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Abstract: We revisit neutrino oscillations in matter considering the open quantum

system framework which allows to introduce possible decoherence effects generated

by New Physics in a phenomenological manner. We assume that the decoherence

parameters γij may depend on the neutrino energy, as γij = γ0
ij(E/GeV)n (n =

0,±1,±2). The case of non-uniform matter is studied in detail, both within the

adiabatic approximation and in the more general non-adiabatic case. In particular,

we develop a consistent formalism to study the non-adiabatic case dividing the matter

profile into an arbitrary number of layers of constant densities. This formalism is then

applied to explore the sensitivity of IceCube and DeepCore to this type of effects.

Our study is the first atmospheric neutrino analysis where a consistent treatment of

the matter effects in the three-neutrino case is performed in presence of decoherence.

We show that matter effects are indeed extremely relevant in this context. We find

that IceCube is able to considerably improve over current bounds in the solar sector

(γ21) and in the atmospheric sector (γ31 and γ32) for n = 0, 1, 2 and, in particular,

by several orders of magnitude (between 3 and 9) for the n = 1, 2 cases. For n = 0

we find γ32, γ31 < 4.0 · 10−24(1.3 · 10−24) GeV and γ21 < 1.3 · 10−24(4.1 · 10−24) GeV,

for normal (inverted) mass ordering.
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1 Introduction

The accurate measurement of the mixing angle θ13 by reactor neutrino experiments [1],

with a small uncertainty comparable to that for θ12, has initiated a precision era for

neutrino physics. In the standard three-family framework, the main remaining issues

are the possible observation of leptonic CP violation, the determination of the order-

ing of neutrino masses and probing the Dirac or Majorana nature of neutrinos. Some

hints currently exist in the latest data collected by NOvA and T2K which seem to

point to maximal CP violation in the neutrino sector, but the statistical significance

is still low [2, 3]. Likewise, a global fit to neutrino oscillation data seems to show a

mild preference for a normal mass ordering (see for instance [4, 5]), which needs to

be confirmed as more data become available.

At the same time, and in view of the precision of present and near future neutrino

facilities, it is of key importance to verify if neutrinos have unexpected properties

caused by New Physics (NP) beyond the standard three-family framework. In this

work we study one of the possible windows to NP, the so-called quantum decoherence
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in neutrino oscillations, and update the existing bounds by analyzing IceCube and

DeepCore data on atmospheric neutrinos. In particular, we are interested in a kind of

decoherence effects in neutrino oscillations studied, for example, in [6–13] and, more

recently, in [14–19]. These decoherence effects differ from the standard decoherence

caused by the separation of wave packets (see e.g. [20]) and might arise, instead, from

quantum gravity effects [21–23]. Throughout this work, for brevity, we will refer to

such non-standard decoherence simply as decoherence.

The authors of Ref. [7] derived some of the strongest available constraints on

neutrino decoherence in neutrino oscillations up to date, using atmospheric neu-

trino data from the Super-Kamiokande (SK) experiment [24–27]. Moreover, they

considered the general case in which the decoherence parameters could depend on

the neutrino energy via a power law, γ = γ0(E/GeV)n, where n = 0,−1, 2. Nev-

ertheless, these limits were obtained within a simplified two-family framework and

without taking into account the matter effects in the neutrino propagation. More-

over, only a reduced subset of SK data (taken, in fact, almost 20 years ago now) was

analyzed [24–27].

In this work, we show that performing a three-flavour analysis which includes

the matter effects is essential in order to correctly interpret such constraints. In

particular, it is not obvious to which γij parameter the SK bounds derived in two

families [7] would actually apply. We will show that it strongly depends on the

neutrino mass ordering and on whether the sensitivity is dominated by the neutrino

or antineutrino channels: for neutrinos the decoherence effects at high energies are

mainly driven by γ21 (γ31) for normal (inverted) ordering, while in the antineutrino

channel they are essentially controlled by γ32 (γ21) for normal (inverted) ordering.

Concerning the solar sector, the authors of Ref. [15] obtained strong constraints on

γ21 from an analysis of KamLAND data, for n = 0,±1.1 Finally, the authors of

Ref. [29] derived several bounds on the atmospheric decoherence parameters γ32 and

γ31 from an analysis of MINOS data.

Non-standard decoherence has been invoked several times in the literature in

order to decrease the tension in the parameter space among different sets of neutrino

oscillation data. For example, in Refs. [13, 14] a solution to the LSND anomaly

based on quantum decoherence, compatible with global neutrino oscillation data,

was proposed. More recently, in [17] it was shown that the ∼ 2σ tension between

T2K and NOvA on the measurement of the atmospheric mixing angle θ23 could be

alleviated through the inclusion of decoherence effects in the atmospheric neutrino

sector, namely, γ23 = (2.3 ± 1.1) · 10−23 GeV. Such value of γ23 would be close

to the SK bound from Ref. [7], γ < 3.5 · 10−23 GeV (90% CL), but still allowed.

1It should be mentioned that, in [12], very strong bounds on dissipative effects were derived from

solar neutrino data, for n = 0,±1,±2 and in a two-family approximation. However, such limits

do not apply to the case in which only decoherence effects are included, as pointed out in [15, 28].

This will be further clarified in section 2.2.
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This topic has recently brought the attention of a part of the community. In fact,

several analyses of decoherence effects on present and future long-baseline neutrino

oscillation experiments have been recently performed (albeit at the probability level

only), see e.g. Refs. [16, 18, 19]. We note however that, according to the latest

results reported by NOvA, the significance of the tension has been reduced to less

than 1σ [3]. In this work we will show that the reference value for γ23 considered

in [17] is indeed already excluded by IceCube data. Moreover, we find that IceCube

and DeepCore data are able to improve significantly over most of the constraints

in past literature, both for solar and atmospheric decoherence parameters, in some

cases by several orders of magnitude.

The paper is structured as follows. In section 2 we present the formalism and

discuss the effects of decoherence on the oscillation probabilities. We first review the

case of constant matter density profile, and then proceed to discuss the case of non-

uniform matter. In particular we show that, within the adiabatic approximation,

no significant bounds on the decoherence parameters can be extracted from solar

neutrino data. We then proceed to develop a formalism which permits a consistent

treatment of the decoherence effects on neutrino propagation in non-uniform matter

when the adiabaticity condition is not fulfilled, as is the case of atmospheric neutrino

experiments. In Section 3 we apply this formalism to the computation of the relevant

oscillation probabilities in the atmospheric neutrino case, discussing the main features

arising in presence of decoherence. Section 4 summarizes the main features of the

IceCube and DeepCore experiments, the data sets considered in our analysis, and the

details of our numerical simulations. Our results are then presented and discussed in

section 5. Finally, we summarize and draw our conclusions in section 6. Appendices A

and B discuss technical details regarding some of the approximations used in our

numerical calculations.

2 Quantum decoherence: Density matrix formalism

The evolution of the density matrix ρ in the neutrino system can be described as

dρ

dt
= −i [H, ρ]−D [ρ] , (2.1)

where H is the Hamiltonian of the neutrino system and the second term D [ρ] param-

eterizes the decoherence effects. In vacuum, the diagonal elements of the Hamiltonian

are given by hi = m2
i /(2E), where mi (i = 1, 2, 3) are the masses of the three neu-

trinos and E is the neutrino energy. Here ρ is defined in the flavour basis, with

matrix elements ραβ. Throughout this work, we will use Greek indices for flavor

(α, β = e, µ, τ), and Latin indices for mass eigenstates (i, j = 1, 2, 3).

A notable simplification of eq. (2.1) can be achieved via the following set of

assumptions. First, assuming complete positivity, the decoherence term D [ρ] can be
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written in the so-called Lindblad form [30, 31]

D [ρ] =
∑
m

[{
ρ,DmD

†
m

}
− 2DmρD

†
m

]
, (2.2)

where Dm is a general complex matrix. Second, avoiding unitarity violation, which

is equivalent to imposing the condition dTr[ρ]/dt = 0, requires Dm to be Hermitian.

Moreover, Dm = D†m implies that the entropy S = Tr[ρ ln ρ] increases with time.

Finally, a key assumption is the average energy conservation of the neutrino system,

which is satisfied when [H,Dm] = 0. In presence of matter effects, the Hamiltonian is

diagonalized by the unitary mixing matrix Ũ . Therefore, after imposing the condition

[H,Dm] = 0, we get

H = Ũ diag
{
h̃1, h̃2, h̃3

}
Ũ † ≡ ŨHdŨ

†,

Dm = Ũ diag
{
d1
m, d

2
m, d

3
m

}
Ũ † ≡ ŨDd

mŨ
†. (2.3)

This condition implies that the averaged energy is conserved along the whole neutrino

propagation. Note that we consider the standard definition for the relation between

the mass and flavour eigenstates used in neutrino oscillations2. Moreover, throughout

this paper, in our notation the presence of a tilde denotes that a quantity is affected

by matter effects.

From a model-independent point of view, the djm are free parameters that could a

priori depend on the matter effects. The most common assumption in the literature

is to assume that the djm are independent of the matter density even in presence of

matter effects. In order to be consistent with most previous studies and to com-

pare the bounds obtained in our analysis with the constraints derived in previous

publications, we will also assume that this is the case. Notice that this assumption

does not imply that the matter effects are not relevant when neutrino propagation

is affected by decoherence: it just implies that the djm are assumed to be constant

during neutrino propagation in the Earth.

2.1 Neutrino propagation in uniform matter

Performing the following change of basis

ρ̃ = Ũ †ρŨ , (2.4)

eq. (2.1) can be rewritten as

dρ̃

dt
= −i [Hd, ρ̃]−

∑
m

[{
ρ̃, (Dd

m)2
}
− 2Dd

m ρ̃ D
d
m

]
− Ũ †dŨ

dt
ρ̃− ρ̃dŨ

†

dt
Ũ . (2.5)

2For field operators, να =
∑
i Uαiνi. For one-particle states, |να〉 =

∑
i U

∗
αi|νi〉.

– 4 –



If the matter profile is constant along the neutrino path, the system of equations

becomes diagonal in ρ̃ij
dρ̃ij
dt

= −
[
γij − i∆h̃ij

]
ρ̃ij, (2.6)

where we have defined

γij ≡
∑
m

(
dim − djm

)2
= γji > 0 ; ∆h̃ij = h̃i − h̃j. (2.7)

Therefore, the solution of eq. (2.1) for constant matter is simply given by

ραβ(t) =
[
Ũ ρ̃(t)Ũ †

]
αβ
, (2.8)

with

ρ̃ij(t) = ρ̃ij(0) e−[γij−i∆h̃ij]t, (2.9)

where ρ̃ij(0) is determined by the initial conditions of the system. For instance, if the

neutrino source flux is made only of the flavor να (α = e, µ, τ) the initial conditions

are given by

ρ̃ij(0) = Ũ∗αiŨαj . (2.10)

As a result, the oscillation probabilities in presence of decoherence (for a constant

matter profile) read

Pαβ ≡ P (να → νβ) = Tr
[
ρ̂(α)(t)ρ̂(β)(0)

]
= Tr

[
ρ̂(α)(t)|νβ〉〈νβ|

]
= 〈νβ|ρ̂(α)(t)|νβ〉 =

=
∑
i,j

ŨβiŨ
∗
βj ρ̃ij(t)

=
∑
i,j

Ũ∗αiŨβiŨαjŨ
∗
βje
−[γij−i∆h̃ij]t . (2.11)

Finally, after some manipulation the above equation can be rewritten in the more

familiar form

Pαβ = δαβ − 2
∑
i<j

Re
[
Ũ∗αiŨβiŨαjŨ

∗
βj

] (
1− e−γijL cos ∆̃ij

)
− 2

∑
i<j

Im
[
Ũ∗αiŨβiŨαjŨ

∗
βj

]
e−γijL sin ∆̃ij, (2.12)

where

∆̃ij ≡
∆m̃2

ijL

2E
, γij = γji ≡ γ0

ij

(
E

GeV

)n
, (2.13)

where ∆m̃2
ij ≡ m̃2

i − m̃2
j are the effective mass squared differences of neutrinos in

matter and we have used the approximation L ≈ t, L being the distance traveled by

the neutrino as it propagates. Note that the power law dependence on the neutrino

energy given by eq. (2.13) breaks Lorentz invariance except for the case with n = −1
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which gives similar effects to the neutrino decay (see e.g. [32]). However, the effect

encoded in γij only suppresses the oscillatory terms in the oscillation probability

while a neutrino decay would also affect the non oscillatory terms. Therefore, in the

framework considered in this work the total sum of the probabilities adds up to 1,

while this is not the case for neutrino decay.

From eqs. (2.12) and (2.13), one would expect to have a sizable effect in neutrino

oscillations for γijL ∼ 1. This condition gives an estimate of the values of γij for

which an effect may be experimentally observable:

γ0
ij ∼ 1.7 · 10−19

(
L

km

)−1(
E

GeV

)−n
GeV. (2.14)

Nevertheless, we would like to remark that fulfilling this condition is not enough to

have sensitivity to decoherence effects, as we will discuss in the next subsection.

Even though in our simulations we will numerically compute the exact oscillation

probabilities, in order to understand qualitatively the impact of decoherence on the

oscillation pattern it is useful to derive approximate analytical expressions. In this

work, we will be focusing on the study of atmospheric neutrino oscillations, for which

the oscillation channel Pµµ is most relevant. Recently, in [33, 34] approximated

but very accurate analytical expressions for the standard oscillation probabilities in

presence of constant matter density were derived. For the νµ → νµ oscillation channel

including decoherence effects, using the same parametrization as in Ref. [34], we find:

Pµµ = 1− A21

[
1− e−γ21L cos ∆̃21

]
− A32

[
1− e−γ32L cos ∆̃32

]
(2.15)

− A31

[
1− e−γ31L cos ∆̃31

]
,

where

Aij ≡ Aij(θ23, θ̃12, θ̃13, δ) = 2|Uµi(θ23, θ̃12, θ̃13, δ)|2|Uµj(θ23, θ̃12, θ̃13, δ)|2, (2.16)

and the effective mass splittings and mixing angles in matter can be expressed as [34]:

cos 2θ̃13 =
cos 2θ13 − a/∆m2

ee√
(cos 2θ13 − a/∆m2

ee)
2 + sin2 2θ13

,

cos 2θ̃12 =
cos 2θ12 − a′/∆m2

21√
(cos 2θ12 − a′/∆m2

21)2 + sin2 2θ12 cos2(θ̃13 − θ13)
,

∆m̃2
21 = ∆m2

21

√
(cos 2θ12 − a′/∆m2

21)2 + sin2 2θ12 cos2(θ̃13 − θ13),

∆m̃2
31 = ∆m2

31 + (a− 3

2
a′) +

1

2
(∆m̃2

21 −∆m2
21),

∆m̃2
32 = ∆m̃2

31 −∆m̃2
21. (2.17)

Here, a ≡ 2
√

2GFneE, where GF is the Fermi constant and ne is the electron density

along the neutrino path, ∆m2
ee ≡ cos2 θ12∆m2

31 + sin2 θ12∆m2
32, and a′ = a cos2 θ̃13 +
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∆m2
ee sin2(θ̃13 − θ13). The corresponding probability for antineutrinos is obtained

simply replacing a→ −a and δ → −δ, where δ denotes the Dirac CP phase.

2.2 Neutrino propagation in non-uniform matter: adiabatic regime

Eq. (2.12) applies for constant density profiles (which is a very good approximation

in the case of long-baseline neutrino oscillation experiments such as T2K or NOvA),

but if the matter density is not constant the analysis becomes more complicated.

Nevertheless, when the adiabaticity condition dŨ/dt � 1 is fulfilled, as in the solar

neutrino case, the solution of the evolution equations given by eqs. (2.8) and (2.9) is

still a good approximation. In such a case, the oscillation probability is given by

Pαβ = 〈νβ|ρ̂(α)(t)|νβ〉 =
∑
i,j

ρ̃
(α)
ij (0)e−[γij−i∆h̃ij]t〈νβ|ν̃effi 〉〈ν̃

eff
j |νβ〉, (2.18)

where νeffi denotes the effective mass eigenstates at time t. In the case of solar

neutrinos, the initial flux of νe is produced in the solar core and the initial conditions

are given by:

ρ̃
(e)
ij (0) = Ũ0∗

ei Ũ
0
ej, (2.19)

where Ũ0 denotes the effective mixing matrix at the production point. On the other

hand, since the evolution is adiabatic, when the neutrinos come out from the Sun we

have |ν̃effi 〉 = |νi〉 and thus

Peβ ≈
∑
i,j

Ũ0∗
ei UβiŨ

0
ejU

∗
βje
−[γij−i∆h̃ij]t

=
∑
i

|Ũ0
ei|2|Uβi|2 (2.20)

+ 2
∑
i<j

Re
[
Ũ0∗
ei UβiŨ

0
ejU

∗
βj

]
e−γijt cos ∆̃ij − 2

∑
i<j

Im
[
Ũ0∗
ei UβiŨ

0
ejU

∗
βj

]
e−γijt sin ∆̃ij.

Finally, for solar neutrinos observed at the Earth we obtain, after averaging over the

oscillating phase:

Peβ ≈
∑
i

|Ũ0
ei|2|Uβi|2, (2.21)

which coincides with the standard three neutrino result. In other words, the de-

coherence effects encoded in γij can not be bounded by solar neutrino oscillation

experiments. This is due to the standard loss of coherence in the propagation from

the Sun to the Earth, which strongly suppresses the oscillating terms. Notice that

high energy astrophysical neutrinos at IceCube are not sensitive either to decoher-

ence due to the averaged oscillations of neutrinos which are produced in distant

astrophysical sources.
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2.3 Neutrino propagation in non-uniform matter: layers of constant den-

sity

In the atmospheric neutrino case, the matter profile can not be considered constant

since the neutrinos propagate through the Earth crust, mantle and core, which have

different densities. The adiabaticity condition is not fulfilled either. In this case,

eq. (2.5) should be solved including the non-adiabatic terms, which give non-diagonal

contributions. Even though this can be done numerically, we will show that dividing

the matter profile into layers of constant density considerably simplifies the analysis

and reduces the computational complexity of the problem. In particular, this is cru-

cial in the case of atmospheric neutrino oscillation experiments, for which numerical

studies are already computationally demanding even in the standard three-family

scenario. Dividing the matter profile into layers of different constant densities has

proved to be a very good approximation in the standard three-family scenario and,

therefore, we expect the same level of accuracy in presence of decoherence. Since the

matter is constant in each layer, the evolution equations can be solved for each layer

M as in section 2.1:

ρMαβ(tM) =
[
ŨM ρ̃M(tM)(ŨM)†

]
αβ
,

ρ̃Mij (tM) = ρ̃Mij (tM,0) e−[γij−i∆h̃Mij ]∆tM , (2.22)

where ∆tM ≡ tM − tM,0, and tM,0 and tM denote the initial and final time for

the propagation along layer M , respectively. Now the problem of computing the

probability is just reduced to performing properly the matching among the evolution

on the different layers. Let us first consider the simplest case of two layers A and B.

The oscillation probability when the neutrino exits the second layer (at time tB) is

given by

Pαβ = 〈νβ|ρ̂(α)(tB)|νβ〉 =
∑
i,j

ŨB
βi Ũ

B∗
βj ρ̃

B
ij(tB,0) e−[γij−i∆h̃Bij]∆tB . (2.23)

The key point here is that the matching should be done between the solutions of

eq. (2.1) at the frontier between the two layers and in the flavor basis, as

ρAαβ(tA) = ρBαβ(tB,0). (2.24)

After imposing the matching condition, the elements of the density matrix in the

second layer at tB,0 can be written in the matter basis as:

ρ̃Bij(tB,0) =
[
(ŨB)†ŨAρ̃A(tA)(ŨA)†ŨB

]
ij

= ŨB∗
δi Ũ

A
δl ρ̃

A
ln(tA,0)e−[γln−i∆h̃Aln]∆tAŨA∗

γn Ũ
B
γj

= ŨB∗
δi Ũ

A
δl Ũ

A∗
αl Ũ

A
αne
−[γln−i∆h̃Aln]∆tAŨA∗

γn Ũ
B
γj, (2.25)
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where we have considered that the initial flux is made of να as initial condition for

the first layer, and tA,0 = 0. After substituting this result into eq. (2.23) we finally

obtain

Pαβ =
∑

δ,γ,i,j,l,n

ŨB
βiŨ

B∗
δi Ũ

B
γjŨ

B∗
βj e

−[γij−i∆h̃Bij]∆tB

× ŨA
δl Ũ

A∗
αl Ũ

A
αnŨ

A∗
γn e

−[γln−i∆h̃Aln]∆tA . (2.26)

It can be easily checked that, in the limit γij → 0, the standard oscillation probability

is recovered. In the three-layer case, following the same procedure we find

Pαβ =
∑

δ,γ,θ,φ,i,j,l,n,m,k

ŨC
βiŨ

C∗
δi Ũ

C
γjŨ

C∗
βj e

−[γij−i∆h̃Cij]∆tC

× ŨB
δl Ũ

B∗
θl Ũ

B
φnŨ

B∗
γn e

−[γln−i∆h̃Bln]∆tB

× ŨA
θmŨ

A∗
αmŨ

A
αkŨ

A∗
φk e

−[γmk−i∆h̃Amk]∆tA . (2.27)

The procedure can be easily generalized to an arbitrary number of layers. Indeed,

under the approximation L ≈ t, and defining

ÃMαβγδ ≡
∑
i,j

ŨM
αi Ũ

M∗
βi Ũ

M
γj Ũ

M∗
δj e−[γij−i∆m̃M2

ij /2E]∆LM , (2.28)

the probabilities can be written in a more compact way as

Pαβ =
∑

δ,γ ÃBβδγβÃAδααγ for two layers,

Pαβ =
∑

δ,γ,θ,φ ÃCβδγβÃBδθφγÃAθααφ for three layers, and

Pαβ =
∑

δ,γ,θ,φ,...,ξ,ω,ϕ,ρ ÃNβδγβÃ
N−1
δθφγ ... ÃBξϕρωÃAϕααρ for N layers.

3 Atmospheric oscillation probabilities with decoherence

Atmospheric neutrino oscillations take place in a regime where matter effects are

significant and can even dominate the oscillations. The relevance of matter effect

increases with neutrino energy and is very different for neutrinos and antineutrinos,

as the sign of the matter potential changes between the two cases. Matter effects also

depend strongly on the neutrino mass ordering. In order to understand better the

numerical results shown in this paper, it is useful to derive approximate expressions

for the oscillations in the νµ → νµ and ν̄µ → ν̄µ channels in the presence of strong

matter effects.

From the results obtained in Refs. [33, 34], for neutrino energies E >∼ 15 GeV

matter effects drive the effective mixing angles in matter θ̃12 and θ̃13 to either 0 or

π/2, depending on the channel (neutrino/antineutrino) and the mass ordering. It is
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easy to show that, in this regime, the oscillation probabilities in eq. (2.15) can be

approximated as:

PNO
µµ ≈ 1− 1

2
sin2 2θ23

(
1− e−γ21L cos ∆̃21

)
for neutrinos, (3.1)

PNO
µ̄µ̄ ≈ 1− 1

2
sin2 2θ23

(
1− e−γ32L cos ∆̃32

)
for antineutrinos, (3.2)

assuming a normal ordering (NO). For inverted ordering (IO) we get instead

P IO
µµ ≈ 1− 1

2
sin2 2θ23

(
1− e−γ31L cos ∆̃31

)
for neutrinos, (3.3)

P IO
µ̄µ̄ ≈ 1− 1

2
sin2 2θ23

(
1− e−γ21L cos ∆̃21

)
for antineutrinos. (3.4)

From eqs. (3.1)-(3.4) it is easy to see that the approximated oscillation probabilities

for an inverted mass ordering can be obtained from the corresponding ones for normal

mass ordering, just performing the following transformation:

γ21, ∆̃21 → γ31, ∆̃31, (3.5)

γ32, ∆̃32 → γ21, ∆̃21. (3.6)

Moreover, note that since the three decoherence parameters and the three mass split-

tings are related (see eqs. (2.7) and (2.13)), these two transformations automatically

imply that

γ31, ∆̃31 → γ32, ∆̃32. (3.7)

Eqs. (3.1)-(3.4) illustrate why a proper consideration of the matter effects in

the context of three families is of key importance in order to correctly interpret

the bounds extracted within a simplified two-flavour approximation (as done in e.g.

Ref. [7]). According to our analytical results, which will be confirmed numerically

below, the constraints obtained from SK in a two-family approximation cannot be

simply applied to γ31 or γ32, contrary to the naive expectation. In fact, the inter-

pretation of such limits depends strongly on the ordering of neutrino masses and

on whether the sensitivity is dominated by the neutrino or antineutrino channels:

for neutrinos the decoherence effects at high energies would be mainly driven by γ21

(γ31) for normal (inverted) ordering. Conversely, in the antineutrino channel deco-

herence effects are essentially controlled by γ32 (γ21) for normal (inverted) ordering.

Therefore, we conclude that in order to avoid any misinterpretation of the bounds

from atmospheric neutrinos, a three-family approach including matter effects should

be considered.

Figure 1 shows the numerically obtained νµ → νµ (top panels) and νµ → νµ
(bottom panels) oscillation probabilities for NO (left panels) and IO (right panels),

with and without decoherence, as a function of the neutrino energy for a three-layer

model (details on the accuracy of our three-layer model and the specific parameters
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pr o b a biliti es wit h ( n = 0) a n d wit h o ut d e c o h er e n c e e ff e cts as a f u n cti o n of t h e

n e utri n o e n er g y. T h e pr o b a biliti es h a v e b e e n c o m p ut e d f or n or m al (l eft p a n els) a n d

i n v ert e d (ri g ht p a n els) n e utri n o m ass or d eri n g, usi n g t h e t hr e e-l a y er m o d el f or t h e

E art h m att er d e nsit y pr o fil e, a n d c orr es p o n d t o t h e c as e i n w hi c h t h e n e utri n os cr oss

t h e c e nt er of t h e E art h c or e, n a m el y, c os θ z = − 1.

us e d i n o ur si m ul ati o ns c a n b e f o u n d i n A p p e n di x A ). F or t h e s a k e of si m pli cit y, i n

t his s e cti o n w e f o c us o n t h e c as e n = 0, w h er e t h e γ i j d o n ot d e p e n d o n t h e n e utri n o

e n er g y (t h e r es ults f or di ff er e nt v al u es of n s h o w a si mil ar q u alit ati v e b e h a vi or). T h e

st a n d ar d os cill ati o n p ar a m et ers h a v e b e e n fi x e d t o t h e b est fit v al u es gi v e n i n [ 4 , 5 ].

Fi g ur e 1 cl e arl y s h o ws h o w t h e d e c o h er e n c e t e n ds t o d a m p t h e os cill at or y b e-

h a vi or, i n q u alit ati v e a gr e e m e nt wit h e q. ( 2. 1 5 ) a n d t h e c orr es p o n di n g a p pr o xi m at e d

e x pr essi o ns gi v e n b y e qs. ( 3. 1 )-(3. 4 ). N e v ert h el ess, w e s h o ul d str ess t h at e q. ( 2. 1 5 )

h as b e e n o bt ai n e d u n d er s e v er al a p pr o xi m ati o ns, i n p arti c ul ar o nl y o n e l a y er wit h

c o nst a nt m att er d e nsit y. T h er ef or e, e v e n t h o u g h e q. ( 2. 1 5 ) is us ef ul t o u n d erst a n d

t h e g e n er al d a m pi n g e ff e ct of t h e os cill ati o n a n d w hi c h t er ms ar e e x p e ct e d t o d o m-
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inate the sensitivity, it may not explain all the features observed in the DeepCore

and IceCube analysis presented in section 5, which has been performed numerically

using the exact probability considering three layers (see appendix A for details).

Since the three γij are not completely independent from one another (see eq. (2.7)),

in view of equations (3.1)-(3.4) and in order to simplify the analysis, hereafter we

will distinguish three different representative cases, where the decoherence effects are

dominated by just one parameter:

(A) Atmospheric limit: γ21 = 0 (γ32 = γ31),

(B) Solar limit I: γ32 = 0 (γ21 = γ31),

(C) Solar limit II: γ31 = 0 (γ21 = γ32).

In appendix B, we will show that the bounds derived in these limits correspond

to the most conservative bounds that can be extracted in the general case. As a

reference value for the decoherence parameters in this section, we have considered

γ = 2.3 · 10−23 GeV, for each of the three limiting cases listed above.

The results in figure 1 show that, for neutrinos with a NO (top left panel),

the impact of decoherence is essentially controlled by γ21, in good agreement with

eq. (3.1): no significant effects are seen in the atmospheric limit (A), while a similar

impact is obtained in the solar limits I (B) and II (C). Conversely, for IO (top right

panel) the effects are dominated by γ31 instead: no effect is observed for the solar

limit II (C), while in scenarios (A) and (B) the effect is very similar. This can

be qualitatively understood from the approximate probability derived in eq. (3.3),

which only depend on the decoherence parameter γ31. On the other hand, in the

antineutrino case for NO (bottom left panel) no observable decoherence effects take

place in case (B), while cases (A) and (C) show a similar behavior, in agreement with

eq. (3.2). Conversely, for IO (bottom right panel) decoherence effects are essentially

controlled by γ21 as shown in eq. (3.4): therefore, no significant effects are observed

in case (A) while a similar impact is obtained for case (B) and (C).

Moreover, it should be pointed out that the transformations listed in Eqs. (3.5)-

(3.7) automatically imply the following equivalence for the results obtained in the

three limiting cases listed above:

(A)NO ←→ (C)IO,

(B)NO ←→ (A)IO, (3.8)

(C)NO ←→ (B)IO.

This is confirmed at the numerical level as it can be easily seen by comparing the

different lines shown in the left (NO) and right (IO) panels in figure 1 for the three

limiting cases.
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It is also remarkable that, for both normal and inverted hierarchy, even when

the standard oscillations turn off (at very high energies), there is still a large effect

on the probability due to decoherence effects, that could potentially be tested with

neutrino telescopes like IceCube. In particular, for E >∼ 200 GeV one can approxi-

mate cos ∆̃ij ≈ 1, ∀i, j. Therefore, in the standard case (with γij = 0) the last three

terms in eq. (2.15) approximately vanish, leading to Pµµ ≈ 1. However, in presence of

decoherence those terms will not vanish completely, as e−γijL cos ∆̃ij 6= 1. This leads

to a depletion of Pµµ, which is no longer equal to 1 in this case. The size of the effect

will of course depend on the baseline of the experiment. Since at high energies the

oscillation probability does no longer depend on the neutrino energy, at oscillation

experiments with a fixed baseline the effect may be hindered by the presence of any

systematic errors affecting the normalization of the signal event rates. However, at

atmospheric experiments this effect can be disentangled from a simple normalization

error by comparing the event rates at different nadir angles.

The dependence of the neutrino probabilities with the zenith angle θz is illus-

trated in figure 2, assuming a normal mass ordering and fixing the standard oscillation

parameters to the best fit values given in [4, 5]. The results are shown as a neutrino

oscillogram (see for instance [35]), which represents the oscillation probability in the

Pµµ channel as a function of neutrino energy and zenith angle θz (which can be related

to the distance traveled by the neutrino). Figure 2 shows the oscillation probability

Pµµ in the three limiting cases described above, comparing it to the results in the

standard scenario (γij = 0). As expected, the effects depend on the direction of the

incoming neutrino and they are more relevant in the region −1 . cos θz . −0.4, this

is, for very long baselines. This was to be expected, since the decoherence effects

are driven by e−γijL. In addition, the dependence of the oscillation probability with

the zenith angle at very high energies (E > 100 GeV) is clearly visible in the bot-

tom panels of figure 2. As we will show in section 5, this will lead to an impressive

sensitivity for the IceCube setup. Finally, note that the results for inverted ordering

show similar features to those in figure 2, once the mapping in eq. (3.8) is applied,

and are therefore not shown here.

4 IceCube/DeepCore simulation details and data set

The IceCube neutrino telescope, located at the South Pole, is composed of 5160

DOMs (Digital Optical Module) deployed between 1450m and 2450m below the ice

surface along 86 vertical strings [36]. In the inner core of the detector, a subset

of these DOMs were deployed deeper than 1750m and closer to each other than in

the rest of IceCube. This subset of strings is called DeepCore. Due to the shorter

distance between its DOMs, the neutrino energy threshold in DeepCore (∼ 5 GeV)

is lower than in IceCube (∼ 100 GeV). This allows DeepCore to observe neutrino
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Figure 2: Oscillograms for the neutrino oscillation probability Pµµ, assuming normal

mass ordering. The top-left panel corresponds to the case of no decoherence γij = 0

whereas the rest of the panels correspond to the three limiting cases mentioned in

the text: (A) γ32 = γ31 (top-right), (B) γ31 = γ21 (bottom-left) and (C) γ32 = γ21

(bottom-right). In all cases, the size of the decoherence parameters that are turned

on is set to a constant value, γ = 2.3 · 10−23 GeV.

events in the energy region where atmospheric oscillations take place, see figure 1,

whereas IceCube only observes high-energy atmospheric neutrino events.

As outlined in section 2, for high energy astrophysical neutrinos the effect of

non-standard decoherence in the probability would be completely erased by the time

they reach the detector. Therefore, in this work we will focus on the observation

of atmospheric neutrino events at both IceCube and DeepCore, in the energy range

∼ 10 GeV to ∼ 1 PeV. In particular, we have used the three-year DeepCore data on
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atmospheric neutrinos with energies between ∼ 10 GeV and ∼ 1 TeV, taken between

May 2011 and April 2014 [37], and the one-year IceCube data taken between 2011-

2012 [38–40], corresponding to neutrinos with energies between 200 GeV and 1 PeV.

At IceCube and DeepCore, events are divided according to their topology into

“tracks” and “cascades” [41]. Tracks are produced by the Cherenkov radiation of

muons propagating in the ice. In atmospheric neutrino experiments, muons are typ-

ically produced by two main mechanisms: (1) via charged-current (CC) interactions

of νµ with nuclei in the detector, and (2) as decay products of mesons (typically pions

and kaons) originated when cosmic rays hit the atmosphere. Conversely, cascades

are created in CC interactions of νe or ντ
3: in this case, the rapid energy loss of

electrons as they move through the ice is the origin of an electromagnetic shower.

At IceCube/DeepCore, cascades are also observed as the product of hadronic show-

ers generated in neutral current (NC) interactions for neutrinos of all flavors. Our

analysis considers only track-like events observed at both IceCube and DeepCore

although, as we will see, some small contamination from cascade events can be ex-

pected (especially at low energies).

4.1 IceCube simulation details

For IceCube, the observed event rates are provided in a grid of 10 × 21 [39], using

10 bins for the reconstructed energy (logarithmically spaced, ranging from 400 GeV

to 20 TeV), and 21 bins for the reconstructed neutrino direction (linearly spaced,

between cos θrecz = −1.02 to cos θrecz = 0.24). The muon energy is reconstructed with

an energy resolution σlog10(Eµ/GeV) ∼ 0.5 [38], while the zenith angle resolution is in

the range σcos θz ∈ [0.005, 0.015], depending on the scattering muon angle.

The number of events in each bin is computed as:

Ni(E
rec, θrecz ) = (4.1)∑

±

∫
dE d cos θz φ

atm
µ,±(E, θz)P

±
µµ(E, θz)A

eff
i,±,µ(E, θz, E

rec, θrecz )e−X(θz)σ±(E),

where E, θz denote the true values of energy and zenith angle, while Erec, θrecz refer

to their reconstructed quantities. Here, φatm
µ,± is the atmospheric flux for muon neu-

trinos (+) and anti-neutrinos (-), P±µµ(E, θz) is the neutrino/antineutrino oscillation

probability given by eq. (2.27), and Aeff
i,±,µ(E, θz) is the effective area encoding the

detector response in neutrino energy and direction (which relates true and recon-

structed variables), the interaction cross section and a normalization constant, and

has been integrated over the whole data taking period. In our IceCube simulations,

3Technically, a CC ντ event could be distinguished from a νe CC event, e.g., by the observation

of two separates cascades connected by a track from the τ propagation [42]. However, for atmo-

spheric neutrino energies the distance between the cascades cannot be resolved by the DOMs at

IceCube/DeepCore, leaving in the detector a signal similar to a single cascade.
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we have used the unpropagated atmospheric flux (HondaGaisser) provided by the

collaboration [38, 43], and for the effective area we have used the nominal detec-

tor taken from Refs. [38, 43]. On the other hand, the exponential factor takes into

account the absorption of the neutrino flux by the Earth, which increases with the

neutrino energy. Here, X(θz) is the column density along the neutrino path and

σ±(E) is the total inclusive cross section for νµ or ν̄µ. Note that in eq. (4.1) no

contamination from cascade events is considered since the mis-identification rate is

expected to be negligible at these energies [44]. Similarly, the number of atmospheric

muons that pass the selection cuts can also be neglected, given the extremely good

angular resolution at these energies [38].
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Figure 3: Event distributions obtained for IceCube in our numerical simulations as

a function of the reconstructed value of the cosine of the zenith angle, for neutrinos

in different reconstructed energy ranges. The lines have been obtained assuming

a normal mass ordering, for the following values for the decoherence parameters:

γ21 = γ31 = 2.3 · 10−23 GeV (solid blue line), γ21 = γ31 = 10−22 GeV (dashed green

line) and without decoherence (dashed red line). The observed data points [39] are

represented by the black dots, and the error bars indicate the statistical uncertainties

for each bin.

Figure 3 shows the expected number of events for IceCube from our numerical

simulations including decoherence, for γ21 = γ31 = 2.3 · 10−23 GeV (solid blue lines)

and γ21 = γ31 = 10−22 GeV (dashed green lines), as a function of cos θrecz , for events

in different reconstructed energy ranges. For simplicity, we have considered the n = 0

case (that is, γij independent of the neutrino energy). The expected result without

decoherence is also shown for comparison (dashed red lines), while the observed data

are shown by the black dots.

For the analysis of the IceCube data we have performed a Poissonian log-likelihood

analysis doing a simultaneous fit on the following parameters: ∆m2
32, θ23 and γij. The
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Source of uncertainty Value

Flux - normalization Free

Flux - π/K ratio 10%

Flux - energy dependence as (E/E0)η ∆η = 0.05

Flux - ν̄/ν 2.5%

DOM efficiency 5%

Photon scattering 10%

Photon absorption 10%

Table 1: The most relevant systematic errors used in our analysis of IceCube data,

taken from Refs. [38, 40, 43].

rest of the oscillation parameters have been kept fixed to their current best-fit values

from Ref. [4]. The most relevant systematic errors used in the fit are summarized in

Table 1, and have been taken from Ref. [38, 40, 43]. For each systematic uncertainty

a pull term is added to the χ2 following the values listed in the table, except in the

cases indicated as “Free” (when the corresponding nuisance parameter is allowed to

float freely in the fit).

4.2 DeepCore simulation details

In the case of DeepCore, the observed event rates are provided in a grid of 8×8 bins,

using 8 bins for the reconstructed neutrino energy and 8 bins for the reconstructed

neutrino direction. The energy resolution σE/GeV is in the range of 30%-20% while

the zenith angle resolution improves with the energy, from σθz = 12◦ at Eν = 10 GeV

to σθz = 5◦ at Eν = 40 GeV [37]. In each bin, the number of events is computed as

Ni(E
rec, θrecz ) =

∑
±,α,β

∫
dE d cos θz φ

atm
α,±(E, θz)P

±
αβ(E, θz)A

eff
i,±,β(E, θz, E

rec, θrecz )

+Ni,µ(Erec, θrecz ). (4.2)

Unlike for IceCube, at DeepCore muon tracks can be produced from νµ → νµ and

νe → νµ events4. Moreover, the track-like event distributions at DeepCore will also

receive a partial contributions from cascades which are mis-identified as tracks: hence

the sum over β = e, µ, τ in eq. (4.2). Therefore, here φatm
α,± stands for the atmospheric

flux for neutrinos/antineutrinos of flavor α (where we have used the fluxes from

Ref. [45]), and P±αβ refers to the neutrino/antineutrino oscillation probability in the

channel να → νβ for neutrinos (+) (or ν̄α → ν̄β, for antineutrinos (-)). The rejec-

tion efficiencies for the contamination are included in the detector response function

Aeff
i,±,β, which now depends on the flavor β of the interacting neutrino. Finally, an

4The flux from ντ can be considered negligible at these energies.
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estimate of the atmospheric muons that overcome the selection criteria (taken from

Ref. [37, 43]) is also added for each bin in reconstructed variables, Ni,µ.

Figure 4 shows the expected number of events for DeepCore obtained from our

numerical simulations including decoherence, for γ21 = γ31 = 2.3 · 10−23 GeV (solid

blue lines) and γ21 = γ31 = 10−22 GeV (dashed green lines), as a function of cos θrecz ,

for events in different reconstructed energy ranges. For simplicity, we have considered

the n = 0 case (that is, γij independent of the neutrino energy). The expected

result without decoherence is also shown for comparison (dashed red lines), while

the observed data are shown by the black dots.
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Figure 4: Event distributions obtained for DeepCore in our numerical simulations as

a function of the reconstructed values of the cosine of the zenith angle, for neutrinos

in different reconstructed energy ranges. The lines have been obtained assuming

a normal mass ordering, for the following values for the decoherence parameters:

γ21 = γ31 = 2.3 · 10−23 GeV (solid blue line), γ21 = γ31 = 10−22 GeV (dashed green

line) and without decoherence (dashed red line). The observed data points [37] are

represented by the black dots, and the error bars indicate the statistical uncertainties

for each bin.

In this work a Gaussian maximum likelihood is used to analyze the DeepCore

data, performing a simultaneous fit on the following parameters: ∆m2
32, θ23 and γij.

The rest of the oscillation parameters have been kept fixed to their current best-fit

values from Ref. [4]. The systematics used in the fit are those associated with the

flux, the detector response and the atmospheric muons given in Ref. [37] and are

summarized in Table 2. For each systematic uncertainty a pull term is added to the

χ2 following the values listed in the table, except in the cases indicated as “Free”

(when the corresponding nuisance parameter is allowed to float freely in the fit). We
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Source of uncertainty Value

Flux - normalization Free

Flux - energy dependence as (E/E0)η ∆η = 0.05

Flux - (νe + ν̄e)/(νµ + ν̄µ) ratio 20%

Background - normalization Free

DOM efficiency 10%

Optical properties of the ice 1%

Table 2: Systematic errors used in our analysis of DeepCore data, taken from

Refs. [37, 41].

have checked that our analysis reproduces the confidence regions in the ∆m2
32 − θ23

plane obtained by the DeepCore collaboration in Ref. [37] to a very good level of

accuracy.

Finally, it should be noted that our fit does not include the latest atmospheric

data recently published by the DeepCore collaboration [46]. The new analysis uses

a different data set (from April 2012 to May 2015) and a new implementation of

systematic errors, which lead to smaller confidence regions in the ∆m2
32 − θ23 plane.

However, the detector response parameters and systematic errors used in the latest

release have not been published yet. In view of the better results obtained for the

standard three-family oscillation scenario, a similar improvement is to be expected

if the analysis performed in this work were to be repeated using the latest DeepCore

data.

5 Results

Following the procedure described in section 4 we have obtained the χ2 for every

point in the parameter space. Marginalizing over the relevant mixing and mass

parameters, namely, ∆m2
32 and θ23, the sensitivity of the data to γij parameters is

determined by evaluating the
√

∆χ2, with ∆χ2 ≡ χ2−χ2
min, where χ2

min is the value

at the global minimum. The rest of the standard mixing parameters have been fixed

to their best-fit values from Refs. [4, 5].

In this section we will only show the results obtained for normal neutrino mass

ordering, since we have checked that extremely similar results are obtained for IO

after applying the mapping given in eq. (3.8). Nevertheless, in Sec. 6 we will also

provide the 95% CL bounds obtained in our numerical analysis for the IO case. The

bounds obtained are in very good agreement with the mapping given in eq. (3.8).

Figure 5 shows the obtained
√

∆χ2 as a function of γ0 for the three limiting cases

defined in Sec. 3: (A) atmospheric limit, γ0 = γ0
32 = γ0

31 (red curve); (B) solar limit I,

γ0 = γ0
21 = γ0

31 (green curve); and (C) solar limit II, γ0 = γ0
21 = γ0

32 (blue curve). In
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Figure 5: Values of the
√

∆χ2 as a function of the decoherence parameter for

the Atmospheric limit (red), Solar limit I (green) and Solar limit II (blue) defined

in Sec. 3. The results obtained from our analysis of IceCube (DeepCore) data are

denoted by the solid (dashed) lines. The three panels have been obtained for NO,

assuming a different dependence on the neutrino energy: n = 0 (top panel), n = 1

(middle panel) and n = 2 (bottom panel). The shaded regions are disfavored by

previous analysis of SK [7] and KamLAND [15] data, see text for details. The

horizontal black line indicates the value of the
√

∆χ2 corresponding to 95% CL for

1 degree of freedom.

all cases, the solid (dashed) lines correspond to the results obtained from our analysis

of the IceCube (DeepCore) data, and each panel shows the results obtained assuming
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a different energy dependence for the decoherence parameters, see eq. (2.13): n = 0

(top panel), n = 1 (middle panel) and n = 2 (bottom panel). The shaded regions are

disfavored by previous analysis of SK [7] (90% CL) and KamLAND [15] data (95%

CL). As explained in section 3, the KamLAND constraints derived in [15] apply to

γ0
12 (solar limits) while it is not clear to which γij the bounds from SK obtained in [7]

would apply, since this depends on the true neutrino mass ordering (which is yet

unknown).

Figure 5 shows that for both DeepCore and IceCube the best sensitivity is

achieved for the solar limits (B) and (C) while the weakest limit is obtained in

the atmospheric limit (A). In particular, the strongest bound is obtained for (C).

This is in agreement with the behaviour of the oscillation probability in presence of

strong matter effects, discussed in section 3. On one hand, as shown in section 3,

for NO the decoherence effects are mainly driven by γ21 in the neutrino channel and

γ32 in the antineutrino channel. On the other hand, the number of antineutrino

events is going to be suppressed with respect to the neutrino case, due to the smaller

cross section and flux. Hence, the best sensitivity is expected for case (C), where

γ0 = γ0
21 = γ0

32, since both neutrinos and antineutrinos are sensitive to decoherence

effects. Conversely, in case (B), where γ0 = γ0
21 = γ0

31, only neutrinos are sensitive to

decoherence effects, and therefore some sensitivity is lost with respect to the results

for case (C). Finally, in case (A), with γ0 = γ0
32 = γ0

31, the bounds come mainly

from the impact of decoherence on the antineutrino event rates and, since these are

much smaller than in the neutrino case, the obtained bounds are much weaker when

compared to the results obtained in case (B).

Figure 5 shows a flat asymptotic feature of the
√

∆χ2 for large values of γ0, where

the sensitivity becomes independent of γ0. In fact, for IceCube there is a decrease

in sensitivity for values of γ above a certain range: for example, for n = 0 the best

sensitivity is achieved for γ0 ∼ O(10−22) GeV while it decreases for higher values.

This behaviour can be understood as follows. For the neutrino energies observed at

IceCube (above 100 GeV) the oscillation phases do not develope and the probabilities

do not depend on the energy (cos ∆̃ij ≈ 1 in eq. (2.15)). Therefore, at IceCube the

sensitivity to the decoherence effects comes from the observation of a non-standard

behaviour of the number of events with the zenith angle. Naively, eq. (2.14) gives

the values of L and γ that yield a large effect. Considering n = 0, for example,

where there is a one-to-one relation between the two, we get that for γ0 ∼ 10−22 GeV

the effect will be maximal for distances of the order L ∼ O(103) km. This is the

typical distance traveled by atmospheric neutrinos crossing the Earth and therefore

the sensitivity of IceCube is maximized in this range. Conversely, for larger (smaller)

values of γ0, only neutrinos coming from the most horizontal (vertical) directions are

affected, leading to a reduced impact on the χ2.

From the comparison between the different panels in figure 5 we can see that

the limits change considerably with the value of n, which parametrizes the energy
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Figure 6: 95% CL bounds on the decoherence parameters γ0, for NO, as a (discrete)

function of the power-law index n for for the Atmospheric limit (red), Solar limit

I (green) and Solar limit II (blue). The solid circles (triangles) correspond to the

DeepCore (IceCube) analysis.

dependence of the decoherence parameters (see eq. (2.13)). In particular, we observe

in figure 5 that the sensitivity improves as n is increased and that, as the vaule of n is

increased, the results for IceCube improve much faster (compared to DeepCore) due

to the higher neutrino energies considered. The behaviour of the sensitivities with

the value of n is better appreciated in figure 6, where we show the bounds obtained

at 95% CL (for 1 degree of freedom) as a (discrete) function of the power-law index

n, for n = −2,−1, 0, 1 and 2. The DeepCore bounds are represented by solid circles

while the IceCube constraints are given by the solid triangles. The results seem to

follow the linear relation

ln(γ0/GeV) = constant− n ln(E0/GeV), (5.1)

where E0 ' 2.5 TeV (30 GeV) for IceCube (DeepCore). This can be understood

as follows. Decoherence effects enter the oscillation probabilities only through the

factor γL = γ0(E/GeV)nL, for any value of n. Naively, we expect that the sensitivity

limit is obtained for γL ∼ O(1) (although the precise value will eventually depend

on the neutrino mass ordering, on the particular γij which drives the sensitivity,

and on the data set considered). Taking the logarithm of γ0(E/GeV)nL = constant,

we reproduce eq. (5.1). At first approximation, the value of E0 in eq. (5.1) can be

estimated as the average energy of the IceCube and DeepCore event distributions,
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〈E〉, as

〈E〉 ≡

∫
dN

dE
EdE∫

dN

dE
dE

, (5.2)

where dN/dE is the event number distribution. This leads to 〈E〉 ' 4 TeV (40 GeV)

for IceCube (DeepCore), which are in the right ballpark although somewhat different

from the values of E0 giving the best fit to the data shown in figure 6. Nevertheless,

we find these to be in reasonable agreement, given our naive estimation of E0 as the

mean energy for each experiment.

6 Conclusions

NO n = −2 n = −1 n = 0 n = 1 n = 2

IceCube (this work)

atmospheric (γ31 = γ32) 2.8 · 10−18 4.2 · 10−21 4.0 · 10−24 1.0 · 10−27 1.0 · 10−31

solar I (γ31 = γ21) 6.8 · 10−19 1.2 · 10−21 1.3 · 10−24 3.5 · 10−28 1.9 · 10−32

solar II (γ32 = γ21) 5.2 · 10−19 9.2 · 10−22 9.7 · 10−25 2.4 · 10−28 9.0 · 10−33

DeepCore (this work)

atmospheric (γ31 = γ32) 4.3 · 10−20 2.0 · 10−21 8.2 · 10−23 3.0 · 10−24 1.1 · 10−25

solar I (γ31 = γ21) 1.2 · 10−20 5.4 · 10−22 2.1 · 10−23 6.6 · 10−25 2.0 · 10−26

solar II (γ32 = γ21) 7.5 · 10−21 3.5 · 10−22 1.4 · 10−23 4.2 · 10−25 1.1 · 10−26

Previous Bounds

SK (two families) [7] 2.4 · 10−21 4.2 · 10−23 1.1 · 10−27

MINOS (γ31, γ32) [29] 2.5 · 10−22 1.1 · 10−22 2 · 10−24

KamLAND (γ21) [15] 3.7 · 10−24 6.8 · 10−22 1.5 · 10−19

Table 3: DeepCore/IceCube bounds on γ0
ij in GeV (γij = γ0

ij(E/GeV)n), at the

95% CL (1 degree of freedom) and for NO. Previous constraints are also provided for

comparison, and the dominant limit in each case is highlighted in bold face (notice

that we considered the most conservative bound from the two solar limits).

In this work, we have derived strong limits on non-standard neutrino decoherence

parameters in both the solar and atmospheric sectors from the analysis of IceCube

and DeepCore atmospheric neutrino data. Our analysis includes matter effects in

a consistent manner within a three-family oscillation framework, unlike most past

literature on this topic. In Sec. 2 we have developed a general formalism, dividing

the matter profile into layers of constant density, which permits to study decoherence

effects in neutrino oscillations affected by matter effects in a non-adiabatic regime.

Our analysis shows that the matter effects are extremely relevant for atmospheric

neutrino oscillations and their importance in order to correctly interpret the two-

family limits obtained previously in the literature, as outlined in Sec. 3.
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We have found that the sensitivity to decoherence effects depends strongly on the

neutrino mass ordering and on whether the sensitivity is dominated by the neutrino

or antineutrino event rates. For neutrinos, the decoherence effects at high energies are

mainly driven by γ21 (γ31) for normal (inverted) ordering, while in the antineutrino

case they are essentially controlled by γ32 (γ21) for normal (inverted) ordering. This

means that, considering a three-family framework including matter effects is essential

when decoherence effects in atmospheric neutrino oscillations are studied. Our results

are summarized in table 3 for normal ordering (NO) of neutrino masses, and in table 4

for inverted ordering (IO). The two tables summarize, together with the most relevant

bounds present in the literature, the 95% CL bounds extracted from our analysis

of DeepCore and IceCube atmospheric neutrino data, for the three limiting cases

considered in this work: (A) atmospheric limit (γ21 = 0), (B) solar limit I (γ32 = 0)

and (C) solar limit II (γ31 = 0). In Appendix B we show that the bounds derived in

these limits correspond to the most conservative results that can be extracted in the

general case.

In this work, we considered a general dependence of the decoherence parameters

with the energy, as γij = γ0
ij (E/GeV)n with n = ±2, 0,±2. Our results improve over

previous bounds for most of the cases studied, with the exception of the n = −1

case. For n = −1, KamLAND gives the dominant bound on γ21 while MINOS gives

the strongest constraints on γ31 and γ32. Indeed, both KamLAND and MINOS are

also expected to give the strongest bound for n = −2, although to the best of our

knowledge no analysis has been performed for this case yet. Our results show that,

for n = 0 (which is the case most commonly considered in the literature), IceCube

improves the bound on γ31 and γ32 in (more than) one order of magnitude with

respect to the SK constraint, obtained in a simplified two-family approximation, and

by more than one order (almost two orders) of magnitude for NO (IO) with respect to

the KamLAND constraint on γ21. In particular, we find that the reference value for

γ23 considered in Ref. [17] to explain the small tension previously reported between

NOvA and SK data is indeed already excluded by IceCube data. Regarding the

cases with n = 1, 2, we find that the sensitivity of IceCube is particularly strong.

For instance, IceCube improves the bound from KamLAND on γ21 by almost 9 (8)

orders of magnitude for n = 1 and NO (IO), while for n = 2 the bound on γ31 and

γ32 is improved in 4 (5) orders of magnitude with respect to the SK limit for NO

(IO).
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A Computation of oscillation probabilities in three-layers

The simulation of atmospheric neutrino experiments is computationally demanding

in the standard three-family scenario, and even more if decoherence effects are in-

cluded in the analysis. Therefore, due to the cost of implementing a large number

of layers for the PREM profile density, in this work we consider a simplified three-

layer model for the Earth matter density profile assuming a core and Earth radii of

3321 km and 6371 km, respectively. The values of the matter densities of the inner

layer (core) and the outer layer (mantle) are taken to be around ρ = 12 g/cm3 and

4.6 g/cm3, respectively. However, their values are slightly adjusted depending on

the distance traveled by the neutrinos to match as close as possible the profile of
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Figure 7: Oscillograms for Pµµ without decoherence considering our three layer

approximation (left panel) and the PREM model (right panel) for the Earth matter

density profile.

the PREM model [47]. Note that, in our simulations, we have not considered the

atmosphere as an additional layer. This is a good approximation for neutrinos going

upwards in the detector (cos θz < 0), but is not a valid approximation in the region

cos θz > 0. Nevertheless, this has no impact in our analysis since for neutrinos with

cos θz > 0 the distance travelled is very short and, therefore, they would only be

sentive to extremely large values of the decoherence parameters which are already

ruled out by other experiments.

In figure 7 we compare the results obtained for the oscillation probability for our

modified three-layer approximation (left panel) against the exact numerical results

using the full PREM profile [47] (right panel), which divides the Earth into eleven

layers given by a polynomial function of the distance traveled. In this figure, the

results are shown for the standard three-family scenario with no decoherence, in

order to illustrate the accuracy of our three-layer approximation. The results are

shown as a neutrino oscillogram, which represents the oscillation probability in the

Pµµ channel in terms of energy and the zenith angle θz of the incoming neutrino. In

this figure, a normal mass ordering was assumed, together with the following input

values for the oscillation parameters [4, 5]: ∆m2
21 = 7.4·10−5 eV2, ∆m2

31 = 2.515·10−3

eV2, θ12 = 33.62◦, θ13 = 8.54◦, sin2 θ23 = 0.51, and δ = 234◦.

As can be seen from the comparison between the two panels, some differences

take place but only for energies below the IceCube/DeepCore energy threshold

∼ O(5 GeV). Therefore, we conclude that the agreement between the probabili-

ties obtained using the exact PREM model (right) and our approximate three-layer
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model (left) is sufficiently good for the purposes of this work. We have also checked

that, using our simplified three-layer model applied to the standard case without de-

coherence, we are able to reproduce up to a very good approximation the DeepCore

oscillation fit for the atmospheric parameters θ23 and ∆m2
32 [37].

B Five-dimensional analysis

The γij are not completely independent parameters as we have already pointed out

(see eq. (2.7)). In order to simplify the analysis, in this work we have studied three

different representative cases: (A) Atmospheric limit, γ21 = 0 (γ32 = γ31); (B) Solar

limit I, γ32 = 0 (γ21 = γ31); and (C) Solar limit II, γ31 = 0 (γ21 = γ32). Considering

these one-γij dominated cases is expected to be a very good approximation in view

of equations (3.1)-(3.4). In any case, in this Appendix we will show that the results

obtained in these simplified scenarios apply to the more general case in which the

three γij are different from zero.

Let us assume that just one Dm matrix contributes to the decoherence term of

the evolution equations given by eq. (2.2). In such a case, one of the γij parameters

is a function of the other two γij. Without loss of generality, we chose γ21 and γ31 as

the free parameters and γ32 is then given by

γ32 = (
√
γ21 ±

√
γ31)2 . (B.1)

In order to understand how general are the results presented in sec. 5, we have

performed a five-dimensional analysis varying γ21, γ31, θ23 and ∆m2
32 in the fit, and

imposing the constraint given by the equation above. In figure 8 we show the
√

∆χ2

obtained from the five-dimensional DeepCore analysis as a function of γ21 (dashed

green curve) and γ31 (dashed red curve), marginalizing over the rest of the free

parameters, for the n = 0 case (the same conclusions apply to the other cases studied

in this work). For the sake of comparison, the
√

∆χ2 associated to the atmospheric

(solid red curve), solar I (solid green curve) and solar II (solid blue curve) limits

is also included in the same figure. NO was assumed but the results can be easily

extrapolated to the IO case using the mapping given in eq. (3.8).

Figure 8 shows that the five-dimensional
√

∆χ2 distribution projected into γ31

coincides with the Atmospheric limit one, while when it is projected into γ21 resembles

the most conservative of the two solar limits. This is due to the marginalization over

the parameters which are not shown. For instance, in the case of γ21 the marginaliza-

tion selects, between the two solar limits, the most conservative result. We conclude

therefore that our analysis distinguishing the three limits (A), (B) and (C), provides

the most conservative bounds that can be applied to the general case in which the

three γij are different from zero.
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Figure 8:
√

∆χ2 obtained from the five-dimensional DeepCore analysis as a function

of γ21 (dashed green curve) and γ31 (dashed red curve), marginalizing over the rest

of the free parameters, for the n = 0 case and NO. The
√

∆χ2 for the Atmospheric

(solid red curve), Solar I (solid green curve) and Solar II (solid blue curve) limits is

also shown.
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