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Abstract— The effectiveness of cognitive manufacturing sys-
tems in agile production environments heavily depends on the
automatic assessment of various levels of interoperability be-
tween manufacturing resources. For taking informed decisions,
a semantically rich representation of all resources in a workcell
or production line is required. OPC UA provides means for
communication and information exchange in such distributed
settings.

This paper proposes a semantic representation of a resource’s
properties, in which we use OWL ontologies to encode the
information models that can be found in OPC UA NodeSet
specifications. We further combine these models with an OWL-
based description of the resource’s geometry and – if applicable
– its kinematic model. This leads to a comprehensive semantic
representation of hardware and software features of a manu-
facturing resource, which we call semantic digital twin. Among
other things, it reduces costs through virtual prototyping and
enables the automatic deployment of manufacturing tasks in
production lines. As a result, small-batch assemblies become
financially viable.

In order to minimize the effort of creating OWL-based
UA NodeSet descriptions, we provide a software tool for the
automatic transformation of XML-based NodeSet specifications
that adhere to the OPC Foundation’s NodeSet2 XML schema.

I. INTRODUCTION

Many industrial manufacturing companies currently face
changes in market demands regarding their products. As a
result, they have to adjust their way of manufacturing to meet
new requirements: Instead of high volume production of a
few product variants, they often have to tailor their products
to individual customers. This typically leads to a highly chal-
lenging situation, in which many different product variants
have to be produced in only small batch sizes. In order to still
maintain an economically viable production environment, the
effort of programming and adjusting production processes
needs to be reduced [1].

A promising approach to tackle this issue, is a modular
systems engineering paradigm based on a formal repre-
sentation of capabilities of manufacturing resources. These
capability descriptions are part of a more generic device
description and can be automatically interpreted by technical
systems. They are used to identify compatible manufacturing
resources for performing a given production step, and to
assist a production engineer in reconfiguring a workcell or
manufacturing line to match the requirements of a new or
updated manufacturing task.
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The OPC Foundation1 and its members have been work-
ing on the specification of a platform-independent service-
oriented architecture called Unified Architecture (UA) that
addresses the challenges of such modular production envi-
ronments. Apart from offering a communication protocol
and discovery services [2], OPC UA features a flexible
concept for describing and providing information models that
may cover devices, particular functions, and internal system
states. Such information models are hierarchically defined
and build upon the base OPC UA data model and domain-
specific extensions called companion specifications. This
modular modeling approach allows third parties to develop
their own vocabularies that are suitable for describing new
devices and their capabilities.

The creation of OPC UA information models for the open
source OPC UA stack open625412 and other implemen-
tations currently relies on manipulating XML files either
through text editors or graphical tools. Various software
tools, e.g., the OPC Foundation’s UA Model Compiler, can
be used to generate an OPC UA NodeSet description that
complies with a corresponding XML Schema definition.
The generated NodeSet description is a graph-based data
structure that contains the content of information models,
in which typed nodes are linked through typed references.
The NodeSets can be imported and exported by OPC UA
servers and might be used by OPC UA clients to browse a
server’s address space in an offline fashion.

However, a more semantic representation would be bene-
ficial, in order to link and process these information models
in a broader context. They must be interpreted with respect
to manufacturing tasks and their requirements, as well as
domain-specific and common sense knowledge.

In this paper, we propose a semantic description language
for OPC UA NodeSets based on the Web Ontology Language
(OWL)3. As the OWL formalism is based on description log-
ics, OWL-based descriptions can be automatically interpreted
by reasoning components, which are able to check the logical
consistency of the models and derive implicit facts through
logical inference. Additionally, OWL can be serialized into
Resource Description Framework (RDF) statements. As a
result, many existing software tools, such as graph data bases
and SPARQL processors, can be used to persistently store
and query OWL models. In order to minimize extra efforts
in creating the OWL representation of UA NodeSets, we

1https://opcfoundation.org
2https://github.com/open62541
3https://www.w3.org/TR/owl2-primer/
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Fig. 1. Overview of proposed semantic digital twin architecture

developed a software tool for the automatic transformation
of existing XML-based UA NodeSet definitions to the cor-
responding OWL models.

We further show how the semantic NodeSet descriptions
can be extended to contain knowledge on the available
executable skills of a manufacturing resource and their meta-
level capability descriptions. Moreover, we combine the
semantic UA NodeSet models with a description of the
corresponding device’s geometry based on our previously
published OntoBREP CAD ontology4. By combining the
OntoBREP geometry models with an optional OWL-encoded
kinematic model, a full-fledged formal representation of
hardware and software properties – a semantic digital twin
– of a manufacturing resource can be created.

Fig. 1 depicts a visualization of the proposed ontology ar-
chitecture, in which the introduced semantic representations
of manufacturing resources are aggregated into layout and
topology models of workcells or whole production lines.

II. RELATED WORK

As motivated in the previous section, we aim at semantic
representations of all relevant aspects of manufacturing re-
sources, in order to automate the tasks of production systems
engineering and process deployment. Parts of the proposed
architecture and ecosystem have already been published.
In [3], we present an ontology for describing CAD models
in a semantic way based on the boundary representation
(BREP) paradigm, in which the mathematical models of
geometries are described instead of being approximated via
polygons. One of the core applications of our semantic digital
twins, is the automatic identification of suitable resources
for a given semantic model of an industrial manufacturing
process. The structure of our semantic process models and
an intuitive way of teaching them to a robot system is
introduced in [4]. The automatic mapping of a specific

4https://github.com/OntoBREP

manufacturing task to a compatible resource is achieved by
combining device descriptions with a semantic description
of their provided functionalities. In this context, we distin-
guish between the representation of the executable elements
of such functionalities, i.e., skills [5], and the meta-level
representation of their effects, i.e., capabilities [6].

Next to ontology-based approaches to knowledge mod-
eling in a manufacturing context, AutomationML is the
most common language for representing various kinds of
information regarding processes and manufacturing resources
that need to be shared during engineering processes. Its data
architecture is based on the Computer Aided Engineering
Exchange (CAEX) XML format [7], which typically con-
nects to various other industry data formats, e.g., Collada or
PLCOpen XML. It supports the representation of topology,
geometry, kinematics, sequencing, behaviour and control.

Some research effort was spent on the combination of Au-
tomationML and ontologies, in order to generate automation
solutions based on the robot operating system (ROS) [8].
In [9], the authors investigate the analogies between Au-
tomationML and OPC UA information models, with the aim
of AutomationML data assisting in the design of OPC UA
information models.

A set of motivating examples of scenarios, in which
OPC UA acts as an enabling technology to establish in-
teroperability between Industrie 4.0 (I4.0) components or
systems, is presented in [10]. A systematic approach to
create OPC UA information models is presented in [11].
It is based on the automatic transformation of Unified
Modeling Language (UML) models, and provides a model-
based approach to OPC UA information model design. For
conducting intelligent data analysis, the authors of [12] rely
on an OPC UA-enabled semantic aggregation of process
data of a smart factory. The integration of an ontology-
based semantic engineering and data interpretation layer
with an OPC UA-enabled loosely-coupled control system
for astronomical instrumentation is explained in [13]. In [14]
and [15], the authors present the combination of OPC UA
methods with semantic service descriptions based on OWL
for Web Services (OWL-S) and the Semantic Annotations
for WSDL and XML Schema (SAWSDL) with the goal of
automatically creating orchestration plans for manufacturing
resources.

A similar approach to ours is described in [16]. The
authors present an ontology-based concept for the seman-
tic representation of an asset administration shell of I4.0
components. While this approach currently is based on a
descriptive meta-level representation of such components,
we aim at augmenting rather administrative information
(e.g., device types, skill and skill parameter descriptions)
with deep semantic models (e.g., capability, geometry, and
kinematic models) – all in the same semantic language. We
further relate the extended administration shell to relevant
information from the manufacturing context, allowing us
to refer to specific pieces of knowledge. Utilizing such a
semantically rich representation of all relevant entities leads
to many synergy effects. For instance, a grasp task can be
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described and parametrized based on individual faces of a
gripper’s and an object’s geometry models instead of only
coordinate frames and transformations. In another example,
determining the compatibility of a manufacturing resource
with a given task may not only involve the evaluation of
a resource’s capability model, but at the same time respect
topological constraints of a factory.

The term digital twin originally only covers aspects of
simulation. This meaning has changed in the past years to
include more aspects of a manufacturing resource and a
certain overlap with the I4.0 asset administration shell [17].
In our terminology, a semantic digital twin provides the func-
tionality of the asset administration shell, while providing a
deep semantic understanding of a resource’s properties.

III. OPC UA INFORMATION MODEL

The communication between OPC UA-enabled devices
follows a client-server paradigm. The description objects
provided by an OPC UA server that are intended to be
browsed by OPC UA clients are called the server’s address
space. Within such address spaces, OPC UA information
models are encoded in order to inform clients about offered
services and server states.

This section does not intend to explain all available
concepts provided by the OPC UA specifications, but to
introduce the structure of information models. The OPC
UA address space specification defines the base data model
of OPC UA. It contains eight different classes of nodes:
Variable, VariableType, Object, ObjectType, ReferenceType,
DataType, Method, and View. Every type of node provides
a set of mandatory and optional attributes that can be used
to further describe the node’s properties. Most importantly,
each node has a nodeId consisting of an identifier and a
namespace, which are used together to uniquely refer to
specific nodes. Nodes are connected through binary relations
called references, which span a directed graph. References
can be defined to be symmetric, so that some edges of
the graph can be bidirectional. Various types of references
have been hierarchically specified to represent different rela-
tions between nodes. As an example, a hasTypeDefinition
reference can be used to link a Variable to a particular
VariableType.

OPC UA information models use the address space con-
cepts to describe information about a particular domain
or device. They are modular and hierarchically extensible.
These features are used by a multitude of UA companion
specifications, which rely on the base UA NodeSet or other
companion specifications and extend the contained vocab-
ulary, e.g., with respect to object or reference types. For
instance, the OPC UA companion specification for robotics
is based on the companion specification for devices, which
itself is defined on top of the base UA NodeSet.

For a complete description of the OPC UA address space
and information models, please consult part 3 and 5 of the
IEC 62541 specification [18], [19].

Fig. 2. Upper taxonomy of the OPC UA core ontology.

IV. OPC UA NODESET ONTOLOGIES

For representing OPC UA information models in a se-
mantic description language, we implemented a core OPC
UA ontology using OWL. OWL can be used to define
class taxonomies and instances of classes called individuals.
Properties may be defined for classes and individuals. There
are different types of properties, which can be hierarchically
specified: object properties, data properties, and annotation
properties. While object properties are used to link two
individuals to each other, data properties link individuals to
literals, e.g., strings or numbers. Annotation properties can
be used to add meta-information to various ontology entities.
In this work, they are used to link generated object properties
to their associated UAReferenceType individual.

A. UA Core Ontology

The OPC UA core ontology describes the base classes
of the OPC UA data model as introduced in Section III.
Additional classes and properties have been added to prop-
erly represent certain parts of UA NodeSets in an OWL-
compatible way, e.g., value arrays are converted to singly
linked lists in OWL using individuals of type UAValue and
the object property nextValue. In a similar fashion, UAMetho-
dArguments are added to an UAMethod individual. The first
argument is asserted to the method through object property
firstMethodArgument, while the following arguments are
linked from the previous argument through object property
nextMethodArgument. Fig. 2 depicts a visualization of the
main OWL classes used to represent NodeSet descriptions.
Explaining all entities of the OPC UA core ontology is out
of the scope of this paper, but the associated OWL file is
available for further inspection5.

B. Generation of UA NodeSet Ontologies

To avoid the tedious task of manually modeling OWL
ontologies for OPC UA base concepts and additional com-
panion specifications, we developed a software tool for the

5https://github.com/OntoUA
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TABLE I
ONTOLOGY METRICS FOR THE OPC UA CORE ONTOLOGY AND THE INTRODUCED UA NODESET ONTOLOGIES REGARDING THE NUMBER OF AXIOMS

PLEASE NOTE: TOTAL NUMBER OF AXIOMS INCLUDES ADDITIONAL TYPES OF AXIOMS; NUMBERS ALSO INCLUDE IMPORTED DEPENDENCIES.

C i OP j DP k AP l I m CAn OPAo DPAp AAq Total

OPC UA core ontology 17 15 39 2 0 0 0 0 0 160
Base UA NodeSet 17 86 39 2 6067 6067 23166 41565 74 77296
Companion Spec. Devices 17 90 39 2 6271 6271 23967 43045 80 80097
Companion Spec. Robotics 17 94 39 2 6585 6585 25326 45622 84 84758
fortiss Devices 17 90 39 2 6537 6537 25399 45334 80 84421
fortiss Robotics 17 94 39 2 7007 7007 27619 49313 84 91720
fortiss Kuka iiwa robot 17 94 39 2 7240 7240 28613 51335 84 95277
fortiss GEP1402 gripper 17 90 39 2 6657 6657 25855 46207 80 86044

iClass jObject property kData property lAnnotation property mIndividual nClass assertion oObject property assertion pData property assertion
qAnnotation assertion

Kuka iiwa robot
Node Set ontology 

fortiss Robotics 
Node Set ontology 

fortiss Devices  
Node Set ontology

OPC UA Devices
companion spec.

Node Set ontology 

OPC UA Robotics
companion spec.

Node Set ontology 

GEP1402 Gripper
Node Set ontology

OPC UA core
ontology

OPC UA base  
Node Set ontology

Fig. 3. Example of hierarchical dependencies of UA NodeSet ontologies
including the OPC UA core ontology, base UA NodeSet and official OPC
UA companion specifications for Devices and Robotics, fortiss extensions to
these two companion specifications, and device-specific NodeSet ontologies
for the Kuka iiwa robot and the GEP-1402 gripper. The arrows denote an
owl:imports relation.

automatic generation of these ontologies in OWL. Given
an UA NodeSet2 description in the official XML dialect6,
the corresponding XML Schema definition contained in
UANodeSet.xsd, and the OPC UA core ontology, which has
been described in the previous section, the transformation to
OWL can be carried out automatically. The transformation
tool uses XMLBeans7 to parse the NodeSet2 description and
to check it for conformity to its XML Schema. The parsed
data is then encoded in OWL using the OWL API library8

and the OWL concepts that have been defined in the OPC UA
core ontology. For every node in the NodeSet description,
an OWL individual is created. The node’s attributes are
converted to OWL data properties that are asserted to the
newly created individuals. As part of the transformation
process, new OWL object properties are generated based on
the references that are contained in the NodeSet description.
These object properties are then asserted to the OWL indi-

6https://github.com/OPCFoundation/UA-Nodeset
7https://xmlbeans.apache.org/
8https://github.com/owlcs/owlapi

viduals according to the list of references for each node.
For the base OPC UA NodeSet, each companion spec-

ification, and each manufacturing resource’s NodeSet de-
scription, a separate OWL ontology is generated. Hierarchi-
cal dependencies are automatically analyzed and resolved
through topological sorting based on the NodeSets’ model
URIs (Uniform Resource Identifiers) given in the Model
and RequiredModel tags. As an example, Fig. 3 shows the
hierarchical dependencies of UA NodeSet ontologies for a
Kuka iiwa robot and a Sommer Automatic GEP1402 parallel
gripper.

Table I provides ontology metrics for the OPC UA core
ontology and the introduced NodeSet ontologies, showing
the number of specific OWL axioms per ontology. The
Kuka iiwa robot’s NodeSet ontology roughly takes 4 s to
realize using the HermiT reasoner (1.3.8.413) in the Protégé
ontology editor9 (5.5.0) on an Intel i5-8600K CPU running at
a base clock of 3.6GHz. As most of the corresponding OWL
axioms belong to its generic dependency on the base UA
NodeSet ontology, adding additional resource descriptions
to a workcell increases the total number of axioms only to
a relatively small extent.

V. TOWARD A SEMANTIC DIGITAL TWIN

In this section, we introduce various elements of our
proposed semantic digital twin architecture. We describe
how the introduced NodeSet ontologies can be extended
with models of device or component skills. Our concept is
further augmented with capability models, in order to enable
flexible production systems engineering. In our nomencla-
ture, we distinguish between the terms skill and capability:
The former representing the executable part of a device’s
functionality, and the latter being a meta-description of
potential effects that the invocation of a skill may cause.

Additionally, we propose deep semantic device models,
which include a mathematical representation of their geome-
tries and – if applicable – their kinematic structure. Individual
devices or components can be used as building blocks of

9https://protege.stanford.edu/
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workcell or factory models, in which device instances are
placed in an environment. Their poses as well as topological
connections are semantically encoded and can be queried to
analyze the flow of materials.

A key aim of this approach is to make knowledge explicit
that typically is hidden either in the heads of employees,
software implementations, or natural language specifications.
By doing so, maintaining and reusing this knowledge can
be more easily accomplished. Moreover, technical systems
are enabled to process the knowledge and make informed
decisions, resulting in a higher degree of automation and
system resilience.

In the following sections, we describe the introduced
aspects of our semantic digital twin architecture in more
detail, and whenever possible provide references to our
previous publications on individual submodels.

A. Device and Component Skills

Every device and component in a production system
should provide a hardware-agnostic interface. This interface
should be modeled in a generic way, independent of the
component’s functionality, i.e., its skills.

In [5], we present a corresponding skill model. It is
completely modeled in an OPC UA NodeSet description
and uses separate state machines for each offered skill, in
order to represent their internal states. State transitions can
be controlled through dedicated UA methods, which are the
same for every skill. Before the invocation of a skill, its
skill parameters need to be set. The referenced paper shows
that such a skill model can be used to create a generic
interface to the functionality of hardware as well as software
components. Component skills can be hierarchically arranged
in order to combine them into higher-level functionalities,
while still relying on the same skill interface.

With this skill model, it is possible to simply exchange
system components, as long as they provide the same subset
of required skill types. The system’s higher-level function-
alities and its task control do not have to be changed. For
instance, [5] demonstrates that an industrial robot can be
replaced by a robot from a different manufacturer without
requiring any changes to the task implementation.

Since our skill model is encoded in the NodeSet2 de-
scription of a device or component, it is part of the auto-
matically generated UA NodeSet ontologies, as described in
Section IV-B. The available skill and parameter types are
also modeled in the NodeSet, therefore, a mapping from
ontology parameters to the corresponding skill parameters
can be created.

In order to support a more flexible compatibility evaluation
of manufacturing resources, skill models can be augmented
with a meta-level capability description.

B. Capability Models

Capability models are required to determine the compat-
ibility of a manufacturing resource with a requested task.
Many approaches rely on using standardized property sets to

Fig. 4. Visualization of an excerpt of a deep semantic model of a cylinder’s
geometry based on the OntoBREP ontology.

describe the effects of a resource. These properties are pro-
vided as part of a resource model, and aggregated in groups
that relate to specific skills. An ontology-based approach to
capability modeling enables a cognitive production system to
not only match requirements and offered capabilities, but to
also automatically derive orchestrated capabilities from basic
ones [6].

The semantic depth of these models directly influences the
level of confidence of such an evaluation. As a purely sym-
bolic investigation cannot guarantee a successful execution of
a task, more (subsymbolic) evaluation techniques are needed,
e.g., using analytic means or simulations. A symbolic capa-
bility matching process can be seen as a prefilter for potential
solutions, thus reducing the search space of computationally
expensive simulations. An engineered solution provided by
a single party will most likely not be able to tackle this issue
completely. As a result, we suggest an open ontology-based
concept for capability matching, in which different parties
may extend the core concepts according to their own needs.

C. Geometry Models

For describing geometric properties of products and man-
ufacturing resources alike, we rely on our OntoBREP ontol-
ogy [3]. As the name implies, the ontology follows a BREP
paradigm, in which faces, edges, and vertices are typically
specified by defining an infinite geometry and corresponding
bounds that make it finite. For instance, the top face of the
cylinder depicted in Fig. 4 (represented by OWL individual
Face1) has been specified by an infinite plane (Plane1) that
is bounded by an edge (Edge1) of type circle (Circle1). The
individual Wire1 represents a topological BREP structure,
which may hold multiple connected edges. The given edge
itself is bounded by two vertices (Vertex1 and Vertex2), which
happen to be at the exact same position, resulting in Edge1
being a complete circle.

Using deep geometry models, it is possible to annotate any
subelement of an encoded resource or object with additional
information. For instance, this can be used to geometrically
describe regions of interest on a device, e.g., where to put a
workpiece or which areas to avoid due to moving parts. In
assembly specifications, the OntoBREP-based representation
can be combined with semantically specified geometric in-
terrelational constraints [3], e.g., stating that two faces must
be coincident after a particular assembly step.
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Individual: cell:KUKA_iiwa_7_R800_1_body2
Types:
rob:KUKA_iiwa_7_R800_body2

Facts:
swdl:succeedingJoint cell:KUKA_iiwa_7_R800_1_joint2,
brep:shape link2:Solid1,

Individual: cell:KUKA_iiwa_7_R800_1_joint2
Types:
swdl:RevoluteJoint

Facts:
swdl:succeedingLink cell:KUKA_iiwa_7_R800_1_frame3,
swdl:transformation cell:RigidTransformationMatrix_12

Individual: cell:RigidTransformationMatrix_12
Types:
brep:RigidTransformationMatrix

Facts:
brep:a11 "1.0"ˆˆxsd:double,
brep:a12 "0.0"ˆˆxsd:double,
...
brep:a44 "1.0"ˆˆxsd:double

Fig. 5. Excerpt of the kinematic model of a Kuka iiwa robot in Manchester
OWL syntax. It shows a body of the robot, a succeeding revolute joint, and
the corresponding transformation matrix.

D. Kinematic Models

The kinematic and dynamic behavior of robot manipu-
lators, grippers, and other manufacturing resources can be
described via multibody systems [20]. Such a definition
includes references to rigid bodies that are connected via a
number of either fixed or actuated transformation elements.
A rigid body is described via its mass, center of gravity, and
inertia properties. It directly relates to an element of its geo-
metric model via its calculated 3D position and orientation in
world coordinates. A transformation between individual rigid
bodies describes the relative position and orientation to each
other, leading to a tree structure or in case of closed loops
even a graph structure. Different joint types such as revolute,
prismatic, spherical, or even 6-DOF joints can be used to
describe the system’s state based on its current state vector.
This includes the individual joint’s position, velocity, and
acceleration values. Each joint includes additional properties
such as maximum and minimum joint angles, or maximum
allowed speed.

The kinematics model in our ontology is based on the
one used in the Robotics Library [21], which supports all
properties described above and includes a matching C++ im-
plementation of kinematics and dynamics algorithms. Other
existing specifications on how to describe multibody systems
include Gazebo’s SDF10 and ROS’ URDF11 formats.

Fig. 5 provides an insight into the kinematic model
of a Kuka iiwa robot. It shows a particular body
cell:KUKA iiwa 7 R800 1 body2 being linked to its geom-
etry model link2:Solid1 via the brep:shape object property.
Furthermore, property swdl:succeedingJoint links to OWL
individual cell:KUKA iiwa 7 R800 1 joint2, which is of
type swdl:RevoluteJoint. The corresponding transformation
is given through matrix cell:RigidTransformationMatrix 12.

10http://sdformat.org/
11http://wiki.ros.org/urdf

Fig. 6. Excerpt of the topology of a pallet conveyor system inside of a cold
rolling mill consisting of multiple roller conveyors, two transfer carriages
(024, 010), a rotary roller conveyor (025), and a furnace (009).

Fig. 7. Partial screenshot of the Protégé ontology editor showing explicitly
modeled object property assertions (white background) and a subset of
inferred property assertion (yellow background) for a selected manufac-
turing resource RollerConveyorPE05, which is an instance of OWL classes
RollerConveyor and Frame.

The matrix values are asserted by 16 data properties,
brep:a11 to brep:a44.

E. Factory and Workcell Models

The semantic representations of manufacturing resources
can be further combined into workcell or even factory
models. The presented approach consists of an OWL-based
layout and topology model. While the layout model specifies
where resources are located with respect to each other and
within a given environment, the topology model contains
the logical connectivity information regarding the flow of
materials between resources.

In a layout model, a device’s location is given as a
rigid transformation matrix that encodes the transformation
between an environment’s reference frame and the device’s
coordinate frame. The transformation matrix itself is encoded
in OWL, which also enables the calculation of absolute
positions of devices along a kinematic chain of relative
transformations via SPARQL-based matrix multiplications.

Topology models use dedicated OWL object properties,
e.g., connectedWith, connectedTo, and connectedFrom, which
encode bidirectional and the two possible unidirectional
logical connections between two manufacturing resources.
The connectedWith property has been defined to be transitive
and symmetric, the connectedTo and connectedFrom prop-
erties are asymmetric and subproperties of connectedWith.
connectedTo is the inverse property of connectedFrom. Only
the connectedTo property is used for the explicit modeling of
pairwise connected resources. The other property types and
the associated transitive hull can be automatically inferred.

Fig. 6 depicts an overview of the topology of various
resources of a pallet conveyor system inside of a cold rolling
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PREFIX mil: <http://www.fortiss.org/basys/rollingmill.owl>
ASK {
mil:FurnacePX09 mil:connectedWith mil:RollerConveyorPE11

}

Fig. 8. SPARQL query to check whether two resources are topologically
connected or not. The ASK query will be evaluated to yes for the introduced
topology example.

PREFIX mil: <http://www.fortiss.org/basys/rollingmill.owl>
SELECT ?r WHERE {
mil:RollerConveyorPE05 mil:connectedTo* ?r .
?r mil:connectedTo* mil:FurnacePX09 .

}

Fig. 9. SPARQL query to retrieve the route from resource mil:Roller-
ConveyorPE05 to target resource mil:FurnacePX09. The returned bindings
for variable ?r are mil:RollerConveyorPE05, mil:RollerConveyorPE08, and
mil:FurnacePX09.

mill. Black, orange, blue, and red boxes represent roller
conveyors, transfer carriages, rotary roller conveyors, and
a furnace, respectively. A transfer carriage can move the
associated roller conveyor so that it can be part of different
routes. Rotary roller conveyors cannot only transport material
coils, but they can also change the coils’ orientation by
rotating them in steps of 180 degrees. A furnace is used
to control the temperature of transported material coils prior
to processing them further.

Exploiting the logical formalism of OWL, the topology
model can be efficiently queried using OWL reasoners and
the SPARQL query language. A subset of inferable object
property assertions for a specific instance of a roller conveyor
resource is shown in Fig. 7. When inferred statements are
materialized, SPARQL processors can consider them when
they evaluate queries. For instance, it can be queried whether
two resources are topologically connected or not (see Fig. 8),
or which resources are part of a connecting route (see Fig. 9).
In this experiment, GraphDB12 was used for persistent
storage of the topology model and as materialization and
querying engine.

In order to achieve the same functionality with Automa-
tionML, more complex XPath/XQuery expressions would
need to be combined with a dedicated software compo-
nent that knows about the implications of topological re-
lations [22].

VI. CONCLUSION AND FUTURE WORK

This paper introduces a novel way of representing OPC
UA information models in a semantic way based on UA
NodeSet ontologies. We presented our automatic transfor-
mation tool that is able to generate ontologies for the
base UA NodeSet, OPC UA companion specifications, and
arbitrary information models. By describing executable skills
within NodeSet descriptions, they are automatically present
in the generated OWL representation as well. With the help
of capability models, the effects of skills are semantically

12https://www.ontotext.com/products/graphdb/

described, enabling manufacturing systems to reason about
the compatibility of resources with the requirements of
manufacturing tasks.

We further explained our envisioned concept of a semantic
digital twin that combines the already mentioned types of
information with a semantic description of hardware features,
such as a BREP representation of a resource’s geometry
and a kinematic model for its moving parts. Additionally,
we presented an example of how individual resources can
be arranged in a production environment. This includes the
physical location of resources and their topological connec-
tivity.

While many submodels of our semantic digital twin archi-
tecture are currently interpreted individually, we work toward
a highly integrated setup that is able to better showcase the
additional benefits of a common language for representing
diverse aspects of manufacturing environments.

In summary, the semantic digital twin aims at providing
access to all relevant information of a manufacturing re-
source in a formal language that can be easily maintained
and flexibly interpreted. Instead of restricting the use of
ontologies to provide an upper-level semantic integration
layer, we combine such a layer with deep semantic models
of relevant entities of the production systems engineering
domain. This approach enables the flexible representation of
semantic relations between any high-level or low-level aspect
of the overall manufacturing system.

Using the logical formalism behind the semantic de-
scription languages, the consistency of encoded models can
be automatically checked and implicit facts derived. The
ontology ecosystem is open and can be easily extended,
allowing represented knowledge to be seamlessly related to
external sources of information.
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