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Abstract

In heterogeneous databases, the user may issue a
query to join two relations in different databases on
the keys. However, the keys may be incompatible.
In this paper, we extend our results on probabilis-
tic query processing to consider joining two relations
on incompatible keys. A new approach to identify
the “same” entities in different relations is proposed.
Various data and schema conflicts such as missing
data, inconsistent data and domain mismatch are
considered in the identification process. Probabilis-
tic techniques are used to estimate the sameness of
two entities, to process queries, and to estimate the
degree of uncertainty for the query results.

1 Introduction

Because of the rapid advance in networking tech-
nologies and the requirement of data sharing a-
mong multiple databases, heterogeneous distributed
databases have become the trend of future database
development. One of the important characteristics
of the heterogeneous database is that the autonomy
of its component databases is preserved; that is, in
a component database the data can be created and
manipulated independent of other databases.

There are two approaches to derive data in a het-
erogeneous database environment. One is to provide
a global schema for the component databases by in-
tegrating their schemas. Dayal and Hwang[8] and
Motro[13] adopted this approach based on function-
al model, while Breitbart et al.[2] and Deen et al.[9]
were based on relational model. For a comprehen-
sive survey on methodologies developed for schema
integration, refer to [1] .
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The other approach is to provide users a multi-
database query language[7, 11]; namely, users can
pose their queries against the local schemas by us-
ing a multidatabase manipulation language. In this
approach, it is required that the users have sufficient
information of the local schemas. In this paper, we
adopt the latter approach to study query processing
issues for the heterogeneous database.

DeMichiel[10] proposed an idea of resolving the
interoperability problems in heterogeneous database
systems by partial values. A partial value corre-
sponds to a set of possible values in which exactly
one is the true value. Tseng, Chen and Yang[15] ex-
tended the concept of partial values to probabilistic
partial values, and developed a full set of extended
relational operators to manipulate probabilistic par-
tial values, which come from the resolution of various
conflicts in the heterogeneous database. As a result,
more informative query results can be provided.

Pu[14] considered the semantic heterogeneity in
heterogeneous databases and formulated the key e-
quivalence problem. Specifically, name matching was
considered to decide whether two names from differ-
ent databases refer to the same person. Another re-
lated work proposed by Wang and Madnick[16] used
a rule-based approach to determine whether, for ex-
ample, a name in one database and a nickname in
another database refer to the same person.

chatterjee and Segev[4] categorized attribute in-
compatibility into two types: structural incompati-
bility and semantic incompatibility. The problem of
joining two relations on structually or semantically
incompatible keys was studied. The idea of compar-
ing useful attributes was used to determine whether
two tuples from different relations represent the same
entity. Also, a probabilistic model was presented to
estimate the accuracy of the comparison. Issues on
missing data or domain mismatch which may exist
between the two relations to be joined, however, are
not considered.

Morrissey[12] proposed a method to deal with
imprecise values, missing data and inapplicable at-
tributes and suggested an information-theoretic ap-



proach to estimate the uncertainty. Join operations
were not considered in the query, so the problem of
identifying the same entities was not discussed.

In this paper, we extend our results on probabilis-
tic query processing to consider joining two relations
on incompatible keys. An approach to identify the
same entities in different relations is proposed. Var-
ious data and schema conflicts such as missing data,
inconsistent data and domain mismatch[3] are con-
sidered in the identification process. Probabilistic
techniques are used to estimate the sameness of t-
wo entities, to process queries, and to estimate the
degree of uncertainty for the query results.

This paper is organized as follows. We give an
example to illustrate the probabilistic approach to
processing queries with compatible keys in Section
2. Section 3 describes a method to identify the same
entities when the keys are incompatible. An example
is given to illustrate the whole query processing ap-
proach in Section 4. Finally, we conclude this work
in Section 5.

2 Compatible Keys

In this section, we give an example to illustrate
the probabilistic approach[15] on processing queries
with compatible keys.

Consider the relations in Figure 1, where relation
TC in one database records the data for students
who belong to the tea club, and relation TW in an-
other database records the data for students who
take Technical Writing. The key attributes id in
both relations are assumed compatible. Attribute
A; of relation R; is compatible with attribute A5 of
relation Ry if the domains of attributes 4; and A,
are semantically related.

A query “Find all twenty-year-old sophomores
who belong to the tea club and take Technical Writ-
ing” can be expressed as

O(age=20)and(class=sophomore) (TC i g TW):

where o and < denote selection and join, respec-
tively. Figure 2 shows the result of joining TC and
TW on id. Notice that we integrate tuples from
both relations in the join operation, and assume e-
qual probability for the conflict values.

Then, the selection is processed, and the query
result obtained as shown in Figure 3. The colum-
n poss in Figure 3 denotes the possibilities of the
answer tuples. For example, the poss value in the
“Tony” tuple is computed as 1/2 x 1/2 = 0.25. The
answer tuples can be ranked according to the poss
values, which will provide users a more informative
query result.

3 Incompatible Keys

We consider query processing involving joining t-
wo relations on imcompatible keys in this section.

Consider the relations in Figure 4, where relation
Teacher in one database records the personal data
of teachers in X University, and relation Consultant
in another database records the data of consultants
in the computer science division of Y Company. The
key attribute id in Teacher represents the identifica-
tion number for teachers in X University while that
in Consultant represents the identification number
for consultants in Y Company. It would be mean-
ingless to compare the id value in Teacher with the
id value in Consultant. In other words, the keys in
Teacher and Consultant are incompatible.

Now, suppose we want to find out which teacher-
s in X University consult at (the computer science
division of) Y Company. If the keys are compat-
ible, we can join the two relations on the keys to
identify the teachers in X University who are also
consultants in Y Company. When the keys are in-
compatible as the example shows, in order to process
the query, we consider joining these two relations on
the set of compatible attributes to identify the en-
tities who are teachers in X University as well as
consultants in Y Company. Since these attributes
are nonkey attributes but not identifying attributes,
they only represent properties of the entities in each
relation. Therefore, there exists uncertainty on the
“sameness” of two entities, each from a relation. For
example, an entity in Teacher may not be an enti-
ty in Consultant even when all the values of their
nonkey compatible attributes match. We consider
various data and schema conflicts which may exist
in the set of compatible attributes, to estimate the
uncertainty of the joining result, and concentrate on
processing queries of the form o(R; < R;), where
the join attributes are the key attributes which are
incompatible.

Let R; and R; be the two relations to be joined,
and the set of compatible attributes for them be
{a1,az,...,ar}. We assign a weight w; to each com-
patible attribute a; according to its tmportance such

that
k

0<w; <1 and Zwizl.
=1

The importance of a compatible attribute depend-
s on 1ts semantic meaning. For example, since two
tuples having the same name value have a better
chance to represent the same entity than having the
same degree value, attribute name is considered more
important than attribute degree, and will be assigned
a higher weight.

Let t; be a tuple of R; and ¢ a tuple of Rs.
Denote the sameness for the values of attribute q;
in t; and t; as S;, where 0 < S; < 1. Then the



| id | ;z,a,;ne | age | ‘cla,zi's | phone | | id | name | age | dept | class |
2 ohn | 21 | junior 4335 30 | Mary | 20 | CS | junior
30 | Mary | 20 | sophomore | 4863 -
: 43 | Joe 23 | CE | senior
TC | 41 | Jane | 22 | senior 3776 T™W
46 | Paul | 18 | CS freshman
46 | Paul | 18 | freshman 2375
- 55 | Tony | 20 | CS sophomore
53 | John | 22 | senior 6447 AN TR fresh
55 | Tony | 19 | freshman 6450 ¢ reshman
Figure 1: Relations TC and TW in two different databases.
| id | name | age | dept | class | phone |
30 | Mary | 20 CS [sophomorel/z,juniorl/z] 4863
46 | Paul | 18 CS freshman 2375
55 | Tony | [191/2,201/2] | CS | [freshman'/?, sophomore!/?] | 6450

Figure 2: The result of TC <;4 TW.

possibility for ¢; and ¢ to represent the same entity
is expressed as

k

Psame(tl;t2) = Z(SZ X wi).

=1

If Psome(t1,t2) > 0, tuples ¢; and ¢; will be inte-
grated into a new tuple in the “join” relation by us-
ing the technique of probabilistic partial values[15],
and the value Psgme(t1,t2) attached to the integrat-
ed tuple as the degree of their sameness. When there
are select operations in the query, they will be pro-
cessed according to the approach in [15]. A possibil-
ity poss of a tuple that satisfies the select predicates
will be computed. Since the events of identifying
the sameness of two tuples and performing the se-
lect predicates are independent, the possibility of an
answer tuple is computed by

poss*k = Psume X poss.

There are two rules which can be used to deter-
mine whether Psome(t1,%2) is equal to one or zero.

Rule 1: If all the values in the compatible attributes
are non-null and identical, then Psgme(t1,12) is equal
to one.

In some cases we do not allow the values of a
compatible attribute, say d, to be inconsistent for
the consideration of Psgme, i-€., Psame(t1,t2) will be
set to zero when t;.d # t;.d. We call such an at-
tribute a dominant atiribute. Conversely, a compat-
ible attribute d' is called a nondominant atiribute
if Piame(t1,t2) is allowed to be greater than zero
when t;.d' # t3.d'. For example, the attribute name
may be designated as a dominant attribute while
degree a nondominant attribute. Usually, dominant

attributes will have higher weights.

Rule 2: If one of the dominant attributes has dif-
ferent values in ¢; and ¢y, then Psgme(t1,t2) is equal
to zero.

Now we consider other cases where 0 <
Pome(ti,t2) < 1, and pay attention to the subject
of estimating the sameness between two values.

3.1 Missing Data and Inconsistent Data

Consider a compatible attribute a; of relations R;
and R;. Let the set of elements in the domain of
a; be {v1,...,v,}. We propose an approach to es-
timate the sameness of two a; values, one from R;
and the other from Ry, and an approach to integrate
these values for the join processing. The null values
we consider are applicable null values as defined in
Codd[6], which are denoted as ’~’. When a null val-
ue is expressed as a probabilistic partial value, we
assume probabilities are uniformly distributed over
all possible values. Let ¢; and £5 be tuples of Ry and
R,, respectively, and consider the following cases.

1. tl.ai = tz.ai
If tuples ¢; and t; have an identical value, say
vj, on attribute a;, then the sameness is one
and the integrated data is v;.

2. missing data

(a) a; is a nondominant attribute

e case 1: the values of q; in t; and i3
are v; and ~, respectively. Since the
size of the domain for a; is n, and
a null value is expressed as a prob-
abilistic partial value with probabil-



| id | name | age

| dept | class

| phone || poss |

30 | Mary | 20 CS

[sophomorel/z,juniorl/z]

4863 0.5

CS

55 | Tony | [19%/2,201/2]

[freshman?/?, sophomore!/?]

6450 0.25

Figure 3: The result of U(age:20)and(class:sophomo’re)(TC > g TW)

Teacher

| id | name | department | degree | age |
7001 | Mary | CS ~ 30
7002 | Paul | EE PhD 29
7003 | John | CS PhD 29
7004 | John | CS MS 26
7005 | Lina | EE PhD 34
7006 | Paul | CS PhD 30

Consultant

id | name | spectalty | degree | age | city |
101 | John CN MS 25 | B
102 | Jose DB MS 36 ~
103 | James | DB BS 24 A
104 | Mary | CN MS 29 | B
105 | John Al MS 26 | B
106 | Dick DB BS 24 | A
107 | Tony | IP MS 28 | ~
108 | Paul ~ MS 25 B
109 | Mary | Al PhD 30 | B
110 | Paul DB PhD 30 ~

Figure 4: Relations Teacher and Consultant in two different databases.

ities uniformly distributed over al-
1 possible values, the sameness be-
tween v; and ~ is computed by

1
S = —,
n
and the integrated value =
R nt1 L
2 2 2 2
[vl’”,vz",...,vj ey VAT

e case 2: ti.q; and t5.a; are both nul-
1 values. Consider any value v; of
a;, the probability for ¢; and ¢; to
have the identical value v; is 1/n?.
Since there are n possible values with
equal probability in a;, the sameness
is computed by

1
S = —,
n

and the integrated value =
i1 1 1
(07,05 ey U7y ey VR ]

(b) a; is a dominant attribute

e case 1: the values of q; in t; and
ty are v; and ~, respectively. The
sameness is computed as before by

Since t; and t, are possible to repre-
sent the same entity, the only possi-
ble value for the dominant attribute

3.

has to be the known value v;. There-
fore, the integrated value is ;.

e case 2: ti.a; and t5.a; are both null
values. The sameness and the inte-
grated value can be computed as in
the case when a; is nondominant.

inconsistent data

By Rule 2, we know if the values in the dom-
inant attributes are different, P;gme(¢1,%2) is e-
qual to zero. Hence, we only consider nondom-
inant attributes here.

Consider a nondominant attribute a;. Let the
values of a; in t; and t5 be v; and v,, respective-
ly. Let the difference distance between v; and
vy be v/ and the mazimum difference distance
which can be tolerated be D; for attribute a;.
The sameness can be computed by

5 = 1- 24 ifl1-3 >0
0 otherwise

Rule 3: When the difference distance between
values of attribute a; in ¢; and t;, respectively,
is greater than maximum difference distance,
we assume the two entities represented by %;
and t; are different, and P;gm.(¢1,%2) is equal
to zero.

In the case where the difference distance be-
tween values of a; in ¢; and i, respectively, is



less than or equal to maximum difference dis-

11
tance, the integrated value is [v7, vZ ] by assum-
ing v; and vy have equal probability to be the
true value.

3.2 Domain Mismatch

Naming conflicts, data scaling conflicts and data
representation conflicts are considered as the domain
mismatch problems [3]. The notion of canonical vir-
tual atiributes [10] can be used to resolve both nam-
ing conflicts and data representation conflicts. For
a data scaling conflict where a bijective transforma-
tion rule can be defined to resolve the conflict, the
sameness and the integrated value can be comput-
ed as in the cases 1 and 3 in Section 3.1. Howev-
er, for example, although there exists a data scaling
conflict between Teacher.department and Consul-
tant.specialty in Figure 4, we cannot find a bijective
transformation rule to resolve the conflict. We dis-
cuss the computation of the sameness and the inte-
grated value for this case as follows.

(@)

v Vyeee V W1 \NZ..c Wp X, X e00 Xq

Figure 5: The domain hierarchy.

Let a; and a; be the attributes in relations R,
and R, respectively. Suppose a; and a; are seman-
tically related in the following manner. The domains

of a; and a; are {u1, ug, ..., u,} and {v1,va, ..., U},
respectively. Moreover, the domain of wu; is
{v1,v2, ..., Um}, the domain of uy is {wq, wa, ..., wp},
..., and the domain of u, is {#1,2a,...,2,}. Set-
s {vi,v2, ., U}, {wi,wa, e wp}, , and
{z1,22,...,24} are assumed to be mutually exclu-

sive. We can express the relationship between these
domains as a domain hierarchy as depicted in Fig-
ure 5. Notice that the domains of a@; and u; are the
same.

Define a select attribute as an attribute involved
in a select operation. In the following, the selec-
t attributes in the query are used to estimate the
sameness and deal with data integration. ¢; and t;

are assumed tuples of Ry and R,, respectively. De-
note S,, as the sameness for the values of ¢;.a; and
tz.a,]'.

1. a; is a select attribute

e case 1: the values of @; in £; and a; in
ty are u; and vy, respectively. Since ug
is assumed to be one of the elements in
{v1,v2,..., Um}, the sameness between u;
and vy is computed by

1
Sn = —,
m
and the integrated value is
mti 1 L
[v2™ ,03™, o, VAT ]

e case 2: the values of a; in ¢; and a; in £,
are u; and ~, respectively. Since both u;
and~ can be expressed as a probabilistic
partial value with probabilities uniformly
distributed over {v1, v2, ..., U }, the same-
ness is computed by

1
Sn = —,
m
and the integrated value is
11 1
[vr vy s Ui ]

e case 3: the values of @; in £; and a; in
ty are ~ and vy, respectively. Since the
probability for ¢; to have u; as the value
of a; is 1/r, and the sameness between u;
and vy is 1/m as obtained in case 1, the
sameness is computed by

Sp = — X —.

1 1
r o m
Since only the value u; of a; in ¢ is con-
cerned when a; is a select attribute, the
m41 1 1
integrated value is [v,™™ ,v]™, ..., vA"].

e case 4: t;.a; and t3.a; are both null val-
ues. Since the probability for ¢; to have
uy as the value of a; is 1/r, and the same-
ness between u; and ~ is 1/m as in case
2, the sameness is computed by

1 1
Sp=—-xX —,
r o m
and the integrated value is
11 1
o™, v3™, ., v ]
e case 5: the values of a; in £; and q;

in £ are u; and wvp, respectively, where
1 # 1. Assume ¢ equals 2 for the discus-
sion. Since uy is assumed to be one of



the elements in {wq, wy,...wp}, and set-
s {v1,v2,..., U} and {wq, wo,...,wp} are
assumed to be disjoint, ¢; and ¢, are con-
sidered different entities.

e case 6: the values of a; in #; and a; in
ty are u; and ~, respectively, where i #
1. Assume ¢ equals 2 for the discussion.
t1 and ¢y are considered different entities.
The reason is the same as that for case 5.

2. a; is a select attribute

e case 1: the values of a; in ¢; and a; in 2,
are u; and vy, respectively. The sameness
is computed by

S, =1,

and the integrated value is u; because v;
is in the domain of u;.

e case 2: the values of a; in ¢; and a; in
are u; and ~, respectively. The sameness
is computed by

S, =1,

and the integrated value is u; because any
possible value of a; is in the domain of u;.

e case 3: the values of a; in #; and a; in
ty are ~ and v, respectively. Since the
probability for ¢; to have u; as the value
of a; is 1/r, and the sameness between u;
and vy is 1 when a; is a select attribute,
the sameness is computed by

Sn = l

r

?

and the integrated value is u;.

e case 4: t;.a; and ?3.a; are both null val-
ues. Since the probability for ¢; to have
uy as the value of a; is 1/r, and the same-
ness between u; and ~ is 1 as in case 2,
the sameness is computed by

Sp =

?

1
T

and the integrated value is u;.

e case 5: the values of a; in ¢; and q;
in ty are u; and wvp, respectively, where
1 # 1. Assume ¢ equals 2 for the dis-
cussion. Since disjoint sets {v1, va, ..., Um}
and {w1, wa, ..., wp} consist of all the pos-
sible elements for u; and us, respectively,
t1 and ¢y are considered different entities.

e case 6: the values of @; in £; and a; in
ty are u; and ~, respectively, where ¢ #
1. Assume ¢ equals 2 for the discussion.
t1 and ¢y are considered different entities.
The reason is the same as that for case 5.

If attributes a; and a; are not select attributes,
we use the approach where a; is a select at-
tribute (i.e., the attribute in the lower level of
the domain hierarchy) such that more detailed
information can be considered.

4 Example

In this section, we give an example to illustrate
the whole query processing approach. Consider the
relations in Figure 4 and the query

O(specialty=AI or DB) and (age<30) and (city=B)
(Teacher t<;4 Consultant).

Before join processing, we first resolve the naming
conflict between the compatible attributes depart-
ment and specialty in relations Teacher and Con-
sultant, respectively. We designate specialty as the
canonical virtual attribute, and rename the attribute
department to specialty. Some necessary information
for the query processing is listed as follows:

(1) the set of compatible attributes = {name, spe-
cialty, degree, age}
(2) the set of dominant attributes = {name}
(3) the set of nondominant attributes = {specialty,
degree, age}
(4) weights
The weight “w(a;)” for attribute a; is defined as
1

e w(name) = ;

w(specialty) = %

w(degree) = £

o w(age) = 1

(5) difference distance
e The domain of attribute degree is {BS, MS,
PhD}. The difference distance “D(u,v)” be-

tween any two values u and v in attribute de-
gree is defined as

D(BS, MS) = 2
D(MS, PhD) = 4
D(BS, PhD) = 6.

e For any two values v; and v in attribute age,
the difference distance “D(vq,v2)” between vg
and vy 1s defined as
D(’Ul,’Uz) = | V1 — V2 | .



(6) maximum difference distance (MDD)
e for attribute degree, MDD= 6
e for attribute age, MDD = 5

(7) the domain hierarchy

e The domain of department consists of Com-
puter Science(CS) and Electronic Engineer-
ing(EE).

e The domain of specialty (which is also the do-
main of CS) consists of Computer Network (C-
N), Database(DB), Image Processing(IP), and
Artificial Intelligence(AI). (Recall that Con-
sultant stores the data of the consultants in
the computer science division of Y Company.)

e The domain of Electronic Engineering (EE)
consists of Communication Electronics(CE)
and IC Design (IC).

The domain hierarchy is depicted in Figure 6.

(department)

cs EE
(Specialty)

CN DB P Al CE IC

Figure 6: The domain hierarchy for attributes de-
partment and specialty.

Now, consider the two tuples (7003, John, CS,
PhD, 29) and (101, John, CN, MS, 25, B) in rela-
tions Teacher and Consultant, respectively. The
sameness S(a;) for the two values under attribute a;
(a; is a compatible attribute) is computed by

w
bl
@
3]
2
o
2,
(=
~
S
[l

The associated integrated value V(a;) is expressed
as

V(name) = John
V(specialty) = [CN%, DB#,IP3, AI5]
(degree) = [M52 PhD%]

(

\"
V(age) = [257,293].

We compute the sameness of these two tuples by
sameness = X S(a;)x w(a;) =1 x % + % X %—I— % X
Ly lyl—0.63.

Then the select operation is processed, and the pos-
sibility poss of an integrated tuple that satisfies the
select predicate is computed by using the extended
select operator[15]. For the above example, the val-
ue of poss for the integrated tuple

(7003, 101, John, [CNs,DBS,IPs,Als],
[MS?, PhD3], [25%,29%], B)
is computed by

1 1
poss:(§+§)x1x1:0.25.

Finally, the possibility of the integrated tuple to be
a query result is computed by

poss* — sameness X poss = 0.63 x 0.25 ~ 0.16.
The domain of attribute city is assumed to be {A,B}.
The result of the whole query processing is depicted
in Figure 7. Notice that ¢zd_f and ¢d_2 represent the
attribute ¢d in Teacher and Consultant, respec-
tively. It is interesting to see that the relationship
between these two incompatible keys may be derived
from the resultant relation. For example, teacher
“7003” can be consultant “101” or “105” with the
sameness being 0.63 and 0.66, respectively. More-
over, consultant “101” can also be teacher “7004”
with the sameness being 0.84.

5 Conclusions and Future Work

In this paper, we propose an approach to process
queries involving joining two relations on their in-
compatible keys. Interoperability problems — miss-
ing data, inconsistent data, and domain mismatch
are considered in the process of query processing.
Probabilistic techniques are used to estimate the
sameness between two tuples, integrate data, and
handle data manipulation.

In a heterogeneous database which consists of ob-
ject databases, the same real-world entity can be s-
tored as objects in different databases with incom-
patible object identifiers. We have applied similar
techniques to identify and integrate these objects for
query processing in [5].

Currently, we are working on extending this ap-
proach to handle queries involving more than two
relations. Besides, how to derive the relationship be-
tween the incompatible keys based on this approach
is under investigation. Finally, we think that a query
with a threshold possibility is more flexible than the
conventional queries. The users attach a possibili-
ty “a” to the query, and the system only presents
those tuples with possibilities greater than or equal
to « in the resultant relation. By this method, query



id1 [ id2 [ name | specialty [ degree age [ city [[ sameness | poss [ poss* |
B L L L L L L L

7008 | 101 | John | [CN8,DB8,IP8,AI8] | [MS2,PhD2] [262,202] | B 0.63 0.25 0.16
B L L L L L

7004 | 101 | John | [CN8,DBE,IP8,AIB] | Ms [2562,262] | B 0.84 0.25 0.21
B L L L L 2 L L L

7001 | 104 | Mary | [ON8 ,DB8,IP8,A18] | [BS6,MS3,PhD8] | [292,302] | B 0.73 0.25 0.18
L L L B L L L L

7003 | 106 | John | [CN8 ,DBS8,IP8,A18] | [MSZ,PnD 2] [262,202] | B 0.66 0.75 0.50
L L L B

7004 | 106 | John | [CN8 ,DBS8,IP8,AI8] | Ms 26 B 0.87 0.75 0.65
L L L B L L 2

7001 | 109 | Mary | [ON8,DB8,IP8,A18] | [BS&,MS6,PrD3] | 30 B 0.76 0.75 0.57
L B L L L L

7006 | 110 | Paul | [ON8,DB8,IP&,6AI8] | PhD 30 [42,B2] || o.87 0.375 | 0.33

Figure 7: The result of o(speciatty=AIorDB)and(age<30)and(city=B)(Teacher ;4 Consultant).

results are presented to the users according to their
requirement. Moreover, & can be used to save some
query processing effort, it also serves as a query opti-
mization strategy. Query optimization based on the
threshold possibility is another subject of our future
work.
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