighborhood
NR(q,P).

Further, a subset NR,k(q,P) ⊆ P is called k-in-R point neighborhood of q, if and only
if it satisfies

|NR,k(q,P)| = min{k,NR(q,P)}

∀p ∈ NR,k(q,P) ∀p̃ ∈ NR(q,P) \ NR,k(q,P) : dp(p,q) ≤ dp(p̃,q)
(3.2)

3.1.2 Triangle Meshes

Edges and Triangles

Let ab denote the line segment or edge connecting the two points a,b ∈ Rd with a 6= b

ab := {x ∈ Rd | x = λ1a + λ2b;λ1 + λ2 = 1;λ1, λ2 ≥ 0} .

Analogously, let ∆(a,b, c) denote the triangular face connecting the non-collinear
points a,b, c ∈ Rd

∆(a,b, c) := {x ∈ Rd | x = λ1a + λ2b + λ3c;λ1 + λ2 + λ3 = 1;λ1, λ2, λ3 ≥ 0} .
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Mesh Definition

A triangle meshM is a piecewise, linear approximation of an unknown surface S by
triangular faces and is described by the triple

M := (VM, EM, TM) ,

composed of a set of n vertices

VM := {v1, . . .vn} ∈ R3 ,

a set of m edges
EM := {e1, . . . , em} ,

and a set of k triangles
TM := {t1, . . . , tk} ,

satisfying
∀e ∈ EM : ∃a,b ∈ VM : e = ab

and
∀t ∈ TM : ∃a,b, c ∈ VM : t = ∆(a,b, c) ∧ ab,ac,bc ∈ EM .

The vertices in VM are the supporting points of the triangular faces, defined by their
coordinates. Here, for every vertex v ∈ VM a corresponding surface normal n rather
than the per-point attributes of a sample point exists.
An edge e ∈ EM is the line segment connecting two adjacent vertices along the surface
S. The set of edges may not contain duplicated edges and edges only intersect in their
end points. Hence, the set of edges EM must further satisfy

∀i, j ∈ {1, . . . ,m} : i 6= j ⇒ ei 6= ej

∀e, ẽ ∈ EM : e ∩ ẽ ∈ VM ∪ {}
.

A triangle face t ∈ TM connects its defining edges and the corresponding vertices.
Analogous to the set of edges, the set of triangles must not contain duplicates. Fur-
ther, two triangles can only intersect by their edges or vertices. Hence, TM must
further satisfy

∀i, j ∈ {1, . . . , k} : i 6= j ⇒ ti 6= tj

∀t, t̃ ∈ TM : t ∩ t̃ ∈ EM ∪ {}
.

Point and Edge Neighborhood

The vertex ball neighborhood of a vertex q in the meshM is the set

N VR (q,M) := {v ∈ VM | d2
p(q,v) ≤ R2} (3.3)

with the neighborhood radius R and the unsigned distance dp(q,v), similar to the def-
inition of the ball neighborhood in a sample point set, described in Equation (3.1).

Let de(e,p) denote the shortest unsigned distance between the edge e and the point p,
as described in Appendix A.2. Hence, the set

ER(q,M) := {e ∈ EM | d2
e(e,q) ≤ R2} (3.4)
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Figure 3.2: Edge data structure in a triangle mesh: An edge data structure consists of two vertices defining the line
segment (black), and two additional vertices closing the adjacent triangles (red) to the left and right.

contains all edges of M that are at least partially inside a ball neighborhood with
radius R around q. Further, the set

V(ER(q,M)) := {v ∈ VM | ∃e ∈ ER(q,M) : v ∈ e}

denotes the corresponding set of vertices in the edge neighborhood. The set of vertices
is not equal to the neighborhood N VR (q,M), since not every vertex has corresponding
edges and not both vertices of an edge e ∈ EN are inside the spherical volume. Con-
sequently, the edge ball neighborhood with radius R of a query point q in M is the
pair

N ER(q,M) := (V(ER(q,M)), ER(q,M)) (3.5)

3.1.3 Representation of a Triangle Mesh

A data structure representing a mesh must allow a local movement through the mesh
i.e. stepping from a starting vertex, edge, or triangle to adjacent vertices, edges, and
triangles. The central element representing connectivity in a triangle mesh is the
edge, because it connects adjacent vertices and triangles along the surface. Common
edge structures for general polygonal meshes, such as the winged edge, quad-edge,
or half-edge structure, are summarized in the textbook of O’Rourke [O’R98]. These
structures are designed for handling arbitrary types of meshes, consisting of polygons
with varying numbers of vertices. Thus, they require additional memory per edge and
computational effort when modifying the mesh. In this work, a data structure that
requires only little memory but is specialized to triangle meshes is used:
Every edge e ∈ EM is represented by the data structure illustrated in Fig. 3.2. It
consists of a starting vertex vi and an end vertex vj, as well as a left vertex vl and
a right vertex vr, defining the left and right adjacent triangle. The adjacent faces are
fully described by tl = ∆(vi,vj ,vl) and tr = ∆(vj ,vi,vr), because only triangles are
allowed as face type. Beside this edge structure, the set of edges

E(v) = {e ∈ EM | v ∈ e}

is stored for every vertex v ∈ VM.
Starting from an edge e ∈ EM, the adjacent triangles and vertices can be reached by
the edge structure. Starting from a vertex v ∈ VM, the edges starting or ending in it
can be accessed by the attached set E(v). The adjacent triangles are accessible via
the edges in E(v).
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Consequently, the triangles are fully described by their corresponding edges and it is
not necessary to store them explicitly. Hence, a mesh storage only contains vertices
and edge elements. The design of a mesh storage with the introduced description for
vertices and edges is further discussed in Chapter 4.

3.2 Density Limitation

During the process of manually scanning an object, multiple overlapping sweeps with
the scanner can generate spots of high local point density in the accumulated point
set P. This generates redundancies in the data and increases the overall calculation
effort without improving the result. Moreover, assumptions concerning the sample
density in subsequent processing stages are violated. For this reason, the density of
the accumulated sample points is limited before any further processing.
In this work, a limitation is applied to the incoming streams of both principal stages,
the normal estimation and the mesh generation, as illustrated in Fig. 3.1 on page 29.
It is coupled to the process of inserting new points into the point set P, since local
density has to be verified prior to or during the insertion of the point. The design of a
point data storage enabling fast access to subsets of the data is the topic of Chapter 4.
In the following, two methods for a streaming density limitation, performed at the
insertion of new points into the accumulated point set, are delineated.

3.2.1 Simple Limitation

The simple limitation method rejects points that are located too close to a point that is
already contained in the point set, as they would add undesired high sample densities
in the point set. This approach was first introduced by Bodenmüller [BH04] and can
be summarized by the following rule:

Definition 3.1 A new point q /∈ P is inserted into the accumulated point set P and
passed to subsequent processing, iff no point p ∈ P is closer to q than a limitation
radius Rmin.

This rule can be rewritten using the ball neighborhood definition from Equation (3.1):

Definition 3.2 A new point q /∈ P is inserted into the accumulated point set P and
passed to subsequent processing, iff NRmin(q,P) = {}.

The simple limitation can be visualized as a set of solid balls with radius Rmin
2 that

can not penetrate each other, one for each point in P. This is illustrated for two
dimensions in Fig. 3.3. The maximum number of balls in a finite volume V can be
derived from the average density in a close-packing of spheres. The highest average
density in such an arrangement is

nVSp
V

=
π

3
√

2
, (3.6)

with the number of spheres n and the volume of a sphere VSp
1. The substitution of

VSp = 1
6πR

3
min in Equation (3.6) results in the maximum number of points nVmax, limited

1The formula denotes the highest average density of a regular lattice arrangement. The Kepler con-
jecture states that this is also the highest density that can be achieved by any arrangement of spheres,
either regular or irregular. A proof has been given in the work of Thomas Hales [Hal05].
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Figure 3.3: Gaps between points in a limited point set: A point with a distance d with Rmin < d < 2Rmin to the
adjacent point decreases the local point density w.r.t. the close packing of spheres due to the larger gap between the
points.

by the radius Rmin, in an arbitrary finite volume V

nVmax =
√

2 V
R3

min

. (3.7)

Concluding, the number of points in a finite volume can not be arbitrarily high, but
is coupled to the size of the volume and the limitation radius.
However, the sample points are inserted in random order and may have a distance
larger than Rmin to the nearest point in the point set. Hence, the density limitation
potentially creates larger non-closable gaps between the balls. The result is a local
point density that is lower than that of a pure close packing of spheres would generate.
As an example, two points p1 and p2 with a euclidean distance d = ‖p2 − p1‖ that are
consecutively inserted into the point set result in a non-closable gap, if the distance d
is in the range

Rmin < d < 2Rmin ,

i.e. no other point can be inserted in between. This is further illustrated in Fig. 3.3.
In the worst case, all points in the limited point set have a distance to each other
of d = 2Rmin, resulting in a sphere arrangement of balls with radius Rmin. Thus, a
pessimistic upper bound to the number of points nV0.5 max for a finite volume V is

nV0.5 max =
V

4
√

2R3
min

. (3.8)

3.2.2 Limitation with Replacement

The simple limitation approach generates an undesired dependency on the input or-
der of the sample points. Points with a higher quality can be rejected, because points
of lower quality have been inserted earlier within a distance of Rmin. This reflects the
assumption that a comparable quality of each sample point exists and not all points
are of the same quality. However, a simple replacement of an old point with a new one
with higher quality would lead to a stepwise shift of the points, i.e. the replacement
implicates that the point’s coordinate changes and thus possibly generates a gap that
is large enough for an other point. This shift could cause violation of the limitation
rule, invalidating the upper bound for the number of points given by Equation (3.7).
Hence, an replacement approach is required that account for point quality but avoids
that coordinate changes can violate the density limitation.
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In this work, the problem is tackled by adding an separate anchor point pa to each
sample point p. The sample point p can be replaced while the anchor point pa remains
unchanged and is used for the density limitation. Hence, a set of anchor points Pa is
required beside the sample point set P and for each sample point p ∈ P there exists
an anchor point pa ∈ Pa. This replacement limitation method is pictured in Alg. 1 and
is detailed in the following.
Let fq denote the function

fq : R3 → R ; p 7→ q

that maps x to a scalar quality value qx. A new point q from stream is tested according
to Definition 3.2, however, in relation to a set of anchor points Pa rather than the point
set P. If the new point passes the simple limitation with the anchor point set Pa, it
is inserted into the sets P and Pa, i.e. it defines a new anchor point. Otherwise, the
quality q of the point q is compared to the quality of all points p ∈ NRmin(q,Pa). The
new point replaces the nearest point in NRmin(q,Pa) that has a lower quality than q (if
any), while the corresponding anchor point is not modified. Hence, the coordinate of
an already inserted point can only change within the sphere volume centered at the
corresponding anchor point and with the radius Rmin. In this work, the corresponding
expected deviation σ of a point p, as introduced in Chapter 2.4, is applied as quality
criterion

q = fq(p) := σ .

Alternatively, other attributes, e.g. sample density or intensity, can be used.

Algorithm 1 Replacement density limitation at the insertion of point q.

NRmin(q,Pa)← Pa /* Query of NRmin(q,Pa) */
if NRmin(q,Pa) = {} then

/* Point passes the limitation stage : insert into point set */
P := P ∪ q
Pa := Pa ∪ q

else
/* Point is rejected : find nearest point with lower quality */
dmin := Rmin /* distance of nearest point */
∗pmin := 0 /* Nearest point */
for all pa ∈ NRmin(q,Pa) do

p, fq(p)← pa /* Get corresponding point and quality to anchor point */
if ‖pa − q‖ < dmin and fq(p) < fq(q) then
dmin := ‖pa − q‖
pmin := p

end if
end for
if pmin 6= 0 then

/* case 1 : replacement */
pmin := q
fq(pmin) := fq(q)

else
/* case 2 : rejection */

end if
end if

This extended limitation method decreases the dependency upon the input order,
compared to the simple approach. Initially, all points are used until the maximum



36 CHAPTER 3. STREAMING SURFACE RECONSTRUCTION

density is reached. Any point is used as long as no point with higher quality is
available. Consequently, adding more accurate points to a noisy point set leads to
an incremental improvement of the set’s accuracy instead of rejection of these higher
quality points. Hence, the operator of a manual scanning system can optimize the
results by performing more scans.

3.3 Estimation of Surface Normals

The surface normal for each sample point is the first local surface property that can be
derived from an unorganized point set. It represents the tangent plane to the surface
at the respective point. Consequently, a surface normal is mandatory for most local
surface approximation techniques.
The estimation of the surface normals for the sample points of an unorganized point
set is generally solved by least-square fitting of a tangent plane through a point neigh-
borhood of the examined point. In the early work of Hoppe [Hop94], a covariance
matrix is calculated from the k-nearest neighbors. The eigenvectors are derived, rep-
resenting the least-square tangent plane. Contrary, in the work of Gopi [Gop01] the
eigenvectors from a k × 3 matrix of differences are calculated, with the number of
neighboring points k, using SVD2, delivering similar results as the covariance ap-
proach. A more complex method for fitting a tangent plane to a local point set is the
first stage of the projection procedure presented in the work of Alexa et al. [ABCO+03]
it is used for the construction of a MLS3 surface. Here, a non-linear least square op-
timization is performed for fitting the plane.
Many approaches assume a global homogeneous and constant noise and density.
However, it is difficult to find a scan path which ensures a homogeneous digitization
of a non-trivial surface. For manual scanning, the local sampling density and noise
vary depending on the scan path and scan speed applied by the operator, as well
as the measured depth itself, as discussed in Chapter 2. Moreover, multiple sweeps
conducted for specific regions generate a high local density, whereas other regions
may only be sparsely sampled, as discussed in the previous Chapter 3.2. The varia-
tion of noise and density is even higher, if data from different sensors with different
characteristics are integrated into a single 3D model.
Therefore, the method presented in the following accounts for variable sample density
and noise. Moreover, the streaming character of the input data is considered, result-
ing in a method without global operations regarding the point set, the query of a local
point neighborhood being the only exception.

3.3.1 Basic Estimation Method

The surface normal estimation method used is based on the covariance approach
applied in the work of Hoppe [Hop94] or Pauly et al. [PGK02]. The method is simple,
thus the calculation can be performed rapidly. Despite its simplicity, the method is
well suited for normal estimation, even if two opposing surfaces are located closely
together. The original approach is extended, so that a local neighborhood of potential
inhomogeneous noisy points can be regarded.
Let q denote the examined point and let n be the surface normal to be estimated at
q. Further, let PN (q) = {p1, . . . ,pn} ⊆ P denote a local neighborhood around q that

2SVD = Singular Value Decomposition
3MLS - Moving Least Squares
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represents the local shape and contains points that are sufficiently distributed. For
every point pi ∈ PN (q), a normalized scalar weight

wi :=
σ−1
i∑n

i=1 σ
−1
i

with the expected deviation σi corresponding to pi exists. Further, the weighted co-
variance matrix Cov is the 3× 3-matrix

Cov :=
1

1− w̄2

n∑
i=1

wi(pi − c)(pi − c)′ pi ∈ PN (q) (3.9)

with the mean

c :=
n∑
i=1

wipi (3.10)

and the squared sum of weights

w̄2 :=
n∑
i=1

w2
i .

The mean and the covariance matrix are unbiased estimates of the true mean and
covariance matrix4. For a constant deviation σi = σ, the scalar weight is reduced to
w = 1

n and the covariance calculation is reduced to the standard equation presented
in the work of Pauly et al. [PGK02]

Cov =
1

n− 1

n∑
i=1

(pi − c)(pi − c)′ c =
1
n

n∑
i=1

pi .

Let λ1 ≥ λ2 ≥ λ3 ≥ 0 denote the eigenvalues of Cov and let v1,v2,v3 denote the
corresponding eigenvectors5. According to the principal component analysis (PCA),
the eigenvectors are the principal axes of the set PN . The first axis v1 is the direction
of maximum deviation and v2 is the axis of maximum deviation perpendicular to v1.
The vectors v1 and v2 span the least-square tangent plane through PN . The axis v3

is the normal vector on this plane and thus an estimate for the surface normal in q,
assuming that the point neighborhood has a significantly higher deviation along the
surface than perpendicular to it.
However, both directions, v3 and −v3, are possible estimates for the surface normal.
In the work of Pauly et al. [PGK02], a minimal spanning tree method is used to propa-
gate a consistent orientation of the surface normals in a post processing step. In this
work, the surface normal estimation is applied to points generated by a real scanner
system. Hence, the line-of-sight s of the examined point q is used to distinguish be-
tween the inside and the outside of the scanned object, and thus assures a consistent
orientation of the surface normals. Finally, the estimated surface normal n at the
examined point q is

n = v3 · sign(〈v3,−s〉) . (3.11)

The method only provides correct estimations, if the point neighborhood consists of a
sufficient number of points, is homogeneously distributed around q, and represents
the local shape of the surface. As shown in the work of Mitra and Nguyen [MN03],

4See GNU Scientific Library Reference manual, Vers. 1.9, 2007, Sec. 20.6 Weighted Samples for details.
5The covariance matrix is a real symmetric positive definite matrix. The eigenvalues and eigenvectors

can be calculated very fast using the jacobi method (see [PTVF92]).
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noise and curvature can result in wrong estimation results, if the neighborhood is
not chosen properly. Moreover, the streaming character of the process has to be
considered. Therefore, the following sections cover the incremental update of surface
normals and the calculation of a suitable point neighborhood. The verification of
estimation results is discussed in Section 3.4.

3.3.2 Incremental Update

The use of local point neighborhoods, such as k-nearest neighbors or ball neighbor-
hoods for the surface normal estimation implicates that a newly inserted point influ-
ences its local neighborhood and vice versa. Hence, the use of an estimation algorithm
in a processing pipeline for streaming point data requires a continuous update of the
surface normals of all influenced points.
A new point q that has passed the density limitation stage potentially influences the
surface normals of all points in its neighborhood PN (q). Consequently, the corre-
sponding surface normals of all points in the set PN (q) ∪ q have to be re-estimated.
This procedure is visualized in Alg. 2: First, the point neighborhood PN (q) is deter-
mined. For every point p ∈ PN (q) its own point neighborhood PN (p) is updated and
the surface normal is re-estimated. A smoothed point p̄ is calculated, using the es-
timated mean c (see Equation (3.10)). In order to avoid a shift of the point along the
surface caused by an unbalanced neighborhood, only an averaging in normal direc-
tion is applied by

p̄ = p + 〈(c− p),n〉 n . (3.12)

The use of the weighted center c results in a non-homogeneous smoothing w.r.t. the
deviation of the respective point. Thus, noisy points are smoothed more than accurate
ones. Finally, each pair (p̄,n), consisting of the smoothed point and the estimated
normal, is transfered to the selection stage for verification.

Algorithm 2 Incremental update of the surface normals at the insertion of a new
point q.

Calculate PN (q) /* Section 3.3.3 */
for all p ∈ PN (q) ∪ q do

Update neighborhood PN (p) /* Section 3.3.3 */
if PN (p) has changed then

Re-estimate surface normal n /* Section 3.3.1 */
Calculate smoothed point p̄ /* Equation (3.12) */
Transfer the pair (p̄,n) to selection stage /* Section 3.4 */

end if
end for

A single input point q generates a set of potential output points PN (q). Depending on
the used neighborhood strategy applied, not all surface normals are updated neces-
sarily. This fact is discussed in the next section.

3.3.3 Choice of Point Neighborhood

The correctness of surface normals depends on the set of local neighboring points PN
used for their estimation. In the work of Hoppe [Hop94], the k-nearest neighbors are
used. Contrary, in the work of Bodenmüller [BH04], a ball neighborhood with con-
stant radius, similar to Equation (3.1), is applied. The key advantage of the k-nearest



3.3. ESTIMATION OF SURFACE NORMALS 39

S

q

N(q)

S

Figure 3.4: Normal estimation at sharp edges: The original surface normals (left) and the estimated normals (right).

neighbors is the constant number of points in the neighborhood, which limits the
computational effort of the surface normal estimation. However, the k-nearest neigh-
bors typically do not represent a defined area on the surface at an inhomogeneous
point density. A ball neighborhood, however, is a volume set around the examined
point and thus defines a finite area on the surface. It can consist of an arbitrary
number of points. Consequently, this work combines the concepts for point sets with
density limitation (see Section 3.2), enabling a continuous optimization of the neigh-
borhood for each point individually.
Generally, a robust normal estimation requires that the covered surface area of the
neighborhood PN is sufficiently large w.r.t. local sample density and noise of the re-
spective point. A neighborhood that is too small can result in an insufficient number
of points for estimation. Moreover, sensor noise and high curvature can lead to bad
estimation results, because the deviation of points in normal direction is not signifi-
cantly smaller then the deviation along the surface.
However, the computational effort increases with the number of points in the neigh-
borhood. Moreover, the local shape of the surface is not represented, if the covered
area is too large. The estimation of surface normals from a local neighborhood always
causes a continuous change of normal direction, even at a sharp edge. This fact is
illustrated in Fig. 3.4 for a ball neighborhood NR(q). The smaller the neighborhood
radius, the faster the normals change along the curved surface. A radius chosen
too large can result in a loss of local shape details and thus causes problems in the
subsequent triangulation stage.
A key goal for manual scanning processes and surface reconstruction for visual feed-
back is to generate valid surface normals as quickly as possible. However, the neigh-
borhood information of an examined point can be sparse in the beginning, growing
only with the insertion of new points from the stream. Consequently, a neighborhood
initially has to cover a large area, so a coarse surface normal can be estimated and
instantly be used for reconstruction and visualization. This surface normal should
reflect the local shape with the computational effort for estimation should be kept low.
This requires a neighborhood that has a limited number of points and only covers the
area that is needed for robust estimation.
In this work, the k-in-R point neighborhood is used to meet these requirements:

PN (q) := NRn,kn(q,P) .

Every newly inserted point q starts with an initial ball neighborhood radius Rn := Rn0

but only the kn-nearest neighbors of the ball neighborhood are used, as described in
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Figure 3.5: Calculation of the minimum neighborhood radius: The use of the ball neighborhood volume VN results
in a bad guess for the maximum number of sample points, since the points can not have arbitrary locations in the
volume but are located on the unknown surface S. Contrary, the cylindrical volume VN∩S covers only the area along
the surface w.r.t. the limitation radius Rmin. This results in a more realistic guess for the maximum nuber of sample
points.

Equation (3.2), potentially shrinking the neighborhood with every update.
Hence, the insertion of a new point p that is nearer than the farthest neighboring
point results in a successive decreasing of the neighborhood radius

NR∗n,kn(q,P) = NRn(q),kn(q,P ∪ {p}) ,

with the new ball neighborhood radius

R∗n = max{dp(pi,q) ∈ R | pi ∈ NRn,kn(q,P) ∪ {p}} .

However, the neighborhood radius Rn can not become arbitrarily small w.r.t. the
density limitation discussed in Section 3.2. The maximum number of points in a
finite volume depends on the limitation radius Rmin, as shown in Equation (3.7).
Let Rmin denote the limitation radius and let kn be the number of points in the neigh-
borhood. The volume of the neighborhood sphere with radius Rn is

VN =
4
3
πR3

n .

The substitution of the finite volume V in Equation (3.7) with the neighborhood vol-
ume VN and with nVmax = kn results in a minimum neighborhood radius of

R3
nN =

3knR3
min

4
√

2π
.

However, this bound is a bad guess w.r.t. the sampled surface S, because the sample
points are on the surface and can not have arbitrary locations inside the neighbor-
hood sphere. A better approximation for a minimum neighborhood radius is found
by restricting the spherical volume w.r.t. a planar reference surface. This is approxi-
mated by a cylindrical volume

VN∩S = πR2
nRmin ,

as illustrated in Fig. 3.5. The substitutions V = VN∩S and nVmax = kn in Equation (3.7)
result in the neighborhood radius

R2
nN∩S =

knR
2
min√

2π
. (3.13)
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The same substitutions performed in Equation (3.8) for the worst case density bound
implicates a doubled limitation radius. Hence, the cylindrical volume must also be
doubled in height. This results in an neighborhood radius

R2
n0.5N∩S =

4 knR2
min√

2π
. (3.14)

A minimum neighborhood radius Rnmin is thus always linearly coupled to the limita-
tion radius Rmin and increases with the square root of kn. The bounds for Rnmin given
by Equation (3.13) and Equation (3.14), resulting in

R2
nmin

=
ρknR

2
min√

2π
ρ ∈ [1, 4] .

The factor ρ controls the trade-off between computational effort and coverage of the
neighborhood. In this work, a factor of ρ = 2.5 is used. The minimum neighborhood
radius and the per-point attributes δq and σq of each sample point q can be applied
to control the initial neighborhood radius Rn0 individually. This aspect is further
discussed in Chapter 5.

3.4 Selection and Tracking

In the previous section, a basic surface normal estimation method and the deter-
mination of a sufficient point neighborhood for this estimation has been presented.
However, the neighborhood of a newly inserted point can still contain too few points or
the points in the neighborhood are not evenly distributed, resulting in poor estimation
results. Moreover, noise and outliers can cause bad estimates. Hence, the estimated
surface normals have to be checked for correctness in order to avoid non-plausible
surface normals in successive stages. Points that have already been transmitted can
also change in position, due to replacement, or in direction of the normal, due to an
update. These changes have to be tracked and conveyed to the successive stage. In
the following, criteria for an initial selection of points and the further tracking of
changes are explained.

3.4.1 Initial Selection of Points

Selection denotes the verification of all modified surface normals after a normal up-
date, until the respective normal with its corresponding point enters the subsequent
mesh generation stage. During mesh generation, a point with a miss-estimated sur-
face normal would lead to cracks in the generated surface. Hence, it is mandatory
to block points with bad surface normals and to transfer only points with correct
normals. However, as the true surface normal is not known, the estimated surface
normals can only be verified w.r.t. their plausibility, not their correctness.
Both, noise and curvature can lead to inaccurate normal estimations, as remarked
in the work of Mitra and Nguyen [MN03]. Due to the sight-dependent decision in
Equation (3.11), a sample point that has a very flat line-of-sight s onto the surface and
an estimated eigenvector v3 that is slightly rotated due to noise or curvature can result
in an inconsistent or flipped normal direction. This problem of surface normals that
are accidentally pointing inside the object is further illustrated in Fig. 3.6. The grazing
angle αs between line-of-sight s and estimated normal n should be small enough to



42 CHAPTER 3. STREAMING SURFACE RECONSTRUCTION

S

ns v3=n

αo

~v3

-v3

(a)

n

s

v3

αo

-v3=n~
-v3

v3

S

(b)

Figure 3.6: Flipped surface normal due to noise and flat line-of-sight: If the line-of-sight is upright on the surface,
the sign of the estimated surface normal can be robustly determined, even if v3 is noisy (a). If the line-of-sight is flat,
the surface normal can flip due to the noisy estimation v3 i.e. it is pointing inside the object (b).

guarantee a consistent direction of the surface normal n. This is verified with the
criterion c0 that requires the grazing angle αs to be smaller than a threshold αsmax,

c0 : αs = arccos (〈n,−s〉) < αsmax . (3.15)

Hence, the criterion c0 verifies the measurability of a sample point w.r.t. the line-of-
sight of the sensor.

For further verification, the deviation of the point neighborhood has to be analyzed.
As explained in Section 3.3, the normal estimation bases on a principal component
analysis. The eigenvectors of the covariance matrix are the principal axes and thus
represent the directions of maximum deviation. The corresponding eigenvalues are
the variances in each direction with

σ2
i = λi .

For the normal estimation in Section 3.3.1 it is assumed that the variances σ2
1 and

σ2
2 along the surface are significantly higher than the variance σ2

3, perpendicular to
the surface. However, this assumption can be violated by a sparse or unbalanced
neighborhood in combination with noise and high curvature. Consequently, it is
required that the variances in both directions of the tangent plane are significant
higher than the variance in normal direction i.e.

σ2
3 << σ2

2 < σ2
1 ,

in order to achieve a robust estimation result. This is verified by the first variance
criterion c1 with

c1 :
σ2

3

σ2
2

< 0.5 . (3.16)

Further, it is required that the distribution of the neighborhood around the considered
point is homogeneous. An inhomogeneous neighborhood, e.g. the degenerated case of
all points on a single stripe, can result in a 90◦-rotated surface normal. This aspect is
validated using two criteria. First, a homogeneous distribution in both tangent plane
directions is required

σ2
1 ≈ σ2

2
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Figure 3.7: Violations of the variance criteria: A high curvature w.r.t. the neighborhood size results in a variance σ2
3

that is not significantly smaller than the other variances, causing a c1 violation (a). An example for inhomogeneous
neighborhoods is shown in (b). All points are on a stripe, causing a c2 violation. The absolute variance is too small, if
the neighbors are all very close to the examined point q (c). This causes a c3 violation.

and verified by the criterion c2 with

c2 : 1 >
σ2

2

σ2
1

> 0.5 . (3.17)

Secondly, the absolute variances in the plane directions have to be sufficiently high,
validated by criterion c3 w.r.t. the neighborhood radius Rn with

c3 : σ2
1 + σ2

2 >

(
Rn
2

)2

. (3.18)

Fig. 3.7 shows violations of these variance criteria, one for each of the criteria c1, c2, c3.

The criteria for selection are very strict and guarantee a suitable neighborhood for
the estimation, however, they delay the data flow. If numerous neighbors of the
examined point have already been selected, the estimated surface normal can also
be verified by comparison with the normals of these neighboring points. This results
in an acceleration of the estimation process, especially in flat surface areas.
Let n̄ denote the average normal of all already selected points in the neighborhood and
let ns denote their number. The examined point will be selected, if ns is sufficiently
high and the angle between surface normal n and average normal n̄ is small. This is
denoted by the criterion cfast with

cfast : αn = arccos (〈n, n̄〉) < αnmax ∧ ns ≥ nsmin . (3.19)

Here, nsmin denotes the minimum number of selected points and αnmax is the maximum
directional difference.
In summary, a point will be selected if it fulfills the measurability criterion c0 (Equa-
tion (3.15)) and either all three variance criteria c1, c2, c3 (Equations (3.16)-(3.18)) or
the fast-selection criterion cfast (Equation (3.19)).

3.4.2 Tracking of Changes

The selection verification is applied until a point passes the tests for the first time,
as stated in the previous section. The considered point is marked as selected and
along with its corresponding surface normal, is transfered to the subsequent mesh
generation stage, as shown in Fig. 3.1.
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However, the selection tests merely for plausibility, not for a correct normal. After
a point has been selected, its surface normal can still change, due to newly inserted
data and the resulting modification of the neighborhood as described in Section 3.3.3.
The neighborhood radius potentially decreases and thus represents the local shape
more accurately.
Therefore, changes of the surface normals caused by insertion of new points have to
be tracked even after a point has been selected. The tracking reports the changes to
the subsequent mesh generation stage in which the surface can then be refined. This
requires a removal and re-insertion of the changed points into the mesh, increasing
the computation effort of the mesh generation process. Hence, only major changes to
the surface normal are reported.
Let β denote the angle between the surface normals before update ñ and after up-
date n. A point is re-transfered if it fulfills the measurability criterion c0 (see Equa-
tion (3.15)) and the angle β is larger than a threshold βmin

β = arccos (〈n, ñ〉) > βmin .

3.5 Localized Triangulation

The mesh generation consists of a limitation and replacement stage followed by a lo-
calized triangulation step, as illustrated in Fig. 3.1. A triangle mesh is incrementally
built by continuously refining it locally with every newly received point. The triangu-
lation step can be divided to the following processing steps:

1. Limited insertion or replacement

2. Projection and candidate selection

3. Triangulation update

4. Calculation of triangular faces

First, a point received from stream has to pass a limitation step. Then it is stored as
vertex of the mesh. Afterwards, the neighboring vertices and edges of the new vertex
are projected onto its tangent plane, defined by the surface normal. The subsequent
triangulation update is performed in a local 2D space. This general approach is also
used in the method of Gopi [Gop01] and for identifying the MLS surface in the work
of Alexa et al. [ABCO+03]. In this work, a ball neighborhood is used for identifying a
set of candidate points that are used for adding edges to the mesh, denoted as trian-
gulation update. Finally, the set of triangle faces has to be re-calculated, considering
possible new insertions and removals of edges. The four stages are detailed in the
following sections.

3.5.1 Limited Insertion and Replacement

A point-normal pair (p̄, ñ) that passed the normal estimation stage is received by the
Limited Insertion and Replacement stage. A new point from stream can either
originate from an initial selection or from the tracking of major changes, as described
in Section 3.4.
Generally, a new point must first pass an additional density limitation step, as de-
scribed in Section 3.2. Here, the simple limitation pattern is applied, because an
optimization of the point set by replacement has already been performed at the initial
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limitation in the normal estimation stage. All accepted points are stored as the ver-
tices of the emerging mesh. The limitation guarantees that no two vertices are closer
to one another than the limitation radius Remin. Hence, the mesh resolution can be
adjusted by this additional limitation step. Consequently, the radius Remin is called
minimum edge length.
A point from an initial selection is inserted as vertex or rejected by the limitation
step, as described previously. If the point originates from a tracking of changes, it
has already been transfered before. Hence, the corresponding vertex with all adjacent
edges and triangles has to be identified and must be removed. Afterwards, the new
point is inserted again.

3.5.2 Projection and Candidate Selection

LetM denote a triangle mesh as defined in Section 3.1 and let v denote the examined
vertex with its corresponding surface normal n. Further, let N VRemax

(v,M) denote the
vertex ball neighborhood in M with radius Remax around the vertex v. The projection
Prv,n(ṽ) of a vertex ṽ onto the tangent plane with origin v and plane normal n is the
mapping

Prv,n(ṽ) : R3 → R
2; ṽ 7→ ṽ∗ ,

with

Prv,n(ṽ) :=
(

1 0 0
0 1 0

)
R(n) (ṽ − v) .

The rotation w.r.t. the plane normal n is

R(n) :=
(

a n× a n
)T

,

with the plane direction

a :=
{

n× (1 0 0)T (1 0 0) · n 6= 0
n× (0 1 0)T else

.

Hence, the set of candidate points C(v) is the projection of the ball neighborhood
N VRemax

(v,M) onto the tangent plane of v with

C(v) := {Prv,n(ṽ) ∈ R2 | ṽ ∈ N VRemax
(v,M) \ v} . (3.20)

The candidate points are filtered by their surface normals, in order to avoid points
from a possible backside surface in the set of candidates. The surface normal of each
candidate point must not differ more than a threshold αcmax from the surface normal
n of the examined vertex v. Hence, Equation (3.20) is extended to

C(v) := {Prv,n(ṽ) ∈ R2 | ṽ ∈ N VRemax
(v,M) \ v ∧ arccos(〈ni,n〉) < αcmax} (3.21)

with the corresponding surface normal ñ of the vertex ṽ.

Further, let L(v) denote the projection of all edges in the edge ball neighborhood
N ERemax

(v,M) onto the tangent plane of v. The neighborhood consists of a set of edges
ER(q,M) and a corresponding set of vertices V(ER(q,M), as defined in Equation (3.5).
Only the vertices of the edges have to be projected onto the tangent plane, since the
edges e ∈ ER(q,M) merely represent the connectivity of the vertices. Hence, the set of
projected vertices is

V∗(ER(q,M)) := {Prv,n(ṽ) ∈ R2 | ṽ ∈ V(ER(q,M)) ∧ arccos(〈ñ,n〉) < αcmax} ,
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and the projection of the neighborhood is the pair

L(v) := (V∗(ER(q,M)), ER(q,M)) .

3.5.3 Triangulation Update

After the calculation of the projected vertex neighborhood C(v) and edge neighborhood
L(v), the mesh is refined by adding and removing edges around the examined vertex
v. Let e(ṽ∗) denote a candidate edge with

e(ṽ∗) := 0ṽ∗ ṽ∗ ∈ R2

with the edge length

‖e(ṽ∗)‖ = ‖ṽ∗‖ .

Further, let EC(v) denote the set of candidate edges

EC(v) := {e(ṽ∗) ∈ R2 | ṽ∗ ∈ C(v)}

with n := |EC(v)| and let ϑ( EC(v) ) denote the set of the elements of EC(v) sorted w.r.t.
their edge length

ϑ( EC(v) ) := {e1, . . . , en ∈ EC(v)} , ∀i = 1, . . . , n− 1 : ‖ei‖ ≤ ‖ei+1‖

During the triangulation update, every candidate edge e ∈ ϑ( EC(v) ) is tested for inte-
gration into the projected set of edges L(v), using the following rule:

Definition 3.3 A candidate edge e ∈ ϑ(EC(v)) is a valid edge in L(v), if it has no inter-
section with any edge eL ∈ L(v) or if all intersecting edges eL ∈ L(v) are longer than
e.

The above rule requires a test for intersection between two edges. Here, a specialized
test is used, exploiting the fact that the candidate edge always starts at the origin of
the projected coordinate systems. It is described in Appendix A.3. The test result can
be divided in three cases:

1. No intersection
The edge e is valid and is added to L.

2. All intersecting edges are longer than e
The edge e is valid and is added to L. All intersecting edges are deleted from L.

3. At least one intersecting edge is shorter than e
The edge e is invalid and is not inserted into L.

The above test is applied iteratively to all edges in ϑ(EC(v). Testing the edges in as-
cending order w.r.t. their length is mandatory, i.e. the test has to start with the
shortest edge, because a short edge possibly removes an existing (longer) edge, that
otherwise would lead to a rejection of a subsequent longer candidate edge. The entire
process of local edge update is summarized in Alg. 3 and is illustrated in Fig. 3.8.
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Figure 3.8: Local update of triangulation by the new vertex q. The black points represent the point neighborhood,
the gray edges are the edge neighborhood.
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Algorithm 3 Incremental update of local edges at the new vertex v (triangulation
update).

boolean valid;
boolean intersects;
for all e ∈ ϑ( EC(v) ) do

valid := true;
for all eL ∈ L(v) do

intersects := intersect(e,eL) /* See Alg. 6 in Chapter A.3 */
if intersects = true then

if ‖e‖ < ‖eL‖ then
Store edge eL in Edel

else
valid = false; break;

end if
end if

end for
if valid = true then

Remove all edges in Edel from L(v)
Add e to L(v)

end if
Clear Edel

end for

3.5.4 Calculation of Triangle Faces

After the edges of the mesh have been locally updated in the triangulation update
step, the modified edge neighborhood L(v) is transformed back to 3D space and syn-
chronized with the set of edges EM. Further, the set of triangles TM has to be updated.
Let Enew denote the set of newly inserted edges and let Edel denote the set of removed
edges. The removal of an edge implicates the invalidation of the attached triangles
and further leads to an incorrect triangle information in the two remaining edges
that shared the now invalid triangle. Hence, let Einvalid(Edel) be the set of edges with
corrupted triangle information. Consequently, the set of modified edges Emod is defined
as

Emod := Enew ∪ Einvalid(Edel)

For every edge e ∈ Emod, the triangle information has to be updated, i.e. the left
and right triangle vertex vl and vr has to be re-determined, because the triangles
are stored via their corresponding edges, as described in Section 3.1. Further, every
vertex v ∈ VM holds a set E(v) with all edges that start or end in v.
Let VE(v) denote the set of vertices that are connected to v by an edge

VE(v) := {ṽ ∈ VM | ∃e ∈ E(v) : ṽ,v ∈ e} .

The set of candidate triangle points CT (e) of an edge e ∈ Emod is the set of all vertices
that both edge points are connected to

CT (e) := VE(vi) ∩ VE(vj) with e = vivj .

Every triangle t = ∆(vi,vj ,vk) with vk ∈ CT (eij) forms either a left or a right triangle
w.r.t. e. This is verified by the following rule:
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Figure 3.9: The signed tetrahedron volume of the candidate triangle formed by the edge eij and candidate point
vl or vr respectively. The tetrahedron volume VTet(vi,vj ,vr,vT ) is negative and the volume VTet(vi,vj ,vr,vT ) is
positive.

Definition 3.4 A point vk defines a left triangle with respect to the edge e = vivj,
if the signed tetrahedron volume VTet(vi,vj ,vk,vT ) with the tetrahedron point vT =
vi+vj

2 + ni + nj is positive.

The signed volume VTet is given by

VTet(v0,v1,v2,v3) =
1
6

det

 (v1 − v0)T

(v2 − v0)T

(v3 − v0)T

 ,

as defined in the textbook of O’Rourke [O’R98]. The Definition 3.4 is further visualized
in Fig. 3.9.
If more than one candidate point for the left or right triangle exists in CT (e), the
triangle with the smallest volume VTet is used. Consequently, the left triangle point
is given by

vl(e) := arg min
vk∈CT (e)

{VTet(vi,vj ,vk,vT ) > 0}

and the right triangle point is

vr(e) := arg min
vk∈CT (e)

{VTet(vi,vj ,vk,vT ) < 0} .

3.6 Summary and Discussion

In this Chapter, the real time streaming surface reconstruction RT-SSR method for
visual feedback tasks is introduced. A triangle mesh is generated by successively
adding new points to a processing pipeline.
The processing pipeline consists of two principal stages: the normal estimation stage
and the mesh generation stage. In the first stage the surface normals for every in-
serted point are estimated by least-square fitting a tangent plane through a local point
neighborhood of the examined point. Here, a combination of ball neighborhood and
k-nearest neighbors is applied. With every insertion of new points, the neighborhood
is adapted for every point individually. The normal estimation for each point is con-
trolled by an adaptive neighborhood and a global limitation of the point density. The
estimation results are validated and changes are tracked, thus, only plausible points
are transfered to the subsequent mesh generation stage. During the mesh generation
stage, the new points are inserted as vertices of the emerging mesh. For every newly
inserted vertex a localized 2D triangulation is performed on the projection of a local
ball neighborhood.
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The core of the reconstruction process is the estimation of surface normals, because
incorrect normals result in a faulty projection in the mesh generation stage and thus
lead to a corrupted triangulation. The first step of this estimation is a global density
limitation. The problem of an unwanted dependency on the input order, which poten-
tially causes the rejection of points with high quality by ones with a lower quality, is
overcome by introducing a replacement limitation. However, this replacement limita-
tion requires an additional coordinate per sample point an thus increases the memory
consumption and computational effort. Therefore, the limitation method should be
selected according to the characteristics of the measured data. A replacement limita-
tion is only applied, if a suitable quality criterion exists and varies significantly.
The limitation is parametrized by a minimum distance Rmin. This radius has to be
chosen carefully, if local surface details are not to be omitted. The measurable detail
of a surface depends on the sample density and the accuracy of the scanner system
used. Hence, the minimal expected deviation σ̃min can be used to adjust the radius.
The normal estimation is controlled by the maximum number of neighboring points
and the initial radius. This k-in-R neighborhood is adapted for each point and with
every update step. This concept allows for an initial coarse estimation of a surface
normal, even for locally sparse sampled point sets. If the sample density rises, the ra-
dius of its neighborhood shrinks, resulting in normals that represent the local shape
of the surface more precisely. This approach couples the parameters of the neighbor-
hood k and Rn0 to the limitation radius Rmin. Hence, the combination of parameters
has to be chosen carefully. This aspect is further discussed in Chapter 5.
During the selection step, the estimated surface normals are validated, ensuring that
only plausible surface normals are used in the subsequent mesh generation. The se-
lection implicitly filters outliers and very sparse areas from the point set, if this neigh-
borhood is too small or the variances are bad, resulting in non-plausible estimates.
This filtering is rather strict and can also delay or prevent the further processing of
points with good estimates. In this work, a fast selection bypass is used to accelerate
the selection of new points that are already embedded in a neighborhood of points
with valid surface normals. Again, the fast selection has to be configured carefully,
as otherwise points with invalid normals are transfered to the mesh generation. This
can be eased by tracking the surface normals, which does, however, increase compu-
tational costs.
The mesh generation stage has an additional limitation step that allows for control-
ling the resolution of the generated mesh without influencing the process of normal
estimation. For triangulation, the edge- and point neighborhood of the resulting mesh
is used. Similar to the normal estimation stage, the limitation radius and the neigh-
borhood radius are coupled.
The triangulation update is an expensive operation. The correctness of this refinement
depends on the estimated surface normal. Re-insertion of a vertex necessitates to the
deletion of the old vertex and its connectivity, to re-insert the new vertex, and to
update the mesh. Hence, the selection step in the normal estimation stage should be
strict enough to avoid unnecessary re-insertions of vertices, which interferes with the
requirement of fast mesh generation and the filtering problem stated above.
The complexity of both stages is limited, because all operations are performed on local
neighborhoods with an upper bound for the number of points. The only operations
that have to be performed on the complete data set are the insertion of points and the
query of a ball neighborhood. The acceleration of these global operations are the topic
of the following Chapter 4.



4
Spatial Data Structures

The streaming surface reconstruction method mostly performs operations on local
subsets of the stored data sets, however, at least the determination of these sub-
sets is a global operation. Hence, a data structure that accelerates the operations
performed on the used point sets and meshes is required. During manual scanning
and streaming processing of real time measurements, an appropriate data structure
needs to reflect the fact that the data is incrementally growing with every measure-
ment. Moreover, no a priori knowledge concerning the object’s size or number of
sample points can be assumed. Thus, a data structure must be able to dynamically
extend itself and the space it covers.
The acceleration of global operations on the stored data of the streaming surface
reconstruction is the topic of this Chapter. First, general spatial data structures for a
dynamic purpose are discussed and two suitable structures are introduced. Further,
their application to the streaming surface reconstruction process is explained. The
advantages and disadvantages of the two data structures are analyzed and the best
suitable structure w.r.t. to the size of the scanned scene or object is recommended.

4.1 Dynamic Space Partitioning

Spatial data structures are used in numerous applications, especially in the fields of
computer vision and computer graphics. They are commonly used either to reduce the
complexity of irregular 3D data by approximation with regular structures or to provide
a fast access to local features by exploiting the spatial ordering of the structure. In this
work, the spatial data structure enables for fast operations on point sets and meshes
that are dynamically changing. In the following section, related work is discussed
and two suitable spatial structures, the Dynamic Voxel Space and the Extendable
Octree, are presented.

4.1.1 Related Work

The general concept of every spatial data structure is to partition the space into finite
subsets and to provide a rapid access to these elements. Existing approaches can be
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categorized into structures with homogeneous partitioning and such using heteroge-
neous or irregular partitioning. Examples for homogeneous partitioning in 3D are the
linear voxel space or the octree. Structures with irregular partitioning are e.g. the
BSP-trees1 or the R-tree [Gut84] and its variants.

The R-tree has been first published in the work of Guttman [Gut84]. This tree and its
variants, e.g. the R∗-tree or the R+-tree, are often used for GIS2. In the early textbook
of Samet [Sam90], different types of quadtrees and octrees are intensively described
and discussed in the context of image processing and GIS systems. Here, the spatial
structures are primarily designed for compression and fast access to static data sets.
In the textbook of Akenine-Moeller [AMH02], spatial data structures, e.g. BSP trees
and octrees, are used for accelerated rendering techniques, e.g. culling algorithms,
intersection tests, ray tracing and collision detection. Rusinkiewicz [Rus01] uses a
BSP-tree for designing of a point rendering technique, called QSplat. Here, a point
set is divided into a hierarchy of bounding spheres. Instead of rendering the points,
the tree is traversed top down, until a sphere not longer contributes to the rendering
process, because it is not in the viewing frustum or it is to small for the given view.
The technique is extended to a network streaming variant, i.e. subtrees are loaded
via a network stream if required.

Spatial data structures are also used in the context of surface reconstruction. In the
work of Hoppe [Hop94] a single-resolution voxel space is used for approximating an
unorganized point set. The voxels are labeled by an implicit function that represents
the sampled surface. Finally, an iso-surface is extracted from the voxel space by
using the marching cubes algorithm of Lorensen and Cline [LC87].

Generally, irregular partitioning provides a better partitioning of the data than a ho-
mogeneous partitioning. However, the computational effort for re-balancing the struc-
ture during modification of the stored data (insertion or removal of elements) is higher
for structures with irregular partitioning. Hence, the structures applied in this work
are based on homogeneous partitioning, as the data is dynamically changing and the
overall computation time should not be increased by unnecessary restructuring of the
data storage.

In detail, the R3 space is partitioned into an axis-aligned, regular grid of cubes and a
fast access to these discrete elements is established. The homogeneous partitioning
is called voxelization, the discrete volume elements are named voxels3. Further,
voxel spaces can be divided into single-resolution and multi-resolution spaces. In
the first case, all voxels have the same edge length. In the second case, the space is
hierarchically constructed and multiples of the basic edge length are possible.

Every voxel stores information related to the covered volume. In many applications, a
voxel stores a binary value that indicates whether the volume is inside or outside of an
object (e.g. in the work of Hoppe [Hop94]). In this work, a voxel is used as a container
that stores the points, vertices and edges of the streaming surface reconstruction
process. In the following, two approaches for dynamically creating the voxel space
and rapidly accessing the voxels are introduced: the single-resolution Dynamic Voxel
Space and the multi-resolution Extendable Octree.

1BSP-Tree = Binary Space Partitioning Tree (The best known BSP-tree is the kd-tree, see e.g. the
textbook of Samet [Sam90])

2GIS = Geographic Information System
3The word voxel is a portmanteau of the words volumetric and pixel (From http://en.wikipedia.

org/wiki/Voxel, 2008).

http://en.wikipedia.org/wiki/Voxel
http://en.wikipedia.org/wiki/Voxel
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l

i

Figure 4.1: Definition of a voxel: A voxel is a cubical volume defined by an edge length or voxel size l and the grid
coordinate at the lower, left, and front corner.

4.1.2 Dynamic Voxel Space

Various approaches to design a single-resolution voxel space exist. A simple and fast
implementation is the mapping to a one-dimensional, connected field (in memory),
called linear voxel space. Each voxel is mapped to a unique and scalar index, e.g.
by a x-y-z-order encoding4, Z-ordering or Hilbert-ordering. A detailed description of
linear voxel spaces is given in the textbook of Samet [Sam90]. The advantage of this
voxel space implementation is the random and fast access to all elements. As a draw-
back, the total volume covered has to be known a priori. Further, all voxel of the
volume must be allocated in memory. This non-dynamic and memory consuming de-
sign is not suitable for growing data sets, as required in this work.

The Dynamic Voxel Space is a dynamic and sparse single-resolution voxel space
i.e. the volume does not need to be known a priori and only non-empty voxels have
to be stored in memory. In detail, the voxels are stored in a self-balancing binary
search tree5. This approach has already been presented in the context of surface
reconstruction by Bodenmüller [BH04].
Let l denote the edge length or size of an voxel in the R3 space and let i ∈ Z3 denote
the grid coordinate of a voxel on the discrete grid. The grid coordinate is the lower,
left, and front corner of the cubical voxel volume, as illustrated in Fig. 4.1. Further,
let c0 denote the origin of the voxel space in R3 i.e. the location of the grid coordinate
i = (0 0 0)T .6 Hence, a voxel can be described in the Z3 by its grid coordinate. The
corresponding voxel or grid coordinate i ∈ Z3 of a point p ∈ R3 is given by

i : R3 → Z
3 ; p 7→ i(p) :=

⌊
p− c0

l

⌋
=

b(px − c0x)/lc
b(py − c0y)/lc
b(pz − c0z)/lc

 ,

with the floor-function
bxc = max {n ∈ Z | n ≤ x} .

Correspondingly, the coordinate c ∈ R3 of a voxel with grid coordinate i ∈ Z3 is

c : Z3 → R
3 ; i 7→ c(i) = i · l + c0 .

4The x-y-z-order is also known as lexicographic ordering (see Definition 4.1).
5In this work a red-black tree implementation of a 2-3-4-Top-Down tree is used. Other concepts like

the AA tree or AVL tree can be used alternatively. More information can be found e.g. in the textbook of
Sedgewick [Sed92].

6The shift c0 of the voxel space origin is optional and can be used to keep the absolute values of i low
and thus to avoid numerical problems.
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Insertion The tree is constructed dynamically, starting with a void volume. It grows
with every new voxel that is inserted. Each voxel represents a node in the balanced
search tree. For the insertion of new voxel into the tree and also for queries, a unique
comparison operation between voxels is required. In this work, the lexicographical
ordering is used for comparison and defined by the following rule:

Definition 4.1 Let i1 = (u1, v1, w1)T , i2 = (u2, v2, w2)T ∈ Z3 denote the grid coordinates of
two voxels. The voxel i1 is lexicographically smaller than i2 (ii < i2) if and only if

u1 < u2 ∨ (u1 = u2 ∧ (v1 < v2 ∨ (v1 = v2 ∧ w1 < w2))) .

Query The query of a single voxel or node in a binary search tree is performed by
traversing the tree top-down until the desired element is found. Here, the compar-
ison operation as defined in 4.1 is used for selecting the correct branch during tree
traversal.
In the context of the RT-SSR method, the query of all voxel inside an Axis-Aligned
Bounding Box (AABB) is required, as described in the next Section 4.2. Let D denote
the set of all non-empty (or allocated) voxel in the space

D := {i1, . . . , in} ∈ Z3

and let pmin and pmax denote the minimum and maximum coordinates of the AABB.
Further, let imin = i(pmin) and imax = i(pmax) the corresponding grid coordinates.
Hence, the set of voxel that intersects with the AABB is given by

DAABB = {i ∈ D | ∀x = 1, 2, 3 : iminx ≤ ix ≤ imaxx} . (4.1)

The query of the set DAABB requires a separate search of each voxel in the set. How-
ever, in Section 4.2 an extension to the Dynamic Voxel Space that allows for the query
of a set of direct neighboring voxels with only a single tree traversal is discussed.

The self-balancing strategy of the tree guarantees that an insert- or query- operation
has a complexity of O(log2N) with N being the number of elements in the tree. More
details on operations on self-balancing trees can be found e.g. in the textbook of
Sedgewick [Sed92].
The advantage of this implementation is that only non-empty voxels are allocated in
memory. Thus, the volume does not have to be known a priori and only a small
memory overhead for the tree is required. A drawback of this structure is the loss
of spatial order, because the voxels are mapped to a one-dimensional search tree.
Hence, spatially neighboring voxels are usually not mapped to neighboring nodes in
the binary tree, as illustrated in Fig. 4.2.

4.1.3 Extendable Octree

An octree is a hierarchical data structuring technique that bases on uniform, recur-
sive decomposition. It is commonly used to compress information by merging voxels
with equal feature values into one larger voxels. Various applications of octrees with
different designs exist in computer vision and computer graphics. Examples for oc-
tree applications can be found in the textbooks of Samet [Sam90] and Akenine-Moeller
[AMH02]. Typically, a cubic root volume is subdivided into eight smaller cubes. This is
repeated until a specified resolution is reached. This concept is illustrated in Fig. 4.3.
An octree can either be implemented as linear octree that stores all nodes in a linear



4.1. DYNAMIC SPACE PARTITIONING 55

X

0,1,1

0,0,0 1,0,0

2,0,0

2,1,1

1,1,1

Z

0

(a) Voxel space (b) Tree represenation

adjacent
voxel

Figure 4.2: Binary search tree representation of a voxel space: A set of voxels (a) and their representation in the
binary search tree. Neighboring voxels typically are not mapped to neighboring nodes in the tree.

Figure 4.3: Basic concept of an octree: (a) represents a ‘root’ volume, in (b) the ‘root’ volume is subdivided into
smaller values, in (c) one subdivided volume is subdivided further.

array, or as direct octree that allocates the tree nodes separately and links the mem-
ory addresses. The linear implementation implicates that the covered volume has to
be known a priori, analogous to the linear voxel space. Contrary, the direct octree
can be modified dynamically while the access is slower w.r.t. the linear design, since
a voxel access always requires a complete tree traversal.
The Extendable Octree is a direct octree but uses an inverse creation strategy com-
pared to usual strategies, i.e. the octree initially has a void volume and is constructed
bottom-up incrementally. It grows with every insertion of a new non-empty voxel,
similar to the creation strategy of the Dynamic Voxel Space.
The uppermost voxel of the octree is denoted as root, the lowest voxels are denoted
as leaves. Each voxel has a level k that represents its position in the hierarchy,
additionally to its grid location i. The leaf voxels are at level k = 0, the root voxel is at
level kr. In comparison to a single-resolution voxel space, the octree allows voxels with
different edge lengths. The smallest edge length l0 of the leave voxels characterizes
the octree similar to the length l in the single-resolution voxel space. The edge length
lk of a voxel with level k is

lk = l0 2k .

Every non-leaf voxel has eight connections (pointers) to its children or subvoxel. The
location of a subvoxel can be described in relation to the coordinate system of its
parent voxel by the vector ∆ic, as illustrated in Fig. 4.4(a). Moreover, this subvoxel
coordinate ∆ic can be mapped to a scalar index ic that allows for uniquely indexing the
subvoxel w.r.t. its parent. This subvoxel encoding is further visualized in Fig. 4.4(b).
The encoding is related to the relative location vector by

ic(∆ic) :=
〈
(20 21 22)T ,∆ic

〉
. (4.2)
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Figure 4.4: Access to the children of an octree voxel: The location ∆ic of a child voxel relative to its parent voxel (a)
and its unique labeling by the corresponding spatial index ic (b).

Query A query of a voxel i at level k is performed by traversing the octree top-down.
Therefore, the scalar index of the next subvoxel to descend to has to be determined in
every step. Let ĩ denote the current voxel of the traversal at level k̃ > 0 and let i be a
direct or indirect subvoxel with k < k̃. Then, the scalar index i of the next subvoxel in
the direction of the desired voxel i is

i = child(̃i, k̃, i) := ic

(⌊
2(i− ĩ)

2k̃

⌋)
. (4.3)

Let Dk denote the set of all non-empty voxels with level k. Hence, the set D0 is compa-
rable to the set D of the Dynamic Voxel Space. Here, D denotes the set of all non-empty
voxels at all levels,

D :=
kr⋃
k=0

Dk .

In comparison to a single-resolution voxel space, the octree supports the combined
query of all voxel in an AABB. The set of voxels DAABB ⊆ D intersecting with the AABB
is collected by traversing the octree top-down, analogous to a single-voxel query. How-
ever, at each traversal step, the intersection between the current voxel and the AABB
defined by imin and imax must be determined. If an intersection exists, the branch
is further traversed. Let ĩ denote the current voxel of the traversal at level k̃. The
intersection between the current voxel and the search volume can be tested by the
following rule:

Definition 4.2 An intersection between a voxel ĩ at level k̃ and a grid volume from imin

to imax exists, if one of the points imin and imax is inside the AABB defined by ĩ and
(̃i + 2k), or if one of the points ĩ and (̃i + 2k) is inside the AABB defined by imin and imax.

Insertion The insertion of a new leaf voxel consists of two steps. First, the tree has
to be extended, i.e. new root voxels are added to the existing root, until the root
volume covers the new voxel. Then, the new root is subdivided until the root node is
connected to the new voxel via its children. This dynamic construction is illustrated
in Fig. 4.5. In the following, the two basic operations extension and subdivision are
explained in detail.
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Figure 4.5: Construction of the Extendable Octree: A new voxel (red) is inserted (a). First, the octree is extended
until the new voxel is inside the root volume (b), i.e. the current root voxel is embedded into a new root volume. Then,
the octree is subdivided until the new root voxel is connected to the newly inserted voxel (c).

Extension Let i denote the grid coordinate of a new leaf voxel that is not inside the
root volume of the octree. The extension operation incrementally extends the root
volume of the octree by embedding the original octree into a new root volume (of
double edge length). This operation is detailed by the pseudo-code in Alg. 4.

Algorithm 4 Octree extension for the insertion of a new leaf voxel with grid coordinate
i

NodePtr root := Octree.root
while not inside(newVoxel , root) do

NodePtr newRoot := create_node() /* create new node */
newRoot.k := root.k + 1 /* increase level */
newRoot.i := loc(root.i, root.k, i) /* see Equation (4.4) */
ic := child(newRoot.i,newRoot.k, root.i) ) /* see Equation (4.3)) */
newRoot.child[ic] := root /* link old and new root */
root := newRoot

end while
Octree.root := root

The inside-condition in the while-loop is a test for intersection between two axis-
aligned bounding boxes7. Hence, a simple comparison rule can be used for testing:

Definition 4.3 A leaf voxel i is inside the volume of a root voxel ir and level kr, if

max(ir − i) < 2kr ∧min(ir − i) ≥ 0 .

At each iteration, the grid coordinate of the new root voxel inew must be determined.
Here, the voxel is grown into the direction of the new leaf voxel by

inew = loc(ir, kr, i) := ir − (1−Θ(i− ir) · 2kr) (4.4)

with the element-wise unit step function

Θ(x) :=
{

1 x ≥ 0
0 else

x ∈ R .

7See the textbook of Bergen [Ber03] for further information on intersection tests.
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Subdivision Let i denote the grid coordinate of a voxel with level k that is inside the
root volume but not integrated into the octree structure. The subdivison operation
descends through the octree and creates top-down all non-existing nodes until the
voxel is connected to the octree’s root voxel. The subdivision operation is detailed by
the pseudo-code in Alg. 5.

Algorithm 5 Octree subdivision for a new voxel with grid coordinate i and level k

Require: New voxel is inside the root volume
VoxelPtr voxel := Octree.root
while voxel.k > k do

[ic,∆ic] := child(voxel.i, voxel.k, i) /* see Equation (4.3) */
if not voxel.child[ic] then

voxel.child[ic] := create_node() /* Create child voxel */
voxel.child[ic].i := node.i + ∆ic
voxel.child[ic].k := voxel.k - 1

end if
voxel := voxel.child[ic] /* descend one level */

end while
return voxel

4.2 Application to Streaming Modeling

The streaming modeling method introduced in this work consists of two principle
stages, the normal estimation stage and the mesh generation stage, as described
in Chapter 3. In both stages, a fast access to dynamically changing spatial data sets
is required. New points are inserted and local neighborhood queries must be per-
formed in the normal estimation stage. During mesh generation, vertices and edges
are inserted, their neighborhoods are searched, and edges may even be deleted. In the
following, the acceleration of these operations by applying the previously introduced
spatial data structures is discussed.

4.2.1 Operations on Points and Vertices

Points and vertices have no spatial extension and thus are stored in the corresponding
(leaf) voxel. Therefore, each voxel i holds a list8 Pi containing the points or vertices
that are inside it, with

Pi := {p ∈ P | i(p) = i} .

In the following, insert- and query-operations are explained using a sample point set
P as an example. The operations on a set of vertices V are performed similar.

Point Insertion The insertion of a point or vertex into a data set is performed by
searching for or creating the corresponding voxel and inserting the point into the
voxel’s list. The complexity of insertion depends only on the complexity of searching
for or creating the corresponding voxel, as the insertion into the list has a constant
complexity O(const.).

8A list is a simple data structure that allows for fast insertion and deletion as well as linear access.
Detailed information can be found e.g. in [Sed92]
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Neighborhood Query The query of the ball neighborhood NR(q,P) for a point q is
the search of all points in a spherical volume around q. This query is accelerated
by identifying all non-empty voxels that intersect with the spherical volume first, and
then testing the points inside these voxels only.

Let DP denote the set of non-empty voxels

DP := {i ∈ Z3 | Pi 6= {} } .

For the Dynamic Voxel Space, this set is equal to the set D from the previous section
(DP = D). If the Extendable Octree is used, the set is equal to the set of all leaf voxels
(DP = D0), as only leaf voxels can contain points.
For the query of a ball neighborhood, all voxels that intersect with the spherical vol-
ume centered at q and with radius R are required. Here, the AABB of the spherical
volume is used to find these voxels. Let DN denote the set of all non-empty vox-
els that intersect with the AABB that ranges from (q − R) to (q + R). Analogues to
Equation (4.1), the set is given by

DN = {i ∈ DP | ∀x = 1, 2, 3 : ix(q−R) ≤ ix ≤ ix(q +R)} . (4.5)

Hence, the set of points PDN that must be tested during a neighborhood query is

PDN =
⋃

i∈DN

Pi .

Consequently, the point ball neighborhood NR(q,P) is given by

NR(q,P) ≡ NR(q,PDN ) .

The complexity of the neighborhood query comprises the complexity of finding DN and
the linear complexity O(|PDN |) of testing all points in the corresponding point set PDN .
The latter has an upper bound, caused by the density limitation pattern introduced
in Section 3.2.
Concluding, the complexity of both operations depends on a fast access to the voxel
space. In the following, this access and its complexity is discussed for the previously
introduced two data structures.

Dynamic Voxel Space

The complexity of insertion and query of a single voxel in a binary search tree is
O(log2 |D|), i.e. the access speed is directly coupled to the number of non-empty
voxels in the space. For a neighborhood query, every voxel in the interval DN has to
be searched separately, resulting in a complexity of

O(|DN | log2 |D|) .

In the normal estimation stage, potentially more queries than insertions are per-
formed. Moreover, not every insertion requires the creation of a new voxel. Hence, the
overall processing for both stages can be accelerated by storing additional links to the
direct neighborhood for every voxel, as illustrated for two dimensions in Fig. 4.6. The
spatial order information is partially restored and can be used for the query.
Using this extension, only the central voxel that contains the query point q has to
be searched in the tree, as the direct neighboring voxel can be accessed via this
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R=l

q

Figure 4.6: Neighborhood query with linked neighboring voxels: In two dimensions, the links to the eight neighboring
voxels are stored for each voxel (black arrows). In three dimensions, each voxel has 26 neighbors. Hence, for the
query of a ball neighborhood with radius R ≤ l only the corresponding voxels (red quadratic area) of the query point
q has to be found. Three neighborhoods with radius R = l are displayed (dashed red circles) as example.

voxel. However, this acceleration can only be applied, if the neighborhood sphere
fits completely into the volume of the voxel and its direct neighbors. This can be
guaranteed for a ball neighborhood with radius R, if the edge length of the voxels is
sufficiently large, i.e. if

R ≤ l .

This requirement is visualized in Fig. 4.6. Here, the marginal case of a neighborhood
sphere that is centered in a corner of the central voxel is shown. This extension
reduces the complexity of a query to

O(log2 |D|) .

In exchange, the creation of a new voxel implicates an additional search of the 26
neighboring voxels and the storage of the information as link in each voxel. Hence,
the complexity of a voxel creation increases to

O(27 log2 |D|) .

Extendable Octree

The octree typically reflects the spatial expansion of the stored data, whereas the
Dynamic Voxel Space omits this global property. Hence, the number of levels in an
octree at a given basic voxel size l0 is directly coupled to this expansion. The number
of steps at the tree traversal for adding new voxels and searching existing voxels or
aligned volumes depends on the compactness of the stored data set. This fact is
illustrated in Fig. 4.7 for two points with two different distances at a basic voxel size
l0. Thus, the minimum number of levels kmin at a basic voxel size l0 that are required
to cover a data set with an axis-aligned rectangular bounding volume of edge length
lx × ly × lz is

kmin = dlog2 max {lx, ly, lz} − log2 l0e , (4.6)

with the ceiling function
dxe = min {n ∈ Z | n ≥ x} .

However, the insertion of a new point either results in the query of an existing voxel
or in the creation of a new one. The complexity of searching an existing leaf voxel is
O(kr), being kr the level of the root voxel and thus number of levels in the octree. The
creation of a new leaf voxel consists of (k∗r − kr) extension steps and k∗r subdivision
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Figure 4.7: Complexity of octree traversal: In this example the tree consists of two non-empty voxels (leaf nodes). The
number of octree levels k required to integrate both voxels depends on the distribution of the voxels (compactness).
In (a) the voxels are directly neighboring, resulting in a tree with k = 2 levels. In (b) the voxels are located further
apart, resulting in k = 3 levels.

steps, with the initial root level kr and the new root level k∗r . The level k∗r can be
calculated by Equation (4.6) using the combined bounding box of the original octree
and the new point.
Contrary to the Dynamic Voxel Space, the octree enables the search of the set DN
at once, as described in Section 4.1. The effort for the tree traversal at a combined
query depends on the constellation of the searched voxel in the octree and thus is very
variable. However, a separate search of all voxels in DN has a complexity of O(kr|DN |)
and thus is an upper bound for the effort of the combined query of a set of voxels.

4.2.2 Operations on Edges

The insertion and query of edges is performed synchronously to the point operations.
First, the corresponding voxels or voxel set has to be found, then the local operation
is performed. However, unlike vertices, edges have an extension in space. Hence, the
storage of edges and resulting possible query operations are more complicated.
An edge can be stored explicitly as element in the voxel that fully contains the com-
plete edge. However, a voxel that enclose an edge which connects arbitrary vertices
only exists in a multi-resolution space, e.g. an octree. At least the root voxel contains
the edge, as it contains all vertices in V and only edges between these are allowed.
Moreover, this approach neutralizes the fast access that is accomplished by a spatial
data structure, as many edges must be put into top-level voxel and thus have to be
tested in each operation. Not only long edges are stored in a top-level voxel, but short
edges that have an unfavorable location as well, e.g. if the end points of an edge are
located in two voxels that are separated up to the root level.
However, it is also not desirable to store an edge in every leaf voxel that partially con-
tains this edge, as this would significantly increase the cost of inserting and erasing
edges. Consequently, an edge e is stored implicitly as attachment of its end points. In
detail, every vertex v holds a list of attached edges E(v), corresponding to the mesh
data structure presented in Section 3.1.



62 CHAPTER 4. SPATIAL DATA STRUCTURES

lbox

q
Remax

e

R em
ax

    
    

    
   

Figure 4.8: Relation between query of voxels and edge neighborhood: The size lbox of the bounding box for the
voxel query must be large enough w.r.t. the neighborhood radius or maximum edge length Remax The shown edge e
represents the boarder case of Equation (4.7). It is the line segment of length | e‖ = Remax and perpendicular to the
diagonal of the bounding box with the edge points on the boarder of the bounding volume.

Insertion and Removal The insertion and removal of an edge e = ab is performed
by identifying its end points a,b in the data structure and then inserting or removing
the edge to or from the respective edge lists E(a) and E(b).

Neighborhood Query The query of an edge ball neighborhood N ER(q,M) is the search
of all edges in the spherical volume centered at q and with radius R. The query is
accelerated by identifying a suitable subset of voxels and then only testing the content
of this subset, analogues to the query of vertex neighborhoods. Unlike in vertex
neighborhood queries, the required voxel set is not determined by the smallest axis-
aligned bounding box around the neighborhood sphere, as this bounding box must
be large enough to guarantee that at least one end point of every edge that intersects
with the spherical volume of the neighborhood is inside. In the mesh generation stage,
addressed in Chapter 3.5, the maximum edge length and the radius of neighborhood
queries is equal, i.e.

max{‖e‖ ∈ R+ | e ∈ EM} ≡ Remax .

The marginal case of an edge of length Remax that touches the sphere centered at q and
with radius Remax, but is located outside the bounding box with size lbox, is illustrated
in Fig. 4.8. The shaded area forms an equal-sided triangle with an length of Remax

2 for
the two equal sides. Further, the sides can be described w.r.t. the diagonal of the
bounding box. This results in

Remax

2
=
√

2
2
lbox −Remax .

Consequently, a complete search can only be guaranteed by relating the size of the
bounding box lbox to the maximum edge length Remax ,

lbox ≥
3√
2
Remax . (4.7)

Let DNE denote the set of non-empty voxels inside the bounding volume of size lbox
and centered at q, with

DNE = {i(q− lbox
2

), . . . , i(q +
lbox
2

) ∈ D} .
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Further, let EDNE denote the set of edges that have at least one end point inside of DNE

EDNE = {E(v) | v ∈
⋃

i∈DNE

Vi} ,

with the set of corresponding vertices Vi of the voxel i. Consequently, Equation (3.4)
that defines the edge ball neighborhood can be formulated w.r.t. EDNE ,

ER(q,M) := {e ∈ EDNE | d
2
e(e,q) ≤ R2} .

Dynamic Voxel Space

In the Dynamic Voxel Space with a direct voxel linking extension, the limitations of the
bounding box directly affect the relation between voxel size l and neighborhood radius
Remax. Only the central voxel i(q) is searched at the query of N ER(q,M). Consequently,
the voxel size l must satisfy

l ≥ 3
2
√

2
Remax . (4.8)

Extendable Octree

The Extendable Octree has no equivalent restrictions, nevertheless, the coupling of
the voxel size to the maximum neighborhood radius in Equation (4.8) guarantees that
no more than 27 voxels have to be searched i.e.

|DN | ≤ 27 .

4.2.3 Implementation Issues

Implementation considerations for the introduced data structures w.r.t. streaming
surface reconstruction are provided in the following. Generally, computation can be
accelerated by storing more information for every point, vertex or edge. Thus, the
trade-off between memory consumption and computation time has to be optimized
for the respective application, considering the available memory. In the following,
additional acceleration considerations are shown that are used in this work.

Storage of Point Neighborhoods

The normal update step in the normal estimation stage requires a continuous update
of point neighborhoods. During the insertion of a new sample point, all influenced
points are identified, the respective neighborhoods are updated with the new point,
and the surface normals are re-estimated. Hence, it is beneficial to store the respec-
tive neighborhood for each point, since thereby only the neighborhood of the new point
has to be identified. The cost for this extension is an additional list that contains up
to k links to neighboring points with the maximum neighborhood size k of the k-in-R
neighborhood.
However, for the set of vertices in the mesh generation stage, this extension is not
applicapble, because the vertex neighborhood is only searched once per point, as
described in Section 3.5.
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Avoiding Query Costs for Edge Insertion and Removal

Generally, the insertion and removal of edges requires a query of the voxel space.
However, edges are only inserted or removed during the triangulation step. Since a
query of the vertex and the edge neighborhood has been performed in the preceding
step of candidate selection, a further query of voxels can be avoided by storing the
corresponding voxel for every vertex and edge in the neighborhood during the trian-
gulation update operation.

4.3 Summary and Discussion

In this Chapter, the problems of storage of and fast access to dynamically growing
point sets and changing meshes, as required for the streaming surface reconstruc-
tion, are discussed. The problem is approached by voxelization of the 3D space and
by providing a fast access to the discrete volume elements. Two possible implemen-
tations, the Dynamic Voxel Space and the Extendable Octree, are introduced and the
application in streaming surface reconstruction is detailed.
The Dynamic Voxel Space is a single-resolution space. Its primary advantage is the
small memory overhead. Only non-empty voxels have to be stored, with only a small
per-voxel overhead for the tree structure. The access to the structure depends on
the number of elements (voxels) in the tree. A drawback of this structure is that the
spatial ordering is not represented, as the space is mapped to a planar search tree. An
additional acceleration of the query is achieved by linking direct neighboring voxels
during the creation and thus restoring spatial ordering information.
The Extendable Octree, however, is a multi-resolution space and preserves the spatial
order of the voxels and the stored data. The memory consumption is potentially
higher, since not only the leaf voxels have to be allocated, but the hierarchy above
them as well. An advantage of the octree is the possibility of searching all voxels
inside a discrete volume in a single traversal.
A comparison of the complexities of both data structures is hardly possible. The
computational effort in a Dynamic Voxel Space is directly coupled to the number of
non-empty voxels and consequently to the voxel size. Contrary, the Extendable Oc-
tree depends on the spatial resolution (i.e. the voxel size) and the compactness of the
data. However, the levels of the Extendable Octree and consequently the complexity
increase only by a log8-function with an increasing rectangular volume. The com-
plexity of the Dynamic Voxel Space increases with a log2-function for a fully occupied
voxel space. However, the real access is faster as the voxel space is not fully occupied,
only non-empty voxels are stored and the stored data represents a surface, i.e. only
a small part of a rectangular volume contains non-empty voxels. Hence, the average
computational effort is similar for both data structures. If the data is compact, the
Extendable Octree has a better performance. If the data is distributed e.g. a scene of
many disconnected objects, the Dynamic Voxel Space provides a faster access.
Concluding, the choice of a suitable data structure for streaming surface reconstruc-
tion depends on the kind of object or scene that is to be reconstructed. In the context
of manual scanning, objects are usually small, e.g. technical parts, pottery products
or busts. Hence, the Extendable Octree is appropriate for access to the stored sample
point sets and meshes. For sparse data sets with large expansion, the Dynamic Voxel
Space is a better choice. In the applications in the following sections, the data is
typically compact. Hence, the Extendable Octree is used.



5
Verification of Method

In this chapter, the RT-SSR method is verified using simulated scans on synthetic
objects. A virtual scanner device that implements the sensor model from Chapter 2
is applied. The simulation setup is introduced and reconstruction results of selected
scan sweeps along synthetic objects are shown. These example trajectories repre-
sent a group of typical real life situations occurring in manual scanning. Further,
these results are analyzed and limitations of the method are identified. Moreover, the
influence of the process parameters on the reconstruction method are discussed.

5.1 Simulations

For the evaluation of the streaming surface reconstruction method, scans of simple
scenes consisting of primitive objects are generated and the true sample points and
surface normals are stored. This allows for comparing the reconstruction results with
ground truth data. With this approach, the normal estimation stage can be analyzed
and verified.
In the following, the properties of the virtual scanner devices applied are described.
Then, the synthetic scenes and generated scans are shown. Finally, results of the
RT-SSR method are depicted.

5.1.1 Virtual Scanning Devices

A single-stripe scanner system with cylindrical geometry is used for validation. The
cylindrical geometry implicates a central ray origin, thus single stripes may vary in
sample density and accuracy. The geometric properties of the device are summarized
in Tab. 5.1.
A limited sensor accuracy is simulated by applying zero-mean Gaussian noise to the
virtual measurements. Four sensors with different noise characteristics are imple-
mented: without noise (noiseless), noise with low standard deviation (low noise), noise
with high standard deviation (high noise), and noise with a standard deviation that
increases with the measured distance along a polynomial function (polynomial noise).
In Fig. 5.1, the characteristic of the distance-dependent polynomial deviation is illus-
trated. The deviation parameters are summarized in Tab. 5.1. These different noise
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Figure 5.1: The characteristic curve of the distance-dependent polynomial deviation. The corresponding function is
shown in Tab. 5.1.

Table 5.1: Attributes of the virtual range sensors: A single-stripe scanner system with cylindrical geometry is used
for verification. The characteristic parameters have been discussed in Chapter 2. Four variants of the sensor are
implemented, each with a different noise characteristic.

Geometric parameters:
Nu, Nv u0, v0 ∆u,∆v dmin, dmax

1 px, 400 px −30◦, 0 mm 0.15◦, 0 mm 10 mm, 200 mm

Noise parameters:
Sensor Variant Shortcut σ(d)
Noiseless -N = 0
Low Noise -L = 0.1
High Noise -H = 0.8
Poly. Noise -P = 0.0897281 + 0.0010267 d+ 4.406e−10d2

configurations can be used to verify the robustness of the reconstruction method
w.r.t. sensor noise.
The range image at a particular pose is determined by calculating the intersection
between the measurement ray and the object for every distance pixel. Moreover, the
true sample point and surface normal are stored for every distance measurement.

5.1.2 Simulated Scenes and Scans

The virtual scenes consist of primitive analytic objects that allow for an accurate cal-
culation of intersections with rays from a simulated scanner device. Cubes, spheres,
planes, and combinations of these can be created within the simulation suite. In this
section, three scenes are used: a single cube, two cubes, and a single sphere, as
shown in Fig. 5.2.
The virtual scanner performs sweeps across the objects by defining virtual scan paths.
In detail, these paths are defined by a set of key frames and the number of steps be-
tween two consecutive key frames. The scan poses are generated linearly interpolating
between the key frames. Here, the interpolation method presented in Chapter 2.3 is
used but with a fixed number of 100 steps between two consecutive key frames instead
of a single interpolation time. Hence, each sweep contains 40, 000 sample points (see
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(a) Scene 1: Single cube (b) Scene 2: Two cubes (c) Scene 3: Single sphere

Figure 5.2: Virtual scenes for verification of the streaming surface reconstruction: A single cube (a), two cubes with
a shift in the x-direction (b), and a single sphere (c).

Tab. 5.1). Further, it is assumed that all distance pixel are measured synchronously
and that the sensor pose is measured synchronously to the distance measurements.
Hence, no further pose interpolation is required for each distance pixel.
The generated scans represent different situations and constellations: The scenes
contain planar surfaces as well as curved regions and sharp edges. In the following,
the scans are described and in Fig. 5.3 they are illustrated with the corresponding
scan paths:

Scene 1 contains a single cube with an edge length of 100mm, as shown in Fig. 5.2(a).
The cube is used to analyze the behavior of the reconstruction method for planar areas
as well as for sharp (convex) edges and corners. Two sweeps are generated:

• Scan S1E : Sweep across an edge consisting of 100 stripes with a scanner that
looks upright onto the edge (Fig. 5.3(a))

• Scan S1C : Sweep across a corner consisting of 100 stripes with a scanner that
looks upright onto the corner (Fig. 5.3(b))

Scene 2 consists of the combination of two cubes, each with an edge length of
100 mm. One is shifted in x-direction by 20 mm, resulting in a concave edge. A scan
that covers this edge is performed:

• Scan S2 : Sweep into the concave edge with a scanner that looks into the inner
edge (Fig. 5.3(c))

Scene 3 is a single sphere with a radius of 50mm, centered at the origin. The sphere
has a surface with constant curvature. A scan that consists of two overlapping sweeps
is generated:

• Scan S3 : Two overlapping sweeps with the scanner looking into the negative
x-direction (Fig. 5.3(d))

All scenes are scanned using each of the four virtual sensors described in Tab. 5.1.
In the following sections, the combination of scan path (S1E, S1C, S2, S3) and used
sensor noise model (-N, -L, -H, -P) is encoded, e.g. the Scan S1E performed by a
scanner with high noise is denoted by S1E-H.
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(a) S1E-N (b) S1C-N

(c) S2-N (d) S3-N

Figure 5.3: Generated scans for the scenes in Fig. 5.2 without noise (-N ): Scan S1E is a sweep across an edge of
the cube in Scene 1 (a) and Scan S1C is the sweep across the corner of the cube (b). Scan S2 is the scan of the
concave edge in Scene 2 (c). In Scan S3, two overlapping sweeps across the sphere in Scene 3 are performed (d). The
color of the sample points encodes their measured distance, the distances range from 10mm (red) to 200mm (green).
Each sweep contains 100 stripes and thus 40, 000 sample points. The coordinate frames represent the location and
orientation of the key frames, the red lines between the frames are the scan paths.
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Table 5.2: Process parameters for the streaming surface reconstruction delivering the results presented in Fig. 5.4
and 5.5.

Parameter Symbol Value
Limitation radius Rmin 0.3mm
Initial normal neighborhood Rn0 2mm
Max. number of neighbors kn 20
Max. valid grazing angle αsmax 80◦

Max. fast selection angle αnmax 5◦

Min. number of selected neighbors nsmin 5
Min. edge length Remin 0.5mm
Max. edge length Remax 3mm

5.1.3 Reconstruction Results

In the following, the reconstruction progress for the simulated scans is shown and
processing times are listed. Results from the normal estimation stage and the mesh
generation stage are presented. All scans are processed on a Dell Precision 390 sys-
tem with an Intel Core2Duo 2.4GHz CPU, an NVIDIA FX3450 graphics adapter and
2GB memory, running a Linux operating system. The results are generated with a
suitable set of process parameters, listed in Tab. 5.2. The choice and suitability of
process parameters is further analyzed in the next section.

Reconstruction Progress In Fig. 5.4, the reconstruction progress is shown exem-
plarily for the processing of Scan S1E-P. Three snapshots of the processing illustrate
the streaming character of the surface reconstruction. Fig. 5.4 shows the progress of
both stages: the surface normals of the normal estimation (a,c,e) and the surfaces of
the mesh generation (b,d,f). Scan S1E-P is a bottom-up sweep along the cube’s edge.
Hence, the data is continuously growing, starting at the bottom of the cube.
Comparing left and right, Fig. 5.4 shows that more estimated surface normals than
vertices are visible in the mesh at a certain time. This delay is caused by the selec-
tion stage described in Chapter 3.4, as the upper-most stripes have an unbalanced
neighborhood and are thus delayed by the selection criteria. Further, the continuous
change of surface normals at the edge of the cube is visible. This effect is caused by
the use of local neighborhoods for the estimation as described in Chapter 3.3.

Reconstruction Results In Fig. 5.5, the processing results for the Scans S1C-P, S2-
P, and S3-P are shown. The corresponding statistics are summarized in Tab. 5.3.
number of input points, number of reduced points after the limitation step, and
amount of vertices and triangles in the final mesh. Further, the overall processing
time is measured. The results in Fig. 5.5 show that the method creates good re-
sults in various situations, including scenes containing sharp edges and corners (a),
concave parts (b), and surfaces with constant curvature (c).
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(a) after 3000 inserted points (b) after 3000 inserted points

(c) after 10000 inserted points (d) after 10000 inserted points

(e) complete model (f) complete model

Figure 5.4: Progress of mesh generation for Scan S1E-N : Results from Scan S1E after the normal estimation stage
(a,c,e) and results after the mesh generation stage (b,d,f).
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Table 5.3: Results of surface reconstruction for the simulated scans in Fig. 5.5: Number of input points, number of
reduced points after limitation, amount of vertices and triangles in the final mesh, and overall processing time.

Scan Input Pts. Reduced Pts. Vertices/Triangles Time [s]
S1E-P 35500 29639 20646/61411 2, 649
S1C-P 36631 27271 17828/53083 2, 668
S2-P 37800 27694 16678/49617 2, 539
S3-P 53323 21627 11265/33509 2, 686

(a) S1C-P (b) S2-P

(c) S3-P

Figure 5.5: Surface Reconstruction results for Scans S1C-P, S2-P, and S3-P using the parameters in Tab. 5.1.
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(a) Rmin = 0mm (b) Rmin = 1mm (c) Rmin = 2mm

Figure 5.6: Density limitation with different radii: Figure (a) shows the sample point set of Scan S1C-N without
limitation. The corresponding sets after limitation with Rmin = 1mm (b) and Rmin = 2mm (c) show variations in the
point density due to the relation between native sample density of the input data and limitation radius.

5.2 Analysis and Discussion

In the previous section, the progress of streaming surface reconstruction and its re-
sults have been visualized for a selection of simulated scans and a suitable set of
process parameters. In this section, the influence of the process parameters on nor-
mal estimation and mesh generation are analyzed and limitations to the method are
discussed.

5.2.1 Density Limitation

The density limitation defines the maximum number of points within a finite vol-
ume. Thus, the sample density on the scanned surface is limited. In Section 3.2,
two possible limitation methods have been introduced: the simple limitation and the
replacement limitation.
For both methods, the maximum sample density is controlled by the limitation ra-
dius Rmin. Fig. 5.6 shows the limited point sets for three different limitation radii
Rmin = 0 mm, Rmin = 1 mm, and Rmin = 2 mm. Variations in the point density are
visible, caused by the relation between native sample density of the input data and
limitation radius. In detail, the sample density of Scan S1C decreases along the cube’s
faces. A distance smaller than 2Rmin between two adjacent points results in gaps that
are not closable by further points, as described in Chapter 3.2 and illustrated in
Fig. 3.3.v However, this variance of the point density is considered in the subsequent
normal estimation step and thus its impact on the surface reconstruction is negligi-
ble. The mesh generation stage compensates this local high densities with its own
simple limitation step.
In Fig. 5.7, the result of inserting first Scan S1E-H (high noise) and then Scan S1C-L
(low noise) is shown for the simple limitation (a) and for the replacement limitation
method (b), both with a limitation radius of Rmin = 2 mm. With the simple limitation,
points with low noise (green) are rejected, if nearby points with high noise (red) are
inserted earlier. The replacement limitation overcomes this problem. However, it
generates a high local point density and a gap at the border of Scan S1C-L. This effect
originates from the replacement strategy itself, as noisy points inserted earlier define
the anchor points. If a point’s distance to the border of a point from the second scan
is smaller than Rmin, it is shifted towards the points with higher quality. However,
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(a) Simple limitation (b) Replacement limitation

Figure 5.7: Comparison of simple limitation and replacement limitation by first inserting Scan S1E-H and then Scan
S1C-L, both with a limitation radius of Rmin = 2 mm: The simple limitation (a) prefers points with high noise points
(red) that are inserted earlier over points with low noise (green). The replacement limitation overcomes the input
order dependency, however, it generates a local high point density and a gap at the border of the low noise scan (b).

this shift is limited to a distance of Rmin from the corresponding anchor point. If two
point sets with continuously decreasing qualities are combined, the shifting effect is
less distinct. This is exemplarily shown in Fig. 5.8, where the Scans S1E-P and S1C-P
(both with polygonal noise) are combined for a limitation radius of Rmin = 2mm.

5.2.2 Normal Estimation and Selection

The estimation of a point’s surface normal is performed by fitting a least square plane
through a k-in-R neighborhood (see Chapter 3). Correctness and accuracy of normal
estimation depend on the neighborhood and the local sampling. In the following, the
impact of process parameters on the estimation and the verification (selection) are
analyzed.

Normal Estimation The neighborhood of each point is controlled by the limitation
radius Rmin, the initial neighborhood radius Rn0, and the maximum number of points
in the neighborhood kn.
The initial radius Rn0 defines the maximum search radius for possible neighboring
points and thus controls the required sample density that enables the selection of the
point. A larger radius allows for the estimation of valid surface normals from sparsely
sampled surfaces. However, an increasing radius also increases the computational
effort for searching the initial ball neighborhood. This aspect is further discussed
in Section 5.2.4. A minimal requirement for Rn0 w.r.t. to Rmin and kn is given by
Equation (3.13). As in the context of visual feedback, the delay caused by a possible
rejection in the selection stage should be low, the initial neighborhood radius Rn0

is adapted for each point w.r.t. the expected sample density. Let q denote a newly
inserted sampled point. In this work, its initial neighborhood radius is determined by

Rn0(q) = max{Rnmin , 2 δq, Rnuser} .
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(a) Processing of Scan S1E-P (b) Processing of Scans S1E-P and S1C-P

Figure 5.8: Replacement limitation for two scans with similar noise and a limitation radius of Rmin = 2 mm: First,
Scan S1E-P is inserted (a), then Scan S1C-P is added (b). The effect of local high densities at the borders of Scan
S1C-P are less distinct as in the results shown in Fig. 5.7(b).

This strategy guarantees the minimum radius Rnmin and compensates an decreasing
sample density. The manual override Rnuser can be used to define a larger minimum
radius than Rnmin. This override is particularly important for 1D range sensors (e.g.
light-stripe sensors), as the movement of such a sensor potentially defines the dis-
tance between two subsequent acquired stripes and thus the sample density in this
movement direction.

The parameters Rmin and kn control the extension of the point neighborhood. An
increasing limitation radius Rmin results in decreasing sample density, as already
discussed in Section 5.2.1. Thus, the area on the surface of a neighborhood that
should contain kn points increases with an growing value of Rmin. An increasing
number of points kn at a constant Rmin also increases the area on the surface. Hence,
a large limitation radius or number of points result in a strong smoothing of the points
and a possible loss of geometrical details due to this smoothing. Fig. 5.9 illustrates
the estimated surface normals at the edges and the corner of a cube (Scan S1C)
with two different maximum number of points kn ∈ {15, 30} and a constant radius
Rmin = 0.5mm.

The maximum number of points in the neighborhood kn is set in order to decrease
the neighborhood after the initial calculation and to thus limit the computational
effort for the estimation. It directly influences the robustness of the estimation (see
Equation (3.9)). A small value for kn w.r.t. the sample density can result in an unstable
normal estimation and thus in a rejection of points at the selection stage. In Fig. 5.10,
the rejection of points due to a too small value of k is illustrated for the example
of a low density in sweep direction. Concluding, a smaller limitation radius Rmin

requires either a more dense sampling of the surface or a higher value of kn. For
any combination of Rmin and kn, the initial neighborhood radius Rn0 has to be chosen
properly, i.e. it must guarantee that kn points can be sampled with the chosen value
of Rmin.
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(a) kn = 15 (b) kn = 30

Figure 5.9: Influence of Rmin and kn on the normal estimation: The sample points of Scan S1C without sensor noise
are colorized w.r.t. the difference between the corresponding estimated surface normal and the true surface normal.
The difference ranges from 0◦ (green) to > 10◦ (red). The regions along the edges differ from the true normal, as the
latter rotates by 90◦ at the edge and the estimated surface normal changes continuously (see Chapter 3.3). A large
value of kn at a constant Rmin = 0.3 mm increases the region of differing surface normals, i.e. a higher value of k
increases the smoothing.

Figure 5.10: Rejection of points due to a too small value of kn: Sample points of Scan S1C after surface normal
estimation that have passed the selection stage (green) or have been rejected (red). The rejection is caused by a too
small value of kn = 10 (for Rmin = 0.3) w.r.t. the distance of adjacent stripes on the surface, as shown in the zoomed
detail. The neighborhood only contains points of a single stripe, plus one point of an adjacent stripe, as the radius is
too low.
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Figure 5.11: Rejection of incorrect surface normals: Several surface normals at the border of the point set are
estimated incorrectly (i.e. they point into the wrong direction) due to sparse neighborhoods. The points are not
selected (selected points are green, rejected are red) due to a rejection by the criteria c1 to c3.

(a) αsmax = 90◦ (b) αsmax = 70◦

Figure 5.12: Flipped surface normals caused by a flat line-of-sight onto the surface for Scan S2-H and the parameter
set: Rmin = 0.3 mm, kn = 15, Rn0 = 2 mm. Without the c0-criterion (αsmax = 90◦), some selected surface normals
point inside the volume, with αsmax = 70◦ this error are avoided.

Selection The local sampling of a manual scanner system depends on the opera-
tor and the movement of the scanning device. However, the selection step verifies
the sampling density and rejects undersampled areas and unbalanced local neigh-
borhoods. In Fig. 5.11, an example for incorrect surface normals caused by sparse
neighborhoods at the border of the scan is shown. The verification step filters out-
liers and other erroneous measurements: these points either have only few points in
the neighborhood or the neighboring points are randomly scattered. Both cases are
rejected by the selection criteria c1 to c3, as defined in Chapter 3.4. They require a
neighborhood that contains sufficient number of points and is homogeneously dis-
tributed along the surface, not perpendicular to it.
The c0-criterion defining the maximum valid grazing angle αsmax avoids that samples
with a flat line-of-sight onto the surface in combination with noisy measurements
cause wrong decisions on the sign of the estimated surface normal, as explained in
Chapter 3.4. In Fig. 5.12, the selected surface normals generated from Scan S2-H are
shown with (αsmax = 70◦) and without (αsmax = 90◦) the validation of the grazing angle.
Here, the noise in association with the chosen estimation parameters (Rmin = 0.3mm,
kn = 15, Rn0 = 2mm) causes inaccurate estimations of normal directions. Without the
c0-verification, some selected surface normals point inside the volume; applying the
verification, this error is avoided.
During the selection, the criteria c0 to c3 are very strict and sometimes points with
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(a) 750 points (b) 770 points

(c) 5000 points (d) All points

Figure 5.13: Interaction between regular selection and fast selection during processing of Scan S2-P: Rejected points
are marked red, regularly selected points are green, and fast selection points are blue. The fast selection requires
nsmin = 5 points and an angle smaller than αnmax = 5◦. After 750 insertions, nothing is selected (a). The insertion of
20 more points results in a regular selection of 5 points and the fast selection of several nearby points (b). The fast
selection strategy propagates itself and results in a rapid point selection in flat areas, whereas curved areas (e.g. the
edges) have to be selected regularly (c,d), because the surface normals change too much.

correct surface normals are rejected. The fast selection criterion cfast is designed
to detect and select these rejected points by comparing estimated surface normal to
those of selected points nearby. It is parametrized by the minimum number of se-
lected neighbors nsmin and the maximum difference angle αnmax between the examined
surface normal and the average of those of the selected neighbors. In Fig. 5.13, the
interaction between regular selection and fast selection is illustrated. Here, the fast
selection is parameterized with nsmin = 5 and αnmax = 5◦, i.e. only small differences are
allowed. The fast selection strategy propagates itself and results in a rapid point se-
lection in flat areas, whereas curved areas (e.g. the edges) have to be selected regular,
because the surface normals change too much.

5.2.3 Mesh Generation

The mesh generation stage is parametrized by two parameters: the minimum edge
length Remin and maximum edge length Remax. The minimum edge length is the ra-
dius of the second limitation stage and directly controls the resolution of the edge, as
presented in Chapter 3.5. The maximum edge length defines the maximum distance
between two vertices that can be connected, larger distances between vertices result
in holes or unconnected areas. The two parameters are coupled, as the neighborhood
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(a) Remax = 1mm (b) Remax = 2mm

(c) Remax = 3mm

Figure 5.14: Coupling between Remin and Remax during mesh generation from Scan S1C for different values of Remax
and a constant Remin = 0.2mm: A low value of Remax in relation to Remin results in an incomplete reconstruction (a).
Increasing the radius Remax results in more candidate points for triangulation, and thus in an improved triangulation
result (b). A further increase of Remax allows for triangulation of more sparsely sampled areas, e.g. the border areas
(c).

volume must at least encompass the closest possible vertices around the examined
vertex. The limitation results in point distances between Remin and 2Remin (see Chap-
ter 3.2). Hence, the maximum edge length must at least satisfy

Remax > 2Remin . (5.1)

However, a large value for Remax unnecessarily increases the computational effort. In
Fig. 5.14, the coupling between Remin and Remax is illustrated for Remax ∈ {1, 2, 3}mm at a
constant Remin = 0.2mm. The small radius Remax = 1mm results in a poor triangulation
due to incomplete sets of candidate points. The medium radius Remax = 2mm generates
a sufficient amount of candidate points at each update, the large radius Remax =
3mm even allows for closing larger distances between the vertices, i.e. more sparsely
sampled areas are also triangulated. In this work, a factor of at least three between
both radii is used, as this trade-off has shown good results.
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5.2.4 Voxel Size and Computation Time

The voxel size l0 controls the voxelization of the space, i.e. the amount of voxels
generated for a certain extension of the data set. Hence, it controls the computational
effort for insertions and neighborhood queries on point sets and meshes, as described
in Chapter 4.
A neighborhood query is composed of the search of all voxels inside the neighborhood
sphere and of the test of all points inside each voxel, as described in Chapter 4.2. In
the RT-SSR method, the number of points in any finite volume is limited by the density
limitation technique, as presented in Chapter 3.2. Hence, the maximum amount of
points per voxel increases with the voxel size. A very small space resolution results in
high computational effort due to a very fine voxelization, i.e. a large amount of voxel
and thus a number levels in the octree. However, a very large space resolution also
causes high computational effort: while only few voxel must be traversed, they cover a
large area and potentially contain a large amount of points. Fig. 5.15(a) illustrates this
characteristics of the computation time for ball neighborhood queries with different
space resolutions and neighborhood radii using the example of the points of Scan
S2-N. The results confirm the expected development. Moreover, it shows that there
exists a flat minimum for resolutions w.r.t. the neighborhood radius R that lies in the
range

2R ≤ l0 ≤ 5R ,

w.r.t. the neighborhood radius R.
The insertion of a point principally only requires the query of the corresponding voxel,
as described in Chapter 4. This would implicate that the computational effort de-
creases with the amount of voxel, i.e. with an increasing voxel size. However, a denisty
limitation is applied during insertion, as described in Chapter 3.2, and requires an
additionally query of the neighborhood with radius Rmin. Thus, the computational
effort for the insertion increases also for high voxel sizes. Fig. 5.15(b) shows the av-
erage times for inserting all points of Scan S2-N at different space resolutions. The
results confirm the assumed development of the computation time for insertion op-
erations. Measurements with different data sets show similar results for both, query
and insertion.
During surface reconstruction, more queries then insertions are performed. Conse-
quently, the resolution is optimized for queries. In this work, the space resolution is
set to

l0 := 3R ,

as this guarantees that the computation time is at or near the minimum time. This
coarse voxelization results always in a small amount of voxel w.r.t. the point den-
sity and mesh resolution, generating only a small memory overhead, even for larger
objects. In Fig. 5.16, the octree for the points of Scan S2-N at a space resolution of
l0 = 3mm is shown as an example.
The computation time of the RT-SSR method for a certain set of process parameters
increases slowly by a logarithmic function with the insertion of more points, as the
global operations require more time. However, the computation time of local opera-
tions in the different stages depend on the choice of the process parameters.
The calculation of mean and covariance in the normal estimation stage have a linear
complexity w.r.t. the number of points in the neighborhood. This is controlled by the
parameter kn, as it is the maximum number of points in the neighborhood.
The triangulation update requires the mapping of all n vertices and m edges in the
neighborhood, which has a linear complexity. Further, the candidate vertices must be
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Figure 5.15: Computational effort for neighborhood queries: The average time for insertion (a) and query (b) of the
points from Scan S2-P at different space resolutions are visualized. Both operations are performed with a limitation
radius of Rmin = 0.2 mm. The insertion time potentially decreases with higher resolutions. However, very large
resolutions causes an increasing effort, caused by the limitation. The query time increases with higher neighborhood
radii and has a flat minimum for space resolutions that are three to five times the neighborhood radius, as a small
value for the space resolution causes a high effort for the voxel query and a very high value results in a high amount
of points per voxel.

(a) (b)

Figure 5.16: Voxelization on Scan S2-N : The complete octree (a) and the close-up of the area with the scan (b) for a
space resolution of l0 = 6mm.
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sorted, witch takes O(n log n) steps. Finally, all candidates must be tested with every
neighboring edge in the worst case, resulting in O(nm) steps.
Consequently, the number of points, vertices, and edges in the respective ball neigh-
borhood should be only as large as necessary for a robust surface reconstruction,
as described in the previous sections. The responsible parameters are the maximum
number of points kn for the normal estimation and the ration between Remin and Remax

for the mesh generation.

5.3 Summary

This chapter analyzes the RT-SSR method using simulated scans on virtual scenes.
The selected scenes represent real world situtations and are applied to verify the
method. Moreover, different noise models are added to the simulated distance mea-
surements and to test the algorithm’s robustness.
The method shows correct results for all examined data if a suitable set of parameters
is chosen, even for noisy data. The correct choice of parameters proves to be essential,
as the parameters are coupled and the selection of inappropriate parameters causes
bad reconstruction results or high computational effort.
As expected, using density limitation with replacement overcomes the rejection of
high quality points, as observed when applying the simple limitation. However, it can
generate local high densities when combining scans with very different quality values,
yet the effect on the subsequent normal estimation is minor. The normal estimation is
controlled by the limitation radius, the initial neighborhood radius, and the maximum
number of points. The alteration of one parameter typically requires an adaption of
the other two, as the three are coupled. Here, limitation radius and maximum number
of points control the expansion of the neighborhood. A small radius delivers a sparse
or unbalanced neighborhood, resulting in a rejection of the sample points during the
selection stage. A large radius causes a strong smoothing of coordinate and surface
normal. The initial neighborhood radius controls the required sample density for
at least a coarse estimation of surface normals, and thus affects the delay of the
reconstruction process.
The mesh generation stage is parametrized by the minimum and maximum edge
length. The maximum edge length is the neighborhood radius for the search of can-
didate points and nearby edges. It must be sufficiently higher than the minimum ra-
dius, as otherwise not enough candidate points can be detected in the neighborhood.
However, the computation time increases with a higher ratio between minimum and
maximum edge length. Thus, the maximum edge length should be chosen only as
large as necessary for a robust mesh generation.
The computational effort for global operations on the stored data is coupled to the
voxel size used. The computational cost of insertion and query has a single minimum
for voxel sizes that are twice to fifth of the used neighborhood radius. Hence, a
resolution that is the threefold of the radius is recommended in this work to guarantee
a small computational effort.
In the following chapter, the applicability of the RT-SSR method as the core component
of a visual feedback system for a hand-guided scanner system is demonstrated. Here,
an optimized parameter set is used.
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6
Manual Digitization

This Chapter presents a visual feedback application for a particular manual scanner
system, the DLR Multisensory 3D Modeler. The system and its integrated range
sensors as well as possible pose sensors are introduced. Further, the most suitable
configuration of the RT-SSR process and the design of a visualization for this par-
ticular scanner system is discussed. Possible extensions to this visualization that
improve the usability of the scanner system are introduced. Finally, scanning results
and selected applications are presented.

6.1 The DLR Multisensory 3D Modeler System

Current commercial and research scanner systems are typically specialized, i.e. op-
timized for one or a limited number of applications. System specific attributes, e.g.
working range or accuracy, as well as reliability of the results are optimized for a cer-
tain task. As an example, the modeling of objects requires high precision, while for
autonomous robotic exploration tasks, a high reliability and large working range is
desired. Further, manual scanner systems have to be small and light weighted.

At the DLR Institute for Robotics and Mechatronics, the challenge of a suitable sensor
system for multiple applications in the field of computer vision and robotics has been
solved by the development of a multi-purpose vision platform, the DLR Multisensory
3D Modeler (3DMo). In Fig. 6.1, the system is shown. It integrates cameras and
laser modules. Three different range measurement methods with different properties
are implemented. The system is used for robotic exploration [Sup07], for 6-DoF object
tracking [Sep08], and for object recognition and grasp planing [OEF+06]. In this work,
the system is used for manual scanning of objects.

In the following, the hardware, communication, and synchronization of the 3DMo
system are briefly described. A detailed description of the hardware design is found
in the work of Suppa et al. [SKL+07], the communication concept is explained by Bo-
denmüller et al. [BSSH07]. Further, the range sensors, external pose measurement,
and system calibration are introduced.

83
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(a) Design drawing (b) Real system

Figure 6.1: The DLR Multisensory 3D Modeler: The design drawing (a) shows the central components and possible
adapters for either robot-mounted operation or for hand-held applications. Further the real system in hand-held
configuration is shown (b).

6.1.1 Hardware Components

The sensing components of the 3DMo are a pair of FireWire cameras, two line-laser
modules, and a DLR laser-range scanner (LRS). The latter is an independent laser
range sensor and is described by Hacker et al. [HDH97]. The integrated AVT Marlin
cameras1 have a resolution of 780 × 580 pixel and a maximum frame rate of 50Hz.
Two different lenses with a focal length of f = 6mm and f = 12mm can be mounted.
The base distance of the cameras is 50mm, which represents a trade-off between
perspective difference and range precision assuming a general working range between
100mm and 2000mm. The line-laser modules have an opening angle of 60◦ and a
wavelength of 635nm.

6.1.2 Communication and Synchronization

The 3DMo is connected to a PC system running a Linux operating system, the so-
called Sensor PC, via a FireWire bus2. A protocol bridge application gathers the data
from the hardware components and provides a concurrent, synchronized and event-
driven access to the data.
The synchronization and data labeling is implemented w.r.t. the design considera-
tions in Chapter 2.3. All incoming data is labeled with a unique timestamp. This
timestamp generation is synchronized to a hardware pulse generator in the 3DMo.
Further, the protocol bridge provides the labeled raw data to subsequent processing
stages via a shared memory interface. This design allows for an implementation of
subsequent processing in separate applications. This communication and synchro-
nization concept has already been described by Bodenmüller et al. [BSSH07].

1Allied Vision Technologies (http://www.alliedvisiontec.com, 2008)
2An IEEE1394b bus with 800MBit/s bandwidth is used.

http://www.alliedvisiontec.com
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6.1.3 Range Sensors

The 3DMo provides three range sensors, the Laser Range Scanner (LRS), the Light-
Stripe Profiler (LSP), and the Stereo Camera Sensor (SCS). Each range sensor is
implemented as an individual application on the Sensor PC. All three range sensors
are triangulation-based, however, the sensors differ e.g. in working range, accuracy,
and robustness. In the following, LRS and SCS are explained briefly, whereas the LSP
is discussed in more detail, as it is used as the exemplary range sensor for manual
scanning in this chapter.

The Laser Range Scanner (LRS) [HDH97] is a 1D distance measurement device.
It apllies the principle of point-wise laser triangulation. An outgoing laser beam is
reflected diffusely on the object surface. The reflected light is collected by a receiver
lens which focuses the light onto a position sensitive detector (PSD). Additionally, the
intensity of the emitted laser beam is controlled by the amount of received light. Thus,
the system adapts dynamically to different reflection characteristics of the surface
and changes in environmental lighting, ensuring robust measurements. The entire
measurement unit is integrated into a rotating head, so that a stripe of distance
measurements is generated at every turn. The sensor has a working range of 60 mm
to 300mm and a sampling rate of 400 points per turn at a rotation speed of 25 Hz.

The Stereo Camera Sensor (SCS) is an implementation of the semi-global match-
ing (SGM) method introduced by Hirschmüller [Hir06]. Both camera streams are
used to generate a single range image. Generally, stereo reconstruction provides good
results on textured surfaces, but generates poor results on untextured objects. This
capability is complementary to the ability of active range sensors. The SCS uses the
full resolution of the cameras, allowing for acquisition of large areas at once. Due
to the focal length of the cameras, the maximal working range is 250 mm to 2000 mm.
The resolution of the sensor is the camera resolution of 780 × 580 pixel. The SGM
implementation has a measurement rate of 1 Hz.

The Laser Stripe Profiler (LSP) [SSW+04] is a 1D range sensor that uses one of the
cameras and the laser-line module. The laser beam illuminates a stripe on the surface
while the camera records the diffuse reflection. An advantage of this system is that
no optical filter3 is used for simplification of the line segmentation in the image, as
shown in Fig. 6.2. Thus, concurrent applications can simultaneously use the camera
images. Possible applications are the SCS sensor, an image based pose estimation, or
the use of the camera live stream in the visualization, as presented in Section 6.2.
The system provides distance measurements ranging from 100 mm to 500 mm at a
resolution of 400 pixel and at a frequency of 25 Hz. In comparison to the LRS, the LSP
can acquire larger surface regions at once, as it features a higher resolution and a
larger working range. However, the system is less robust w.r.t. changes in surface
properties and environmental lighting. In Tab. 6.1, the geometric parameters are
summarized w.r.t. the geometric description in Chapter 2.2.

3Optical filters are mounted in front of the camera lens to filter light with a certain frequency, i.e. only
the laser light can pass through.
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Table 6.1: Parameters of the Laser-Stripe Profiler (LSP): The sensor features a perspective image coordinate system
as described in Chapter 2.2.

Nu, Nv u0, v0 ∆u,∆v dmin, dmax

220, 1 −0.354848mm−2, 0 0.00339948mm−2, 0 100mm, 500mm
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Figure 6.2: Function of the 3DMo-LSP sensor: Segmentation of the laser line (left) and distance profile (right).

6.1.4 Pose Measurement and System Calibration

The 3DMo system has couplers at the sides and at the rear to connect extensions to
the system, as shown in Fig. 6.1. The couplers can be used either to attach the system
to an external device (e.g. a robot), or to attach additional components needed for the
calculation of the device pose (e.g. optical markers or an IMU4). This way, the system
can easily be used in different configurations with various devices, e.g. mounted onto
a robot or hand-held with optical tracking.
In this work, the system is configured as a hand-held device with an optical tracking
system as pose sensor. The used pose sensor is a smARTtrack IR-optical tracking
system from the Advanced Realtime Tracking GmbH5. The tracking system uses a
calibrated set of infrared retro-reflecting markers to track the 6-DoF pose of the de-
vice. Thus, a unique and asymmetric marker configuration is attached to the lateral
couplers of the 3DMo system. This hand-held setup is shown in Fig. 6.1(b).
The smARTtrack system supports synchronized measurements by an external hard-
ware trigger. A hardware pulse generator is used for synchronizing the measurement
times of the tracking system and the 3DMo components. Consequently, the nearest
pose interpolation is used for this configuration (see Chapter 2.3).
The calibration for the 3DMo-LSP sensor in combination with the tracking system
consists of two major steps: first, the intrinsic and extrinsic camera parameters are
determined w.r.t. to the coordinate system of the tracking markers. Secondly, the
laser plane is calibrated relative to the camera coordinate system.
The intrinsic camera calibration and the extrinsic eye-in-hand calibration is performed

4IMU : Inertial Measurement Unit
5See http://www.ar-tracking.com, 2009

http://www.ar-tracking.com
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Figure 6.3: Precisions of the 3DMo range sensors: The plot shows the root mean square (RMS), i.e. the remaining
error, after calibration. The precision of the LRS is very high in the close-up range, but decreases rapidly with an
increasing distance. The LSP has a lower accuracy for short distances compared to the LRS, but its working range
is broader and the precision does not decrease as rapidly. The SCS has the broadest working range, yet the lowest
precision.

with the CalLab tool box6. A set of images from a chessboard-like 2D calibration panel
and the corresponding device poses are captured. The landmarks in each image
are detected fully automatically. They are used for estimating the intrinsic camera
parameters including radial distortion and the extrinsic calibration. The laser plane
is determined by sampling range images on a reference plane. The entire calibration
procedure is described in detail by Strobl et al. [SSW+04] and Strobl and Hirzinger
[SH06]. In Fig. 6.3, the precisions of the three range sensors of the 3DMo system are
compared. The LRS system has a high precision in the close-up range but decreases
rapidly with increasing distance. This is caused by the small base distance between
laser source and optical sensor. The LSP has usually an lower accuracy for short
distances compared to the LRS but its working range is broader and the precisions
does not decrease as rapidly as for the LRS. The SCS has the broadest working range
but also the lowest precision.
The expected deviation σ(d̃) can be determined by sweeps over a reference plane, as
explained in Chapter 2.4. For the 3DMo-LSP, a reference plane is used for the system
calibration already. Hence, the deviation function can directly be estimated using the
data from the calibration. For the 3DMo-LSP in combination with the smARTtrack
system, this experimentally estimated function is

σ(d̃) = −0.35367 + 0.0012484 d̃+ 1.026e−5 d̃2 + 1.2655e−10 d̃4 (6.1)

and is further used for calculation of the per-point expected deviation, as used in the
RT-SSR method.

6.2 Visual Feedback for Manual Scanning

As stated in Chapter 1, visual feedback is mandatory for manual scanning. A human
operator requires a visual feedback in order to monitor the sampling progress. This
human-in-the-loop system has been illustrated in Fig. 1.1 on page 2. Therefore, the
3D model that is generated by the RT-SSR is connected to a real time visualization.

6The DLR Camera Calibration Toolbox (CalLab) www.robotic.dlr.de/callab, 2009

www.robotic.dlr.de/callab


88 CHAPTER 6. MANUAL DIGITIZATION

Table 6.2: Parameters of the RT-SSR for the DLR-LSP

Parameter Symbol Value
Limitation radius Rmin 0.5mm
Override for initial neighborhood Rnuser 3mm
Max. number of neighbors kn 20
Max. valid grazing angle αsmax 75◦

Max. fast selection angle αnmax 5◦

Min. number of selected neighbors nsmin 5
Min. edge length Remin 0.5− 2mm
Max. edge length Remax 3Remin

In Chapter 5, the parameters of the RT-SSR method have been analyzed. In the follow-
ing section, the settings for the 3DMo-LSP are summarized. Further, the design of a
visualization for visual feedback is discussed w.r.t. the rendering of the geometry, the
adjustment of the virtual camera, and an optional augmentation of the visualization.

6.2.1 Parameterization of the RT-SSR processing

As analyzed in Chapter 5, the RT-SSR method must be adapted to the scanner system
used, as an unsuitable parameter set may cause poor modeling results. For the 3DMo-
LSP sensor, the settings in Tab. 6.2 are applied. The initial neighborhood radius Rn0 is
determined dynamically by Equation (5.1). Hence, only the manual override Rnuser is
set. It is used to define the maximum distance between two consecutive and parallel
stripes on the surface, which enables the sample points of one stripe to be inside the
respective neighborhood of the other stripe’s points. The thresholds of the selection
stage are set confirming the recommendations developed in Chapter 5. The minimum
edge length Remax can be set application-dependent by the user.

6.2.2 Visualization

Different approaches to real time rendering or visualization of 3D data exist. They
can be categorized as point rendering methods, surface rendering, and volumetric
visualization. A summary of concepts for real time rendering is found e.g. in the
textbook of Akenine-Moeller [AMH02].
A simple approach to providing visual feedback for manual scanning is to render the
raw 3D points. This ”brute force approach” has two major disadvantages: First, all
data must be loaded into the GPU. This data overhead potentially results in a slow
rendering of the point model. Secondly, a suitable shading7 is not possible, as no
information concerning the surface gradient is available. More advanced rendering
methods typically require information concerning the local gradient of the surface.
Even point rendering methods need at least the surface normal for every point, e.g.
in the QSplat method of Rusinkiewic and Levoy [RL00]. However, in the context of
visual feedback for manual scanning additional requirements exist. As the visualized
3D model is continuously changing, the visualization should not require a complex
preprocessing of the data, which would have to be rerun every time the 3D model
changes. An example for such an undesired preprocessing is the arrangement of the
data in a level-of-detail graph that has to be completely rebuilt with every data change.

7Shading is the depicting of depth in 3D models by varying levels of darkness.
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In this work, a classical rendering of triangles is used, as the streaming surface recon-
struction generates triangle meshes and no further conversion of the data is required.
Moreover, even older graphics hardware supports the acceleration of triangle sets.
The triangles and edges of the mesh are loaded to the GPU and stored as a so-called
display list. This display list is updated, every time the model changes. However, not
every change of a vertex, edge, or triangle requires an update of the list. Typically,
the model is updated after a complete range image has been processed. For single
stripe systems with a high measurement frequency (e.g. the 3DMo-LSP), an update
of the visualized model is performed after the integration of 5− 10 new range images.
This simple rendering concept is sufficient for smaller models, e.g. busts or techni-
cal parts, since recent graphics adapters can render models with more than 200, 000
triangles in real time. Other techniques, such as point rendering or level-of-detail
extensions that use e.g. the octee structure are possible, but are not discussed in
this thesis.

6.2.3 Virtual View and Augmentation

A suitable virtual view of the generated 3D model is essential for a good impression
and overview during the scanning progress. For the inspection of the model during
and after the scanning, an interactive view control is suitable, e.g. interactive zoom,
translation, and rotation functions as used in numerous 3D viewer and CAD pro-
grams. However, during the scanning process, the view must be adapted dynamically
w.r.t. the changes in the triangle mesh. Here, the following principal view adoption
strategies are applicable:

• Fit of the virtual view to show the entire scene

• Fit of the virtual view to show the last changes in the mesh

• Alignment of the virtual view to the scanner pose

In this visual feedback application, the last mode, alignment of the virtual view to the
scanner pose, is used during the scanning process and for the inspection task. The
alignment allows a use of the scanner itself as an input device, i.e. the operator can
change the view by moving the scanner and without the need to discard the device.
The visualization can be additionally improved by augmenting the displayed model
with a live camera stream from the sensor system. Here, the camera images are
rendered temporal before the generated mesh is displayed, i.e. the image is behind
the model. The opening angle of the virtual view must be set to the values of the real
camera, as otherwise, the object is scaled differently than the background live image.
This mixed reality visualization, i.e. augmentation of the generated 3D model by the
real scene, aids the operator in navigating the system across the object’s surface
and thus increases the usability of the system. Especially for hand-guided scanner
systems that allow for a full 6 DoF movement, this feature is helpful.
The overall concept of the visual feedback system is illustrated in Fig. 6.4. The RT-
SSR method is the core component of the system. It is fed by a stream of 3D points
from the scanner system. The resulting triangle mesh is visualized in front of the live
stream image. The raw stream of sensor poses is used in a virtual camera to calculate
the correct view onto the model.
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Figure 6.4: Concept of the 3DMo visual feedback system: The core component is the RT-SSR method. It is fed by
a stream of 3D points from the scanner system and supports the visualization with the resulting triangle mesh (L1).
The camera live stream is rendered behind the 3D model (L0). The sensor pose stream is used to align the virtual
view onto the mesh with the real sensor pose. Further, images from the camera stream can be captured and used for
texture mapping after acquisition.

6.2.4 Texture Mapping

Texture mapping adds a photorealistic impression to a given 3D model by linking
each of its surface elements with a realistic image, called texture. Often, predefined
synthetic textures are used for 3D models. In the context of manual scanning, real
images of the object are available and can be used as texture of the model.
Beside the mesh generation and the instant visualization of the generation progress,
the visual feedback system provides the capture and storage of single color images
from the camera live stream, as illustrated in Fig. 6.4. The captured images can be
mapped onto the generated surface in a post-processing step, i.e. this processing is
performed after acquisition and surface reconstruction.
The texture mapping relates a part of an image part to each triangle in the gener-
ated mesh. Generally, it is performed by projecting the images onto the model. The
mapping requires known intrinsic camera parameters including lens distortion and
camera pose relative to the 3D model. For the 3DMo system, the intrinsic parameters
are determined by camera calibration as described in Section 6.1.4, and the camera
pose is measured by the pose sensor. However, a single triangle face of the mesh can
be seen from multiple camera views, potentially causing mapping ambiguities. Three
methods are developed to handle these ambiguities and summarized in the following.
A detailed description is given by Hirzinger et.al. [HBH+05]:

• Single-View Mapping: Each triangle with a surface normal that points suffi-
ciently in view direction is mapped to camera coordinates, using the camera
parameters and pose. The degree of detail (i.e. the area of the projected triangle)
is computed and the view with the highest degree of detail is associated to the
examined triangle face.

• Single-View Mapping with Brightness Correction: Again, a single view is as-
sociated to a triangle face. Due to non-lambertian reflectance characteristics of
the surface, the perceived brightness of the face can vary from view to view. To
compensate these variations, contrast and brightness of each camera image are
adjusted.
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Figure 6.5: Mesh generation and augmented visualization of the progress at the digitization of a statue: A sweep over
a cherub statue is instantly processed and the resulting mesh is visualized. The 3D model (white shaded) is rendered
in front of the camera live stream with a virtual view that is aligned to the real scanner pose. This visual feedback
helps the user to navigate the scanner devise w.r.t. the statue.

• Multi-View Mapping: A single triangle face is mapped to all camera images, if
it points sufficiently into the view direction of the respective image. The texture
image for the triangle face is computed by a weighted averaging over the im-
ages. The weights represent the degree of detail of the projected triangle in the
respective image.

6.3 Results

The 3DMo with the visual feedback system is suitable for numerous applications. In
the following, results of two exemplary application fields are depicted: the generation
of photorealistic models and the registration of objects.

6.3.1 Generation of Photorealistic Models

The 3DMo in the hand-held configuration is used for the 3D acquisition of smaller ob-
jects, such as busts or other objects for archiving of cultural heritage and the capture
of technical objects for rapid prototyping. An application is the generation of photo-
realistic 3D models e.g. for the use in virtual reality applications, for documentation,
or for rapid prototyping.
Fig. 6.5 shows the process of mesh generation and visualization with augmented cam-
era live stream for the example of a putto statue scanned with the 3DMo-LSP. A mesh
resolution of Remin = 1.5mm is used. The 3D model is rendered in front of the camera
live stream with a virtual view that is aligned to the real scanner pose, as described
in the preceding section. In Fig. 6.6, the resulting mesh and the textured model are
shown.
In Fig. 6.7, two further results of the RT-SSR method are depicted. Both meshes are
generated with a resolution of Remin = 0.5mm. For the Zeus bust (a,b), two sweeps are
performed. The computing time is 5.03 s for 65, 381 input points. For the Mozart bust
(c,d), three strongly overlapping scans are acquired. The computing time is 6.84 s for
106, 929 input points. This example demonstrates the efficiency of the method w.r.t. to
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(a) Generated mesh (b) Textured model

Figure 6.6: Generated 3D model of a putto statue: The generated mesh after two sweeps consists of 8, 6162 vertices
and 166, 475 triangles (a). Further, the a captured camera image is used to map a texture onto the model (b).

redundant input data and approves that the processing time is barley coupled to the
size but only to the resolution of the mesh.
In Fig. 6.8, the textured 3D models of more objects for different applications that have
been digitized with the 3DMo system are illustrated. The Indian bust can be used in
virtual catalogs or as object in VR-scenes. The box of pipes is digitized and used for
grasp planning. The meteorite model is generated from a part of the Neuschwanstein-
meteorite that dropped to earth in 2002. This model was generated for evaluating the
documentation with 3D models.

6.3.2 Object Registration

Another application for manual scanning and for the 3DMo system is the object
registration. The goal of object registration is the alignment of a 3D model with
another template 3D model by estimating the rigid body transform between both. A
typical application for registration is to fit an artificial 3D model, e.g. a CAD model,
to a real object. However, for a robust registration, it is required to sample the object
sufficiently and to include characteristic parts, e.g. edges and concavities that are
specific to the object. The use of a manual scanning system is beneficial to enhance
the handling of the registration setup, as the visual feedback system enables the
operator to inspect the scanned model before registration as well as the registration
result. If the registration fails, e.g. because the object is not sufficiently scanned, it is
possible to add more scans to the model and repeat the registration. This interactive
scan-and-register approach enables even non-experts to handle such a system.
Registration can be divided into local optimization methods, e.g. the Iterative Closest
Point (ICP) algorithm by Besl and McKay [BM92] or one of its numerous variants,
and global methods, e.g. the methods of Barequet and Sharir [BS97] or of Gelfand
et al. [GMGP05]. The key challenge of object registration is the correct matching
of corresponding points in both models. The ICP method uses a nearest neighbor
strategy in order to identify corresponding points and thus requires a good initial
transform. Global registration methods typically use geometrical features for finding
corresponding points. Hence, a surface model or at least the surface normals for each
point are required in both models.
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(a) Scans (b) Mesh

(c) Scans (d) Mesh

Figure 6.7: Scans and 3D models of two busts: The Zeus (a) and Mozart (b) busts are scanned using the 3DMo-LSP.
For Zeus, two sweeps are performed (a), and for the Mozart three strongly overlapping sweeps are acquired (c). The
corresponding meshes (b,d) are generated with a resolution of Remin = 0.5 mm. The 3D model of the Zeus bust
consists of 61, 556 triangles and 31, 733 vertices. The Mozart model contains 67, 301 triangles and 34, 120 vertices.
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(a) Indian bust (b) Box of tubes (c) Meteorite

Figure 6.8: Photorealistic 3D models for miscellaneous applications: An Indian bust for virtual catalogs (a), a box of
pipes used for grasp planning (b), and a meteorite for documentation purposes.

The computational effort of object registration methods increases with the size of the
model and its resolution. For the ICP method, the correspondences for each point of
the scanned model have to be found. Here, it is sufficient to represent both models as
a point set. The limitation stage of the RT-SSR method helps reducing redundancies
in the scanned model and thus avoid a high computational effort. Further, the esti-
mated surface normals can be applied to increase the robustness of the registration.
For feature-based registration methods, the mesh is used to derive curvature-based
features. The RT-SSR method reduces the effort for feature calculation and thus for
registration, as the mesh resolution can be chosen task-dependent and thus the size
and resolution of the generated model is sufficiently scaled.
The registration with manual scanning can be used for various applications. In the
following, two exemplary applications are introduced: the patient registration for
robot-assisted head surgery and the work piece registration for inspection and small
batch production.

Robot-assisted head surgery In robot-assisted head surgery, the intervention is
typically planned before, in a pre-operative phase. Here, MRI or CT data is used to
plan trajectories. The registration is required to transfer the planned intervention
to the pose of the patient in the intra-operative phase. The traditional method for
registration is to implant markers in the skull that are visible in the CT, to measure
the marker during the intervention with the robot, and to match these with the CT
model. Alternatively, the face of the patient can be scanned and this model can be
matched with the CT or MRI model. This method is non-invasive and thus more gentle
for the patient. This was evaluated with the 3DMo system by Korb et al. [KBE+04]
and Konietschke et al. [KBB+07]. Fig. 6.9 shows an exemplary result of a scanned
face that is matched with an face model from MRI.

Work piece registration Small batch productions are typically not automated, as
a full automation is mostly not profitable. However, it is desired to automate certain
production steps and to help the worker with interactive tools. Here, registration can
be used to match work pieces on a workbench with a CAD model either for inspection
of the production or for transferring automatic and semi-automatic planning.
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(a) Operating room setup (b) Registration result

Figure 6.9: Registration of scanned faces (white) with MRI data (red)

Fig. 6.10 shows the example of a wooden work piece that is partially scanned and
then registered with a synthetic template model, i.e. the template is fit to the scanned
data. Hence, a worker can visually inspect the object. Further, real texture is mapped
to the template object. For woodworking the possibility of generating textured objects
is beneficial, as the grain of a wooden piece is potentially important for further pro-
cessing.

In summary, the use of the RT-SSR method enables for an enhanced visual feedback
in the context of manual scanning. The shown exemplary applications demonstrate
the versatile usability of manual scanner systems, if a suitable visual feedback system
is provided. However, in the next chapter another application to the RT-SSR method
beyond manual scanning is shown.
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(a) Scanned model (b) Template model

(c) Textured template model

Figure 6.10: Inspection of the registration for a wooden workpiece: The wooden work piece is scanned (a) and the
synthetic template object is fitted to the scan data (b) and can be visually inspected. After registration, a real texture
is mapped onto the template object (c).



7
Large Object Modeling

This work focuses on streaming mesh generation from real time 3D measurements to
be used as advanced visual feedback in manual scanning applications. However, ap-
plications beyond this primary purpose are possible. In this chapter, the application
of the RT-SSR method for generating surface models from huge data sets, i.e. sets
containing millions of points, is introduced. In this context, only the point-by-point
integration of the data is important, not the instant availability of the model, as the
data is processed after acquisition. Further, a visual feedback during the acquisition
of huge 3D models is not possible with most of today’s commercial 3D rendering tools
and hardware due the combination of data size and dynamic behaviour.
The presented modeling of large objects is part of a project aiming at increasing the
automation of model generation for 3D documentation and archiving of buildings us-
ing laser scanners and color cameras. Typical applications the preserving of cultural
heritage, e.g. castles or churches, or the 3D documentation of the current state of
industrial buildings, e.g. factories. The project is a cooperation between the depart-
ments Robotic Systems and Optical Information Systems of the DLR Institute of Robotics
and Mechatronics as well as the companies Zoller and Fröhlich GmbH and Illustrated
Architecture. First results were published by Hirzinger et al. [HBH+05] and Liu et al.
[LSHB07].
Buildings are typically documented in constructional drawings, i.e. 2D maps. In addi-
tion, so called ortho-images of walls and ceilings are generated. An ortho-image is the
orthographic projection of images onto a projection plane. This technique is limited to
simple geometries, since occlusions and non-planar objects cause distortions in the
image. The generation of 3D models is an alternative which overcomes the limitations
of ortho-images and thus improves the documentation.
Today’s long-range laser radars enable a fast acquisition even of large geometries
and thus the fast digitization of rooms and buildings. However, the generated range
images are huge and have large overlapping areas. The data is hardly usable, as com-
mercial software suites typically fail to handle this amount of data. A surface model
decreases the redundancy in the data and thus the overall size of the model. Hence,
the the required memory consumption in subsequent processing steps is reduced sig-
nificantly, and it is easier for visualization tasks and other applications to handle the
3D model. Further, surface models enable the generation of photorealistic 3D models
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(a) Z+F Imager 5003 (b) Panoramic Camera

Figure 7.1: The Zoller + Fröhlich Imager 5003 (Source: http://www.zf-laser.com, 2009) and the EyeScan
M3metric Panoramic Camera developed at DLR, Berlin in cooperation with KST GmbH, Dresden (Source: http:
//www.kst-dresden.de, 2009).

by mapping color information to the surfaces. Hence, an advanced 3D documentation
of buildings and further applications, e.g. virtual walk-throughs or reconstruction of
missing parts of a building, are possible.
Several methods for streaming surface reconstruction for such out-of-core applica-
tions have been published, e.g. the methods of Pajarola [Paj05] and Allègre et al.
[ACA07]. Although the RT-SSR method is not primarily designed for this application,
it is suitable for out-of-core processing. An advantage of this method is the implicit
sorting of the data, i.e. the data need not to be spatially sorted before processing.
In the following, the application for the RT-SSR method to out-of-core processing of
huge data sets is shown. First, the used hardware and necessary preprocessing steps
are introduced. Afterwards, the adaption of the RT-SSR method, its parametriza-
tion, and further post-processing steps are explained. Finally, exemplary results are
shown.

7.1 Data Acquisition and Preprocessing

The on-site work and the preprocessing of the scan data have mainly been performed
by Illustrated Architecture and the DLR department Optical Information Systems. In
the following, the scanner system and necessary processing steps are summarized.

7.1.1 Scanner System and Color Sensor

The acquisition of the geometry is performed with a long-range laser radar and hi-
resolution color information is added by a panoramic camera. In the following, both
sensors are briefly introduced.

Scanner System The long-range laser radar Z+F Imager 50031 is used for acquiring
the geometry. The system is shown in Fig. 7.1(a). The optical unit of the system sends
an IR laser beam and uses the time-of-flight principle to calculate a distance from the
reflection. It is actuated by two rotating axes. They compose a spherical coordinate
system with a (v, u)-order, contrary to the (u, v)-order spherical system descrbed in

1Zoller + Fröhlich Imager 5003 : See http://www.zf-laser.com, 2009 for details.

http://www.zf-laser.com
http://www.kst-dresden.de
http://www.kst-dresden.de
http://www.zf-laser.com
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Chapter 2. Hence, the mapping of a distance pixel d at the grid coordinates u, v in the
spherical image coordinate system to Cartesian coordinates is

p(u, v, d) :=

 d · cos v cosu
d · cos v sinu
d · sin v

 ,

and the corresponding line-of-sight is

s(u, v) =

 cos v cosu
cos v sinu

sin v

 .

further, the reference sample density is

δ(d, u, v) = min{2 d | sin v(j) sin
∆u
2
|)−1, (2 d | sin ∆v

2
|)−1} .

The system has a working range of 1 m to 53 m. It can be configured for different
resolutions with up to 20, 000 pixels per axis. In this work, a resolution of 10, 000×5, 000
pixels is used, i.e. each range image consists of 50 million pixels. The measurement
error of the system is modeled by a Gaussian zero-mean distribution with a distance-
dependent deviation2

σ(d̃) = 0.375 + 0.0675 d+ 0.0015 d2 .

Here, the error of the pose measurement need not to be considered, as the pose is
estimated and optimized after acquisition, as described in the next section.

Color Sensor The EyeScan M3metric Panoramic Camera is used to gather high-
resolution color information that can be used for texture mapping. It was developed
in a common project between DLR and the KST GmbH3.
The camera integrates three 10, 200 pixels line CCD chips, one for each (RGB-) color
channel and uses a special optical lens system of 35 mm focal length. It is mounted
onto a rotating unit which contains an angle-increment measuring system with a
resolution of 0.001◦. Hence, color images with resolutions of up to 10, 200 by 360, 000
pixels are possible. A typical image acquisition with 10, 200× 30, 000 pixels takes about
three minutes at daylight and up to 60 minutes at a dark indoor illumination. The
time mainly depends on the ambient illumination conditions and the number of rows
to be measured with the camera. Detailed information on the technical specification
and is provided by Scheibe et al. [SKR+01], the camera calibration and applications
are summarized in [Sch06]. The application of the system to 3D modeling is described
by Hirzinger et al. [HBH+05].

7.1.2 Preprocessing of Range Images

After acquisition, the range images are filtered and the scan pose is calculated. The
filtering removes outliers and other artifacts in the range images that would otherwise
affect the pose calculation and surface reconstruction. The pose is estimated from the
scans, as this setup provides no sensor to measure the pose at acquisition time. This
filtering and pose calculation are not part of this work, but are summarized in the
following for a better understanding.

2The deviation has been extracted from the noise details in the data specification of the Z+F Imager
5003. http://www.zf-laser.com,2009

3KST GmbH, Dresden, http://www.kst-dresden.de, 2009)

http://www.zf-laser.com
http://www.kst-dresden.de
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(a) before filtering (b) after filtering

Figure 7.2: Automatic filtering of range images: The filtering of range images is shown for the measurement of
a shiny golden candlestick. The range image contains outliers and a tail of very noisy samples behind the object
caused by specular reflections (a). The automatic processing with the filters eliminates most of the undesired points
(b). Source: [Sch06]

Scan Filtering

Range images may contain invalid data, e.g. outliers or other artifacts, that typically
result from shiny or transparent objects. The RT-SSR method is principally able to fil-
ter outliers implicitly, however, an range image preprocessing that removes undesired
artifacts enables a more accurate mesh generation, as otherwise these mismeasure-
ments must be considered in the parameter settings. Scheibe [Sch06] describes a set
of median filters, histogram filters, and spike detectors that are used for filtering. The
filtering is performed fully automatically for each range image. It allows for a robust
detection of outliers and other erroneous distance measurements, even for shiny ob-
jects. Fig. 7.2(a) shows errors occurring during the measurement of a shiny golden
candlestick, Fig. 7.2(b) illustrates the corresponding filtered range image.

Scan Pose Calculation

Before surface reconstruction the images have to be aligned correctly. Here, both, au-
tomatic and manual approaches were tested. The reference method is the photogram-
metric alignment with artificial markers. Here, the Neptan software suite4 is used for
alignment. Alternatively, automatic registration algorithm of Liu and Hirzinger [LH05]
can be used. This method allows for combining multiple 2.5D scans without the need
of placing wall markings or performing additional theodolite measurements. Instead,
the overlapping areas between the scans are used to estimate how they are related.
This marker-free approach is particularly suitable for historic buildings and other an-
cient sites, as it is often prohibited to install wall markings. The registration process
is divided into three steps: a segmentation of each range image into patches with
homogeneous curvature, a coarse matching of the data with a matching-tree algo-
rithm, and a fine matching, optimizing the alignment by a set of control-point-pairs.
A detailed description of the method is given by Liu and Hirzinger [LH05].

4See http://www.technet-gmbh.com for details.

http://www.technet-gmbh.com
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Table 7.1: Parameters of the RT-SSR for the Z+F Imager 5003

Parameter Symbol Value
Limitation radius Rmin 4mm
Override for initial neighborhood Rnuser 15mm
Max. number of neighbors kn 20
Max. valid grazing angle αsmax 75◦

Max. fast selection angle αnmax 5◦

Min. number of selected neighbors nsmin 5
Min. edge length Remin > 4mm
Max. edge length Remax 3Remin

7.2 Surface Reconstruction and Post-Processing

After preprocessing, the range images are transformed into sets of 3D points with
their corresponding attributes. The RT-SSR method is used to generate an initial
mesh from the point sets. Accordingly, potential holes in the model are filled, the
mesh is simplified, and texture is mapped onto the generated surface.

7.2.1 Surface Reconstruction

The points are processed with the RT-SSR method by successively inserting them
(streaming). For this application, the two principle stages of the processing pipeline,
as illustrated in Fig. 3.1, are performed individually, i.e. the surface normals for all
points are estimated before the mesh generation is performed. Tab. 7.1 shows the
selected parameters for the RT-SSR method.
The RT-SSR method does not require to load the entire input data at once into memory
but processes the data point-by-point, similar to other out-of-core methods. However,
the method must store the limited sample point set and the resulting mesh in the
memory. Hence, the size of the mesh, i.e. its extension and resolution, that can be
processed at once is limited by the physical memory of the used computer system. The
used octree data structure can principally be extended by a smart swapping strategy
that overcomes this limitation. However, this extension is beyond the scope of this
thesis. As a consequence, huge 3D models with high resolution can not be processed
at once but must be divided into smaller parts.
In this work, the acquired space, e.g. a single room, is divided into a set of overlap-
ping boxes, similar to the voxelization presented in Chapter 4 and each box is pro-
cessed separately. Only the 3D points that are inside the respective box are passed
to the RT-SSR steps. The overlap of the boxes is necessary to avoid incomplete a sur-
face reconstruction in the border area of the boxes, caused by sparse or unbalanced
neighborhoods. The box generation can be performed automatically by defining the
number of boxes for each direction and the percentage of overlap. The bounding box
of the combined set of all 3D points is calculated and segmented into the desired
amount of boxes. However, if already some construction plan or other information
concerning the scanned scene exist, a manual definition of the boxes is superior to
the automatic approach, as walls and other separating elements can be taken into
account and avoid that e.g. the boarder of a box is a wall or single boxes contain only
a very small part of an object.
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7.2.2 Post-Processing

The surface reconstruction generates a dense and homogeneous mesh for each pro-
cessed box. These meshes are further refined and merged into a single model in a set
of automatic post-processing steps. These steps are described in detail by Hirzinger
et al. [HBH+05] and Liu et al. [LSHB07] and are summarized in the following:

Hole filling and clean-up The mesh may contain holes that originate from areas
not sampled e.g. due to occlusions or transparent materials. Further, artifacts that
are not filtered in the preprocessing may result in small islands, single triangles, or
other artifacts in the mesh. These artifacts are removed and smaller holes are filled.
However, large holes, e.g. windows, are not closed, as this might result in larger
differences between the model and the real geometry.

Simplification The 3D models of building interiors typically contain a large amount
of plane areas, e.g. walls. The resolution of the mesh in these areas is reduced, thus
the model is simplified. A simple method is used to perform an initial simplification:
The curvature is analyzed by comparing the surface normals of adjacent triangles.
If the curvature in an examined area is below a certain threshold, the mesh is lo-
cally re-triangulated with a lower resolution. For 3D models of rooms and halls, this
simplification typically removes about 90 percent of the triangles.

Smoothing The simplified model is smoothed in order to reduce potential sensor
noise. A fairing algorithm presented by Liepa [Lie03] is used, as this method provides
a smoothing with less global shape distortion compared to other methods.

Merging The separately processed boxes or parts can be merged after simplification
and smoothing. This step is optional and application-dependent, as many commercial
programs are not able to handle single models of arbitrary sizess.

Texturing One goal of the automatic processing is the generation of photorealistic
models. Hence, the acquired color images are mapped onto the refined geometry. The
mapping of panoramic camera images to the generated surface is part of the work of
Scheibe [Sch06]. Here, a ray casting method considering the specific camera geometry
is introduced.

7.3 Results

The presented automatic processing has already been for numerous projects. In the
following, exemplary results for the 3D documentation of Neuschwanstein Castle are
shown and further applications are demonstrated.

7.3.1 Documentation of Castle Neuschwanstein

Neuschwanstein Castle was digitized in order to create a complete set of architectural
drawings and ortho-images. Here, the Z+F Imager was used to digitize all rooms of the
castle, as it rapidly digitizes building interiors i.e. rooms, halls and facades, thanks
to its large working range. However, multiple scans from different views are required
due to occlusion by e.g. pillars, handrails, furniture, etc. 450 rooms, staircases, and



7.3. RESULTS 103

corridors were acquired, resulting in a total amount of over 2000 scans with about 50
million points each. The scans were aligned by fiducial marks that were attached to
the walls during acquisition. Further, color images of multiple rooms were captured
with the EyeScan M3metric Panoramic Camera.
This data is used to evaluate the automatic model generation described in the preced-
ing section, for an enhanced documentation of the castle. Fig. 7.3 shows an overview
of all modeled parts of the castle. For the generation of an initial mesh, the parame-
ters listed in Tab. 7.1 and a mesh resolution between Remin = 4 mm and Remin = 8 mm
are used.
Fig. 7.4 shows the king’s room in the gatehouse. The processing of this room requires
no partitioning into boxes, as it is relatively small. After post-processing, the model
contains of 410, 309 vertices and 770, 422 triangles.
A photorealistic model can be generated either using the intensity images of the Z+F
Imager, as shown in Fig. 7.5(a), or applying color images from the EyeScan M3metric
Panoramic Camera shown in Fig. 7.5(b). As an furhter example, Fig. 7.6 shows the
color textured model of the famous throne room of the castle.

Figure 7.3: Modeled parts of Neuschwanstein Castle: 450 rooms, staircases, and corridors were acquired and a 3D
model was generated for each, using the automatic processing steps described in this chapter. A maximum mesh
resolution between 4mm and 8mm is used.
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Figure 7.4: Model of the king’s room in the gatehouse: After post-processing contains 410, 309 vertices and 770, 422
triangles.

(a) Intensity texture (b) Color texture

Figure 7.5: Texturing of the models: Either intensity images of the Z+F Imager are used (a) or color images from the
DLR panoramic camera are applied (b).
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Figure 7.6: Throne room of Neuschwanstein Castle with applied texture. Source: [Sch06]

7.3.2 Further Applications

Another application example for the presented automatic modeling is the reconstruc-
tion of the roof of a historical house. The existing parts are scanned and a surface
model is generated, as shown in Fig. 7.7. The latter can be used by architects in a
CAD software suite to reconstruct missing parts.
A technical application of the modeling of building interiors is the documentation of
the current state of industrial buildings, e.g. a factory. A major problem of planning
alterations of aged industrial buildings is that the real state of the building differs
from the initial construction plans. As an example, pipes or machines may have been
installed or changed without documentation. Hence, the alteration of parts of the
building or the installation of new machines becomes problematic or even impossible,
as undocumented pipes or machines block the required space. The rapid documen-
tation of the current state with an 3D model supports designers or architects in the
planning stage of new installations or alterations. Moreover, differences to former
states can be calculated and thus, temporal changes can be tracked. In Fig. 7.8, a
part of an factory building surface model is shown and compared to the raw point
data.

These examples show the suitability of the RT-SSR method for the processing of huge
data sets, even though it is primarily designed for visual feedback applications in
the context of manual scanning. The introduced processing steps increase the au-
tomation of the overall processing of these data sets and requires only selected user
interactions. This is an important step towards processing tools that are usable for
everyone. The resulting 3D models decrease the amount of data significantly and
support further processing with commercial software suites.
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Figure 7.7: Reconstruction of a roof: Overview of the scanned and modeled parts (left) and the reconstruction of
walls and floors in the model (right).

Figure 7.8: Model of a factory building: The generated surface model (left) and the raw point data (right).
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Conclusion

This chapter provides conclusive remarks on the achievements of this thesis as well
as an outlook to potential future applications and future research.

8.1 Conclusion

In this thesis, an approach for streaming surface reconstruction for real time 3D mea-
surements in the context of visual feedback for manual scanning is introduced. The
method generates a triangle mesh directly from the data stream of a scanner system,
i.e. a 3D model is created incrementally during the acquisition. This approach differs
from typical streaming methods that usally focus on out-of-core applications, since
the real time character of the problem implicates an unknown object size and number
of sample points.
This method is suitable for unorganized point sets and is not limited to a certain
type of scanner, as the measurements enter the surface reconstruction process as
a stream of 3D points to the process. The method enables the processing of real
world data generated with scanner systems, requiring additional per-point attributes
that characterize each measurement. Therefore, common types of scanner systems
are analyzed and a general description is developed concerning geometric properties,
temporal synchronization, and accuracy.
The surface reconstruction requires fast global operations on data sets with highly
dynamic behavior, i.e. an increasing number of points and dynamic mesh changes.
This challenge is met by dynamic spatial data structures, the Dynamic Voxel Space
and the Extendable Octree, which are introduced and compared in this thesis. As
a further design consideration, the work space is not limited. Hence, suitable data
structures must extend themselves, resulting in a computational effort that increases
with the size of the covered volume and thus does not meet hard real time conditions.
However, a restriction of the object extension limits the complexity, meeting real time
requirements. In this work, the Extendable Octree is selected, as it outperforms the
Dynamic Voxel Space for compact data as given at the digitization of single objects,
and furthermore preserves the spatial order of the data.
The RT-SSR method is verified with simulated data. Typical scan trajectories and
varied noise conditions are fed into the system in order to identify a robust set of
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parameters. The verification demonstrates the usability of the method for several real
world scenarios, e.g. sharp edges, corners, or concavities. Further, the interrelation
between the process parameters is discussed and recommendations for an optimal
parameter set w.r.t. sensor characteristics are given.
Furthermore, the RT-SSR method is integrated into a visual feedback system for a
manual scanner system, the DLR Multisensory 3D Modeler, using the parameter rec-
ommendations assessed during the simulations. This visual feedback system dis-
plays the generated model concurrently to the user. The virtual view is aligned with
the scanner pose and the model is augmented with a live stream from the scan-
ner cameras. This feedback system enables an operator to use a manual scanner
system intuitively and supports the data acquisition and the inspection of the final
model. Further, the software suite integrates methods for texture mapping and object
registration. Photorealistic models are generated and automatic registration applica-
tions are exemplarily shown. Beyond this visual feedback application, the method
is successfully applied for out-of-core processing of huge data sets in the context of
automatic 3D model generation of buildings.

8.2 Future work

This thesis extends the field of streaming surface reconstruction from out-of-core
applications towards real time reconstruction. However, further extensions and opti-
mizations are envisaged, as outlined in the following.

File swapping strategies and advanced spatial data structures The presented
reconstruction method does not require a loading of the entire set of sample points
into memory at once, but streams and processes the samples point-by-point. Hence,
the processing of real time data as well as huge data sets is possible. However, the
reduced sample point set in normal estimation stage and the final mesh are kept in
memory, thus limiting the size of the model. In this work, this limitation is bypassed
by dividing the data into boxes and separately processing each part, as described in
Chapter 7. The limitation can be solved by swapping currently non-involved parts of
the data sets in file caches. This extension to the used spatial data structures does
not require a complete redesign of the method, as the implemented voxel spaces and
octrees can be used directly as core elements of a swapping strategy
Further, if the data only spatially extends in one direction, the octree generates an
unnecessary overhead, as it extends uniformly in all directions. An example for this
problem is the storage of a 3D map of one level of a building. Here, the map has a
predominant expansion in the xy-plane, yet the data structure will also grow in the
z-direction. If the data set is additionally too large to fit into memory, smart swapping
strategies are required. Here, a combination of Dynamic Voxel Space and octree can
be used, i.e. the voxels of the Dynamic Voxel Space contain octrees. Thus, the covered
space must not be cubic and a swapping strategy can be limited to voxel level.

Improvement of pose sensing The successful in-the-loop processing of the scanner
data highly depends on an accurate pose measurement, as the range images are
aligned into the global space in real time and a global minimization of pose errors
(e.g. by bundle adjustment) is not possible. Today’s pose measurement devices are
either of high precision with very restricted working volumes (e.g. CMMs), or are very
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flexible in use, yet of low precision (e.g. optical tracking, GPS navigation). Image-
based approaches, e.g. ego motion tracking or real-time registration, are precise,
however, they typically do not measure the pose absolutely. Moreover, they depend
on the measured range images or other raw data red from the range sensor. Hence,
the measurements drift and loose their reference system as soon as measurement
fails. A real time 6D fusion of absolute positioning systems and relative methods
would improve the overall accuracy without restricting the working volume.

Merging multiple sensor streams In this thesis, the generation of a 3D model using
a single scanner system is discussed. Beyond this, the fusion of data from multiple
scanner systems with different working ranges would be beneficial for some applica-
tions. As an example, a historic room could be rapidly sampled with a laser radar.
Afterwards, smaller details of the room could be digitized with a manual scanner sys-
tem. The data could be directly integrated into the existing mesh. This application
can principally be performed using the RT-SSR method, yet requires further analysis.
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A
Computational Geometry

A.1 Distance Metrics

The distance metrics between two points or a point and an edge are used to test the
elements in a point set or mesh for being inside a ball neighborhood. The respective
neighborhoods are defined in Chapter 3.1.

Distance between two points The unsigned distance between two points or vertices
p and q is given by

dp(p,q) = ‖p− q‖ p,q ∈ R3 (A.1)

with the euclidean norm

‖x‖ =
∥∥(x1 x2 x3)T

∥∥ =
√
x2

1 + x2
2 + x2

3 .

The euclidean norm is also known as euclidean distance or 2-norm.

Distance between point and edge The unsigned distance between an edge e and a
point p is the shortest distance between the line segment e1e2 and the point p.
Let g denote the line through the points e1 and e2, defined by

g : x = e1 + λ (e2 − e1) λ ∈ R .

Here, the scalar λ represents the position of the point x on the line. For the range
λ ∈ [0, 1], the line represents the edge e. Further, let λp denote the position of the
intersection between the line and the perpendicular through p, given by

λp =
〈(p− e1), (e2 − e1)〉
‖e2 − e1)‖2

.

Hence, the shortest unsigned distance between the edge e and the point p is defined
by

de(p, e) =


‖(p−e1)×(e2−e1)‖

‖e2−e1‖ 0 < λp < 1
dp(p, e1) λp ≤ 0
dp(p, e2) λp ≥ 1

. (A.2)
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A.2 Description of general rotations in 3D space

In Chapter 2.3, the measured scanner pose is denoted as homogeneous 4×4-matrices
that consist of a 3×3 rotation sub-matrix R and a translation vector t ∈ R3, known as
rigid motion transformation. The notation of transformations as homogeneous 4 × 4-
matrices is commonly used in the field of robotics and computer graphics. Generally,
a rigid motion transformation describes the relation between two coordinate systems
or frames. Detailed information concerning transformations and homogeneous co-
ordinates are e.g. given by Craig [Cra89] or Akenine-Moeller [AMH02] and are used
within the OpenGL-Interface [OSW+04].
The rotation matrix R describes the rotational part of a transformation. It is an
orthogonal matrix whose determinant is equal to one:

RT = R−1 det R = 1 .

In the following, two representations of rotations beside the matrix notation are intro-
duced and the mapping to the matrix form is described.

A.2.1 Axis-Angle Representation

The axis-angle representation, i.e. the rotation about an arbitrary axis, is commonly
used in the field of robotics and computer graphics. In Chapter 2.3 the representation
is used, for linear interpolation between the frames of two consecutive pose measure-
ments. Here, first the transformation between the two coordinate frames is calcu-
lated and then the rotational part is transformed to the axis-angle representation.
The angle is increased stepwise, in order to calculate frames between the two pose
measurements, while the axis remains unchanged. The mapping between rotation
matrix and axis-angle representation has been described in several ways. Here, the
definition of the OpenGL Architecture Review Board [OSW+04] is used and described
in the following.
Let a = (axayaz)T be an arbitrary direction vector in R3 with ‖a‖ = 1 and let α ∈ [0◦, 90◦]
denote the angle value that a coordinate system is rotated around a. Further, let

S =

 0 −az ay
az 0 −ax
−ay ax 0

 .

The rotation matrix of the pair (a, α), i.e. the mapping

(a, α) 7→ R ,

is given by
Raa(a, α) = aaT + cosα (I− aaT ) + sinαS .

The inverse mapping
R 7→ (a, α)

can be calculated by the following rule:
Let R denote a valid rotation matrix with

R =

 r00 r01 r02

r10 r11 r12

r20 r21 r22

 .
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Further, let r denote the vector

r =

 r21 − r12

r02 − r20

r10 − r01

 .

Hence, the angle α is given by

α = atan2(‖r‖, trace R− 1) ,

and the corresponding direction vector a by

a =
{

(001)T α = 0
r

2 sinα otherwise
.

A.2.2 Roll-Pitch-Yaw Representation

A rotation in R
3 can also be represented by the concatenation of three elementary

rotations. In Chapter 2.4, the roll-pitch-yaw or x-y-z fixed angles notation, as e.g.
described by Craig [Cra89], is used for defining noise w.r.t. the local sensor coordi-
nate system, i.e. each of the three rotations takes place around an axis in the fixed
reference frame.
Let αr, αp, and αy denote the three angles for roll, yaw, and pitch and let Rrpy(αr, αp, αy)
denote the corresponding rotation matrix. The mapping between both representations
is given by:

Rrpy(αr, αp, αy) =

 cosαr − sinαr 0
sinαr cosαr 0

0 0 1

 cosαp 0 sinαp
0 1 0

− sinαp 0 cosαp

 1 0 0
0 cosαy − sinαy
0 sinαy cosαy

 .

A detailed description and derivation of the x-y-z fixed angles notation is provided by
Craig [Cra89].

A.3 Intersection of Edges

In this section, the intersection test between a candidate edge e and an edge of the
mesh eL in R2, as required at the triangulation update in Chapter 3.5, is described.
here, it is not require to test all intersection cases, as not all cases are possible within
the triangulation update.
Let the candidate edge e denote the line segment starting at the origin and ending in
a point v

e = 0v 0,v ∈ R2 .

Further, let the edge eL denote the line segment

eL = vL0vL1 vL0,vL1 ∈ R2 .

In the context of the triangulation update, the points vL0 and vL1 can not be not
located at the origin, i.e.

vL0 6= 0 ∧ vL1 6= 0

If the candidate edge e intersects with the edge eL in one of its end-points, i.e. if they
share the same point

v = vL0 ∨ v = vL1 ,
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the candidate edge satisfies the terms defined in Chapter 3.1 and thus, the edges do
not intersect. Otherwise, the edges have to be further tested. Here, the method of
signed triangle area, as presented in the textbook of O’Rourke [O’R98], is used.
Let a, b, and c denote the vertices of a triangle and let A(a,b, c) denote the signed area
of the triangle, defined by

2A(a,b, c) = (b0 − a0)(c1 − a1)− (c0 − a0)(b1 − a1) .

The point c is left of the segment ab, if the area Aabc is greater than zero.
Consequently, the edge e and the edge eL do not intersect, if both points of one edge
are on the same side of the other edge. In Alg. 6 the complete algorithm is visualized.
A detailed description of more segment intersection methods is described by O’Rourke
[O’R98].

Algorithm 6 Intersection between the edge e and the edge eL.

Require: e = 0v and eL = vL0vL0

if v = vL0 or v = vL1 then
return false

end if
if A(0,v,vL0) > 0 xor A(0,v,vL1) > 0 then

/* eL are on the same side of e */
return false

end if
if A(vL0,vL1,0) > 0 xor A(vL0,vL1,v) > 0 then

/* e is left or right of eL */
return false

end if
/* e and eL intersect */
return true



B
Calculation of Reference Sample Density

In this chapter, the calculations of the formulas Equations (2.13)-(2.16) for determin-
ing the expected reference sample density δ are shown. The formulas are the type
specific calculation rules for each type of image coordinate system, as introduced in
Chapter 2.2.1.
In detail, the simplification of the inverses of the directional sample densities δu and
δv (see Equation (2.11) and (2.12))

δ−1
u = ‖pi+1,j − pi,j‖
δ−1
v = ‖pi,j+1 − pi,j‖

to the type-specific Equations (2.13)-(2.16) are explained. Here, it is assumed that
both points pi,j+1 and pi,j origin from distance pixels with a value of di,j+1 = di,j = d.

B.1 Helper Equations

In the following a set of conversions as used in the following sections are delineated.
The grid coordinates u(i) and v(j), as introduced in Chapter 2.2.1, are the physical
coordinates of a pixel dij at the i-th row and j-th column in the native image coordinate
system. They are described by the offsets u0, v0 and the sample widths ∆u,∆v,

u(i) = u0 + i ·∆u; i ∈ Nm

v(j) = v0 + j ·∆v; j ∈ Nn .

Hence, the differences of the grid coordinates can be simplified by

u(i+ 1)− u(i) = ∆u (B.1)

v(j + 1)− v(j) = ∆v . (B.2)
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If a grid coordinate describes an angular value, the sinusoid differences are required.
They can be simplified by

sinu(i+ 1)− sinu(i) = 2 cos(u(i+ 1) + u(i)) sin
∆u
2

(B.3)

cosu(i+ 1)− cosu(i) = −2 sin(u(i+ 1) + u(i)) sin
∆u
2

(B.4)

sin v(j + 1)− sin v(j) = 2 cos(v(j + 1) + v(j)) sin
∆v
2

(B.5)

cos v(j + 1)− cos v(j) = −2 sin(v(j + 1) + v(j)) sin
∆v
2

. (B.6)

B.2 Cartesian Geometry

A sample point pij in a Cartesian coordinate system is described by

pij =

 u
v
d

 .

The corresponding inverse reference density δ−1
u in u-direction is simplified by

δ−1
u =

∥∥∥∥∥∥
 u(i+ 1)

v(j)
d

−
 u(i)

v(j)
d

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∆u
0
0

∥∥∥∥∥∥ (applying Equation (B.1))

= |∆u| ,

and the inverse reference density δ−1
v in v-direction is simplified by

δ−1
v =

∥∥∥∥∥∥
 u(i)

v(j + 1)
d

−
 u(i)

v(j)
d

∥∥∥∥∥∥
=

∥∥∥∥∥∥
0

∆v
0

∥∥∥∥∥∥ (applying Equation (B.2))

= |∆v| .

B.3 Perspective Geometry

A sample point pij in a perspecitve coordinate system is described by

pij =

 d · u
d · v
d

 .
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The corresponding inverse reference density δ−1
u in u-direction is simplified by

δ−1
u =

∥∥∥∥∥∥
 du(i+ 1)

dv(j)
d

−
 du(i)

dv(j)
d

∥∥∥∥∥∥
=

∥∥∥∥∥∥
d∆u

0
0

∥∥∥∥∥∥ (applying Equation (B.1))

= d|∆u| ,

and the inverse reference density δ−1
v in v-direction is simplified by

δ−1
v =

∥∥∥∥∥∥
 du(i)

dv(j + 1)
d

−
 du(i)

dv(j)
d

∥∥∥∥∥∥
=

∥∥∥∥∥∥
0

d∆v
0

∥∥∥∥∥∥ (applying Equation (B.2))

= d|∆v| .

B.4 Cylindrical Geometry

A sample point pij in a cylindrical coordinate system is described by

pij =

 d · sinu
v

d · cosu

 .

The corresponding inverse reference density δ−1
u in u-direction is simplified by

δ−1
u =

∥∥∥∥∥∥
 d sinu(i+ 1)

v(j)
d cosu(i+ 1)

−
 d sinu(i)

v(j)
d cosu(i)

∥∥∥∥∥∥
=

∥∥∥∥∥∥d
 sinu(i+ 1)− sinu(i)

0
cosu(i+ 1)− cosu(i)

∥∥∥∥∥∥
=

∥∥∥∥∥∥d
 2 cos(u(i+ 1) + u(i)) sin ∆u

2
0

−2 sin(u(i+ 1) + u(i)) sin ∆u
2

∥∥∥∥∥∥ (applying Eq. (B.3) and (B.4))

= d
[
(2 cos(u(i+ 1) + u(i)) sin ∆u

2 )2

+ (−2 sin(u(i+ 1) + u(i)) sin ∆u
2 )2

] 1
2

= 2d sin |∆u|2

[
cos2(u(i+ 1) + u(i)) + sin2(u(i+ 1) + u(i))

] 1
2

= 2d| sin ∆u
2 | ,

and the inverse reference density δ−1
v in v-direction is simplified by

δ−1
v =

∥∥∥∥∥∥
 d sinu(i)

v(j + 1)
d cosu(i)

−
 d sinu(i)

v(j)
d cosu(i)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
0

∆v
0

∥∥∥∥∥∥ (applying Equation (B.2))

= |∆v| .



118 APPENDIX B. CALCULATION OF REFERENCE SAMPLE DENSITY

B.5 Spherical Geometry

A sample point pij in a spherical coordinate system (with (u, v)-order) is described by

pij =

 d · sinu cos v
d · sinu sin v
d · cosu

 .

The corresponding inverse reference density δ−1
u in u-direction is simplified by

δ−1
u =

∥∥∥∥∥∥
 d sinu(i+ 1) cos v(j)

d sinu(i+ 1) sin v(j)
d cosu(i+ 1)

−
 d sinu(i) cos v(j)

d sinu(i) sin v(j)
d cosu(i)

∥∥∥∥∥∥
=

∥∥∥∥∥∥d
 (sinu(i+ 1)− sinu(i)) cos v(j)

(sinu(i+ 1)− sinu(i)) sin v(j)
cosu(i+ 1)− cosu(i)

∥∥∥∥∥∥ (applying Eq. (B.3) and (B.4))

= d
[
(sinu(i+ 1)− sinu(i))2 + (cosu(i+ 1)− cosu(i))2

] 1
2

= d
[
4 cos2(u(i+ 1) + u(i)) sin2 ∆u

2 + sin2(u(i+ 1) + u(i)) sin2 ∆u
2

] 1
2

= 2d| sin ∆u
2 |

and the inverse reference density δ−1
v in v-direction is simplified by

δ−1
v =

∥∥∥∥∥∥
 d sinu(i) cos v(j + 1)

d sinu(i) sin v(j + 1)
d cosu(i)

−
 d sinu(i) cos v(j)

d sinu(i) sin v(j)
d cosu(i)

∥∥∥∥∥∥
= d

∥∥∥∥∥∥sinu(i)

 cos v(j + 1)− cos v(j)
sin v(j + 1)− sin v(j)

0

∥∥∥∥∥∥ (applying Eq. (B.5) and (B.6))

= d | sinu(i)|
[
(cos v(j + 1)− cos v(j))2 + (sin v(j + 1)− sin v(j))2

] 1
2

= d | sinu(i)|
[
4 cos2(v(j + 1) + v(j)) sin2 ∆v

2

+4 sin2(v(j + 1) + v(j)) sin2 ∆v
2

] 1
2

= 2d | sinu(i)| | sin ∆v
2 |
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