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Abstract

This Report summarizes the proceedings of the 2017 Les Houches workshop on Physics at
TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard
Model calculations, (II) theoretical uncertainties and dataset dependence of parton distribution
functions, (III) new developments in jet substructure techniques, (IV) issues in the theoretical
description of the production of Standard Model Higgs bosons and how to relate experimental
measurements, (V) phenomenological studies essential for comparing LHC data from Run II with
theoretical predictions and projections for future measurements, and (VI) new developments in
Monte Carlo event generators.
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As the experimental precision continues to improve during the 13 TeV running at the
LHC, the requirements on the corresponding theoretical predictions have increased as well.
The predictions include those defined at fixed-order, those resumming large logarithms due to
kinematic thresholds and boundaries, and those involving parton showering, and subsequent
hadronization. The latter allows for direct comparison at the hadron level to data. All levels
of theoretical predictions are needed for a full exploration of LHC physics. We continue in
these proceedings to discuss advances in theoretical predictions, while also examining their
connections, their limitations, and their prospects for improvement.

Calculations for 2→ 2 processes at NNLO start to become the new standard, with 2→ 3
calculations on the horizon. One of the complications of such calculations is the dissemination of
the results. In contrast to NLO, most of these programs are too difficult/lengthy for non-author
users to be able to run independently. Two contributions discuss flexible storage possibilities
for the results of calculations, either as ROOT ntuples or in grid form, both of which tech-
niques have been very successful at NLO. Part of the impressive progress in NNLO calculations
is due to the development of more efficient methods to treat infrared divergent real radiation
at NNLO. Among these methods is a novel scheme, called “nested soft-collinear subtraction
scheme”, which is presented in these proceedings. A different approach aims to avoid the oc-
curence of (dimensionally regulated) poles which need to be isolated and cancelled between real
and virtual parts by combining all the contributions at integrand level and then performing
the integrations completely numerically in four dimensions. Such four-dimensional frameworks
are promising as they avoid some tedious technicalities related to calculations in D dimensions.
However these methods face hurdles of different type, related to the purely numerical approach.
Progess how to overcome these is reported here. Automation of electroweak NLO corrections
has seen lots of progress in recent years, and a tuned comparison to validate the different avail-
able tools for obtaining EW one-loop amplitudes and complete fixed-order results at NLO EW
accuracy are presented for off-shell ZZ and WW production, at the level of amplitudes as well
as integrated and differential cross sections.

A key ingredient for any theoretical prediction at hadron colliders are parton distribution
functions (PDFs). In the recent past, improved fit methodologies in combination with the use
of new LHC data in the fits have led to a reduction of the nominal PDFs uncertainties. In many
phenomenologically relevant cases, they are now at the level of few percent. Nevertheless, so far
PDFs errors only reflect uncertainties coming from the fitted data, and not from the theoretical
predictions used in the fit. Given the reduction of the former, the latter is no longer negligible.
To address this issue, we perform preliminary studies of theory uncertainty in PDFs fits. More
precisely, we study the convergence of PDFs fits at different orders in perturbation theory, and
use perturbative stability as a handle on theoretical uncertainties.

Jet substructure techniques are widely applied at the LHC for testing QCD in extreme
regions of phase space and for searching beyond the Standard Model for new physical phenomena.
In these proceedings, we perform two studies that could extend the LHC physics program in
both of these areas. To improve our understanding of QCD using jet substructure, we study
the feasibility of combining precision jet substructure measurements and calculations to extract
the strong coupling constant, αs. We find that 10% precision may already be feasible using
existing technology in a region of phase space complementary to other methods for measuring
αs. To improve searches for beyond the Standard Model physics using jet substructure, we
study the trade-off between performance and robustness for tagging boosted W bosons. We
identify two-prong tagging strategies that could enhance the signal significance and robustness
to non-perturbative effects compared with the default methods used at ATLAS and CMS.

One of the pillars of the LHC program is the detailed study of the Higgs boson. Under-
standing if the discovered particle has the properties as predicted by the Standard Model, or if
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deviations from the Standard Model predictions point to beyond-the-Standard-Model effects in
the Higgs sector, requires increased precision both in theoretical predictions as well as experi-
mental measurements. One contribution studies the soft gluon resummation effect in the Higgs
boson plus two-jet production in the weak boson fusion process at the LHC. The results are also
compared with the prediction of the Monte Carlo event generator Pythia8. We also include
updated results for fully differential Higgs production in weak boson fusion at NNLO, with a
particular emphasis on the structure of jet dynamics in the experimental fiducial region. Gluon
fusion production with two jets is an important background to measurements of weak boson
fusion. One of the contributions compares perturbative predictions for gluon fusion production
with two jets and studies the suppression of this background. Another contribution studies the
potential to extract signals from beyond the Standard Model by comparing the strongly related
processes of WH and ZH production. In several loop induced processes, in particular H, HH
and ZZ production in gluon fusion, a substantial hardening of the pT spectrum of the Higgs
boson or the boson pair has been observed when matching the fixed order NLO result to a parton
shower. An investigation of the reasons for this observation in the case of Higgs boson pair pro-
duction, matched to Powheg combined with both Pythia6 and Pythia8, MG5_aMC@NLO+Pythia8
and Sherpa with both CS-shower and Dire-shower, is presented here. Furthermore, we develop
a scheme for the parametrization of theory uncertainties for weak boson fusion and associated
production with weak bosons in the context of the Simplified Template Cross Section (STXS)
framework and discuss in which form to report theory uncertainties on STXS measurements to
allow for their coherent treatment in the interpretation of the measurements.

Relevant progress on theoretical calculations has been achieved recently on many other
important LHC physics processes. The results of several phenomenological studies are pre-
sented. A study for top quark pair production incorporating electroweak and QCD higher-order
corrections into the multi-jet merging framework of Sherpa is presented. This is in particular
targeted to allow for a reliable modelling of the top transverse momentum distribution, which
is crucial for a multitude of new physics searches. Monte Carlo predictions at particle level are
compared against a recent ATLAS measurement in the lepton+jet channel for the reconstructed
top transverse momentum spectrum. Excellent agreement between Monte Carlo predictions and
data is found when the electroweak corrections are included. Top quark pair production in the
di-lepton channel is investigated comparing four different theoretical descriptions. The full NLO
corrections to pp → W+W−bb̄ → (e+νe) (µ−ν̄µ) bb̄ production are compared to calculations in
the narrow width approximation, where the production of a top quark pair is calculated at NLO
and combined with different descriptions of the top quark decay: LO, NLO and via a parton
shower. The study works out differences in the shape of the mlb and mWb distributions in view
of top quark mass determinations, in particular showing that corrections beyond the leading
order in the decay play a significant role. A further study addresses the final state `′+ν`′`+`−jj,
which is of particular interest as it proceeds via diagrams featuring WZ scattering. The differ-
ent contributions to this final state are first evaluated showing that the QCD contributions are
overwhelming over the EW ones. Then, a comparison of theoretical predictions at LO accuracy
and at LO matched with various parton showers is performed. While at LO all predictions are in
good agreement, the inclusion of parton shower effects can introduce large differences especially
for observables defined beyond LO (e.g. third-jet observables). In another contribution, we in-
clude a short pedagogical discussion of the treatment of the underlying event in measurements
at high luminosity at the LHC, a treatment that is unknown even to most members of the ex-
perimental collaborations. We also examine how well fixed-order predictions, which often have
the highest available accuracy, can describe the jet R-dependence for the inclusive jet, Z+jet
and Higgs+jet final states. This tests how well fixed-order predictions, containing an increasing
number of parton emissions as the perturbative order increses, can describe jet shapes, as com-
pared to parton shower predictions. On the other hand, the non-perturbative corrections needed
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by the fixed-order predictions for best comparison to data, can only be obtained from the parton
shower Monte Carlo predictions for the relevant processes. This continues the study from Les
Houches 2015, where good agreement was shown between fixed order and parton shower Monte
Carlo predictions (for non-Sudakov observables) for Higgs+jets production with one value of R
(0.4).

As parton shower Monte Carlo programs are crucial for physics at the LHC, we continue
the direct comparisons of the different parton shower algorithms started in Les Houches 2015, in
order to gain a better understanding of any differences that may result in intrinsic uncertainties
for the resultant predictions. This concerns e.g. parton shower variations due to renormalization
scale variations and their interplay with hadronization, or the correlation between PDF choices
and the modeling of underlying event via multiparton interactions. Both of these points are
addressed in a study that shows that correlations exist and that a sensible description of data
sensitive to non-perturbative effects requires a retuning of the event generator when varying
renormalization scales. This retuning does not necessarily mean a loss of predictivity in per-
turbatively dominated phase-space regions. Another study investigates how scale variations in
the parton shower can be defined when considering known higher-order corrections. Keeping
these higher-order corrections intact when performing scale variations requires the introduction
of compensating terms. The use of similar compensation schemes leads to closer agreement of
the variation bands of different parton-shower predictions, and interpolates between previous
aggressive or conservative uncertainty estimates. The influence of Monte Carlo modelling on
the extraction and calculation of nonperturbative correction factors is also considered in an-
other study, where it is addressed if the choice of PDF sets and Monte Carlo models used for the
extraction of nonperturbative correction factors may bias other measurements in which these
correction factors are subsequently used. A short study that compares different Monte Carlo
generators for a process involving B-hadrons in the final state is also included, with the aim of
assessing to which extent NLO-based tools are successful in simulating kinematic configurations
sensitive to the gluon splitting to pair of (massive) b-quarks.

3



Chapter I

NLO automation and (N)NLO techniques

1 Update on the precision Standard Model wish list 1

Identifying key observables and processes that require improved theoretical input has been a key
part of the Les Houches programme. In this contribution we briefly summarise progress since
the previous report in 2015 and explore the possibilities for further advancements. For the first
time, we also provide an estimate of the experimental uncertainties for key processes.

1.1 Introduction
The period since the Les Houches 2015 report [1] is marked by significant progress in the au-
tomation of electroweak corrections and the production of NNLO results in an almost industrial
way. The latter is mainly due to the development of methods which allow to treat the doubly
unresolved real radiation parts occurring at NNLO in a largely automated manner, as well as
due to the availability of two-loop integrals with an increasing number of kinematic scales.

On the parton shower side, NLO QCDmatched results and matrix element improved multi-
jet merging techniques have become a standard level of theoretical precision. The automation of
full SM corrections including NLO electroweak predictions has also seen major improvements.

Another challenge is to make the NNLO 2 → 2 predictions or complex NLO predictions
publicly available to experimental analyses, and there has been major progress to achieve this
goal. Root Ntuples have been a useful tool for complicated final states at NLO and allow
for very flexible re-weighting and analysis. The cost for this is the large disk space required
to store the event information. A feasibility study using Root NTuples to store the much
larger NNLO events in pp → 2 jets [2] is described in Sec. I.2. An extension of ApplGrid [3]
and FastNLO [4] offers a simpler, but less flexible method to distribute higher order predictions.
The latter option is likely to be used heavily in precision PDF fits, and new developments in
the APPLfast project are described in Sec. I.3.

1.2 Developments in theoretical methods
Precision predictions require a long chain of various tools and methods, all of which demand
highly technical computations.

Computational methods for the amplitude level ingredients have seen substantial progress
in the last few years. Scattering amplitudes at L loops are generally decomposed into a basis of
integrals together with rational coefficients,

A
(L)
2→n =

∑
(coefficients)i(integrals)i, (I.1)

one must then remove infrared singularities to obtain a finite cross-section,

dσ2→nNkLO = IRk(Ak2→n, Ak−1
2→n+1, · · · , A

0
2→n+k). (I.2)

where the function IRk represents an infrared subtraction technique; a recently developed one
is presented in Sec. I.4. Ultraviolet renormalisation must also be performed but in a (semi-
)analytic approach presents no technical difficulties. There are also fully numerical approaches,

1 F. Caola, G. Heinrich, J. Huston, S. Kallweit, K. Theofilatos
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aiming to calculate higher order corrections without the separation into individually divergent
components, such that 4-dimensional methods can be applied. Sections I.5 and I.6 are dedicated
to a description of such methods.

1.2.1 Loop integrals
Most of the new analytic results for two-loop integrals and beyond have been calculated em-
ploying the differential equations technique [5, 6], which got a significant boost through Henn’s
canonical form [7]. Since the last Les Houches report, several tools to find a canonical basis au-
tomatically have been developed: epsilon [8], Fuchsia [9] and Canonica [10]. Important new
developments concerning the differential equations technique to calculate multi-loop integrals
can be found in Refs. [11–14]. For a review on the method of differential equations we refer to
Ref. [15].

Major progress since the last report has been made in the calculation of two-loop master
integrals with massive propagators, for example the planar ones entering Higgs+jet [16, 17],
gg → γγ via massive top quark loops [18], or HH [19].

Classes of integrals with one additional mass scale appearing in the propagators also
have been calculated in the context of massive Bhabha scattering [20], electron-muon scattering
(with me = 0,mµ 6= 0) [21], the mixed QCD-EW corrections to the Drell-Yan process [22, 23]
and three-loop corrections to the heavy flavour Wilson coefficients in DIS with two different
masses [24,25].

The integrals entering top quark pair production at NNLO [26] have been calculated
numerically [27], while analytic results are only partially available [28,29].

A major complication related to the (2-loop) integrals with massive propagators is related
to the fact that the basis for an analytic representation of such integrals may go beyond the
function class of generalized polylogarithms (GPLs), i.e. integrals of elliptic type occur. The
latter have been subject of intense studies recently, see e.g. Refs. [13, 16,17,30–40].

For integrals which do not leave the class of GPLs, improvements in the understanding of
the basis of multiple polylogarithms through symbol calculus and Hopf algebras (see e.g. [41,42])
has led to a high degree of automation for these integral computations. This is a necessary step
in order to apply such techniques to phenomenologically relevant cases, most notably e.g. of
pp → H at N3LO [43, 44], four-loop contributions to the cusp anomalous dimension or N3LO
splitting functions [45–51]. At the multi-loop front, remarkable recent achievements are also
the calculation of the five-loop QCD beta-function [52–55] and Higgs decays to hadrons and the
R-ratio at N4LO [56].

There have also been developments in the direct evaluation of Feynman integrals with
fewer scales, but higher loops. The HyperInt [57] and mpl [58] packages have focused mainly
on zero and one scale integrals with a high number of loops, but the algorithms employed have
potential applications to a wider class of integrals. Another newly developed tool is Dream [59],
a program for the computation of multiloop integrals within the dra (Dimensional Recurrence
& Analyticity) method.

In order to facilitate the search for analytic results for multi-loop integrals in the literaure,
a new database Loopedia [60] has been created. At https://loopedia.mpp.mpg.de results for
integrals can be searched for by topology. The webpage also allows to upload results for newly
calculated integrals and liteature information.

Direct numerical evaluation remains a powerful technique. Two contributions in these
proceedings explain methods where loop and phase space integrations can be combined to cancel
all poles at integrand level, such that the amplitudes can be evaluated in 4 dimensions, see
Secs. I.6 and I.5.
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Calculating multi-loop integrals numerically is also a promising strategy for integrals
with a rather large number of kinematic scales. The sector decomposition algorithm [61] has
seen a number of optimisations, implemented into the publicly available updates of the codes
(py)SecDec [62, 63] and Fiesta [64]. For example, computations of analytically unknown 2-
loop integrals entering pp → HH [65, 66] and pp → H+ jet [67] at NLO including the full top
quark mass dependence have been completed using a fully numerical approach.

1.2.2 Loop amplitudes and integrands
Following the analytic calculation of two-loop integrals with two massive legs, a complete set
of helicity amplitudes has been obtained by two independent groups for pp → V V ′ [68–71].
The results are publicly available from http://vvamp.hepforge.org/. Both approaches relied
heavily on efficient implementations of integration-by-parts (IBP) reduction identities [72–77].
There are also new ideas how to improve multivariate functional reconstruction in the context of
amplitude reduction [78–80]. Recent developments of tools in the IBP context are e.g. Kira [81],
a new program for IBP reduction identities, and Forcer, a FORM program for the reduction of
four-loop massless propagator diagrams [82].

1.2.3 Generalised unitarity and integrand reduction
Extending the current multi-loop methods to higher multiplicity still represents a serious chal-
lenge. The increased complexity in the kinematics, and large amount of gauge redundancy in
the traditional Feynman diagram approach, at one-loop has been solved numerically through
on-shell and recursive off-shell methods. This breakthrough has led to the development of the
now commonly used automated one-loop codes [83–89].

The D-dimensional generalised unitarity cuts algorithm [90–94] has been extended to
multi-loop integrands using integrand reduction [95, 96]2 and elements of computational alge-
braic geometry [98–106]. In contrast to the one-loop case, the basis of integrals obtained through
this method is not currently known analytically and is much larger than the set of basis functions
defined by standard integration-by-parts identities. The maximal unitarity method [107], which
incorporates IBP identities, has been applied to a variety of two-loop examples in four dimen-
sions [108–112]. Efficient algorithms to generate unitarity compatible IBP identities are a key
ingredient in both approaches and have been the focus of on-going investigations [106,113–117].
Very recently, automated tools for IBP reductions based on algebraic geometry have been de-
veloped, see e.g. Cristal and Azurite [118–120].

Using cutting edge numerical unitarity methods, a result for the full 2-loop 4-gluon ampli-
tude has been achieved [121]. Results for 2-loop 5-gluon amplitudes based on numerical unitarity
are also advancing rapidly [122–124].

1.2.4 NNLO infrared subtraction methods for differential cross-sections
The construction of fully differential NNLO cross-sections for 2→ 2 processes has been a major
theoretical challenge over the last years. This programme has been a remarkable success with
many different approaches now applied to LHC processes. We give a brief characterisation of
the main methods below, as well as some of their LHC applications.

– Antenna subtraction [125,126]:
Analytically integrated counter-terms, applicable to hadronic initial and final states. Al-
most completely local, requires averaging over azimuthal angles. Applied to e+e− →

2We do not attempt a complete review of integrand reduction here. Further information can be found in the
review article [97] and references therein.
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3j [127, 128], pp → j + X [129], pp → 2j [2], pp → Z + j [130, 131], pp → W + j [132],
pp→ H + j [133], dijets in DIS [134] and Higgs production in VBF [135].

– Sector Improved Residue Subtraction [136–138]:
Fully local counter-terms, based on a sector decomposition [61] approach for IR divergent
real radiation [139–141] and an extension of the FKS approach at NLO [142,143]. Numer-
ically integrated counter-terms, for hadronic initial and final states. Recently formulated
in a four-dimensional setting [144]. Applied to top-quark processes [26, 145–149] and to
pp→ H + j [150,151].

– qT [152]:
Phase-space slicing approach for colourless final states, applied to many pp → V V ′ pro-
cesses. An extension for tt̄ final states has been proposed [153]. A full list of processes is
available in Matrix [154], see also phenomenological studies [155–168].
Also applied to obtain NNLO differential results for V H [159,169] and HH [170], as well
as for HHW [171] and HHZ [172].

– N -jettiness [173–175]:
Extension of the qT method to final states including a jet, matching to soft-collinear effec-
tive theory (SCET) below the N -jettiness cut-off parameter. Applied to 2 → 2 processes
containing vector bosons or a boson plus one jet in the final state [174, 176–182]; for
colourless final states see also MCFM version 8 [183]. Similar techniques also applied to
top decay [184] and t-channel single top production [185].

– ColorFull [186]:
Fully local counter-terms extending the Catani-Seymour dipole method [187]. Analytically
integrated for infrared poles, numerical integration for finite parts. Currently developed
for hadronic final states such as H → bb̄ [186] and e+e− → 3 jets [188–190].

– Nested Soft-Collinear Subtraction [191]:
Fully local subtraction terms, (partially) numerical cancellation of IR poles, allows matrix
elements to be evaluated in four dimensions. Described in detail in Sec. I.4. Recently
applied to pp→WH with H → bb̄ [192].

– Analytic local sector subtraction [193]:
Local subtraction, aiming at the minimal counterterm structure arising from a sector
partition of the radiation phase space. Analytic integration of the counterterms. Proof of
principle example from e+e− → 2 jets.

– Structure function approach/projection to Born [194]:
Range of applicability limited (it requires the knowledge of inclusive NNLO corrections).
Applied to VBF Higgs production [194], and t-channel single top production [185].

1.3 The precision wish list
We break the list of precision observables into four sections: Higgs, jets, vector bosons and top
quarks.

Corrections are defined with respect to the leading order, and we organise the perturbative
expansion into QCD corrections, electroweak (EW) corrections and mixed QCD⊗EW,

dσX = dσLO
X

1 +
∑
k=1

αksdσ
δNkLOQCD
X +

∑
k=1

αkdσδN
kLOEW

X +
∑
k,l=1

αksα
ldσ

δN(k,l)LOQCD⊗EW
X

 .
(I.3)
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We explicitly separate the mixed QCD and EW corrections to distinguish between additive
predictions QCD+EW and mixed predictions QCD⊗EW. The definition above only applies in
the case where the leading order process contains a unique power in each coupling constant.
For example, in the case of qq̄ → qq̄Z two leading order processes exist: via gluon exchange
of O(α2

sα), via electroweak boson exchange of O(α3) and the interference O(αsα2). In these
cases it is customary to classify the Born process with highest power in αs (and typically the
largest cross section) as the leading order, and label the others as subleading Born processes.
The above classification is then understood with respect to the leading Born process, unless
otherwise stated.

In the following we attempt to give a current snapshot of the available calculations of
higher (fixed) order corrections in both QCD and EW theory. The main aim is to summarise
computations that appeared in the 2015 wish list and that have now been completed, as well as to
identify processes with a large mismatch between the (expected) experimental precision and the
theoretical uncertainties 3. We are aware that there are obvious difficulties in compiling such lists,
which make it difficult to address every possible relevant computation. Specific approximations
and/or extensions beyond fixed order are often necessary when comparing theory to data.

Following the 2015 wishlist we clarify that it is desirable to have a prediction that combines
all the known corrections. For example N2LOQCD+NLOEW refers to a single code that produced
differential predictions including O(α2

s) and O(α) corrections. In most cases this is a non-trivial
task and when considered in combination with decays can lead to a large number of different
sub-processes.

Electroweak corrections
Complete higher order corrections in the SM can quickly become technically complicated in
comparison to the better known corrections in QCD. As a basic rule of thumb α2

s ∼ α, so
corrections at N2LOQCD and NLOEW are desirable together. Moreover, for energy scales that
are large compared to the W -boson mass, EW corrections are enhanced by large logarithms
(often called Sudakov logarithms). There has been progress towards a complete automation of
NLOEW corrections within one-loop programs such as OpenLoops, GoSam, Recola, Mad-
Loop and NLOX, which has led to the completion of many items from the 2013 list. A detailed
tuned comparison of these amplitude generators for the production of the 4` and 2`2ν final
states (off-shell ZZ and WW production) is presented at the level of amplitudes, and in combi-
nation with the Monte Carlo integration frameworks BBMC, MoCaNLO, Munich, Sherpa
and Madgraph5_aMC@NLO at the level of integrated and differential cross sections — is
presented in Sec. I.7.

Heavy top effective Higgs interactions and finite mass effects
Many calculations of SM processes involving Higgs bosons use the effective gluon-Higgs cou-
plings that arise in the mt → ∞ limit, also called “Higgs Effective Field Theory” (HEFT). At
high energy hadron colliders, gluon fusion is the most dominant production process for Higgs
bosons. However, at high momentum transfers, where the top quark loops are resolved, the
approximation will break down.

3Unfortunately, time has allowed a discussion of experimental uncertainties only for the Higgs sector and the
inclusive W,Z and tt̄ processes. This will be rectified in future updates. Extrapolating to a data sample of
3000 fb−1 can be problematic. Assuming a center-of-mass energy of 14 TeV for most of the running leads to
a decrease in statistical errors by a factor of 10. We make the assumption that the systematic errors stay the
same; this may be optimistic given the environment in the high luminosity LHC, so take this with a grain of salt.
In almost all cases, the systematic errors will dominate over the statistical ones for this large data sample. We
assume a luminosity uncertainty of 2%, as current.
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For the data collected during Run II, and even more so at the HL/HE LHC, it is certainly
true that they probe regions where the HEFT approximation becomes invalid and finite mass
effects are important. Calculating the complete top mass dependence of such loop-induced pro-
cesses at NLO is difficult since it involves two-loop integrals with several mass scales. While the
analytic calculations of such integrals have seen much progress in the last two years, as reported
here, the phenomenological results available so far for this class of processes mostly rely on either
numerical methods or approximations. We list processes in the wishlist as NkLOHEFT⊗NlLOQCD
when re-weighting including the full top mass dependence up to order l has been performed.

Resummation
We do not attempt a complete classification of all possible resummation procedures that have
been considered or applied to the processes in the list. In many cases precision measurements
will require additional treatment beyond fixed order, and since resummed predictions always
match onto fixed order outside the divergent region it would be desirable for most predictions
to be available this way. Since this is not feasible, some specific cases are highlighted in addition
to the fixed order.

There are several important kinematic regions where perturbative predictions are expected
to break down. Totally inclusive cross-sections often have large contributions from soft-gluon
emission in which higher order logarithms can be computed analytically. The qT and N -jettiness
subtraction methods naturally match on to resummations of soft/collinear gluons, in the latter
case through soft-collinear effective theory. A study using the qT method has been applied in
the case of pp → ZZ and pp → W+W− [195] where further details can be found. 0-jettiness
resummations within SCET have also been considered for Higgs boson production [196], recently
also extending to next-to-leading-logarithmic power corrections [197–200].

Observables with additional restrictions on jet transverse momenta can also introduce
large logarithms and jet veto resummations have been studied extensively in the case of pp→ H
and pp → H + j [201–203]. More in general, the logarithmic structure of Higgs production in
gluon fusion has been recently investigated in details, see e.g. [204–210].

With increasing precision of both experimental data and fixed order calculations other
regions may also begin to play a role. A method for the resummation of logarithms from small
jet radii has been developed e.g. in Refs. [203, 211–215]. A clear understanding of these effects
is important as the most popular jet radius for physics analyses at the LHC is 0.4, a size for
which resummation may start to become noticeable. These logarithms are implicitly resummed
in parton shower Monte Carlos. In Sec. V.5, we continue our comparisons of fixed order and
matrix element plus parton shower predictions for Higgs + jet production, started in Les Houches
2015, paying close attention to the dependence upon the jet radius.

These represent only a tiny fraction of the currently available tools and predictions with
resummed logarithms. For a review the interested reader may refer to [216] and references
therein.

Parton showering
As in the case of resummation - we refrain from listing all processes in the wishlist to be
desired with matching to a parton shower (PS). NLOQCD+PS predictions are available in a
largely automated way within Madgraph5_aMC@NLO, Sherpa, Powheg and Herwig7.
There have been many recent efforts in matching N2LOQCD corrections to parton showers for
single boson production processes [217–220] and there are good prospects for extending these
techniques to 2→ 2 processes.
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process known desired

pp→ H

N3LOHEFT (incl.)

N(1,1)LOQCD⊗EW

N2LOHEFT⊗NLOQCD

N3LOHEFT (partial results available)

N2LOQCD

pp→ H + j
N2LOHEFT

NLOQCD
N2LOHEFT⊗NLOQCD+NLOEW

pp→ H + 2j

NLOHEFT⊗LOQCD

N3LO(VBF∗)
QCD (incl.)

N2LO(VBF∗)
QCD

NLO(VBF)
EW

N2LOHEFT⊗NLOQCD+NLOEW

N2LOQCD+NLO(VBF)
EW

pp→ H + 3j
NLOHEFT

N1LO(VBF)
QCD

NLOQCD+NLOEW

pp→ H + V N2LOQCD+NLOEW NLO(t,b)
gg→HZ

pp→ HH N2LOHEFT⊗NLOQCD NLOEW

pp→ H + tt̄ NLOQCD+NLOEW

pp→ H + t/t̄ NLOQCD NLOQCD+NLOEW

Table I.1: Precision wish list: Higgs boson final states. NxLO(VBF∗)
QCD means a calculation using

the structure function approximation.

Decay sub-processes
The description of decay sub-processes is incomplete though we do list a few notable cases.
Ideally all on-shell (factorised) decays would be available up to the order of the core process.
In some cases this is potentially an insufficient approximation and full off-shell decays including
background interference would be desirable, but are often prohibitive. The tt̄ final state is an
obvious example where the off-shell decay to WWbb̄ at NNLO is beyond the scope of current
theoretical methods.

Decays in the context of electroweak corrections are usually much more complicated. Full
off-shell effects at NLO are expected to be small, but higher order corrections within factorisable
contributions to the decay can be important, see e.g. Sec. V.2.

The case of vector boson pair production is particularly important given the completion
of the N2LOQCD computation, and corrections are known at NLO within the double pole ap-
proximation [221] and beyond [222–226].

1.4 Higgs boson associated processes
An overview of the status of Higgs boson associated processes is given in Table I.1.

H: Among the remarkable recent developments are first steps towards differential results
for Higgs production in gluon fusion at N3LO [227] as well as results going beyond
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the threshold approximation [43, 44, 228]. Another important achievement is the
recent calculation of the mixed QCD-EW corrections to this process at order αα2

s

in the soft gluon approximation [229, 230]. The latter corrections were found to
increase the NLO QCD corrections by 5.4%.
The NNLO HEFT result has been supplemented by an expansion in 1/mn

t , and
matched to a calculation of the high energy limit [231,232].
A comprehensive phenomenological study has been presented in [233], and an up-
dated version of the program iHixs [228] is available which combines the effective
theory with:

– complete mass dependence at NLO including top, bottom and charm loops,
– mH/mt corrections at NNLO,
– electro-weak corrections at NLO,
– re-scaling of the N3LOHEFT with the LOQCD top loop.

Including the mixed order αα2
s corrections calculated in [229, 230] should lead to a

further improvement, such that the dominant uncertainties currently are expected
to be PDF uncertainties and finite mass effects, estimated to be below 2%. Both of
these effects can (probably) be further reduced.
The NNLO+PS computations [217, 234] have been extended to include finite top
and bottom mass corrections at NLO [235].
The experimental uncertainty on the total Higgs boson cross section is currently of
the order of 10-15% [236], based on a data sample of 36 fb−1, and is expected to
reduce to the order of 3% or less with a data sample of 3000 fb−1 [237]. To achieve
the desired theoretical uncertainty, it may be necessary to calculate the finite mass
effects to NNLO, as well as fully differential N3LOHEFT corrections.

H + j: Known through to N2LOQCD in the infinite top mass limit [133, 150, 151, 176, 238].
The residual scale uncertainty in the NNLO HEFT is of the order of 5%. Very
recently, this process has been calculated at NLO with full top quark mass depen-
dence [67], based on numerical methods [62, 63], settling a longstanding question
about the impact of the top quark mass dependence.
The top-bottom interference effects also have been calculated [239, 240], as well as
the mass effects in the large transverse momentum expansion [241,242]. Using high-
energy resummation techniques at leading logarithmic accuracy, the Higgs boson
transverse momentum spectrum with finite quark mass effects beyond the leading
(fixed) order has been calculated in Ref. [206]. Parton shower predictions including
finite mass effects in various approximations are also available [235,243–245]
The full NLO calculation [67] revealed that the K-factor (NLO/LO) is fairly constant
over the Higgs boson transverse momentum range above the top quark threshold
when using the scale HT /2. The full result is roughly 9% larger than in the HEFT
approximation and 6% larger than in FTapprox, an approximation where the real
radiation contains the full mass dependence, while the virtual part is calculated in
the rescaled HEFT approximation. The Higgs pT distribution in the full theory is
significantly different from the one in the HEFT beyond pHT ∼ 500GeV.
The current experimental uncertainty on the Higgs +≥ 1 jet differential cross section
is of the order of 25-30%, dominated by the statistical error, for example the fit
statistical errors for the case of the H → γγ analysis [246]. With a sample of
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3000 fb−1, the statistical error will nominally decrease by about a factor of 10,
resulting in a statistical error of the order of 2.5%. If the remaining systematic errors
(dominated for the diphoton analysis by the spurious signal systematic error) remain
the same, the resultant systematic error would be of the order of 9%, leading to a
total error of approximately 9.5%. This is similar enough to the current theoretical
uncertainty that it may motivate improvements on theH+j cross section calculation.
The improvements could entail a combination of the NNLO HEFT results with
the full NLO results, similar to the reweighting procedure that has been done one
perturbative order lower.

H+ ≥ 2j: QCD corrections are an essential background to Higgs production in vector boson
fusion (VBF). VBF production of a Higgs boson has recently been computed differ-
entially to N2LOQCD accuracy [135,194] in the “DIS” approximation. For the total
cross section, results at N3LOQCD accuracy are also available [247].
In the gluon fusion channel, a detailed phenomenological study of Higgs boson pro-
duction in association with up to 3 jets can be found in [248]. An assessment of the
mass dependence of the various jet multiplicities has been performed in [249].
In the VBF channel, full NLO QCD corrections are available [250,251].
EW corrections to VBF stable Higgs boson production have been calculated in
Ref. [252] and are available in Hawk [253]. Complete NLO QCD+EW corrections
to W+W+ scattering have been calculated recently [226].
The current experimental error on the H+ ≥ 2j cross section is on the order of
35% [246], again dominated by statistical errors, and again for the diphoton final
state, by the fit statistical error. With the same assumptions as above, for 3000 fb−1,
the statistical error will reduce to the order of 3.5%. If the systematic errors remain
the same, at approximately 12%, (in this case the largest systematic error is from
the jet energy scale uncertainty and the jet energy resolution uncertainty), a total
uncertainty of approximately 12.5% would result, less than the current theoretical
uncertainty. To achieve a theoretical uncertainty less than this value would require
the calculation of H+ ≥ 2j to NNLO in the HEFT.

V H: Associated production of a Higgs boson with a vector boson is important to pin
down the EW couplings of the Higgs, and also to access the H → bb̄ coupling.
First predictions at N2LOQCD have been available for some time [254, 255] and are
implemented in the program vh@nnlo [256], where version 2 also can be used for
calculations in the 2HDM and MSSM [257, 258]. NLO EW corrections have been
calculated in [259–262], where Ref. [262] contains combined QCD+EW predictions
including parton shower effects. Soft gluon resummation effects have been calculated
and found to be small compared to the NNLO fixed order result [263]. Differential
predictions at N2LOQCD for WH [169] and ZH [159] have recently been extended
to include Higgs boson decays to bottom quarks [264]. The gluon initiated processes
is particularly sensitive to new physics effects such as new particles in the loop or
resonant additional Higgs bosons. It has been calculated at NLO in Ref. [265], where
the K-factor is obtained in the limit mt →∞ and mb = 0, and then used to rescale
the full (one-loop) LO cross section. Threshold resummation for gg → ZH has been
calculated in Ref. [266]. Top quark mass effects at NLO, in the framework of an
1/mt expansion, have been considered in Ref. [267].
Fully-differential NNLO QCD results for associated V H production based on N-
jettiness subtraction have been calculated in Ref. [180] and implemented in MCFM
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including decays. Fully differential NNLO corrections to pp → WH with H → bb̄
based on nested soft-collinear subtraction [191] have been presented in [192]. A par-
ton shower matched prediction using the MiNLO procedure in POWHEG has also been
completed [220]. An implementation of dimension-six SMEFT operators related
to V H production, which can be used for NLO QCD+PS accurate Monte Carlo
event generation within the MG5_aMC@NLO framework, is described in [268]. An
implementation of the Higgs Pseudo-Observables framework for electroweak Higgs
production in the HiggsPO UFO model for Monte Carlo event generation at NLO
in QCD is available in [269].
The total inclusive cross-section has been considered in the threshold limit at
N3LOQCD, extracted from the inclusive Higgs cross-section [270].

HH: The N2LOQCD corrections were first computed in the infinite top mass limit [271]
and have since been improved with threshold resummation to NLO+NNLL [272]
and NNLO+NNLL [273]. Differential NNLO results in the mt → ∞ limit are also
available [170]. Power corrections to the NLO and NNLO cross sections in the
mt → ∞ limit have been computed [274, 275]. A complete computation at NLO
including all finite top quark mass effects has been achieved using numerical meth-
ods [65, 66]. This calculation also has been matched to parton shower Monte Carlo
programs [276,277] and is publicly available within the POWHEX-BOX-V2 framework.
On the analytical side, the planar two-loop integrals entering gg → HH have been
recently computed in the high-energy limit [19]. An interesting approach to re-
construct the top-quark mass dependence of the two-loop virtual amplitudes for
HH production in gluon fusion (and possibly also other loop-induced processes) is
presented in Ref. [278], where with Padé approximants based on the large-mt expan-
sion of the amplitude in combination with analytic results near the top threshold
leads to a result which comes very close to the full result. Very recently, top quark
mass effects have been incorporated in the N2LOQCD calculation, combining one-
loop double-real corrections with full top mass dependence with suitably reweighted
real-virtual and double-virtual contributions evaluated in the large-mt approxima-
tion [168]. The residual uncertainty from missing mt effects is estimated to be below
3% at 14TeV and below 5% at 100TeV.

tt̄H: NLOEW corrections have been considered within the MadGraph5_aMC@NLO
framework [279, 280]. Moreover, NLO QCD corrections have been calculated for
the process including the top quark decays [281]. Very recently, the calculation of
combined NLO QCD and EW corrections to tt̄H production, including top quark
decays and full off-shell effects, has been achieved [282]. NLO+NNLL resummation
for this process has been calculated in Ref. [283]. For results in the in the Standard
Model Effective Field Theory at NLO in QCD see Ref. [284].
NLO QCD corrections to tH associated production are known [285,286].

1.5 Jet final states
An overview of the status of jet final state is given in Table I.2.

j+X: Differential N2LOQCD corrections have been calculated in Ref. [129], scale choices have
been studied in [287].

2 jets: The N2LOQCD corrections have been calculated in Ref. [2]. Complete NLO QCD+EW
corrections are also available [288]. A remarkable result is also the calculation of 2-loop
4-gluon scattering based on numerical unitarity [121].
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process known desired

pp→ 2 jets
N2LOQCD

NLOQCD+NLOEW

pp→ 3 jets NLOQCD N2LOQCD

Table I.2: Precision wish list: jet final states.

3 jets: A rapidly increasing number of results on 5-point two-loop amplitudes can be found in [105,
123,124,289–293].

1.6 Vector boson associated processes
The numerous decay channels for vector bosons and the possible inclusion of full off-shell correc-
tions versus factorised decays in the narrow width approximation make vector boson processes
complicated to classify. A full range of decays in the narrow width approximation would be a de-
sirable minimum precision. In the meanwhile, for leptonic decays this goal is met for essentially
all processes in the list. In terms of QCD corrections, full off-shell decays don’t mean a signifi-
cant complication of the respective QCD calculations and are available almost everywhere. This
is no longer true for EW corrections, where leptonic decays increase the complexity of the calcu-
lation, and are thus not availalbe for many high-multiplicity processes (involving more than four
final-state particles) yet. Hadronic decays are even harder to classify because they are formally
part of subleading Born contributions to processes involving jets and possibly further leptoni-
cally decaing vector bosons. Including higher-order corrections in a consisistent way here will
usually require full SM corrections to the complete tower of Born processes, as briefly discussed
in Sec. 1.3. An overview of the status of vector boson associated processes is given in Table I.3,
where leptonic decays are understood if not stated otherwise. Also γ induced processes become
increasingly important in cases where EW corrections are highly relevant. While often included
only at their leading order, first computations involving also full EW corrections to γ-induced
channels were recently achieved.

V : Inclusive cross-sections and rapidity distributions in the threshold limit have been
extracted from the pp → V results [294, 295]. Parton shower matched N2LOQCD
computations using both the MiNLO method [296], SCET resummation [196] and
via the UN2LOPS technique [219]. Completing the inclusive N3LOQCD computa-
tion beyond the threshold limit is an important step for phenomenological studies.
The dominant factorisable corrections at O(αsα) (N(1,1)LOQCD⊗EW) are also now
available [297].
The inclusive production cross section for W and Z bosons has been measured
at the LHC using the leptonic decays of the vector bosons. The precision in those
measurements already reached the barrier of the luminosity uncertainty ∼ 2%, which
is not easy to further improve. For example, the most precise measurement of the
W and Z bosons integrated fiducial cross sections is for the

√
s = 7 TeV sample

having ∆σW /σW = 1.87% and ∆σZ/σZ = 1.82% uncertainty, with the luminosity
uncertainty (∼ 1.8%) accounting for most of it [298].
While the inclusive integrated cross sections have been already measured and com-
pared fairly well with the present theoretical predictions, this is not the case for
differential distributions. A key observable, both for precision studies as well as for
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process known desired

pp→ V

N3LO(z→0)
QCD (incl.)

N2LOQCD

NLOEW

N3LOQCD+N2LOEW+N(1,1)LOQCD⊗EW

pp→ V V ′

N2LOQCD

NLOEW

NLOQCD (gg channel)

N2LOQCD+NLOEW

NLOQCD (gg channel, w/ massive loops)

pp→ V + j N2LOQCD+NLOEW hadronic decays

pp→ V + 2j
NLOQCD+NLOEW

NLOEW
N2LOQCD

pp→ V + bb̄ NLOQCD N2LOQCD +NLOEW

pp→ V V ′ + 1j
NLOQCD

NLOEW (w/o decays)
NLOQCD+NLOEW

pp→ V V ′ + 2j NLOQCD NLOQCD+NLOEW

pp→W+W+ + 2j NLOQCD+NLOEW

pp→ V V ′V ′′
NLOQCD

NLOEW (w/o decays)
NLOQCD+NLOEW

pp→ γγ N2LOQCD+NLOEW

pp→ γ + j N2LOQCD+NLOEW

pp→ γγ + j NLOQCD N2LOQCD+NLOEW

Table I.3: Precision wish list: vector boson final states. V = W,Z and V ′, V ′′ = W,Z, γ. Full
leptonic decays are understood if not stated otherwise.

new physics searches, is the transverse momentum of the vector bosons, as well as
the φ∗ variable which is also very much related with the momentum of the vector
boson, without being affected by the leptons’ energy scale uncertainties. For neu-
tral Drell–Yan, those have been measured at 8 TeV with precision that is < 1% for
0 < pT < 20 GeV [299, 300]. At the same time, the high energy tail of the mea-
sured transverse momentum distribution is dominated by statistical uncertainties
due to the sample size of the data. Refined measurements are expected both for
the low and the high pT part of the transverse momentum distribution in Drell–
Yan. Special runs with very low pileup have been taken from the LHC, with the
experiments targeting to measure with < 1% accuracy in very fine grained bins the
low pT < 20 GeV part of the distribution, seeking to understand the origin of the
data over theory discrepancies in this part of the spectrum. For high pT part of
the pT distribution, more experimental accuracy is also to be expected with higher
luminosity data at

√
s = 13 TeV. Data with high pT vector bosons could be used
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to study the strong coupling constant at N2LOQCD accuracy. For that, a complete
N3LOQCD calculation is needed, given that at tree level the Drell-Yan production is
not sensitive to the QCD coupling.

V/γ + j: Both Z + j [130, 132, 177, 178, 301] and W + j [132, 174, 178, 179] have been com-
pleted through N2LOQCD including leptonic decays, via antenna subtraction and
N -jettiness slicing. Also γ + j was calculated more recently through N2LOQCD in
the N -jettiness slicing approach [181]. All processes of this class, and in particu-
lar their ratios were investigated in great detail in Ref. [302], combining N2LOQCD
predictions with full NLO EW and leading NNLO EW effects in the Sudakov ap-
proximation, including also approximations for leading NLO QCD⊗EW effects. Par-
ticular attention was devoted here to error estimates and correlations between the
processes.

V+ ≥ 2j: While fixed order NLOQCD computations of V+ ≥ 2 jet final states have been known
for many years recent progress has been made for NLOEW corrections [303] including
merging and showering [304,305].

V V ′: Complete N2LOQCD are now available for all vector-boson pair production processes,
namely WW [160,165], ZZ [161,164], WZ [163,166], Zγ [158,162], Wγ [162], using
the qT subtraction method. All these results have recently become publicly avail-
able in the Matrix Monte Carlo framework [154]: Leptonic decays of the bosons
are included throughout, consistently accounting for all resonant and non-resonant
diagrams, off-shell effects and spin correlations. More recently, N2LOQCD results
were achieved for Zγ [182] and ZZ [306] within the N -jettiness method. Leading
N3LOQCD corrections, namely the NLOQCDcorrections to the loop-induced gg chan-
nels, became available for the neutral final states ZZ [307] and WW [308] involving
full off-shell leptonic dacays, based on the two-loop amplitudes of Refs. [69, 70].
More recently, also their interference effects with off-shell Higgs contributinos were
investigated [309, 310]. There has been good progress in calculating NLO EW cor-
rections, and in the meanwhile all vector-boson pair production processes have been
completed including full leptonic decays [222, 223, 225, 311–313]. In Ref. [314], the
combined NLO QCD+EW corrections were presented for all 2`2ν final states, taking
into account the complete NLO corrections to the photon-induced channels for the
first time. In these calculations, the recently developed automated approaches have
been employed, which are validated against each other in a tuned comparison for
the off-shell production of WW and ZZ pairs in Sec. I.7.

V V ′ + j: NLOQCD corrections have been known for many years. More recently, NLOEW cor-
rections became available for the some on-shell processes, with subsequent leptonic
decays treated in narrow-width approximation [315, 316]. Full NLOEW corrections
including decays are clearly in reach of the automated tools described in Sec. I.7.

V V ′ + 2j: NLOQCD corrections have been known for several years, both in the QCD produc-
tion and the EW VBS production modes. More recently, a first calculation of the
full NLO SM corrections, i.e. NLOQCD, NLOEW and mixed NLO corrections to all
production channels, became available for W+W+ + 2j production including full
leptonic decays [224, 226]: In particular the NLO EW corrections to the EW VBS
production mode turn out to be remarkably large and negative if typical VBF kine-
matics are considered.

V V ′V ′′: NLOQCD corrections have been known for many years. More recently, NLOEW cor-
rections became available for the on-shell processes involving three [317–321] and

16



process known desired

pp→ tt̄

N2LOQCD+NLOEW

NLOQCD (w/ decays, off-shell effects)

NLOEW (w/ decays, off-shell effects)

N2LOQCD (w/ decays)

pp→ tt̄+ j
NLOQCD (w/ decays)

NLOEW
N2LOQCD+NLOEW (w/ decays)

pp→ tt̄+ 2j NLOQCD (w/ decays) NLOQCD+NLOEW (w/ decays)

pp→ tt̄+ Z NLOQCD+NLOEW (w/ decays)

pp→ tt̄+W
NLOQCD

NLOEW
NLOQCD+NLOEW (w/ decays)

pp→ t/t̄ N2LOQCD*(w/ decays) N2LOQCD+NLOEW (w/ decays)

Table I.4: Precision wish list: top quark final states. N2LOQCD
∗ means a calculation using the

structure function approximation.

two [322, 323] massive vector bosons, in some cases with their subsequent leptonic
decays treated in narrow-width approximation. Given the comparable complexity to
W+W+ + 2j production, where full NLO SM corrections could already be achieved,
NLOEW corrections to all these processes including full leptonic decays may be con-
sidered in reach. The processes involving two and three photons in the final state
were completed at NLOQCD and NLOEW accuracy [324], taking into account full
leptonic decays in case of V γγ production.

γγ, γγ + j: This process remains an important ingredient in Higgs measurements at Run II.
Originally computed at N2LOQCD with qT subtraction [325], it has recently been re-
computed [326] using the N -jettiness subtraction implemented within MCFM. The
qT resummation at NNLL requested on the 2013 wish list are also now available [325].
Given the recent excitement in di-photon production a detailed understanding of
these processes at high qT will be important in the coming years. Prospects for
N3LOQCD corrections remain closely connected with differential Higgs and Drell-Yan
production at N3LOQCD. At high transverse momentum it may also be interesting
to have N2LOQCD predictions for γγ+ j. Given that this is of equivalent complexity
to 3j production we add this process to the wish list.

1.7 Top quark associated processes
An overview of the status of top quark associated processes is given in Table I.4

tt̄: Fully differential predictions for tt̄ production at N2LOQCD are available [146, 147]
are available, as well as fastNLO tables [327] and a study on scale choices [328]. The
N2LOQCD corrections have recently been combined with NLO electroweak correc-
tions [329]. Polarized double-virtual amplitudes for heavy-quark pair production are
also available [330]. Complete NLOEW corrections have been calculated in Ref. [331]
for both the on-shell case and with complete off-shell effects. Electroweak correc-

17



√
s ATLAS CMS NNLO+NNLL

7 TeV 3.9% 3.6% 4.4%
8 TeV 3.6% 3.7% 4.1%
13 TeV 4.4% 5.3% 5.5%

Table I.5: Experimental uncertainty ∆σtt̄/σtt̄ on the inclusive tt̄ production cross section mea-
surements, in the electron-muon channel at the LHC [368–371] compared to the precision of the
NNLO+NNLL calculation [26,372].

tions to multi-jet merged on-shell top quark pair production have been presented in
Ref. [332].
Radiative corrections to top quark decays have been calculated in Refs. [333–335],
and have been extended up to NNLO QCD [148, 184]. Resummation has been
accomplished up to NNLL, together with other improvements going beyond fixed
order [336–341].
NLO QCD corrections to W+W−bb̄ production with full off-shell effects have been
performed in Refs. [342–345] including leptonic decays of the W bosons, and in
Ref. [346] in the lepton plus jets channel. In Refs. [347, 348], NLO calculations in
the 4-flavour scheme, i.e. with massive b-quarks, have been performed.
In the narrow-width-approximation (NWA) the NLO QCD calculation has been
matched to a parton shower in Ref. [349] within an extension of the PowHeg [350,
351] framework, called ttb_NLO_dec in the POWHEG-BOX-V2. Within the Sherpa
framework, NLO QCD predictions for top quark pair production with up to three
jets matched to a parton shower are also available [352, 353]. A new NLO multi-
jet merging algorithm relevant to top quark pair production is also available in
Herwig 7.1 [354].
Based on an NLO calculation of W+W−bb̄ production combined with the Powheg
framework, first results of theW+W−bb̄ calculation in the 5-flavour scheme matched
to a parton shower have been presented in Ref. [355]. However, it has been noticed
later that the matching of NLO matrix elements involving resonances of coloured
particles to parton showers poses problems which can lead to artefacts in the top
quark lineshape [356]. As a consequence, an improvement of the resonance treatment
has been implemented in POWHEG-BOX-RES, called “resonance aware matching”, and
combined with NLO matrix elements from OpenLoops [85], to arrive at the most
complete description so far [357], based on the framework developed in Ref. [356] and
the 4FNS calculation of Ref. [348]. An alternative algorithm to treat radiation from
heavy quarks in the Powheg NLO+PS framework has been presented in Ref. [358].
NLO and off-shell effects in top quark mass determinations, comparing fixed order
results with full off-shell effects, results based on the NWA including NLO correc-
tions to both production and decay, and results based on NLO tt̄ matched to a
parton shower, have been studied in Ref. [359]. Various aspects of the definition and
extraction of the top quark mass have also been studied recently in Refs. [360–367].
In terms of experimental precision, the inclusive tt̄ production cross section has
been measured by ATLAS and CMS Collaborations at

√
s = 7, 8 and 13 TeV.

The measurements’ uncertainty is a bit smaller than the corresponding theoretical
calculations (Table I.5). Significant part of the theory uncertainty stems from PDFs
and αs. For example, in the 13 TeV calculation ∼ 4.2% comes from PDFs and αs,
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while the scale uncertainty is about 3.5%. In terms of the total production cross
section, the measurements agree with the theoretical predictions within the quoted
uncertainties. However, a long standing problem related to the discrepancy observed
in the transverse momentum distribution of the top-quarks (see e.g., [373,374]), still
misses from a complete resolution though higher order effects [147] seem to alleviate
at least partially the effect. Understanding the origin of this discrepancy is important
for the LHC physics programme since it affects directly (or indirectly) many physics
analyses for which the tt̄ is a dominant source of background.

tt̄ j: NLO QCD corrections have been calculated in [375–377] for on-shell top quarks,
results matched to a parton shower are also available [378, 379]. In Ref. [380, 381]
full off-shell effects have been included. Recent studies about the extraction of the
top quark mass based on tt̄ jet production have been performed in [365,382].

tt̄V : Will help to improve the constraints on anomalous EW couplings in the top quark
sector during Run II. NLOQCD corrections to tt̄Z including decays have been con-
sidered in Ref. [383, 384]. NLO QCD corrections to tt̄γγ production matched to a
parton shower, with focus on observables which are sensitive to the polarisation of
the top quarks, have been calculated in [385]. Both NLOEW and QCD corrections
have been computed within the Madgraph5_aMC@NLO framework [280]. Re-
cent developments include the calculation of the NNLL corrections to the associated
production of a top pair and a W boson [386] resp. a Z boson [387], and an inves-
tigation of the relative sizes of various types of QCD and EW corrections for tt̄W
and tt̄tt̄ production [388].

t/t̄: Fully differential N2LOQCD corrections have been completed for the dominant t-
channel production process, first for stable tops [149], and more recently including
top-decays to NNLO accuracy, in the NWA [185]. Both the computations [149,185]
were performed in the structure function approximation. NLO QCD corrections to
t-channel electroweak W + bj production, with finite top-width effects taken into
account are available within MG5_aMC@NLO [389], see also [390] for earlier work
within MC@NLO. NLO QCD corrections to single top production in the in the
t, s and tW channels are also available in Sherpa [391] and in POWHEG [392, 393].
Differential distributions for t-channel single top production and decay at NNLO in
QCD have been presented recently in [394]. A determination of the top-quark mass
from hadro-production of single top-quarks has been performed in [395], and in [396]
using the Matrix Element Method at NLO QCD.

2 NTuples for NNLO processes 4

NTuples files have proven very useful for the dissemination of NLO results for high multiplicity
processes [397]. This contribution investigates the possibility of extending the use of event files
for NNLO processes. As an example we investigate the dijet production at NNLO [2].

2.1 Introduction
A first investigation of event files for NNLO was performed in the previous Les Houches workshop
[1] where the process e+e− → 3j was considered at NNLO using EERAD3 [398]. The size of the
event files were found to be in an acceptable region.

In this contribution we turn to the inclusive hadronic production of two jets [2]. Hadronic
processes introduce a range of new complication compared to the original study:

4 D. Maître
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– the scale variation is more complex,

– we need to include information about the initial state flavours and momentum fractions.

– the infrared structure of the process is much more complex and therefore the number of
subtractions is much enhanced.

The goal of this study is to ascertain whether using event files for hadronic processes is tractable
from the point of view of the storage space needed to gather enough statistics.

2.2 Storage format
For this experiment we used a ROOT [399] file backend for storage. In the previous study the
layout of the NLO nTuples described in [397]. For this study we have decided to modify the file
layout from a quite specialised layout to a more general one. For a given phase-space point the
form of a weight is given by:

ω = αnS pdf(x1, id1, µ) pdf(x2, id2, µ)×
(
c0 + c1 log(µ2) + c2 log2(µ2) + . . .

)
, (I.4)

where we have set the factorisation and renormalisation scale to be the same. Keeping track of
both dependence separately is possible but not considered in this study. This omission is not
relevant for the purpose of the study: the contribution that requires the largest storage is the
double real radiation contribution, which has no logarithmic dependence on the scale.

So for each phase-space point we save the final state kinematic and flavour information,
and an array of entries

n, x1, x2, id1, id2, j, cj

corresponding to every coefficient of a logarithm in the weight in Eq. (I.4).

2.3 Event file sizes
The program NNLOjet [2] we used to estimate the file sizes separates the calculation is several
parts:

– the born cross section (LO),

– the NLO virtual (V) and real (R) parts

– the two-loop contribution (VV)

– the squared one-loop three jet contribution (RV)

– the double real radiation contribution (RR), separated in two parts (RRa, RRb).

Each part is integrated separately and has different characteristics that impact on the storage
size. Table I.6 shows the size of the storage required for each part of the calculation per event.
These numbers were obtained by creating a small event file for each part. We use this estimate
to extrapolate the size of the storage capacity needed for a realistic scenario.

Table I.6 shows the size writing out the weights and the momentum configurations in the
order NNLOjet produces them. We can reduce the size of the event file by collecting all weights
that share the same final state phase-space configuration and collect weights corresponding to
the same value of n, x1, x2, id1, id2, j, cj , the factor in size gained and the resulting estimated
storage capacities needed are listed in Table I.7. From this table we can see that the order of
magnitude of the storage space needed for the full process is of the order of 100 TB. This is
somewhat higher than a comfortable size to work with, but not completely unmanageable.

There are optimisations that could be used to further reduce the storage requirements
that we have not considered yet and are left for further studies.

20



part αs order size [kB/event] est. need [109 events] est. size [TB]
LO 2 0.21 10.0 1.9
V 3 3.86 5.0 18.0
R 3 8.95 5.0 41.7
VV 4 5.51 10.0 51.3
RV 4 154.09 2.0 287.0
RRa 4 463.91 5.0 2160.2
RRb 4 124.09 2.5 288.9

Table I.6: Size of the event files produced using NNLOjet for the dijet production process at
NNLO.

part αs order size [kB/event] est. need [109 events] est. size [TB] gain factor
LO 2 0.13 10.0 1.2 1.6
V 3 0.86 5.0 4.0 4.5
R 3 1.79 5.0 8.3 5.0
VV 4 1.32 10.0 12.3 4.2
RV 4 12.52 2.0 23.3 12.3
RRa 4 12.84 5.0 59.8 36.1
RRb 4 8.13 2.5 18.9 15.3

Table I.7: Size of the event files produced using NNLOjet for the dijet production process at
NNLO, reordering the phase-space points and collecting weights with the same final state. The
factor in storage space gained with respect to the naïve strategy is given in the last column.

2.4 Conclusions
In this contribution we investigated the size of the storage needed to produce event files for the
dijet production at NNLO accuracy. Our current implementation forecasts storage requirements
in the region of 100 TB. This requirement is quite high but not completely intractable. The
code we used for the analysis is optimised for CPU consumption and not minimising the number
of weights produced, there are therefore further improvement that can be considered to reduce
the size requirement without affecting the accuracy, these will be considered in further studies.
It should be noted that the information collected in the event files is exactly what is needed to
produce fastNLO/APPLgrid/MCgrid tables [3, 400, 401] for specific histograms. NNLO event
files can therefore be seen as a useful intermediate format.
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3 Progress in grid techniques for the fast reproduction of QCD calculations
at NNLO 5

Techniques for generating interpolation grids for perturbative QCD calculations offer a fast and
flexible way to reproduce those calculations with any choice of parton distribution function set
or any value of the strong coupling constant. Such grids are suitable for the iterative fitting of

5 D. Britzger, C. Gwenlan, A. Huss, K. Rabbertz, M. R. Sutton
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parton distributions and standard model parameters, or detailed studies of scale dependence.
Recent developments are briefly discussed for the APPLfast project which implements a common
interface for the APPLgrid and fastNLO fast interpolation grid libraries with the NNLOJET
calculation for general cross section calculations at next-to-next-to-leading order. Progress to-
wards a more generic common lower level interface for all interaction with the fastNLO and
APPLgrid backends suitable for use with other QCD calculations is also briefly discussed.

3.1 Introduction
The LHC performed extremely well both during Run 1 – with 7 and 8 TeV collisions – and,
since 2015, during Run 2 with collisions at 13 TeV centre of mass energy. This has allowed
measurements of the pp interaction cross sections over an unprecedentedly large kinematic region
of many orders of magnitude in both the hard process scale, and proton momentum fraction, x.
These increasingly precise measurements highlight the need for a more precise understanding
of parton distributions functions (PDF) within the proton. Several important channels – such
as searches for new, massive particles and Higgs production – suffer from large theoretical
uncertainties dominated by PDFs, which also play a rôle in limiting the precision of various
important parameters such as the W -boson mass, or strong coupling, αs(M2

Z). As LHC Run
2 continues, the expected increase in experimental precision in the new phase space region
afforded by the 13 TeV collisions, renders it evermore important to have access to precise QCD
calculations at high orders, and a correspondingly precise knowledge of the proton PDF. For a
recent review, see elsewhere [402].

Higher order calculations at hadronic colliders generally require the numerical integration
over the kinematics of the final state particles necessary for the cancellation of the infrared and
collinear singularities. To achieve the required statistical precision, these calculations typically
take many thousands of CPU hours. For an iterative fit for the proton PDF these calculations
would need to be performed many hundreds, or thousands of times, once for each of the points
in the PDF minimisation space, thus precluding the use of these higher order QCD calculations
directly in PDF fits.

Since the turn of the current century, fast grid techniques have been developed which
allow the storage of the weights of these higher order calculations on an interpolation grid. In
this way, the convolution of the weights with the PDF can be performed a posteriori, such that
the time consuming QCD calculation need be performed only once. These techniques were first
used for jet production at next-to-leading order (NLO) in ep collisions at HERA [403,404], and
were then extended to jet production at NLO at the LHC with the APPLgrid [3, 405] and the
fastNLO [4,400] projects. The complete range of two-to-two processes for NLO QCD processes
at the LHC became available in 2013, and in principle any NLO process can now be used with
such grids.

The next-to-next-to-leading order (NNLO) corrections for inclusive electroweak boson pro-
duction have been known for some time [131,155,406–411]. The recent, much anticipated com-
pletion of the inclusive jet [129] and dijet [2] cross sections, together with the NNLO cross section
for Z+jets production [130] implemented within the unified framework of the NNLOJET calcu-
lation provides a valuable opportunity to be able to make use of these new QCD calculations in
a PDF fit.

To this end, a project to implement a combined interface between the NNLOJET calcu-
lation and the fast grid technology in both the fastNLO and APPLgrid projects is underway.
Known as APPLfast – a portmanteau of the APPLgrid and fastNLO project names – the in-
tention is to provide an implementation of an interface that will allow for the production of full
NNLO grids for any of the processes implemented within the NNLOJET program.
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3.2 The APPLfast project
The APPLfast project was initiated at the QCD@LHC workshop at the end of 2015. The first
promising results regarding the closure of the grids for the different contributions to the cross
section have been shown previously. Here a very brief update on the project and the current
status is provided together with some potential directions for future development.

The APPLfast code is written in C++ with Fortran callable sections. It is structured
as a lightweight library which can be used to bridge between the NNLOJET code and the
specific code for booking, and filling the grids. In line with many other unix based applications,
including the APPLgrid and fastNLO packages themselves, the code is automatically configured
and compiled with autotools.

Two of the major design principles for the interface to the NNLOJET code are that it
should unify as much as possible the code that is required to interface with either of the under-
lying APPLgrid or fastNLO technologies, and that the interface itself should be as unobtrusive
as possible in the NNLOJET code. In particular this last objective means that the interface
should provide no additional performance overhead in terms of execution time when not filling
a grid, and when filling a grid, should keep any additional overhead as low as possible. This is
achieved by the use of a minimal set of hook functions that can be called from within the NNLO-
JET code itself and which can be left within the code with no impact on performance if the
grid filling functionality is not required. This is in line with the implementation of the interfaces
with other QCD calculations [412] and it is hoped that this may eventually be generalisable to
simplify the production of an interface with any future calculations.

Fast interpolating grids themselves work by taking the PDF evaluated at each x1, x2, µ2
F

phase space point, and generating interpolating coefficients which can be used to generate this
PDF value using a smaller number of PDF evaluations at specific grid nodes. By then storing
each weight from the hard process on each of the relevant grid nodes, but additionally weighted
by these interpolating coefficients, summing the product of the PDF evaluated at the grid nodes
with the stored weights, will result in the generation of the full cross section. This is a quadrature
method the precision of which is determined predominantly by the quality of the interpolation.
Typically a grid warm up stage is required in order to more precisely determine more optimal
limits for the phase space in x and µ2

F of the grids. During this stage, the NNLOJET code runs
in a custom mode which generates a uniform weight for each phase space point rather than the
full weights from the matrix elements.

In the endeavour towards the implementation of a common interface, in line with the first
principle, opportunities have been taken for the reuse of existing tools or implementation of
common tools. One of the most significant aspects has been in the configuration of the grids
themselves, and the mapping of the internal processes of the NNLOJET code to the different
parton luminosity contributions within the grids in an efficient way, discussed briefly in the
following section.

3.2.1 Implementation of parton luminosity contributions
In order to map between the internal processes of the NNLOJET code and the smaller space
of parton-parton luminosity processes stored in the grids, both APPLgrid and fastNLO make
use of the parton luminosity class from APPLgrid. In this class the different parton-parton
contributions are each assigned to a specific subprocess. Ignoring top, in principle there can
be 121 different subprocceses. However, the presence of different terms in a calculation which
might have the same parton-parton input, means that the class must be able to map between
the different internal processes in the NNLO code to these individual subprocesses. In addition,
the presence of terms in the matrix elements which contain for example different CKM matrix
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Z + jets at NNLO

7

• Again the same 33 input parton luminosities as in the NNLO case, however, many more (794) individual internal processes

Physics at TeV Colliders, Les Houches, June 2017

M Sutton - APPLfast-NNLO

0 163 177 191 205 206 245 246 285 301 317 347 377 391 405 435 449 450 489 490 529 530 569 593 617 647 677 707 737
767 899 905 906 935 941 942

(d, d̄) + (s, s̄) + (b, b̄)

1 164 178 192 207 208 247 248 286 302 318 348 378 392 406 436 451 452 491 492 531 532 570 594 618 648 678 708 738
768 900 907 908 936 943 944

(u, ū) + (c, c̄)

2 165 179 193 209 210 249 250 287 303 319 349 379 393 407 437 453 454 493 494 533 534 571 595 619 649 679 709 739
769 909 917 918 945 953 954

(d̄, d) + (s̄, s) + (b̄, b)

3 166 180 194 211 212 251 252 288 304 320 350 380 394 408 438 455 456 495 496 535 536 572 596 620 650 680 710 740
770 910 919 920 946 955 956

(ū, u) + (c̄, c)

4 167 181 195 229 230 269 270 289 305 321 351 381 395 409 439 481 482 521 522 561 562 585 586 609 610 621 651 681
711 741 771 817 818 861 862 901 902 937 938

(d, g) + (s, g) + (b, g)

5 168 182 196 231 232 271 272 290 306 322 352 382 396 410 440 483 484 523 524 563 564 587 588 611 612 622 652 682
712 742 772 819 820 863 864 903 904 939 940

(u, g) + (c, g)

6 169 183 197 233 234 273 274 293 309 323 353 383 397 411 441 473 474 513 514 553 554 577 578 601 602 623 653 683
713 743 773 801 802 845 846 889 890 925 926

(g, d) + (g, s) + (g, b)

7 170 184 198 235 236 275 276 294 310 324 354 384 398 412 442 475 476 515 516 555 556 579 580 603 604 624 654 684
714 744 774 803 804 847 848 891 892 927 928

(g, u) + (g, c)

8 171 172 185 186 199 200 325 326 355 356 385 386 399 400 413 414 443 444 629 630 659 660 689 690 719 720 749 750
779 780 797 798 799 800 841 842 843 844 885 886 887 888 921 922 923 924

(g, g)

9 173 187 201 237 238 277 278 295 311 327 357 387 401 415 445 477 478 517 518 557 558 581 582 605 606 625 655 685
715 745 775 805 806 849 850 893 894 929 930

(g, d̄) + (g, s̄) + (g, b̄)

10 174 188 202 239 240 279 280 296 312 328 358 388 402 416 446 479 480 519 520 559 560 583 584 607 608 626 656 686
716 746 776 807 808 851 852 895 896 931 932

(g, ū) + (g, c̄)

11 175 189 203 241 242 281 282 297 313 329 359 389 403 417 447 485 486 525 526 565 566 589 590 613 614 627 657 687
717 747 777 833 834 877 878 913 914 949 950

(d̄, g) + (s̄, g) + (b̄, g)

12 176 190 204 243 244 283 284 298 314 330 360 390 404 418 448 487 488 527 528 567 568 591 592 615 616 628 658 688
718 748 778 835 836 879 880 915 916 951 952

(ū, g) + (c̄, g)

13 213 253 335 365 423 457 497 537 635 665 695 725 755 785 813 821 822 857 865 866 (d, d̄) + (d, s̄) + (d, b̄) + (s, d̄) + (s, s̄) + (s, b̄) + (b, d̄) + (b, s̄) + (b, b̄)
14 214 254 336 366 424 458 498 538 636 666 696 726 756 786 814 858 (d, ū) + (d, c̄) + (s, ū) + (s, c̄) + (b, ū) + (b, c̄)
15 215 255 337 367 425 459 499 539 637 667 697 727 757 787 815 859 (u, d̄) + (u, s̄) + (u, b̄) + (c, d̄) + (c, s̄) + (c, b̄)
16 216 256 338 368 426 460 500 540 638 668 698 728 758 788 816 823 824 860 867 868 (u, ū) + (u, c̄) + (c, ū) + (c, c̄)
17 217 257 331 361 419 461 501 541 631 661 691 721 751 781 809 853 (d, d) + (d, s) + (d, b) + (s, d) + (s, s) + (s, b) + (b, d) + (b, s) + (b, b)
18 218 258 332 362 420 462 502 542 632 662 692 722 752 782 810 854 (d, u) + (d, c) + (s, u) + (s, c) + (b, u) + (b, c)
19 219 259 333 363 421 463 503 543 633 663 693 723 753 783 811 855 (u, d) + (u, s) + (u, b) + (c, d) + (c, s) + (c, b)
20 220 260 334 364 422 464 504 544 634 664 694 724 754 784 812 856 (u, u) + (u, c) + (c, u) + (c, c)
21 221 261 343 373 431 465 505 545 643 673 703 733 763 793 829 873 (d̄, d̄) + (d̄, s̄) + (d̄, b̄) + (s̄, d̄) + (s̄, s̄) + (s̄, b̄) + (b̄, d̄) + (b̄, s̄) + (b̄, b̄)
22 222 262 344 374 432 466 506 546 644 674 704 734 764 794 830 874 (d̄, ū) + (d̄, c̄) + (s̄, ū) + (s̄, c̄) + (b̄, ū) + (b̄, c̄)
23 223 263 345 375 433 467 507 547 645 675 705 735 765 795 831 875 (ū, d̄) + (ū, s̄) + (ū, b̄) + (c̄, d̄) + (c̄, s̄) + (c̄, b̄)
24 224 264 346 376 434 468 508 548 646 676 706 736 766 796 832 876 (ū, ū) + (ū, c̄) + (c̄, ū) + (c̄, c̄)
25 225 265 339 369 427 469 509 549 639 669 699 729 759 789 825 837 838 869 881 882 (d̄, d) + (d̄, s) + (d̄, b) + (s̄, d) + (s̄, s) + (s̄, b) + (b̄, d) + (b̄, s) + (b̄, b)
26 226 266 340 370 428 470 510 550 640 670 700 730 760 790 826 870 (d̄, u) + (d̄, c) + (s̄, u) + (s̄, c) + (b̄, u) + (b̄, c)
27 227 267 341 371 429 471 511 551 641 671 701 731 761 791 827 871 (ū, d) + (ū, s) + (ū, b) + (c̄, d) + (c̄, s) + (c̄, b)
28 228 268 342 372 430 472 512 552 642 672 702 732 762 792 828 839 840 872 883 884 (ū, u) + (ū, c) + (c̄, u) + (c̄, c)
29 291 307 573 597 897 933 (d, d) + (s, s) + (b, b)
30 292 308 574 598 898 934 (u, u) + (c, c)
31 299 315 575 599 911 947 (d̄, d̄) + (s̄, s̄) + (b̄, b̄)
32 300 316 576 600 912 948 (ū, ū) + (c̄, c̄)

1

process  Internal NNLOJET subprocess                                                                                                                                                 parton-parton composition

Fig. I.1: The NNLO contrbutions to the Z+jets calculation illustrating the 33 separate com-
binations of parton-parton input terms and their mapping to 768 separate internal NNLOJET
contributions.

terms, means that for a posteriori setting of the CKM matrix, these different contributions
should be mapped to different subprocesses even if their initial parton-parton contributions are
the same.

The ability to map different internal NNLO calculation sub-contributions to the same,
or different subprocesses is implemented in the class. Although separation into the different
CMK contributions is not yet fully implemented, it need only be performed at the point of
determining the mapping of processes in the NNLOJET initialisation, and should be considered
to be straightforward.

By way of example, Fig. I.1 shows the set of parton-parton luminosities from the NNLO
contribution to the Z+jets calculation, showing how the 768 internal NNLOJET processes are
mapped to the separate 33 parton-parton luminosities stored in the grid.

3.2.2 Contributions at NNLO
The NNLOJET code itself generates the various contributions to the cross section individually,
generating each of the the leading order (LO), the NLO real (R), NLO virtual (V), and the NNLO
double-real (RR), double-virtual (VV), and real-virtual (RV) contributions using a distinct run
of the executable. The grids generated after each of these stages must then be combined to
render the full cross section.

To produce a stable cross section at higher orders it is necessary to run a calculation gen-
erating a very large number of weights. This is particularly true for the double-real contribution
since the large number of partons in the final state and the correspondingly more complicated
infrared structure, typically requires hundreds of thousands of CPU hours. Because of this,
it is necessary that many hundreds or thousands of separate jobs are required for each sub-
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Fig. I.2: The ratio of the fast convolution from APPLfast with respect to the original NNLOJet
calculation for various contributions to the Z+jets cross section at NLO and NNLO.

contribution. The resulting grids for each cross section from each job is typically O(10 − 100)
MBytes in size, depending on the number of bins in the observable and details of the interpola-
tion used. Fortunately, the grids obtained by summing the output from the many thousands of
separate jobs is typically of a similar size to the largest single grid.

In order to reproduce the cross section from the calculation with adequate precision, it
is necessary that the grids themselves be combined using an analogous procedure to that used
in the NNLOJET calculation itself. In NNLOJET a sophisticated combination procedure is
used [413, 414] which allows individual cross section bins to be weighted independently from
their neighbours. It was necessary to implement this functionality in the combination of the
output grids before any detailed comparisons of the fast grid convolution and the NNLO cross
sections could be made.

Figure I.2 shows the ratio of the fast convolution from APPLfast with respect to the orig-
inal NNLOJET calculation for the NNLO contributions from the Z+jets cross section, together
with the NLO virtual contribution shown for reference. In all cases the agreement is much
better than 6%�. Here the ratio is taken after combination of the grids following the NNLOJET
combination procedure. It is worth mentioning the apparent worse performance of the ratio
for the real contributions – particularly the double-real part. Although this is a quadrature
method – each individual weight should be equally well stored on the grid – the precision of
the convolution is affected by how well optimised the grid is after the initial warm up stage.
For the real-virtual and double-real contributions shown here, a longer warmup phase would be
beneficial.

Figure I.3 shows the combination in more detail specifically for the Z+jets double-virtual
contribution. Note the reduced 1%� maximum range of the vertical-axis. In the first panel, the
ratio of the fast convolution with respect to the NNLOJET calculation is shown for two different
types of combination; the first, a basic simple addition, where each grid and each bin is added
with a weight of one; and the second, with the procedure from NNLOJET. In the case of the
simply added grids the NNLOJET cross section has also been added with weight one. In both
cases, the cross section is reproduced to within 0.4%�. In the second panel, the fast convolution
with both of these addition schemes is compared with the NNLOJET cross section combined
with the full NNLOJET prescription. Clearly in this case, the simply added grid is seen to agree
with the NNLOJET cross section only to within approximately 4%. This illustrates the correct
function of the implementation the NNLOJET combination prescription when applied to the
grids.

Figure I.4 shows the ratio of the the full convolution procedure for the combined cross
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Fig. I.3: Ratios of the combined APPLfast convolution to the NNLOJET calcualtion for the
NNLO double-virtual contribution. Different combination schemes have been used for illustra-
tion: on the left the grid convolution with either particular scheme is shown in ratio with the
NNLOJET cross section, combined with the same scheme, while on the left, the different grid
combinations are shown always with respect to the NNLOJET combination using the NNLOJET
prescription.

section for each of the LO, NLO, and NNLO components for the inclusive jet cross section
at the LHC, evaluated with the leading jet pT scale. Note the 1% maximum vertical-axis
range. Shown are the statistical uncertainties on the combined cross section and the inner
shaded band represents the one per mille limit. The statistical uncertainties are larger on the
NNLO contribution due to the NNLO real contributions. The fast convolution reproduces the
NNLOJET cross section reliably at each of the orders, well within the statistical uncertainty on
the calculation, but again, reasonably large excursions of up to 5%� are observed in the NNLO
contribution which have since been seen to improve with higher numbers of weights generated
during the phase space warmup.

What can be concluded from the results so far is that all the major conceptual hurdles have
been overcome and the primary development is reasonably complete. Currently a campaign of
high statistical precision grid production is underway. This campaign is a significant undertaking
given the number of different physics processes and the different phase space and binning schemes
used by the different experimental collaborations.

3.3 Towards a standard grid interface
A combined interface capable of filling grids in either the fastNLO or APPLgrid formats, while
useful, is only the beginning. A more beneficial approach would be to implement in each grid
technology a common, lower level API for generic grid interactions between formats such that
the bridging code or any client PDF fitting code could be fully agnostic about which format was
being used.

In this way, instead of a single package with the bridging code including two distinct
interfaces sharing common elements, the bridge code itself would consist of only a truly single
interface interacting with the common API. Small differences would be handled within the
implementation of the API for the particular grid technology being used. This should then
render any change of the underlying grid technology essentially immaterial.

It is necessary to ensure some degree of backwards compatibility to ensure that existing
grids which represent many thousands of hours of processing are still usable. Any such proposed
new interface should then necessarily be seen as an evolving development implementation in the
first instance, rather than the standard into which it will hopefully evolve.
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LO NLO

NNLO

Fig. I.4: The ratio of the fast convolution from APPLfast with respect to the original NNLOJet
calculation for LO, NLO and NNLO contributions from the inclusive jet cross section. The
statistical error on the calculation is shown, with the 1%� region shown as the shaded band.

In principle, stateless classes are to be preferred for the implementation of specific func-
tionalities. Consequently, the interface or the filling of the grid should take all the parameters
that are needed so that it can present the filling operation as an atomic action.

For a grid to be used for the fast convolution within a PDF fit, an interface for initi-
ating the fast convolution to be called by the fitting code is also required, and it would be
useful to define a separate, common interface for this purpose. This aspect of the interface will
not be discussed here, except to say that is should fit into the general scheme. In this way, a
number of application specific interfaces in a common namespace might be envisaged, for in-
stance a common namespace, lhgrid, containing the interface to fill the grid in a specific API,
lhgrid::fillgrid_api. Any eventual interface for the fast convolution could for instance be
lhgrid::convolute_api. The full grid implementation would then inherit both these inter-
faces, or handle interaction between helper classes each of which could implement only one of
the interfaces.

Figure I.5 illustrates an early implementation of the filling interface with filling methods
to fill a single weight for a given phase space point for a given parton luminosity, of for filling
the complete set of weights for all parton luminosities. A method to set a caching flag is also
provided although not shown here.

This design has been chosen to facilitate grid filling with the different weight generation
schemes implemented by the many different calculations currently interfaced but also be flexible
enough to accommodate new calculations. The different schemes considered are:
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/// production run filling interface

/// fill the grid with a single weight for a single parton luminosity

virtual int fill( const double& x1, const double& x2, const double& Q2,
const int& order,
const int& process_index,
const double& observable,
double weight ) = 0;

/// fill the grid with a single weight for a vector of weights - one
/// entry for each parton luminosity

virtual int fill( const double& x1, const double& x2, const double& Q2,
const int& order,
const double& observable,
const std::vector<double>& weights ) = 0;

/// filling interface for the phase space warmup

/// fill the grid with a single weight for a single parton luminosity

virtual int fill_phasespace( const double& x1, const double& x2,
const double& Q2,
const int& order,
const int& process_index,
const double& observable,
double weight ) = 0;

/// fill the grid with a single weight for a vector of weights - one
/// entry for each parton luminosity

virtual int fill_phasespace( const double& x1, const double& x2,
const double& Q2,
const int& order,
const double& observable,
const std::vector<double>& weights ) = 0;

Fig. I.5: Proposed interface functions for filling of a standardised grid, including a warm up
stage

i. some calculations generate the weights for all parton luminosities at the same time for
each phase space point

ii. some generate only one weight, for a single phase space point for a single parton luminosity

The interface must be able to handle each case. Both of these cases may be operated in two
modes, where the code a) generates these weights in sequences for a number of different con-
tributions but all with the same, or related phase points, or b) where each phase space point is
completely distinct. For instance, many general purpose Monte Carlo generators [415], behave
as in iib), whereas many NLO calculations [416–420] behave as in ia).

The opportunity for caching is then required since the grid filling operation itself is quite
costly – for each phase space point, the interpolating coefficients in each of x1, x2 and µ2

F must
be calculated. For case ia), no caching is required, but for ib) and particularly iib) it becomes
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/// fill the reference histogram

virtual int fill_reference( const double& observable,
const double& weight ) = 0;

/// fill the reference histogram for a particular parton luminosity

virtual int fill_reference( const int& process_index,
const double& observable,
const double& weight ) = 0;

Fig. I.6: Proposed interface methods for filling of reference histograms.

very important to avoid the recalculation of the interpolating coefficients each time a weight is
passed to the grid filling.

Unfortunately, the use of a cache to some extent breaks the desired stateless operation of
the interface, but the filling process would still be presented as an atomic operation. There are
methods for the filling of the grid during the phase space warmup stage, however these may in
the end not be necessary, since the grid itself will know whether it is in a phase space warmup
stage or not, and so can decide to fill with the weights or not. In principle the actual weights
are not required during the phase space warmup – only the values of the x, µ2

F etc. Similarly,
the parton luminosity process index may not be required if the phase space is common to each
parton luminosity.

To facilitate the closure testing of a grid, methods to fill a reference histogram are also
provided, shown in Fig. I.6, such that the full weights, convoluted with the PDF when the grid
was being filled can also be stored.

By storing in the general grid state information the identity of the PDF used in the
calculation for the grid construction, it will be possible for the grid itself to perform the closure
test on the quality of the implementation directly without input from the user.

3.4 Outlook
The prospect for creation of fast interpolation grids using the NNLOJET code is good – es-
sentially all major hurdles have been overcome and high statistical precision grids are being
produced.

An outline proposal for a common grid filling scheme that should simplify the process of
creating an interface for any new calculations with the grid filling back ends has been proposed.
Tests implementing this interface in development code have been made and the interface could
be used in the next major release of both APPLgrid and fastNLO. Operational issues may lead
to a necessary period of evolution of the interface until it is fully stable.
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4 The nested soft-collinear subtraction scheme 6

4.1 Introduction
We consider NNLO subtraction schemes based on the framework of residue-improved sector
decomposition, first developed in Refs. [136, 137]. This framework allows the highly successful
NLO subtraction procedure of Frixione, Kunszt and Signer [142, 421] to be extended to NNLO
by using sector decomposition to separate overlapping divergences. At present, it is the only
approach to NNLO subtractions which is fully local in multi-particle phase space, and subtrac-
tion schemes based on this framework, such as STRIPPER [136,137], have been used in a variety
of non-trivial NNLO calculations [26,145–147,149–151].

There are, however, several aspects of the residue-improved sector decomposition frame-
work which can be improved upon. First, the division of the phase space into sectors is useful to
separate individual singular configurations, but it somewhat obscures the simplicity of the final
result, and one expects simplifications upon recombining the sectors. Second, in the original
method of Refs. [136,137] an additional (artificial) sector was introduced to separate overlapping
soft-collinear divergences which appear in Feynman diagrams but not in full amplitudes, and
this further complicates the construction. As a result, the cancellation of the infrared poles
is not transparent in this implementation. Initially this meant that the matrix elements had
to be computed in d-dimensions, which adds to the computational difficulty, although a later
development [144] allowed the computation of the matrix elements in four dimensions.

These issues can be addressed simultaneously by focusing on full matrix elements, and
using the color coherence property of QCD amplitudes, which implies the decoupling of soft and
collinear radiation. The soft and collinear limits may then be subtracted independently of one
another, removing the need for the sector with correlated soft-collinear limits. Once this sector
is discarded, there are clear simplifications on recombining sectors, which allow the integration
over the unresolved phase space to be performed analytically for most of the singular limits, with
one exception that requires numerical integration. This leads to an explicit (although partially
numerical) cancellation of the IR poles for different kinematic structures, a compact expression
for the finite integrated subtraction terms, and a straightforward method to remove singular
regions, and allows all matrix elements to be evaluated in four dimensions. This approach to
residue-improved sector decomposition, called the nested soft-collinear subtraction scheme [191],
will be explained briefly in the following subsection. We refer the interested reader to Ref. [191]
for a more detailed discussion.

4.2 Nested soft-collinear subtractions at NNLO
In the discussion of the subtraction scheme, we will focus on the hadroproduction of a color
singlet final state V . This process allows us to confront most of the complexities of infrared
singularities at a hadron collider, while also avoiding unnecessary complications. Our treatment
is independent of the matrix element, so that the procedure may readily be adapted for any
color singlet production process (e.g. Drell-Yan, diboson, associated V H production, etc.). We
will focus on double-real emissions qq̄ → V +gg, as this partonic configuration contains the most
intricate singularity structures. We have performed similar calculations for all other partonic
channels relevant for Drell-Yan production, and these will be presented in a future publication.
We will, however, make some brief comments on these calculations at the end of this subsection,
and show some preliminary results.

The differential cross section for the process q1q̄2 → V + g4g5 is

2s · dσRR = 1
2!

∫
[dg4][dg5]FLM(1, 2, 4, 5), (I.5)

6 R. Röntsch
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where s is the partonic center-of-mass energy, the phase space integration measure of the emitted
gluon i is

[dgi] = dd−1pi
(2π)d−12Ei

θ(Emax − Ei), (I.6)

with Emax an arbitrary energy parameter defined in the partonic center-of-mass frame, and

FLM(1, 2, 4, 5) = dLipsV |M(1, 2, 4, 5, V )|2 Fkin(1, 2, 4, 5, V ). (I.7)

In the above, dLipsV is the Lorentz-invariant phase space for the colorless particles, including
the momentum-conserving delta-function;M(1, 2, 4, 5, V ) is the matrix element for the process
q1q̄2 → V + g4g5, and Fkin defines an infrared-safe observable. This process has singularities
which appear when either g4 or g5 becomes soft, or when either becomes collinear to either
initial state parton, or when g4 and g5 become collinear to each other. A combination of these
configurations may also occur, so one needs to consider different approaches to each singular
limit. Thus, the key to extracting the poles is to separate these singular regions.

As mentioned above, the soft and collinear regions can be treated independently, as a
consequence of color coherence (provided that one considers physical, i.e. gauge invariant and
onshell, QCD amplitudes). We will therefore first regularize the soft singularities, followed by
the collinear singularities. To do this, it is convenient to introduce the energy ordering E4 > E5.
This removes the 1/2! factor in Eq. (I.5), which can then be rewritten as

2s · dσRR =
∫

[dg4][dg5]FLM(1, 2, 4, 5)θ(E4 > E5) ≡
〈
FLM(1, 2, 4, 5)

〉
, (I.8)

where we have introduced the averaging sign 〈. . .〉 to indicate integration over the final state
phase space. We also introduce the soft and double-soft operators

SiA = lim
Ei→0

A, SSA = lim
E4,E5→0

A, at fixed E5/E4. (I.9)

We only need to consider the limits corresponding to SS and S5; the limit S4 does not occur due
to the energy ordering. We can then write〈

FLM(1, 2, 4, 5)
〉

=
〈
SSFLM(1, 2, 4, 5)

〉
+
〈
S5(I − SS)FLM(1, 2, 4, 5)

〉
+
〈

(I − S5)(I − SS)FLM(1, 2, 4, 5)
〉
.

(I.10)

The first term on the left-hand side in Eq. (I.10) corresponds to the double-soft limit, in which
both gluons decouple completely. The second term captures the limit where g5 is soft but
singularities from S4 are removed. In both terms, we can integrate over the phase space of the
unresolved gluons to obtain explicit IR poles in 1/ε. In doing so, we note that the soft limits
acting on FLM remove the corresponding momentum from the momentum-conserving delta-
function inside FLM. However, the parameter Emax in the gluonic phase space, cf. Eq. (I.6),
prevents the energy integral from becoming unbounded from above. The final term of Eq. (I.10)
has all soft singularities removed. All three terms, however, contain (potentially overlapping)
collinear singularities, which must be disentangled and then subtracted.

We now introduce collinear and double-collinear operators

CijA = lim
ρij→0

A, CCiA = lim
ρ4i,ρ5i→0

A, with non vanishing ρ4i/ρ5i, ρ45/ρ4i, ρ45/ρ5i, (I.11)

where ρij = 1− ni · nj and ni is a unit vector that describes the direction of the momentum of
the i-th particle in (d− 1)-dimensional space. The task of separating the collinear singularities
then proceeds in two stages. First, we partition the phase space by writing

w14,15 + w24,25 + w14,25 + w15,24 = 1, (I.12)
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where the phase space partitions w are functions of the angles between the partons. They have
the property that they vanish in various collinear limits, so that only certain limits need to be
considered in each partition of the phase space. The triple-collinear partitions wi4,i5 (for i = 1, 2)
only have singularities corresponding to operators C4i, C5i and C45, while the double-collinear
partitions w14,25 and w15,24 only have singularities corresponding to, respectively, C41 and C52,
and C51 and C42.

The two double-collinear partitions are now free of overlapping singularities, but the triple-
collinear partitions still have overlapping singularities that can occur, for example, in partition
w14,15 when ~p1||~p4||~p5. To disentangle these, we make use of a sector decomposition based on
angular ordering. For partition wi4,i5 (where i = 1, 2), we write

1 =θ
(
η5i <

η4i
2

)
+ θ

(
η4i
2 < η5i < η4i

)
+ θ

(
η4i <

η5i
2

)
+ θ

(
η5i
2 < η4i < η5i

)
≡θ(a) + θ(b) + θ(c) + θ(d).

(I.13)

A parametrization of the angular phase space which allows both this decomposition and the
factorization of singularities in hard amplitudes is given in Refs. [136, 137]. It is clear that the
decomposition results in each sector containing only one collinear singularity: in partition w14,15,
for example, sectors a and c have limits C51 and C41, respectively, while sectors b and d only
have the C45 limit. Note that sectors b and d are not the same, as the energies of g4 and g5 are
ordered.

Thus we have divided the phase space in such a way as to completely separate all the
overlapping singularities. Note that since soft and collinear radiation is treated separately, the
use of sectors is only required to separate overlapping collinear singularities, and there is no
need for a sector in which the energies and emission angles of the radiated gluons vanish in a
correlated manner. This should allow for additional flexibility is constructing the phase space
for radiation, which we intend to explore in future work.

Using the sector decomposition described above, we can write the soft-regulated term as〈
(I − S5)(I − SS)FLM(1, 2, 4, 5)

〉
=
〈
F srcsLM (1, 2, 4, 5)

〉
+
〈
F srctLM (1, 2, 4, 5)

〉
+
〈
F srcrLM (1, 2, 4, 5)

〉
,

(I.14)
where the soft-regulated, single-collinear term 〈F srcsLM 〉 reads

〈F srcsLM 〉 =
∑

(ij)∈dc

〈[
I − SS

][
I − S5

][
C4i[dg4] + C5j [dg5]

]
wi4,j5FLM(1, 2, 4, 5)

〉

+
∑
i∈tc

〈[
I − SS

][
I − S5

][
θ(a)C5i + θ(b)C45 + θ(c)C4i + θ(d)C45

]

× [dg4][dg5]wi4,i5FLM(1, 2, 4, 5)
〉
,

(I.15)

the soft-regulated, triple-collinear terms 〈F srctLM 〉 reads

〈F srctLM 〉 = −
∑

(ij)∈dc

〈[
I − SS

][
I − S5

]
C4iC5j [dg4][dg5]wi4,j5FLM(1, 2, 4, 5)

〉

+
∑
i∈tc

〈[
I − SS

][
I − S5

][
θ(a)CCi

[
I − C5i

]
+ θ(b)CCi

[
I − C45

]

+ θ(c)CCi
[
I − C4i

]
+ θ(d)CCi

[
I − C45

]]
[dg4][dg5]wi4,i5FLM(1, 2, 4, 5)

〉
,

(I.16)
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and the fully regulated term 〈F srcrLM 〉 reads

〈F srcrLM 〉 =
∑

(ij)∈dc

〈[
I − SS

][
I − S5

][
(I − C5j)(I − C4i)

]

× [dg4][dg5]wi4,j5FLM(1, 2, 4, 5)
〉

+
∑
i∈tc

〈[
I − SS

][
I − S5

][
θ(a)

[
I − CCi

][
I − C5i

]
+ θ(b)

[
I − CCi

][
I − C45

]

+ θ(c)
[
I − CCi

][
I − C4i

]
+ θ(d)

[
I − CCi

][
I − C45

]]

× [dg4][dg5]wi4,i5FLM(1, 2, 4, 5)
〉
.

(I.17)

This last term is manifestly finite, as all singularities are removed through the nested subtrac-
tions. As a result, it can be evaluated in four space-time dimensions and integrated numerically.
It is the only term which contains the fully resolved double-real matrix element. The two terms
describing the collinear limits, Eqs. (I.15) and (I.16), can be treated along the same lines as the
soft and double-soft limits, i.e. the first two terms of Eq. (I.10). In each of these terms, the
radiated gluons either decouple completely (in the case of a soft limit), or partially (in the case
of a collinear limit). If a gluon decouples completely, we integrate over its angles and energies.
If a gluon decouples partially, we integrate over its angles and rewrite its energy integral as a
convolution with a splitting function (which is related but not identical to one of the standard
Altarelli-Parisi splitting functions). As mentioned before, this integration over the unresolved
gluons can be performed analytically in most cases. The exception is the triple-collinear limit
in the triple-collinear partitions. For this configuration, the integration could be performed an-
alytically with some effort, but is straightforward to do numerically, which we did. 7 In some
cases (e.g. when we consider the S5 limit), the resulting expression has NLO-like kinematics, in-
cluding leftover singular regions; in these cases, we repeat the subtraction procedure as at NLO.
The result is expressions which have explicit IR poles in 1/ε multiplying manifestly finite FLM
structures of lower particle multiplicity convoluted with splitting functions. These expressions
completely describe the singular structure of the double-real emission.

Having removed the soft-collinear correlated sector, it is now quite easy to see similarities
between intermediate expressions for collinear singularities that appear in different partitions
or sectors. By combining these expressions in a judicious manner, the results for the integrated
subtraction terms can be simplified substantially. For example, restrictions on the phase space
related to the parameter Emax in F srcsLM can be entirely removed by combining intermediate results
from the two double-collinear partitions with those from sectors a and c of the two triple-collinear
partitions. As a result of this, the cancellation of the IR poles between double-real, real-virtual,
and double-virtual corrections can be verified analytically to order 1/ε2, and numerically at
order 1/ε, and compact expressions are obtained for the finite part of the integrated subtraction
terms.

The description presented in this subsection has focused on the partonic channel qq̄ →
V + gg, but we stress that similar calculations have been performed for all partonic channels
contributing to Drell-Yan production. In all cases, the cancellation of the IR poles is demon-
strated, and compact formulae are derived for the finite integrated subtraction terms. Indeed,
the singularity structure of the remaining partonic channels is simpler than that considered

7The double-soft limit was initially treated in the same way [191], but we have since computed this limit
analytically for color singlet production.
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above. The full results will be presented in a forthcoming publication; here we make some brief
comments about each channel:

– In the qg → V + q′g channel, there are no divergences corresponding to the final state
quark becoming soft. As a result, there is no need for energy ordering, and hence we
parametrize the phase space in a slightly different way in order to take advantage of this.
Moreover, there are no divergences when the final state quark is collinear to the initial
state quark, and as a result, the partitioning of the phase space is done differently too.

– In the gg → V +qq̄ channel, there are no soft singularities. The collinear singular structure
is also simple, with only single collinear limits and no overlapping singularities. As a result,
phase space partitioning is not needed, and the subtraction procedure is trivial.

– The four-quark channel qq̄′ → V + q1q̄2 (including all crossings) may be divided into a
singlet and non-singlet contribution. The latter contributes only to qq̄ and q̄q channels,
while the former contributes to these as well as the qq and q̄q̄ channels. If the outgoing
quarks are identical, there is an interference between the singlet and non-singlet contribu-
tions which has a triple-collinear singularity. These features make the bookkeeping for this
channel quite complicated, but the actual singularities are relatively simple – for example,
there are no single-soft divergences.

4.3 Numerical results for proof-of-concept calculation
In this section, we present some results for the process pp → γ∗ → e−e+ + X at the 14 TeV
LHC, comparing these with the analytic results of Ref. [406]. We consider lepton pairs with an
invariant mass 50 GeV < Q < 350 GeV, and use NNPDF3.0 parton distribution functions [422]
with the renormalization and factorization scale µ = 100 GeV. We show representative results
for the qq̄ → V + gg partonic channel, as well as a subset of the four-quark contributions
corresponding to the interference of s-channel and t-channel amplitudes labeled ‘A’ and ‘C’ in
Ref. [406], which we call the 4qAC contribution. The NNLO contributions dσNNLO for these
channels are

dσNNLO
qq̄ = 14471(4) fb dσNNLO

4qAC = −96.867(17) fb (I.18)
dσNNLO,analytic

qq̄ = 14470 fb dσNNLO,analytic
4qAC = −96.866 fb. (I.19)

The NNLO contributions from the two channels differ by two orders of magnitude; nevertheless,
the agreement between our results and the analytic results is better than one per mille. This
indicates that our subtraction scheme is able to give extremely precise predictions even for
numerically tiny contributions. This may appear unnecessary at first glance, but we also observe
large cancellations between different partonic channels, in which case this degree of precision
becomes important. The differential distributions in Q for these two NNLO contributions are
shown in Fig. I.7. In both cases, the agreement is at the level of a few per mille to a few percent
across several orders of magnitude. This level of agreement on the NNLO contribution indicates
that this subtraction scheme is well suited to the task of providing high precision results for
physical cross sections and kinematic distributions.
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Fig. I.7: Comparison of the NNLO QCD contribution dσNNLO/dQ computed using the nested
soft-collinear subtraction scheme with the analytic results in Ref. [406], for the qq̄ → V + gg
partonic channel (left), and for the 4qAC contribution (right). The ratios between the results
are shown in the lower panes.

5 Loop-tree duality and the four-dimensional unsubtraction 8

In the context of four-dimensional methods for higher-order computations, we describe the main
features of the four-dimensional unsubtraction (FDU) and the loop-tree duality (LTD) theorem.
They grant a very powerful framework that allows to compute Feynman integrals and physical
observables in four dimensions through a purely numerical implementation. Moreover, due to
some remarkable mathematical properties of the intermediate expressions, the formalism is well
suited for performing asymptotic expansions, circumventing many technical issues that may
arise in the traditional approach. Here we will focus on the one-loop case, although we provide
some insights of possible NNLO developments.

5.1 Introduction
The Loop-Tree Duality (LTD) formalism [423–440] turns N -leg loop integrals and amplitudes
into a sum of connected tree-level-like diagrams with a remaining integration measure very
similar to the (N + 1)–body phase-space [423]. Loop and tree-level radiative corrections of
the same order in the perturbative expansion then, may in principle be computed numerically
under a common integral sign with the use of a suitable integrator (usually a Monte Carlo
routine) [433,434]. The LTD approach fits into a wider effort in phenomenology aiming at fully
automated next-to-leading order (NLO) computations. Many steps toward that direction have
been taken in the recent years [84, 85, 87, 88, 415, 441–459]. Substantial progress has also been
made at higher orders [460–462].

In dimensional regularization, a one-loop scalar diagram can be represented by

L(1)(p1, p2, . . . , pN ) = −i
∫

dd`

(2π)d
N∏
i=1

GF (qi) , (I.20)

where ` = (`0, `) is the loop momentum, GF (qi) = 1/(q2
i −m2

i + i0) are Feynman propagators
and qi are the momenta of the internal lines which depend on `. By applying the LTD, one
essentially integrates over the energy component `0 using Cauchy’s residue theorem. The loop
diagram then turns into a sum of integrals over the three-momentum `, each of which is called a
dual contribution. They emerge from the original integral after cutting one of the internal lines:

8 G. Chachamis, F. Driencourt-Mangin, G. Rodrigo, G. Sborlini
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L(1)(p1, p2, . . . , pN ) =

i.e. a d-dimensional vector that can be either light-like (η2 = 0) or time-like (η2 > 0)
with positive definite energy η0. Note that the calculation of the residue at the pole of
the internal line with momentum qi changes the propagators of the other lines in the loop
integral. Although the propagator of the j-th internal line still has the customary form
1/q2

j , its singularity at q2
j = 0 is regularized by a different i0 prescription: the original

Feynman prescription q2
j + i0 is modified in the new prescription q2

j − i0 η(qj − qi), which
we name the ‘dual’ i0 prescription or, briefly, the η prescription. The dual i0 prescription
arises from the fact that the original Feynman propagator 1/(q2

j + i0) is evaluated at
the complex value of the loop momentum q, which is determined by the location of the
pole at q2

i + i0 = 0. The i0 dependence from the pole has to be combined with the i0
dependence in the Feynman propagator to obtain the total dependence as given by the
dual i0 prescription. The presence of the vector ηµ is a consequence of using the residue
theorem. To apply it to the calculation of the d dimensional loop integral, we have to
specify a system of coordinates (e.g. space-time or light-cone coordinates) and select one of
them to be integrated over at fixed values of the remaining d− 1 coordinates. Introducing
the auxiliary vector ηµ with space-time coordinates ηµ = (η0, 0⊥, ηd−1), the selected system
of coordinates can be denoted in a Lorentz-invariant form. Applying the residue theorem
in the complex plane of the variable q0 at fixed (and real) values of the coordinates q⊥ and
q′
d−1 = qd−1 − q0ηd−1/η0 (to be precise, in Eq. (27) we actually used ηµ = (1, 0)), we obtain

the result in Eq. (30).

The η dependence of the ensuing i0 prescription is thus a consequence of the fact that the
residues at each of the poles are not Lorentz-invariant quantities. The Lorentz-invariance
of the loop integral is recovered only after summing over all the residues.

−
N∑

i=1

pi pi+1

pi+2

qi

δ̃(qi)

1
q2
i+1 −m2

i+1 − i0 ηpi+1

Figure 5: The duality relation for the one-loop N-point scalar integral. Graphical represen-
tation as a sum of N basic dual integrals.

Inserting the results of Eq. (28)–(30) in Eq. (27) we directly obtain the duality relation
between one-loop integrals and phase-space integrals:

L(N)(p1, p2, . . . , pN) = − L̃(N)(p1, p2, . . . , pN) , (32)

where the explicit expression of the phase-space integral L̃(N) is (Fig. 5)

L̃(N)(p1, p2, . . . , pN) =

∫

q

N∑

i=1

δ̃(qi)
N∏

j=1

j ̸=i

1

q2
j − i0 η(qj − qi)

, (33)

9

, (I.21)

where δ̃(qi) = 2πiδ+(q2
i −m2

i ). The δ̃(qi) sets the internal lines on-shell by selecting the pole
of the Feynman propagators with positive energy and negative imaginary part. Integrating the
dual contributions over ` requires most of the times a contour deformation due to the presence
of the so-called ellipsoid and hyperboloid singularities [431]. These singularities are, in general,
present at the integrand level.

On the other hand, the application of LTD implies modifying the propagators associated
with the lines that are not being set on-shell. We define the dual propagators as

GD(qi; qj) = 1
q2
j −m2

j − ı0 η · kji
, (I.22)

in such a way that the original scalar integrals reads

L(1)(p1, p2, . . . , pN ) = −
N∑
i=1

∫
`
δ̃(qi)

∏
j 6=i

GD(qi; qj) , (I.23)

with i, j ∈ {1, 2, . . . N}, kji = qj − qi and η an arbitrary future-like or light-like vector, η2 ≥ 0,
with positive definite energy η0 > 0. This modified prescription is very important, since it
is responsible for the cancellation of non-physical singularities manifesting in the different dual
contributions. Moreover, as explained in Ref. [423], the dual prescription encodes the information
contained in the different multiple cuts that appear when using the Feynman-Tree theorem
(FTT) [463], thus allowing to show the equivalence between both theorems. It is worth to
notice that we can chose ηµ = (1,0) to simplify the computations; this is equivalent to applying
Cauchy’s residue theorem in the energy component of the loop momentum.

Assuming that there are only single powers of the Feynman propagators, the dual rep-
resentation is straightforwardly valid for loop scattering amplitudes. Due to the fact that the
single-cuts do not affect numerators, then the dual representation of scattering amplitudes is
obtained by adding all possible dual single-cuts of the original loop amplitudes, and replacing
the uncut Feynman propagators by dual propagators. In the case that higher powers of the
propagators are present, we have to use the extended version of the LTD theorem [425], which
consists in applying Cauchy’s residue theorem with the well-known formula for poles of order n,
i.e.

Res(A, q(+)
i,0 ) = 1

(n− 1)!
∂n−1

∂n−1 qi,0

(
A(qi,0) (qi,0 − q(+)

i,0 )n
)∣∣∣∣∣
qi,0=q(+)

i,0

, (I.24)

where q(+)
i,0 =

√
q2
i +m2

i − ı0 is the positive energy solution of the corresponding on-shell dis-
persion relation. In that case, the explicit form of the scattering amplitude is relevant because
the numerator is affected by the derivative. Specifically, this observation leads to non-trivial
consequences when looking into the local form of the renormalization factors [435].
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It is important to mention that the LTD theorem is valid beyond the one-loop level. For
a generic L-loop integral, the theorem leads to a dual decomposition involving L cuts, in such a
way that the remaining structure is topologically equivalent to real radiation processes with L
additional final-state particles.

5.2 Computation of Feynman integrals
The numerical implementation of the LTD had been initially used to compute a huge amount
of integrals with up to six external legs and the results were compared against reference values
obtained with LoopTools 2.10 [464] and SecDec 3.0 [63]. Subsequently, results for one-loop
diagrams with up to seven (heptagons) and eight (octagons) external legs were presented [431,
438]. Here we present the result for a non-trivial decagon (one-loop, ten external legs) and we
comment on how the numerical implementation of the method can be optimised.

The LTD method is implemented in a C++ code [431] and relies on the Cuba library [465] for
the numerical integration routines. At runtime, the code initially reads in and properly assigns
internal masses and external momenta. Then it proceeds with an analysis of the ellipsoid and
hyperboloid singularity structure to set up the details of the contour deformation, and finally
performs the numerical integration using either the routine Cuhre or Vegas as are implemented
in the Cuba library. We let our one-loop decagon take both a scalar and a tensor (rank-two)
numerator. The external momenta configuration (the same for both the scalar and tensor case)
is shown below:

p1 = (−2.50000, 0, 0, −2.50000)
p2 = (−2.50000, 0, 0, 2.50000)
p3 = (−0.95848, −0.38291, 0.86652, −0.14559)
p4 = (−0.26804, 0.18418, −0.17115, −0.09288)
p5 = (−0.90712, −0.17547, −0.15156, 0.87699)
p6 = (−0.79290, 0.75301, 0.21387, 0.12617)
p7 = (−0.09296, −0.02540, −0.04121, 0.07935)
p8 = (−0.72985, −0.64952, −0.24701, 0.22314)
p9 = (−0.58078, 0.08323, −0.36994, −0.43990)
p10 = −p1 − p2 − p3 − p4 − p5 − p6 − p7 − p8 − p9 .

(I.25)

We work with internal propagators that have all different masses:

m1 = 5.2020 ,m2 = 4.2031 ,m3 = 3.2042 ,m4 = 7.2053 ,m5 = 3.2064
m6 = 1.2075 ,m7 = 6.2086 ,m8 = 8.2097 ,m9 = 3.2008 ,m10 = 3.2019.

(I.26)

In Table I.8, we summarise the results for the scalar and tensor decagon. The running time in
order to obtain the results on a typical Desktop machine (Intel i7 @ 3.4 GHz processor, 4-cores
8-threads), is around 30 seconds.

Propagator Real Part Imaginary Part
1 2.530(4)× 10−14 + i 8.514(1)× 10−14

`.p3 × `.p5 8.08(4)× 10−15 + i 6.144(5)× 10−13

Table I.8: Scalar and tensor decagon with all internal masses different.

Recently, a new implementation code of the LTD was developed in MATHEMATICA which
takes advantage of the system’s internal numerical integration routines. The implementation in
MATHEMATICA seems to present favorable features in various cases over the C++ code. However,
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a thorough comparison is needed to select the strong points of both codes into a unified imple-
mentation. This will not only make the computation of one-loop diagrams much faster but it
will also allow for rapid progress in attacking non-trivial two-loop diagrams.

5.3 Application to cross-section computations
Besides the possibility of computing Feynman integrals in an alternative way, LTD provides
a robust framework to tackle cross-section computations in four space-time dimensions. As
we mentioned in the Introduction, the dual contributions closely resembles PS integrals. This
is a crucial point because the calculation of IR-safe observables involves adding both virtual
and real corrections, with the last ones defined in a PS containing additional real particles. In
consequence, if the on-shell internal lines could be interpreted as part of the real radiation, then
the structure of the dual contributions might be directly related with the real-emission one.

The four-dimensional unsubtraction (FDU) framework is a fully local regularization
method that can be used to compute physical observables directly in four dimensions. Since
physical IR-safe quantities are associated with finite results, all the singularities appearing in
intermediate steps of the calculation must be canceled in the final expression. So, the core idea
of FDU is to achieve this cancellation directly at integrand level, and obtain a smooth integrable
function by mapping the singular regions to the same points. This approach can be summarized
in three steps:

1. Compute the dual contributions through the application of LTD to the virtual amplitudes.
Locate the regions of the dual integration domain which are responsible of originating the
physical IR in the loop amplitudes and demonstrate that these regions are compact.

2. Relate the real-radiation kinematics with the dual ones, forcing the internal lines that are
on-shell to play the role of the real emission. Through a proper momentum mapping,
describe the real and the dual contributions using the same integration variables: the
combined expressions are smooth in any possible IR limit.

3. Rewrite the renormalization factors and the UV counter-terms in a local form, adjusting
the sub-leading terms to reproduce the selected renormalization scheme. Adding these
terms to the results obtained in the second step leads to an integrable behavior in the
high-energy region.

In the following, we will center the discussion in the implementation of NLO corrections. In
particular, we emphasize the importance of the momentum mapping and the local form of renor-
malization factors (i.e. their proper integrand-level expressions). The computation of the local
UV subtraction counter-terms is obtained through an expansion around the UV propagator, as
explained in Refs. [434,435]. Finally, we conclude the section with a recompilation of benchmark
results and a brief discussion about the NNLO extension.

5.3.1 Real-virtual momentum mapping
Let’s consider a pedagogical example: a generic decay process involving m particles in the final
state. From the point of view of perturbation theory, the Born-level contribution is defined in
a m-particle PS. On the other hand, the NLO corrections are obtained from the sum of the
one-loop amplitudes integrated in a m-particle PS and the real-emission tree-level amplitudes in
a (m+1)-particle PS. We denote the momenta associated to the Born kinematics as {pµi }i=1,...,m,
whilst we use {p′µi }i=1,...,m+1 for those momenta involved in the real radiation. Since the dual
decomposition of the one-loop amplitudes includes an additional integration variable (namely
the internal line that is set on-shell), both the real and the dual-virtual contributions can be
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Fig. I.8: Topological correspondence among one-loop (left) and real-emission amplitudes (right).
In this illustrative example, we consider a 1 → 2 decay process at NLO. When q1 is set on-
shell, the virtual diagram factorizes in the limit q1 ‖ p1 exactly in the same way that the real
contribution does in the limit p′r ‖ p

′
1.

written using (m+1) physical momenta. In order to relate both sets of momenta in such a way
that the singularities are mapped to the same integration points, we follow the strategy applied
in the dipole subtraction formalism [187,466].

In the first place, we introduce a proper partition of the real-emission PS to isolate the IR
singularities. So, we define

Ri = {y′ir < min y′jk} ,
m∑
i=1
Ri = 1 , (I.27)

where y′ij = 2 p′i ·p′j/Q2, r is the radiated parton from parton i, and Q is the typical hard scale of
the scattering process. According to this definition, the only allowed collinear/soft configurations
inside Ri are i ‖ r or p′µr → 0. So, different collinear singularities appear in non-overlapping
regions of the real-emission PS.

When studying the virtual contribution through the LTD, we find m dual contributions,
each one associated with a single cut of an internal line. It is worth appreciating that the
different dual amplitudes include different IR singularities, which should be matched to those
present in the real part. However, in the PS splitting defined in Eq. (I.27), the IR singularities
are isolated in disjoint partitions; thus we need to identify a connection among cuts and regions.
And, to infer the solution, we rely on the diagrammatic identification in the soft/collinear limit.
As an explicit example, let’s consider the 1 → 2 decay process shown in Fig. I.8. First, we
interpret the on-shell internal state in the dual amplitude as the extra-radiated particle in the
real contribution, namely qi ↔ p′r. Then, we settle in one of the partitions, for instance Ri.
Because the only collinear singularity allowed is originated by i ‖ r, we distinguish particle i and
call it the emitter. After that, we single out all the squared amplitude-level diagrams in the real
contribution that become singular when i ‖ r and cut the line i. Following Fig. I.8, these have to
be topologically compared with the dual-Born interference diagrams whose internal momenta qi
are on-shell. Due to the factorization properties [427,467] and the topological analysis performed,
we can guarantee that the dual contribution i and the real-emission in the region Ri give rise
to the same IR singular structure.

Finally, we propose an explicit connection among the dual and the real-emission momenta.
Let us take the (m+1)-particle real-emission kinematics, with i as the emitter and r as the
radiated particle, and we introduce a reference momentum, associated to the spectator j. Then,
the momentum mapping with qi = `+ p1 + . . .+ pi on-shell is given by

p′µi = pµi − q
µ
i + αi p

µ
j , p′µj = (1− αi) pµj , p′µk = pµk k 6= i, j ,

p′µr = qµi , αi = (qi − pi)2

2pj · (qi − pi)
, (I.28)

39



where all the partons are considered massless, i.e. p2
i = 0 and p′2i = p′2j = p′2r = 0. This

construction fulfills momenta conservation, since the original Born-level kinematics also fulfills
this physical constraint. Of course, this mapping can be generalized to multi-leg processes
involving arbitrary masses [435].

5.3.2 Local expressions for renormalization counter-terms
Let’s start with the well-known expression for the wave-function renormalization constant in the
Feynman gauge with on-shell renormalization conditions, i.e.

∆Z2 = g2
S

16π2 CF

(
− 1
εUV
− 2
εIR

+ 3 ln M
2

µ2 − 4
)
, (I.29)

where we keep track of the IR and UV origin of the ε-poles within DREG. This distinction
is relevant because ∆Z2 includes contributions originated in the calculation of self-energies,
which partially cancels the IR singularities present in the squared terms of the real-emission
contributions. Thus, we need to provide a proper unintegrated expression to locally cancel these
singularities, i.e.

∆Z2(p1) = −g2
S CF

∫
`
GF (q1)GF (q3)

(
(d− 2) q1 · p2

p1 · p2

+ 4M2
(

1− q1 · p2
p1 · p2

)
GF (q3)

 , (I.30)

which includes higher-order powers of the propagators [435] and reproduces the result shown in
Eq. (I.29) after integration9. As we mentioned, the IR pole in ∆Z2 will cancel when combined
with the real contributions, but there are still UV divergences that need to be removed. To
achieve the full regularization, we perform an expansion around the UV propagator, i.e.

GF (qUV) = 1
q2

UV − µ2
UV + ı0 , (I.31)

with µUV the renormalization scale. Thus, the UV counter-term for the wave-function renor-
malization constant is given by

∆ZUV
2 (p1) = −(d− 2) g2

S CF

∫
`
(GF (qUV))2

(
1 + qUV · p2

p1 · p2

)
×

(
1−GF (qUV)(2 qUV · p1 + µ2

UV)
)
, (I.32)

≡ −S̃ε
g2
S

16π2 CF

(
µ2

UV
µ2

)−ε 1− ε2
ε

, (I.33)

whose integrated form exactly reproduces the UV pole present in Eq. (I.29). The finite remain-
ders depend on the sub-leading terms proportional to µ2

UV, which can be adjusted to work in
an specific renormalization scheme.

On the other hand, the vertex renormalization factors need also to be expressed in an
unintegrated form. In the Feynman gauge, the generic vertex UV counter-term reads

Γ(1)
A,UV = g2

S CF

∫
`

(
GF (qUV)

)3 [
γν q/UV Γ(0)

A q/UV γν − dA,UV µ
2
UV Γ(0)

A

]
, (I.34)

9More details about this calculation can be found in Refs. [434,435].
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Fig. I.9: NLO QCD corrections to the decay rates Z, γ∗ → qq̄ (right) and H → qq̄ (left), as
a function of the normalized quark mass m = 2M/

√
s12. The solid lines represent the results

obtained within the DREG approach, and the colored dots were computed numerically through
the application of the FDU technique. We find a complete agreement between these approaches
and a smooth massless-limit transition. Moreover, the scale dependence for the Higgs decay is
exactly reproduced, thanks to the introduction of local UV counter-terms.

where Γ(0)
A represents the tree-level vertex. In the numerator, the term proportional to µ2

UV
is sub-leading in the UV-limit. In this way, the coefficient dA,UV can be adjusted in order to
implement the desired renormalization scheme. For instance, we can tweak dA,UV in order to
reproduce the MS scheme, in which the counter-term only cancels the εUV pole in DREG.

It is important to emphasize that this construction of local UV-subtraction counter-terms
is completely general and that the sub-leading terms can be always adjusted to reproduce the
desired scheme-dependent contributions. Moreover, the tweaking of sub-leading terms in the UV-
limit is universal, i.e. it only depends on the nature of the particles involved in the interaction
(vertex or wave-function renormalization) but not on the specific process under consideration
[434,435,457].

5.3.3 Selected examples
In order to have a proof of concept, we apply the FDU framework to compute the decay processes
H → qq̄ and Z, γ∗ → qq̄ at NLO in QCD with massive and massless quarks [434, 435]. The
mentioned framework allows to obtain a combined real-virtual integrand with a non-singular
behavior, i.e. numerically integrable in four space-time dimensions. The results are compared
with the known expressions computed within the DREG framework. In Fig. I.9, the solid lines
denote the analytical results computed in DREG as a function of m = 2M/

√
s12, with M the

quark mass and s12 the virtuality of the decaying particle. The colored dots are the values
obtained through the FDU implementation.

In the first place, we emphasize that the FDU implementation is purely numerical. The
agreement between both approaches is excellent; moreover, we can appreciate that the massless
transition is smooth in both cases. Of course, the massless limit of the analytical DREG result
is straightforward and leads to another analytical expression. The expressions for m > 0 in-
volve some logarithmic-enhanced terms in the real and virtual contributions, separately. Within
DREG, these logarithms transform into ε-poles when considering the limit m → 0. However,
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the FDU implementation manages to overcome the m → 0 limit in a surprisingly smooth way,
as a consequence of the local regularization of the integrand and the smoothness of the real-
virtual mapping in the massless limit. Finally, it is worth noticing that the renormalization
scale dependence is successfully reproduced with the four-dimensional framework (left panel of
Fig. I.9).

5.3.4 Towards a fully local NNLO framework
Previously, we have explicitly mentioned the details behind the implementation of FDU at NLO.
However, it could be extended to deal with NNLO computations as well. Let’s remember that
the total NNLO cross-section is generically written as

σNNLO =
∫
m
dσ

(2)
VV +

∫
m+1

dσ
(2)
VR +

∫
m+2

dσ
(2)
RR , (I.35)

where the double virtual cross-section dσ(2)
VV contains the interference of the two-loop with the

Born scattering amplitudes and the square of the one-loop scattering amplitude with m final-
state particles; the real-virtual cross-section dσ(2)

VR includes the contributions from the interfer-
ence of one-loop and tree-level scattering amplitudes with one extra external particle; and the
double real cross-section dσ(2)

RR are tree-level contributions integrated in a m + 2 PS. The LTD
representation of the two-loop scattering amplitude is obtained by setting two internal lines
on-shell [424], whilst the squared one-loop introduces two independent loop three-momenta. In
both contributions, the PS integration involvesm external particles. On the other hand, the dual
representation of the real-virtual contribution dσ(2)

VR includes an additional particle from the real
radiation and one independent loop-three momentum from the application of LTD. The double-
real terms, contained within dσRR, directly involve two additional real-particles (that, however,
are constrained by momentum conservation). In consequence, since the dual representation of
the individual terms appearing in Eq. (I.35) always include two additional three-vectors to be
integrated, we can find a proper momentum mapping to displace the different IR singularities
to the same integration points. In this way, also a local cancellation will take place.

5.4 Asymptotic expansions of dual contributions
As stated before, the LTD theorem reduces the d-dimensional integration domain with a
Minkowski metric into a (d − 1)-dimensional one with an Euclidian metric. This is another
remarkable property of the FDU formalism because it allows to perform, at integrand level,
naive and straightforward asymptotic expansions in any ratio of scales present in the process,
without having to deal with most difficulties the traditional approach may encounter. This is
a very interesting property because for processes involving many scales, and given a specific
kinematical configuration, it is possible to perform the appropriate expansion, and consider and
integrate only relevant terms, whose expression is much less complicated than the full integral.
This is possible because the sum of all integrated terms of the expansion is the same as the
expansion of the full integral, i.e. there is a perfect commutativity between integrating and
expanding.

As an example, let’s consider the two-point scalar process without applying LTD, and
perform a naive expansion∫

`

1
(`2 −M2 + ı0)((`+ p)2 −M2 + ı0) =

∫
`

1
(`−M2 + ı0)2

(
1 + 2` · p+ p2

`−M2 + ı0 + ...

)
, (I.36)

for 0 < p2 � M2 and p0 > 0. The issue here is that this expansion is not valid when `2 ≈ M2

because of the presence of p2 in the second Feynman propagator, therefore in the traditional
approach, an additional step is required.
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On the other hand, applying LTD and considering the first cut, the expansion

−
∫
`

δ̃(`)
2` · p+ p2 − ı0 = −

∫
`

δ̃(`)
2` · p

∞∑
n=0

(
−p2

2` · p

)2

(I.37)

becomes valid for any value of `, because 0 < 2` · p = O(M), thanks to the presence of δ̃(`).
In Ref. [436], the Higgs boson production through gluon fusion and the Higgs decay to two

photons processes have been computed using LTD. Asymptotic expressions have been obtained
for the large and small mass limit of the particle inside the loop, reproducing well-known results
in the literature, while showing the efficiency of this method.

5.5 Conclusions
The loop-tree duality is a very useful technique to decompose loop into tree-level amplitudes,
with the additional property that the dual contributions are evaluated in an Euclidean space. In
this article we discuss feasible applications that point towards the direction of skipping DREG
and achieve a fully numerical implementation of higher-order computations in four space-time
dimensions.

In the first place, we use this formalism to compute Feynman integrals in a more efficient
way. By decomposing the loop integration into a sum of dual contributions we manage to simplify
the treatment of intermediate expressions, since we avoid the presence of Gram determinants.
We have tested this approach with one-loop multi-leg tensorial integrals, and compared the
results with those provided by the traditional algorithms.

On the other hand, LTD allows to interpret the on-shell internal particles in each cut as a
real external particle being radiated from the Born-level process. So, the formalism is well suited
for performing an integrand-level combination of the real and virtual contributions. Moreover,
through the introduction of a physically-motivated momentum mapping, the IR singular regions
present in each term can be routed to the same integration points. This leads to a completely
local cancellation of IR singularities, thus avoiding the introduction of IR counter-terms. Also,
a local regularization of UV divergences is possible by performing an expansion around the UV
propagator and calculating the dual expressions. The combination of all these ingredients leads
to a four-dimensional framework, the FDU, which was successfully tested with some simple
processes (H → qq̄ and Aµ → qq̄ at NLO).

A spin-off of the local regularization properties of LTD is the possibility of simplifying
asymptotic expansions. Since the dual contributions are defined in an Euclidean space, and
all the IR/UV singularities have been locally regularized (thus transforming the integrands
into actual integrable functions), the commutation among integration and series expansions
is fulfilled. In this way, the formalism is expected to be more efficient than the traditional
expansion-by-regions approach.

Hence, in the context of four-dimensional methods, the LTD/FDU approach provides
many advantages for the implementation of physical computations at higher orders. Besides
that, it could also shed light into deeper mathematical structures hidden behind the presence of
IR/UV singularities.
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6 Loop amplitudes: The numerical approach 10

6.1 Introduction
Numerical methods enjoy a great flexibility. In most precision calculations they are used at least
partially. A first example is the phase space integration through Monte Carlo integration. This
provides the flexibility for arbitrary infrared-safe observables. A second example is the numerical
computation of tree amplitudes through Berends-Giele recurrence relations. The approach based
on recurrence relations is very efficient: The required CPU time scales polynomially like n3 with
the number of external particles of the amplitude. The numerical approach is therefore the
preferred method for processes with a large number of particles, starting already at moderate
values of n.

Let us now look at higher-order corrections. Here we face the occurrence of divergences in
intermediate stages of the calculation. It is common practice in NLO computations to use the
subtraction method for the real part. This allows to treat the real part numerically. What about
the virtual part? In the virtual part one has to supplement the subtraction method with an
algorithm for contour deformation in loop momentum space [441–444,446,449,451,456,457,462,
468–472]. The contour deformation avoids regions, where individual loop propagators become
singular, but Feynman’s iδ-prescriptions allows a deformation into the complex plane. Related
approaches are discussed in [423, 425, 427, 431, 433, 434, 458, 473–476]. In a condensed notation
we have∫

n+1

dσR +
∫
n

dσV =
∫
n+1

(
dσR − dσA

R

)
︸ ︷︷ ︸

convergent

+
∫
n

(I + L)⊗ dσB

︸ ︷︷ ︸
finite

+
∫

n+loop

(
dσV − dσA

V

)
.

︸ ︷︷ ︸
convergent

(I.38)

The subtracted real part and the subtracted virtual part are integrable in four space-time di-
mensions. These integrations can be performed by Monte Carlo techniques. For a process with
n final state particles at Born level, the integration for the subtracted real part is over the
phase space of (n+ 1) final state particles, the integration for the subtracted virtual part is over
the phase space of n final state particles and a four dimensional loop momentum space. The
combination (I + L) contains the subtraction terms added back. At NLO, all subtraction terms
are rather simple and the integration over the unresolved phase space (for the real subtraction
terms) and the integration over loop momentum space (for the virtual subtraction terms) can be
performed analytically within dimensional regularisation. In the combination (I+L) all explicit
poles in the dimensional regularisation parameter ε cancel.

6.2 Cancellations at the integrand level
We are interested in extending the numerical approach towards NNLO. We will need the integrals
over the subtraction terms. While at NLO the analytic integration of the subtraction terms is
rather simple, this is no longer the case at NNLO. Since the sum of all subtraction terms is finite,
we may ask if a numerical approach for the sum of these integrals is feasible. We therefore ask
if a cancellation at the integrand level is possible. Since the individual subtraction terms live on
different spaces, a few technical difficulties have to be addressed. It is therefore best, to study
this issue at NLO first [457]. In this report we therefore focus on the sum of subtraction terms
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from the real and the virtual part at NLO. We are interested in the integral

∫
n

(I + L) =
∫
n

∫
1

dσA
R +

∫
loop

dσA
V + dσV

CT + dσC

 , (I.39)

where dσA
R is related to the real subtraction terms, dσA

V to the virtual subtraction terms, dσV
CT

to the ultraviolet counterterm from renormalisation and dσC to the collinear counterterm from
factorisation for initial-state partons. The first problem we face is that the unresolved phase
space is (D − 1)-dimensional, while the loop momentum space is D-dimensional. This problem
can be overcome with the help of the loop-tree duality [423, 425, 427, 431, 433, 434]: A cyclic-
ordered one-loop amplitude

An =
∫

dDk

(2π)D
P (k)

n∏
j=1

(
k2
j −m2

j + iδ
) (I.40)

can be written with Cauchy’s theorem as a sum of n integrations over (D − 1)-dimensional
forward hyperboloids

An = −i
n∑
i=1

∫
dD−1k

(2π)D−1 2k0
i

P (k)
n∏
j=1
j 6=i

[
k2
j −m2

j − iδ
(
k0
j − k0

i

)]
∣∣∣∣∣∣∣∣∣
k0
i=
√
~k2
i+m2

i

. (I.41)

There exists an analogous formula for backward hyperboloids. The modified iδ-prescription
should be noted. This reduces the integration over D-dimensional loop momentum space to an
integration in an (D− 1) dimensional space. In the next step we relate points in this space with
points in real unresolved phase space: Given a set {p1, p2, ..., pn} of external momenta and an
on-shell loop momentum k there is an invertible map

{p1, p2, ..., pn} × {k} → {p′1, p′2, ..., p′n, p′n+1}. (I.42)

Note that taking the inverse map and projecting on the {p1, p2, ..., pn}-subspace

{p′1, p′2, ..., p′n, p′n+1} → {p1, p2, ..., pn} (I.43)

is the standard Catani-Seymour projection. The map in Eq. (I.42) singles out an emitter i and
a spectator k. It therefore meshes well with dipole subtraction. For each dipole we have a map
which maps all singular regions of this dipole onto each other.

Equipped with this map we may therefore map the singularities from the real subtraction
terms onto the singularities of the virtual subtraction terms. Do they cancel locally? Not yet,
there is a problem with the collinear singularities. Let us first focus on final state collinear
singularities. The problem is easily understood in physical terms: Let us first consider the
collinear singularities in the real subtraction terms. Since it is a real process, both partons
have transverse polarisations. Aside from the collinear singularities in the splittings g → gg
and q → qg there is also a collinear divergence in the splitting g → qq̄. Now let us look at
the collinear singularities in the virtual subtraction terms. Here one finds that in the collinear
limit one parton has a longitudinal polarisation. Furthermore there is no divergence in the
splitting g → qq̄. Thus one cannot expect that the singularities cancel in the sum. The solutions
of this problem comes from the field renormalisation constants. For massless particles, the
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p on-shell

Fig. I.10: Self-energy corrections on external lines lead to an internal on-shell propagator (shown
in red).

Rep̃0

Imp̃0

|~p|−|~p|

Fig. I.11: The contour for the dispersion integral for the self-energies.

field renormalisation constants are 1. However, they are only 1 due to a cancellation between
(divergent) contributions from the ultraviolet and infrared region. We may write

Z2 = 1 = 1 + αs
4πCF

( 1
εIR
− 1
εUV

)
,

Z3 = 1 = 1 + αs
4π (2CA − β0)

( 1
εIR
− 1
εUV

)
. (I.44)

The infrared part of the field renormalisation constants will provide the missing terms which
cancel against the collinear singularities from the real and virtual part.

Let us now try to implement the contributions from the field renormalisation constants
into our numerical approach. The field renormalisation constants derived from self-energies
and we are tempted to consider the integral representation for the self-energies. Here the next
problem appears: For self-energy corrections on external lines, we have an internal (non-loop-
like) propagator, which is on-shell. This is shown in Fig. I.10. This problem can be solved with
the help of a dispersion relation. We re-write the contribution from the self-energy corrections
as a dispersion integral with a contour as shown in Fig. I.11.
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Fig. I.12: The integration regions for a final-final antenna. The left picture corresponds to the
dipole with emitter i and spectator k, the right picture corresponds to the dipole with emitter
k and spectator i. The soft region is indicated by a red dot, the collinear regions by blue line
segments. There is a cancellation of singularities within the virtual dual contributions in the
regions where two propagators are on-shell and have the same sign in the energy component.
These regions are indicated in green. There is a threshold singularity (indicated by an orange
dot) at ~qth. The threshold singularity is avoided by contour deformation.

For processes with only final-state infrared singularities (i.e electron-positron annihilation)
we now achieve a cancellation of all singularities at the integrand level. It is instructive to
visualise the cancellations in loop momentum space. This is shown in Fig. I.12.

Now let us turn to processes with initial-state partons (i.e. hadron colliders like the LHC).
For initial-state partons the local cancellation of collinear singularities is more involved. Here
we face the problem that the regions of the collinear singularities from the real part and of the
collinear singularities from the virtual part do not match in our unified space. The solution
comes through the counterterm from factorisation. This counterterm has the form

dσC = αs
4π

1∫
0

dxa
2
ε

(
µ2
F

µ2

)−ε
P a
′a (xa) dσB

(
..., xap

′
a, ...

)
, (I.45)

where P a′a denotes a splitting function. For example, for the splitting g → gg the splitting
function P gg is given by

P gg = 2CA
[

1
1− x

∣∣∣∣
+

+ 1− x
x
− 1 + x (1− x)

]
+ β0

2 δ (1− x) . (I.46)

This splitting function consists of an x-dependent part related to the real corrections and an
end-point contribution proportional to δ(1− x) related to the virtual corrections. We may now
again use integral representations for these two contributions. This is sketched in Fig. I.13.
Taking these into account, one achieves a local cancellation of all singularities.

Let us summarise how the singularities cancel locally. Soft singularities cancel between
the virtual subtraction terms dσA

V,IR and the real subtraction terms dσA
R . The longitudinal parts
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Fig. I.13: The integral representation of the collinear counterterm for initial-state partons can
be split into two contributions: The x-dependent part (left) matches on the real contribution,
the end-point contribution (right) matches on the virtual contribution.
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Fig. I.14: The local cancellation of infrared singularities for final-state singularities (left) and
initial-state singularities (right).

of the collinear singularities present in virtual subtraction terms dσA
V,IR cancel against similar

parts in the term dσV
CT,IR from field renormalisation. For the transverse parts of the collinear

singularities we have to distinguish final-state collinear singularities and initial-state collinear
singularities. In the former case these singularities cancel between dσA

R and dσV
CT,IR. In the

latter case the x-dependent transverse part of the collinear singularities cancels between dσA
R

and the counterterm dσC from factorisation, while the end-point contribution cancels between
dσV

CT,IR and dσC. This is shown in Fig. I.14. To complete the discussion let us turn to the
ultraviolet divergences. These are unproblematic, the singularities cancel locally between dσA

V,UV
and dσV

CT,UV.

6.3 Conclusions
We have discussed the local cancellation of ultraviolet and infrared (i.e. soft and collinear)
singularities at the integrand level at NLO for electron-positron colliders and hadron colliders.
Although we have focused in the discussion on massless particles, the extension towards massive
final-state particles is straightforward and does not pose any further conceptional problem. We
may therefore perform the integrals over the subtraction terms numerically. At NLO there is
no real advantage, as all integrated subtraction terms are known analytically. The application
is the extension towards NNLO, where analytic integration of local subtraction terms is very
challenging. We have seen that the cancellation at the integrand level involves several subtleties,
which are best studied at NLO.
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7 NLO EW automation and technical comparisons 11

7.1 Introduction
Adequate predictions for scattering processes at particle colliders such as the Large Hadron
Collider (LHC) are known to require the inclusion of at least next-to-leading order (NLO)
perturbative corrections of the strong interactions. With the increasing experimental precision,
and the extension of the kinematic reach thanks to larger collision energies, not only beyond-
NLO predictions in QCD are required, but also the inclusion of perturbative corrections from
electroweak (EW) interactions becomes inevitable. In particular, in the high-energy and more
precisely the high transverse-momentum tails of kinematic distributions which are currently
probed, EW corrections become sizeable.

The automated calculation of NLO QCD corrections started to be established almost
a decade ago, and nowadays several independent and well-tested tools exist [83–85, 451, 464,
477–481], based on different approaches and implementations. In the recent years, also the
automation of NLO EW corrections was pushed forward, and in the meanwhile a few tools are
able to produce predictions at full NLO Standard Model (SM) accuracy [279,304,481,482].

In this contribution we review the status of the existing tools for the automated calculation
of EW one-loop amplitudes and their implementations into integration frameworks. We also give
an overview of phenomenological studies at NLO EW precision carried out with these tools in the
recent years. After the more qualitative comparison of some selected processes in the proceedings
of the previous Les Houches 2015 workshop [1], we perform a detailed technical comparison for
two 2 → 4 processes with complicated resonance structures, namely the off-shell production of
leptonically decaying ZZ and WW pairs: we start with a point-wise comparison of the EW 1-
loop matrix elements between the different amplitude generators, and we study integrated cross
sections and distributions at NLO EW accuracy.

7.2 Automated calculation of electroweak NLO corrections
Similar to NLO QCD calculations, the automation of EW corrections at NLO accuracy requires
two main ingredients: a framework that takes care of the bookkeeping of partonic subprocesses
contributing at the coupling order(s) under consideration, provides a subtraction procedure to
treat IR QED singularities, and performs a stable phase-space integration to provide predictions
for any observables of interest; and a one-loop provider (OLP) that generates one-loop transition
amplitudes including appropriate EW renormalization procedures, and moreover guarantees
their stable numerical evaluation in the complete phase space.

Since both tasks are to a wide extent complementary, and the combination of any in-
tegration framework with any OLP is in principle possible, we discuss them separately in the
following. In the first part of this section, we give an overview of the existing Monte Carlo in-
tegration frameworks that have been applied for NLO EW calculations. In the second part, we
briefly introduce the available OLPs, and discuss their recent applications in phenomenological
studies.

11 S. Kallweit (section coordinator); B. Biedermann, S. Bräuer, M. Chiesa, A. Denner, N. Greiner, V. Hirschi,
J.-N. Lang, J. M. Lindert, P. Maierhöfer, M. Pellen, S. Pozzorini, S. Quackenbush, C. Reuschle, M. Schönherr,
S. Schumann, H.-S. Shao, S. Uccirati
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7.2.1 Integration frameworks for automated electroweak NLO corrections
BBMC
BBMC12 is a multi-channel Monte Carlo integrator that has been designed for NLO corrections
to processes with identified massless leptons and jets in the final state. The multi-channel kernel
is a further development of the implementation in Ref. [483,484]. The selection of the partonic
channels for a given hadronic process and the NLO dipole subtraction [187, 485] is done in a
fully automated way. The implementation supports typical NLO EW features like handling of
collinear-unsafe photon radiation off charged leptons [486], fragmentation functions and photon-
induced contributions. The program is interfaced with Recola [89] as matrix-element generator
for both one-loop and tree-level amplitudes. BBMC has been used for all kinds of vector-boson
pair-production processes with leptonic decays at NLO EW accuracy [222,223,225,313] and for
the calculation of the NLO EW and QCD corrections to vector-boson scattering in the same-sign
WW channel [224,226]. The code is intended to be publicly available in the future.

MoCaNLO
MoCaNLO13 is a flexible Monte Carlo program that can compute arbitrary processes in the SM
with NLO QCD and EW accuracy. The fast integration is ensured by using similar phase-space
mappings to those of Refs. [483, 484, 487]. The infrared (IR) divergences appearing in virtual
and real corrections are handled with the help of the Catani–Seymour dipole formalism [187,
485]. These tools have been successfully used for the computation of NLO corrections for high-
multiplicity processes [224,226,281,282,331,346].

Munich
Munich14 is a fully general and very fast parton-level Monte Carlo integrator, written in C++,
which was originally developed in the context of multi-leg NLO QCD calculations [342, 343,
348, 488]. It automatically performs the bookkeeping of partonic subprocesses, phase-space in-
tegration based on multi-channel techniques, and the treatment of IR singularities at NLO by
means of dipole subtraction for massless [187] and massive [489] partons. Subsequently, this
framework was extended to deal with full SM corrections at NLO accuracy, by imposing a
generalized bookkeeping for subprocesses at arbitrary coupling orders. The subtraction of IR
QED singularities is performed in the dipole-subtraction approach as detailed in Refs. [304,314].
These developments allow not only NLO EW corrections to be performed, but full SM NLO
corrections including all sub-leading coupling orders and photon-induced contributions for ar-
bitrary SM processes. Munich relies on external amplitudes throughout: So far it has been
applied in combination with OpenLoops, where the latter provides not only the one-loop
amplitudes of QCD, EW, and mixed types, but also the tree amplitudes with all relevant
colour and helicity correlations, as required in the IR subtraction. Corresponding applica-
tions of Munich+OpenLoops [302, 304, 305, 314] are detailed in the next section. Munich
also constitutes the fundament of the public NNLO QCD framework Matrix15 [154], which
was applied to perform the first calculations for almost all di-boson processes at NNLO QCD
accuracy [158,160–166,170,195]. These features will facilitate combined NNLO QCD+NLO EW
predictions based on the Munich/Matrix+OpenLoops framework in the near future.

12BBMC has been written by B. Biedermann, and is so far only a working title as the program is not yet ready
for publication.

13MoCaNLO stands for “ MOnte CArlo event generator for NLO computation“. It was originally written by
Robert Feger and further developed by M. Pellen. In preparation.

14Munich is the abbreviation of “MUlti-chaNnel Integrator at swiss (CH) precision”— an automated parton
level NLO generator by S. Kallweit. In preparation.

15Matrix is available for download from: http://matrix.hepforge.org.
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Sherpa
Sherpa16 [415, 490] is a multi-purpose Monte Carlo event generator aiming for the full simu-
lation of high-energy collider scattering events. The Sherpa framework contains modules and
algorithms for the various different phases of event evolution. This includes methods for the
generation and integration of hard-scattering matrix elements, QCD parton showers [491, 492],
and phenomenological models for the parton-to-hadron transition and the underlying event.

For the hard process generation it contains two tree-level matrix element generators for
the full SM and New Physics scenarios [493], called Amegic [494] and Comix [495]. Both matrix
element generators are equipped with an automated subtraction of NLO QCD divergences in
the Catani–Seymour dipole-factorization scheme [187, 489, 496]. This allows for the automated
evaluation of NLO QCD corrections to arbitrary processes. Recently, Amegic was updated to
be able to handle processes with NLO EW divergences as well [304,497], which is used in these
comparisons. To facilitate full NLO computations, interfaces to various one-loop matrix element
codes are provided. In the following, Sherpa is used in combination with GoSam [324, 498],
OpenLoops [302, 304, 305, 314] and Recola [499]. In these combinations of tools, Sherpa
provides the tree-level matrix elements for both the Born and real emission contributions, the
IR subtraction, the process management and phase-space integration of all contributions to all
processes considered. To analyse the generated parton-level events the Rivet [500] package
is used. On-the-fly scale variations are available through an extension of the algorithm of
Ref. [501].

MadGraph5_aMC@NLO
MadGraph5_aMC@NLO17 [88] is a single framework automating the computation of both
LO (tree-level and loop-induced [502]) and NLO accuracy (differential) cross sections, including
their matching to parton shower programs via the MC@NLO method [503]. It provides all the
necessary elements for the SM and beyond SM (BSM) phenomenology studies. In particular,
virtual contributions are numerically calculated by the MadLoop module [479], which will be
described later, while the real emission contributions are regulated using the Frixione-Kunszt-
Signer (FKS) subtraction method [142, 143, 421]. Inclusive samples accurate at the NLO QCD
level across many jet multiplicities can be obtained using the FxFx merging method [504].
External OLPs can also be interfaced to MadGraph5_aMC@NLO, using the Binoth Les
Houches Accord (BLHA) standard [505,506] (as for example done withGoSam [87] in Ref. [385]).

More recently, the MadGraph5_aMC@NLO framework has been extended in order to
support the computation of NLO EW corrections, including the case of mixed QCD and EW
coupling order perturbative expansions. This allowed the computation of the EW corrections
to the process tt̄+ H/Z/W± [279,280], and of the complete set of mixed-order NLO corrections
to dijet [288], tt̄W± and tt̄tt̄ [388]. The framework was also instrumental in combining NNLO
QCD and NLO EW corrections to tt̄ [329,507] production at both the LHC collision energies and
100 TeV. The corresponding new NLO EW capable version of MadGraph5_aMC@NLO is
planned for an imminent public release, together with a forthcoming reference paper [508]. Two
NLO UFO models [509] with all the necessary rational R2 [510–514] and ultraviolet (UV) renor-
malization counterterms will be included, allowing for the computation of the complete NLO
corrections to arbitrary scattering and decay processes in the SM. The two models correspond to
two different EW renormalization schemes: α(MZ) [515] and Gµ [515,516]. For both setups, the
use of renormalization conditions from either the on-shell or the complex-mass scheme [483,517]
has been validated. The introduction of the complex-mass scheme allows to include off-shell ef-
fects of unstable particles while retaining both gauge invariance and a well-defined perturbative

16The Sherpa program is available from http://sherpa.hepforge.org.
17The latest MadGraph5_aMC@NLO version can be downloaded from https://launchpad.net/mg5amcnlo.
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expansion. A new syntax is introduced in MadGraph5_aMC@NLO for specifying the type
of NLO corrections (QCD and/or EW) that must be accounted for:

MG5_aMC> set complex_mass_scheme True
MG5_aMC> import model <NLOmodel_with_qcd_qed>
MG5_aMC> generate <process> QCD=n QED=m [QCD QED]
MG5_aMC> output; launch

The above syntax implies that complex-mass scheme renormalization conditions are considered
and that the following LO and NLO contributions must be included:

σLO =
∑

i≤n,j≤m,i+j=k0

αisα
jσLO

(i,j),

δσNLO =
∑

i≤n+1,j≤m+1,i+j=k0+1
αisα

jδσNLO
(i,j) . (I.47)

One can choose the different integer values n and m and coupling order names in squared
brackets to select specific terms in the perturbative series.

Also, numerous efforts in last few years have pushed the MadGraph5_aMC@NLO
framework so as to be able to perform various BSM studies at the NLO QCD accuracy [268,
284, 286, 518–537] with the help of FeynRules [538, 539] and NLOCT [540], which highlights
the flexibility of the framework18. Indeed, these studies necessitate the support of many novel
aspects absent in SM physics, like non-renormalizable operators [268], Majorana fermions [524]
and spin-2 particles [531].

7.2.2 Generators for electroweak one-loop amplitudes and applications
Recola — BBMC/MoCaNLO/Sherpa+Recola
Recola [89,481] is a general one-loop amplitude provider which is publicly available.19 The li-
brary combines the process generation and computation of matrix elements in a fully automated
and recursive way, pushing limitations on the numbers of external particles to a yet unmatched
level, while remaining a very flexible tool. In particular, Recola provides the functionality to
compute tree and one-loop matrix elements, squared matrix elements, optionally summed over
spin and colour, and spin- and/or colour-correlated matrix elements in the ’t Hooft–Feynman
gauge for arbitrary initial and final states. Standard renormalization schemes for the electroweak
and strong gauge coupling are supported. Unstable particles are treated in the complex-mass
scheme [483, 517, 541]. The recent upgrade, dubbed Recola2 [542, 543], extends the original
version by new model files, as well as the possibility to perform computations in the Background-
Field method, and a Python interface. A key aspect of Recola/Recola2, compared to other
automated NLO tools, is that no process source files are generated, and, thus, no intermedi-
ate compilation is required. Therefore, it naturally fits into the framework of modern event
generators requiring flexible amplitude providers which can be used as black boxes.

Internally, Recola is based on the so-called Berends-Giele recursion [544] (BGR) allowing
to construct tree-level amplitudes without referring to Feynman diagrams in the generation or
in the computation phase. A. van Hameren showed [545] that, based on the decomposition of
one-loop amplitudesM1 in terms of tensor coefficients c and tensor integrals T as

M1 =
∑
k

ck,µ1...T
µ1...
k , (I.48)

18The available NLO QCD-ready UFO models for BSM studies are listed and can be downloaded at http:
//feynrules.irmp.ucl.ac.be/wiki/NLOModels.

19Recola can be obtained at http://recola.hepforge.org.
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a recursion for tensor coefficients can be derived, similar to the BGR. Recola and Recola2
implement such an algorithm for computing tensor coefficients numerically for arbitrary pro-
cesses in the SM and beyond, respectively, while the tensor integrals are obtained by means of
the Collier library [546, 547]. Finally, the complete 1-loop renormalized amplitude Mren is
constructed using the purely 4-dimensional part of Eq. (I.48) in addition to counterterm and
rational parts,

Mren =M1 +MCT +MR2 , (I.49)

withMCT andMR2 being computed on equal footing with the tree-level amplitude, but using
special Feynman rules.

Recola has been used with several Monte Carlo programs for the calculation of NLO QCD
and EW corrections. In combination with the parton-level integration frameworks BBMC and
MoCaNLO, it has demonstrated to be particularly efficient for high-multiplicity processes up
to 2→ 7 scattering.

A first class of processes which have been calculated with the help of Recola is the
production of massive di-bosons at NLO EW: WW [223], ZZ [222,225], and WZ [313]. All these
computations consider the off-shell production as well as all interferences and non-resonant
contributions.

A second class of processes evaluated with Recola concerns the off-shell production of top
quarks. Thus, the EW corrections [331] to the off-shell production of top–antitop pairs have been
computed. Recently, QCD corrections to the same process but in the lepton+jets channel [346]
have also been obtained. In addition, the associated production of a Higgs boson with off-shell
top-antitop pairs has been calculated at both NLO QCD and EW accuracy [281, 282]. This
constituted the first 2→ 7 process obtained at NLO. For the EW corrections, for the first time,
9-point functions appear in the loop amplitude.

A further class covered is vector-boson scattering (VBS). First, NLO EW corrections to
the same-sign WW VBS processes have been computed [224]. These turn out to be particularly
large as an intrinsic feature of VBS processes at the LHC. Then, the full NLO QCD and EW
corrections to the VBS process and its irreducible background have been obtained [226]. As
the signature possesses three LO contributions, this amounts to compute four separate NLO
contributions.

In order to fully exploit the high level of automation of Recola, it has been interfaced
to the multi-purpose Monte Carlo generator Sherpa [415, 490]. Based on an automated sub-
traction of both QCD and EW divergences [496,497], Sherpa+Recola [499] can compute any
process at NLO QCD and EW accuracy in the SM. Some examples of the capabilities have
been demonstrated by studying vector-boson production in association with jets20, on-shell tt̄H
production, and off-shell ZZ production for both QCD and EW corrections. This framework
has been used e.g. for the computation of NLO QCD corrections to on-shell top-quark pair
production [548]. Note that Recola has also been recently interfaced to Whizard [549,550].

OpenLoops — Munich/Sherpa+OpenLoops
OpenLoops21 provides scattering amplitudes at NLO QCD+EW based on the open-loops al-
gorithm [85] – a fast hybrid tree-loop recursion for the numerical evaluation of tree and one-loop
scattering amplitudes. At NLO QCD more than one hundred processes are publicly provided in
the form of an automatically generated library that supports all interesting LHC processes, and

20The first application of Recola was the computation of NLO EW corrections to lepton pair production in
association with two hard jets [303,481].

21The OpenLoops one-loop generator is publicly available at http://openloops.hepforge.org.
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which can be easily extended upon user request. A public NLO EW library is under development
and will very soon be released as part of OpenLoops2 [551].

The recently achieved automation of EW corrections [304, 305, 314] is based on the well
established QCD implementations and allows for NLO QCD+EW simulations for a vast range
of SM processes, up to high particle multiplicity, at current and future colliders. To be precise,
the new implementations allow for NLO calculations at any given order αnsαm, with all relevant
QCD–EW interference effects. Full NLO SM calculations that include all possible O(αn+k

s αm−k)
contributions to a certain process are also supported.

The extension to NLO EW corrections required the implementation of all O(α) EW Feyn-
man rules in the framework of the numerical open-loops recursion including counterterms as-
sociated with so-called R2 rational parts [512] and with the on-shell renormalization of UV
singularities [516]. Additionally, for the treatment of heavy unstable particles the complex-
mass scheme [517] has been implemented in a fully general way. Combined with the Collier
tensor-reduction library [546],Denner:2016kdg, which implements the Denner–Dittmaier reduc-
tion techniques [552,553] and the scalar integrals of Ref. [554], or with CutTools [555], which
implements the OPP method [95], together with the OneLOop library [556], the employed
recursion permits to achieve very high CPU performance and a high degree of numerical stabil-
ity. A new method for the automated construction of one-loop amplitudes and their on-the-fly
reduction to scalar integrals building on the open-loops algorithm was introduced in Ref. [557],
and will be part of OpenLoops2 [551]. This improved algorithms will further significantly en-
hance the numerical stability of the amplitude evaluation in particular relevant for real-virtual
contributions in NNLO computations.

The frameworks Munich+OpenLoops and Sherpa+OpenLoops automate the full
chain of operations – from process definition to collider observables – that enter NLO QCD+EW
simulations at parton level. Employing the described frameworks, in Ref. [304] the simulation
of W++1,2,3jets production at NLO EW+QCD was presented. To facilitate the calculation
of the process with the highest jet multiplicity, these processes were factorized into a produc-
tion part and a decay part. All sub-leading Born channels including interference-based and
photon-induced ones were studied, and NLO corrections were calculated at relative O(αs) and
O(α) with respect to the leading Born contribution. The latter also involves interferences with
sub-leading Born diagrams beside genuine EW contributions. A careful implementation of the
narrow-width approximation is required in order to control numerical stability, given the ap-
pearance of pseudo-resonances for two or more associated jets: Here a pole regularization with
a technical width parameter was chosen, which corresponds to a smooth and numerically negli-
gible deformation with respect to the gauge-invariant on-shell limit. Phenomenologically it was
found that V+multijet final states feature genuinely different EW effects as compared to the
case of V+1jet.

Subsequently in Ref. [305] NLO QCD+EW simulations were presented for Z+jets and
W±+jets production including off-shell leptonic decays with 0, 1, and 2 charged leptons in the
final states, applying the complex-mass scheme throughout. A naive-exclusive-sums approach
was applied to V+1jet and V+2jets NLO QCD+EW predictions in order to derive an approxima-
tion that combines exact EW virtual corrections with an inclusive treatment of bremsstrahlung
effects. This so-called VI approximation made it possible to include NLO EW corrections into
the MEPS@NLO multijet merging framework of Sherpa, and so to recover perturbative con-
vergence in a merged V+jet calculation. Recently this framework has also been applied for the
calculation of NLO EW corrections to tt̄(+jet) production and a corresponding MEPS@NLO
QCD+EWVI multijet merging [332], as presented in Sec. V.1 of the proceedings at hand.

The work on V+jets was continued in the context of the dark-matter background study
of Ref. [302], where the main focus was on providing not only the best available perturba-
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tive prediction, but in particular a reasonable uncertainty estimate. The region of interest
— as main background in dark-matter searches — is the high-energy tail of the transverse-
momentum distribution of the vector boson in the invisible decay channel Z → νν̄. Most
accurate predictions are achieved here by estimating Z(νν̄)+jet from related V+jet processes.
Thus best possible theoretical predictions and uncertainty estimates were required for ratios be-
tween the different V+jet processes, with V = Z,W, γ. The frameworks Munich+OpenLoops
and Sherpa+OpenLoops delivered all results involving EW corrections. The Sudakov approx-
imation was used to formulate reasonable error estimates at NLO EW. Moreover, approximate
NNLO EW predictions were achieved, based on an implementation of 2-loop Sudakov logarithms
in OpenLoops, which was required to reduce the uncertainties originating from EW effects to
a subdominant level. Moreover, mixed NNLO QCD×EW effects were estimated, based on the
universality assumption of the leading Sudakov effects that promotes a multiplicative combina-
tion of QCD and EW corrections. Dedicated studies of the behaviour of NLO EW corrections on
V + 2jets under variation of a jet resolution parameter were performed to achieve an improved
uncertainty estimate beyond just taking the full relative O(αsα) contribution as unknown.

In Ref. [314], NLO QCD+EW corrections to 2`2ν final states were investigated, both in
different-flavour and same-flavour channels. The first is dominated by WW resonances, whereas
the latter involves, depending on neutrino flavours, only ZZ resonances or both WW and ZZ
resonances. In this last case, interference effects turn out to be completely negligible apart from
the region around the Z → 2`2ν peak. Throughout the calculation, photon-induced channels
are included not only at LO, but also in the corrections at NLO EW accuracy. Both the over-
all impact of incoming-photon contributions and the dependence on the different photon PDFs
available by then were investigated on a differential level. Moreover, the possibility of repro-
ducing the exact NLO EW results by the above-mentioned EW VI approximation augmented
with QED radiation effects was studied, where the latter were generated via YFS soft-photon
resummation or, alternatively, by the Catani–Seymour dipole-based DGLAP-type resummation
of the Csshower. Both approaches describe the high-energy regions similarly well with devi-
ations typically below 10%. The YFS resummation implementation in Sherpa also preserves
the existing resonance structure.

In the framework of Powheg+OpenLoops recently Monte Carlo generators for the pro-
duction of HV (+jet) at NLO QCD+EW have been presented [262]. They provide a consistent
matching to the QCD and QED parton showers in Pythia8. Here V = {W±, Z} denotes the
corresponding leptonic off-shell processes, and the application of the improved MiNLO method
to HV+jet production allows for NLO QCD+EW accuracy for observables with both zero or
one resolved jet. These generators have been used to study the behaviour of EW corrections
for various kinematic distributions, relevant for experimental analyses of Higgs-strahlung pro-
cesses. The OpenLoops tree and one-loop amplitudes are accessible in the Powheg-Box-Res
framework [356] via a process-independent interface developed in Ref. [357]. This framework
allows for the consistent resonance-aware parton-shower matching of off-shell processes at NLO
including radiation off the decay products of (narrow) resonances, in particular relevant in the
context of matched NLO EW corrections.

MadLoop — MadGraph5_aMC@NLO+MadLoop
MadLoop [479] is a module of the MadGraph5_aMC@NLO [88] framework in charge of
generating the code for one-loop matrix element computations22. It uses an original approach
to the generation of one-loop Feynman diagrams that takes advantage of the existing tree-level
diagram generation algorithm of MadGraph5_aMC@NLO to directly generate L-cut dia-

22Procedure for obtaining a standalone code for one-loop computations in MadLoop can be found at
http://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/MadLoopStandaloneLibrary.
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grams, corresponding to loop diagrams with one loop propagator cut open, effectively turning it
into a tree-level diagram with two additional final states compared to the starting loop topology.

Significant improvements have been made in MadLoop5 [88] compared to its predeces-
sor MadLoop4 [479]. The generation of the loop numerator is rendered efficient by using an
in-house implementation of the open-loops [85] technology, and is generically applicable to any
model (spin-2 [531], supersymmetric models [522,524], EFT [284,520,530,536,558,559], vector-
like quarks [532], dark matter [525,528,529] and others23) thanks to the generation of the vertex
functions using Aloha [560]. Moreover, MadLoop offers the possibility of dynamically switch-
ing between interfaces to three different integrand-level reduction programmes [95,117,555,561–
564] and four different tensor integral reduction codes [547, 553, 565–568], each time providing
a reliable estimate of the numerical uncertainty24. Whenever a numerically unstable evaluation
is encountered, MadLoop will re-evaluate the point on-the-fly in quadruple precision, not only
within the loop reduction (in the case of Ninja [117, 563] and CutTools [555]) but also for
the computation of the numerator tensor coefficients. Another key feature of MadLoop is the
flexibility it offers to the user of selecting only particular contributions of the complete one-loop
matrix-element, for instance by limiting the allowed particle content, requiring certain propaga-
tors or selecting any arbitrary gauge-invariant subset of diagrams. As long as the input UFO
model provides the relevant information, the correct corresponding R2 and UV counterterm
contributions of Eq. (I.49) will be consistently accounted for.

MadLoop can also provide independent results for multiple terms factorizing specific
user-defined sets of couplings. This is useful in the context of BSM NLO QCD computations for
studying particular interference contributions, while in the SM it is a necessary feature for com-
puting the complete set of NLO corrections of order O(αb−ns αn) with n ≤ b (see as for example
dijet production [288], where b = 3). It is also capable of providing spin- and colour-correlated
matrix elements, allowing it to be used in the context of NNLO QCD computations. The inter-
nal projection of amplitudes onto colour-ordered ones also renders MadLoop competitive for
the computation of loop-induced matrix elements [502]. Finally, MadLoop is not bound to be
used within the MadGraph5_aMC@NLO integration framework, and it can easily be used in
standalone mode to generate computer libraries for arbitrary processes, ready to be used within
any environment (including facilities for calling these libraries directly from within Python).

GoSam — Sherpa+GoSam
GoSam [87, 480] is a publicly available tool for the automated generation of virtual ampli-
tudes.25 It is based on a Feynman diagrammatic approach, where the amplitude is generated
algebraically in D dimensions. To generate the Feynman diagrams it uses Qgraf [569] to gen-
erate all the relevant topologies, and further employs Form [570, 571] and Spinney [572] (a
Form library to handle the spinor-helicity formalism) to apply the appropriate Feynman rules
and write an optimized Fortran output. Due to the algebraic approach no special treatment
or additional Feynman rules for the rational R2 terms are needed. Internally GoSam uses di-
mensional reduction (DRED) [573–576] to construct the amplitude, but it can be converted to
the ’t Hooft-Veltman scheme [577]. The output for the loop amplitude does not require a specific
reduction technique but can be used for several reduction methods, either on the integral- or
on the integrand level. At the moment three different reduction techniques are built in and
supported. Per default it uses Ninja [562, 563, 578], a package that performs the reduction on

23See http://feynrules.irmp.ucl.ac.be/wiki/NLOModels for a list of available UFO models ready for NLO
QCD computations.

24The one-loop scalar integrals in MadLoop are numerically evaluated by the program OneLOop [556] or
directly by Collier [547] when it is used for the loop reduction.

25GoSam can be obtained at http://gosam.hepforge.org.
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the integrand level by applying a Laurent expansion. Alternatively one can choose between an
OPP reduction [95,510,561] as implemented in Samurai [564], or the tensor reduction methods
contained in the Golem95 library [567, 579–581]. The remaining scalar integrals can be evalu-
ated by either using OneLoop [556], or QCDLoop [582,583]. Both the reduction method and
the library for the scalar integrals can be changed at any point on the fly.

To calculate physical observables like cross sections and differential distributions at the
NLO level GoSam can be combined with any Monte Carlo event generator that supports
the BLHA interface [505, 506]. In practice, interfaces have been established with Herwig7/
Herwig++ [584], MadGraph5_aMC@NLO [385], Powheg [585, 586], Sherpa [415] and
Whizard [549] and has been used to calculate a large variety of different processes at NLO in
QCD, EW and BSM. GoSam itself contains model files for various versions of the SM (with
or without CKM mixing, complex mass scheme, effective Higgs couplings). However, GoSam
is able to interpret model files in the UFO format [509] which allows for an immediate and
straightforward implementation of BSM models.

In the context of EW corrections, the combination of GoSam and Sherpa has recently
been used to calculate diphoton processes, in association with 0, 1, and 2 jets [498] or in asso-
ciation with a third vector boson [324].

A recent implementation of incorporating the use of quadruple precision within GoSam
in connection with Ninja allows to automatically switch from double to quadruple precision
when numerical instabilities are detected. This switch allows to maintain numerical stability in
extreme regions of phase space when approaching singularities as is the case for the real–virtual
contributions in a two-loop calculation [67].

GoSam is the only automated tool that has been extended to calculate two loop correc-
tions. It has successfully been applied to calculate the full NLO QCD corrections to double
Higgs production, taking full top-quark mass dependence into account [65, 66], and very re-
cently also to calculate the NLO QCD corrections to H+1jet, also including full top-quark mass
dependence [67].

NLOX
NLOX is the newest member in the set of matrix element providers for the automated genera-
tion of one-loop amplitudes. A non-public predecessor of the program had been available in the
past, to calculate one-loop QCD corrections to selected processes [587]. NLOX has seen quite
some progress in recent years. The current version of the program provides fully renormalized
QCD and EW one-loop amplitudes in the SM, for all possible QCD+EW mixed coupling-power
combinations to one-loop accuracy, including the full mass dependencies on initial- and final-
state masses. NLOX is based on a Feynman diagrammatic approach, utilizing Qgraf [569],
Form [570,571] and Python, to algebraically generate C++ code for the virtual contribution
to a certain process at a certain order of QCD+EW coupling powers, in terms of one-loop tensor
coefficients. The tensor coefficients are calculated recursively at runtime through standard ten-
sor reduction methods by the C++ library Tred, an integral part of NLOX. Several reduction
techniques are available to Tred, many of which are found in Ref. [553, 565]. The scalar one-
loop integrals are evaluated by either using OneLOop [556], or QCDLoop [582,583]. UV and
IR singularities are regularized in dimensional regularization. UV renormalization in NLOX is
carried out by means of counterterm diagrams, which provide a flexible way to systematically
include mass renormalization for massive propagators as well as Yukawa-type vertices. The
renormalization constants in terms of which the EW counterterms are formulated are derived in
the on-shell renormalization scheme, based on Ref. [516], or in the complex-mass scheme, based
on Ref. [517], where the choice in NLOX is to expand self-energies with complex squared mo-
menta around real squared momenta as described in Ref. [517]. The renormalization constants
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in terms of which the QCD counterterms are formulated are currently derived in a mixed renor-
malization scheme: The field and mass renormalization constants for massive quarks are derived
in the on-shell renormalization scheme, while the field renormalization constants for massless
quarks and gluons are derived in the MS renormalization scheme, however, with possible con-
tributions from massive quarks decoupling. As EW input scheme NLOX provides the α(0) EW
input scheme or the Gµ EW input scheme. NLOX is not yet publicly available and for more
details we refer the reader to Ref. [588]. The current version of NLOX can be interfaced to a
selection of in-house Monte Carlo integration routines. A general interface to the Monte Carlo
integrators and event generators discussed in this study is currently under development, which
is why no cross-section level comparison was undertaken with NLOX for this study. As NLOX
is still under development, the photon-induced channels were not available as of the drafting of
this document.

7.3 Technical comparison for 4` and 2`2ν production at NLO EW accuracy
In order to validate the automated tools for evaluating NLO EW corrections, described in the
previous section, a technical comparison has been performed, at the level of amplitudes for a
set of phase-space points, integrated cross sections, and a selection of differential distributions.
In contrast to the study on EW automation in the proceedings of the previous Les Houches
2015 workshop [1], where a more qualitative comparison has been performed — i.e. without
an exhaustive fine-tuning of all ingredients of the calculations, like details of e.g. lepton–photon
recombination, jet–photon clustering descriptions, treatment of fragmentation contributions, etc.
— the goal of this contribution is to pin down all involved codes as far as possible to a common
set of input parameters and conventions. In that way, a point-wise agreement only limited by the
numerical precision of the respective matrix-element generators, and a statistical agreement on
the level of integrated cross sections and distributions should be achievable. To do so, we chose
to investigate the off-shell production of ZZ and WW pairs with corresponding leptonic decays
in the different-flavour channels, i.e. pp → e+e−µ+µ− and pp → e+νeµ

−ν̄µ. More precisely,
the production of the full 4-lepton final state is considered and, correspondingly, all double-,
single-, and non-resonant contributions as well as spin correlations and interference effects are
fully taken into account without any resonance approximation applied. These processes are very
well suited for such a technical comparison as they are non-trivial 2→ 4 processes that exhibit
involved resonance structures, so the different implementations of intermediate resonances by
means of the complex-mass scheme are probed. On the other hand, they do not involve jets at
their leading order (LO), which facilitates the choice of a common definition of observables, as
no treatment of jet–photon configurations is needed, which would in general allow for various
self-consistent implementations. As a side effect, the number of partonic processes is easily
manageable, and the relative O(α) contains only genuine EW corrections, but no interference
contributions with sub-leading orders as it would be the case if LO jets were involved.

7.3.1 Setup
In this section the setup of the calculations is detailed. As this study is not a phenomenological,
but a technical one, we refrain from using the most up-to-date input parameters and parton
distribution functions (PDF). We rather adopt the setup of the detailed comparison for off-shell
ZZ production applied in Ref. [499]26. For off-shell WW production, we stick to the very same

26The benchmark for the results of Ref. [499] has actually been set in Ref. [225], where all ingredients of the
calculations, in particular the virtual matrix elements, have been internally cross-checked by means of at least
two fully independent implementations. The setup of this original calculation deviates in some subtleties from the
one of Ref. [499]. For convenience, we adopt the setup of the latter, as a small part of the comparison presented
here has already been carried out therein using this setup.
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setup, and only minimally adapt the applied phase-space cuts to the new final state.
All predictions are for proton–proton collisions at a centre-of-mass energy of

√
s = 13 TeV,

like in the present LHC run. Following Ref. [499], we use the NNPDF-2.3QED NLO PDF
set [589] throughout, i.e. both for the LO and the NLO EW calculations, and we do not consider
incoming photons in the observables by simply setting the photon PDF to zero (non-vanishing
lepton PDFs are not considered either). We note that all results presented here are independent
of the strong coupling αs since no QCD corrections are considered and the leading coupling order
is O(α0

sα
4) for both processes under consideration. Correspondingly, there is also no dependence

on a QCD renormalization scale. The QCD factorization scale is chosen to be fixed, and we set
µF = MZ/W for ZZ and WW production, respectively, where MV denotes the pole mass of the
respective weak boson (see below).

The electromagnetic coupling α is calculated in the Gµ scheme [590],

α =
√

2
π
GµM

2
W

(
1− M2

W
M2

Z

)
, with Gµ = 1.16637× 10−5 GeV−2, (I.50)

and M2
V corresponds to the real parts of the squared pole masses. We use the complex-mass

scheme [483,517,541] throughout the calculation, i.e. the weak mixing angle becomes a complex
quantity, derived from the ratio µW/µZ, where µ2

V = M2
V − iMVΓV. For details on the complex

renormalization of the EW parameters, we refer to Ref. [517]. Some subtleties of the EW
renormalization procedure that cause differences of higher order in α in the virtual matrix
elements will be discussed in the next section.

As numerical values of the on-shell gauge-boson masses and widths we use

MOS
Z = 91.1876 GeV , ΓOS

Z = 2.4952 GeV ,
MOS

W = 80.385 GeV , ΓOS
Z = 2.085 GeV ,

(I.51)

and convert them to pole quantities according to the relations [591]

MV = MOS
V√

1 +
(

ΓOS
V /MOS

V

)2
, ΓV = ΓOS

V√
1 +

(
ΓOS
V /MOS

V

)2
, V = W,Z .

(I.52)

For convenience, we also state the numerical values of the resulting gauge-boson pole masses
and widths and of α in double-precision accuracy,

MZ = 91.1534806191828 GeV , ΓZ = 2.49426637877282 GeV ,
MW = 80.3579736098775 GeV , ΓW = 2.08429899827822 GeV ,

(I.53)

and
α = 0.00755525416742918 . (I.54)

Higgs bosons and top quarks do not appear as internal resonances in our calculation27, so we
can set their widths equal to zero and use the following values for their masses,

MH = 125 GeV , ΓH = 0 GeV ,
mt = 173 GeV , Γt = 0 GeV .

(I.55)

All the remaining quarks, q = u,d, c, s, b, and all charged leptons and neutrinos are considered
as light particles with mass equal to zero throughout the calculation. The Cabibbo-Kobayashi-
Maskawa (CKM) matrix is set to unity. We note, however, that a block-diagonal form of Cabibbo
type with mixing only between the two light quark generations would not affect our results.

27We note that this is no longer true for the top quark if photon-induced processes or QCD corrections are
considered.
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In contrast to the calculation of Ref. [225], where the deep-ineleastic scattering (DIS)
factorization scheme [592,593] is used, in our present calculation we apply the MS factorization
scheme. The numerical impact of this difference turns out to be far below the permille level
and thus phenomenologically irrelevant. This difference could not be resolved in the comparison
of Ref. [499]. However, in order to compare with our present calculations, the results for ZZ
production therein have been converted to the MS factorization scheme.

To be consistent with Ref. [499], we only apply phase-space cuts on the (dressed) charged
leptons. Namely, we require 4 (2) charged leptons in our calculations of off-shell ZZ (WW)
production that fulfil the requirements

pT,`i > 15 GeV , |y`i | < 2.5 , (I.56)

and are separated in the rapidity–azimuthal-angle plane,

∆R(`i, `j) =
√(

∆y(`i, `j)
)2 +

(
∆φ(`i, `j)

)2
> 0.2 , (I.57)

independently of the flavours and charges of the leptons `i and `j . The above cuts are applied
on the level of dressed leptons, and the dressing procedure is defined as follows: if a photon
is emitted close to one of the bare charged leptons in the rapidity–azimuthal-angle plane, such
that

∆R(`i, γ) =
√(

∆y(`i, γ)
)2 +

(
∆φ(`i, γ)

)2
< 0.2 , (I.58)

the photon is combined with the respective bare lepton `i, and the momentum of the resulting
dressed lepton is defined by simple addition of the involved four-momenta. If the above condition
holds for more than one of the leptons, the photon is combined with the lepton that is closer in
the y − φ plane.

7.3.2 Point-wise comparison of virtual EW matrix elements
We first validate the different OLPs at the level of one-loop amplitudes for certain kinematic
configurations, namely the phase-space points specified in Table I.9. In order to be independent
of the subtraction scheme used to cancel IR divergences, we found it useful to compare the co-
efficients of a Laurent expansion of these matrix elements, which are regularized in D = 4− 2ε
space-time dimensions in the ’t Hooft–Veltman scheme. The virtual renormalized matrix el-
ement, summed over colour and helicity configurations, including averaging factors for initial
states, can be written as

2<
{
M∗V · MBorn

}
= (4π)ε

Γ(1− ε)

(
V2
ε2

+ V1(µ)
ε

+ Vfinite(µ) +O(ε)
)
. (I.59)

The dependence on both ε and the regularization scale µ will cancel only upon combination
with the real-emission corrections, e.g. by the corresponding dependencies of the I-operator in
a Catani–Seymour dipole-subtraction approach [187]. In order to be independent of subtraction
schemes, we shall compare the relevant coefficients of the Laurent expansion in ε, Vfinite(µ),
V1(µ), and V2 for a given regularization scale,

µ = MZ/W , (I.60)

for off-shell ZZ and WW production, respectively. We start with the squared Born matrix
elements, summed over colour and helicity configurations, including averaging factors for initial
states, denoted as

B = |MBorn|2 , (I.61)
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p1 p2 p3 p4 p5 p6

a) u ū → e+ e− µ+ µ−

b) u ū → e+ νe µ− ν̄µ
c) γ γ → e+ e− µ+ µ−

d) γ γ → e+ νe µ− ν̄µ

PSP 1 E Px Py Pz

p1 5.00000000000000E+02 0.00000000000000E+00 0.00000000000000E+00 5.00000000000000E+02
p2 5.00000000000000E+02 0.00000000000000E+00 0.00000000000000E+00 −5.00000000000000E+02
p3 8.85513330545030E+01 −2.21006902876900E+01 4.00803531916853E+01 −7.58054309569366E+01
p4 3.28329419227098E+02 −1.03849611883456E+02 −3.01933755389540E+02 7.64949213871659E+01
p5 1.52358109467431E+02 −1.05880959666592E+02 −9.77096383269757E+01 4.95483852267928E+01
p6 4.30761138250968E+02 2.31831261837738E+02 3.59563040524830E+02 −5.02378756570221E+01

PSP 2 E Px Py Pz

p1 5.00000000000000E+02 0.00000000000000E+00 0.00000000000000E+00 5.00000000000000E+02
p2 5.00000000000000E+02 0.00000000000000E+00 0.00000000000000E+00 −5.00000000000000E+02
p3 1.17747708137171E+02 −6.07059218463615E+01 7.12310458623266E+01 7.14524452324688E+01
p4 3.50954173077969E+02 −3.17881667026108E+01 8.39394286931734E+01 3.39282354933456E+02
p5 3.49332228573790E+02 1.84009303995763E+02 −5.15277979392370E+01 −2.92435408257719E+02
p6 1.81965890211070E+02 −9.15152154467912E+01 −1.03642676616263E+02 −1.18299391908206E+02

PSP 3 E Px Py Pz

p1 5.00000000000000E+02 0.00000000000000E+00 0.00000000000000E+00 5.00000000000000E+02
p2 5.00000000000000E+02 0.00000000000000E+00 0.00000000000000E+00 −5.00000000000000E+02
p3 2.71200874120175E+02 −3.73192604194911E+01 3.27628636758588E+01 −2.66615419075953E+02
p4 2.28710119031214E+02 3.01476738097433E+01 −2.76873495467817E+01 −2.25017437071458E+02
p5 3.68223563778399E+02 −3.45262681797353E+01 −6.56193561878981E+00 3.66542590606031E+02
p6 1.31865443070211E+02 4.16978547894831E+01 1.48642148971272E+00 1.25090265541380E+02

PSP 4 E Px Py Pz

p1 5.00000000000000E+02 0.00000000000000E+00 0.00000000000000E+00 5.00000000000000E+02
p2 5.00000000000000E+02 0.00000000000000E+00 0.00000000000000E+00 −5.00000000000000E+02
p3 6.57509213776183E+01 −1.80605085177932E+01 −3.57198237923879E+00 −6.31208573766775E+01
p4 4.34316531884259E+02 9.08209885688625E+01 8.42255785958083E+01 −4.16279293039596E+02
p5 4.45341565495701E+02 −7.55663459270628E+01 −4.72204111505749E+01 4.36335960118077E+02
p6 5.45909812424219E+01 2.80586587599355E+00 −3.34331850659945E+01 4.30641902981974E+01

PSP 5 E Px Py Pz

p1 5.00000000000000E+02 0.00000000000000E+00 0.00000000000000E+00 5.00000000000000E+02
p2 5.00000000000000E+02 0.00000000000000E+00 0.00000000000000E+00 −5.00000000000000E+02
p3 3.17520530505573E+02 6.02726046666900E+01 3.06151548398959E+02 −5.88024645074751E+01
p4 1.82384412506608E+02 4.00234094798358E+01 1.75895774032594E+02 2.68863775258899E+01
p5 2.46378670867285E+02 −4.83680566904740E+01 −2.40294803208887E+02 −2.49276573532170E+01
p6 2.53716386120534E+02 −5.19279574560520E+01 −2.41752519222667E+02 5.68437443348023E+01

PSP 6 E Px Py Pz

p1 5.00000000000000E+02 0.00000000000000E+00 0.00000000000000E+00 5.00000000000000E+02
p2 5.00000000000000E+02 0.00000000000000E+00 0.00000000000000E+00 −5.00000000000000E+02
p3 3.67309882280838E+02 1.65971559565154E+01 3.39808610366238E+01 3.65357886350532E+02
p4 1.32530757794944E+02 −1.52987445917027E+01 −3.08889911842803E+01 1.27969607326260E+02
p5 2.97450839881748E+01 9.82801281377121E+00 1.54935079102153E+01 −2.34122061803670E+01
p6 4.70414275936040E+02 −1.11264241785838E+01 −1.85853777625588E+01 −4.69915287496428E+02

Table I.9: Phase-space points used for comparison between different matrix-element generators.
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a) PSP 1 B/10−15 Vfinite/10−16 V1/10−17 V2/10−17

MadLoop 5.26592465401088 6.60297993618509 2.63915540074976 −3.09566543908773
Recola 5.26592465401090 6.60088670209820 2.63915540075328 −3.09566543908732
OpenLoops 5.26592465401100 6.60088670210145 2.63915540078563 −3.09566543905505
GoSam 5.26592465401086 6.60088670209788 2.63915540076095 −3.09566543909091
NLOX 5.26592465401084 6.60088670211436 2.63915540076702 −3.09566543908783

a) PSP 2 B/10−12 Vfinite/10−13 V1/10−14 V2/10−14

MadLoop 2.74057953273116 −3.10720743529659 2.47558966660999 −1.61109736655361
Recola 2.74057953273120 −3.10783717792090 2.47558966661119 −1.61109736655360
OpenLoops 2.74057953273113 −3.10783717792216 2.47558966660688 −1.61109736655762
GoSam 2.74057953273109 −3.10783717792575 2.47558966661326 −1.61109736655355
NLOX 2.74057953273088 −3.10783717791578 2.47558966660321 −1.61109736655852

a) PSP 3 B/10−4 Vfinite/10−6 V1/10−7 V2/10−7

MadLoop 1.21906911746527 −4.79121605677418 −9.28399419983122 −7.16650993758228
Recola 1.21906911746653 −4.77231274104044 −9.28399419025240 −7.16650993468800
OpenLoops 1.21906911746730 −4.77231273844357 −9.28399415556438 −7.16650990014111
GoSam 1.21906911746070 −4.77231359778343 −9.28399407990066 −7.16650993856488
NLOX 1.21906911748497 −4.77231281258676 −9.28399522232122 −7.16651015319136

a) PSP 4 B/10−6 Vfinite/10−7 V1/10−8 V2/10−8

MadLoop 4.77962555243898 1.65145000279798 −3.61194825362166 −2.80978604924244
Recola 4.77962555246723 1.63956377750150 −3.61194826344888 −2.80978605025647
OpenLoops 4.77962555244817 1.63956377748191 −3.61194826326975 −2.80978605006768
GoSam 4.77962555243871 1.63956377924796 −3.61194825975445 −2.80978604980914
NLOX 4.77962555244696 1.63956377842641 −3.61194826211540 −2.80978605014797

Table I.10: Matrix-element comparison at the phase-space points given in Table I.9 for the
partonic process uū→ e+e−µ+µ−.

in order to validate that all input parameters have been set correctly. As we shall see, it is
interesting to perform the comparison both on far off-shell and on-shell phase-space points for
each of the two different partonic channels considered, namely the respective uū-induced and
γγ-induced channels of each of the processes.

In Table I.9 we first list the two far off-shell kinematic configurations labelled PSP 1 and
PSP 2 that apply to all processes. We then consider the points PSP 3 and PSP 4 for the
e+e−µ+µ− production processes a) and c) where the invariant mass of the muon–anti-muon
pair is exactly at the pole mass of the Z boson, and finally the points PSP 5 and PSP 6 for the
e+νeµ

−ν̄µ processes b) and d) where the invariant mass of the positron and its neutrino sits at
exactly the pole mass of the W boson.

The numerical results for B, Vfinite , V1 , and V2 obtained with the different involved OLPs
(MadLoop, Recola, OpenLoops, GoSam, and NLOX) are displayed in Tables I.10–I.13. In
general, an agreement among all OLPs of more than 10 digits for off-shell kinematics (typically
a bit worse for on-shell kinematics) is found for the quantities B, V1 , and V2 , whereas Vfinite
obtained with MadLoop shows differences of up to the percent level compared to the corre-
sponding results from the other programs, which show reasonable agreement among themselves.
Such small deviations are to be expected due to differences in the details of the implementa-
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b) PSP 1 B/10−13 Vfinite/10−14 V1/10−15 V2/10−16

MadLoop 1.26112388530353 −3.30864987248181 1.21073012235170 −4.38084412126839
Recola 1.26112388530350 −3.30882625694720 1.21073012235186 −4.38084412126840
OpenLoops 1.26112388530352 −3.30882625694700 1.21073012234675 −4.38084412131955
GoSam 1.26112388530352 −3.30882625695049 1.21073012235248 −4.38084412126866
NLOX 1.26112388530352 −3.30882625694586 1.21073012235199 −4.38084412126837

b) PSP 2 B/10−12 Vfinite/10−13 V1/10−14 V2/10−14

MadLoop 9.19168012745872 −8.42372887318610 1.52668534752201 −3.19297083499976
Recola 9.19168012745880 −8.42533896054780 1.52668534751979 −3.19297083499981
OpenLoops 9.19168012745858 −8.42533896054679 1.52668534751231 −3.19297083500727
GoSam 9.19168012745844 −8.42533896055772 1.52668534752199 −3.19297083499963
NLOX 9.19168012745785 −8.42533896056472 1.52668534750067 −3.19297083500005

b) PSP 5 B/10−6 Vfinite/10−7 V1/10−8 V2/10−9

MadLoop 2.66444601710804 −6.26911810540777 2.59441472204941 −9.25565109671323
Recola 2.66444601710734 −6.27314341024947 2.59441472291996 −9.25565109556038
OpenLoops 2.66444601710704 −6.27314341020842 2.59441471256317 −9.25565118709011
GoSam 2.66444601710846 −6.27314341015885 2.59441472307111 −9.25565109542055
NLOX 2.66444601705951 −6.27314341916503 2.59441471119468 −9.25565111942051

b) PSP 6 B/10−3 Vfinite/10−5 V1/10−5 V2/10−6

MadLoop 2.08107330428286 −3.94303566134416 −1.76896206881657 −7.22915309068623
Recola 2.08107330429484 −3.96855804139705 −1.76896184875300 −7.22915318450819
OpenLoops 2.08107330428676 −3.96855798524525 −1.76896146354940 −7.22915318412123
GoSam 2.08107330364288 −3.96852693676055 −1.76896416151949 −7.22915263418978
NLOX 2.08107341495760 −3.96853794693293 −1.76895854332064 −7.22915326559073

Table I.11: Matrix-element comparison at the phase-space points given in Table I.9 for the
partonic process uū→ e+νeµ

−ν̄µ.

tion of the complex-mass scheme renormalization. In order to avoid complications in choosing
the correct Riemann sheet when evaluating two-point functions of self-energies with complex
arguments, it was proposed in Ref. [541] to expand these functions in the EW coupling (see
Eq. (8) in Ref. [541]), and to truncate the series at the NLO EW level. This scheme has been
adopted by Recola, OpenLoops, GoSam and NLOX. Conversely, MadLoop chooses not to
perform such an expansion, and instead considers the full two-point function evaluated on the
appropriate Riemann sheet. The details of this procedure will be documented in a forthcoming
publication [508].

We stress that both approaches to handle the evaluation of self-energies in presence of
the complex-mass scheme renormalization conditions are correct as they lead to identical results
up to NLO EW accuracy. It is important, however, to verify that the differences between
MadLoop and the other involved OLPs are indeed formally beyond the NLO EW accuracy
targeted. To this end we propose here to numerically investigate the asymptotic behaviour of
Vfinite in the limit of asymptotically vanishing EW couplings. This can be done numerically by
rescaling the electromagnetic coupling constant and the related parameters (i.e. Gµ, α,ΓZ,ΓW)
by a parameter λ,

Gµ → λGµ , α→ λα , ΓZ → λΓZ , ΓW → λΓW , (I.62)
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c) PSP 1 B/10−13 Vfinite/10−14 V1/10−15 V2/10−15

MadLoop 4.63762790127829 6.79330655006349 4.07216839247769 −2.23061748556626
Recola 4.63762790127830 6.79163662486900 4.07216839245629 −2.23061748556050
OpenLoops 4.63762790127838 6.79163662486753 4.07216839246097 −2.23061748560388
GoSam 4.63762790127830 6.79163662486761 4.07216839247955 −2.23061748556541

c) PSP 2 B/10−10 Vfinite/10−11 V1/10−12 V2/10−11

MadLoop 2.26737153141645 1.88180804083847 2.38584215397888 −1.09056584355518
Recola 2.26737153141650 1.88096074990550 2.38584215406775 −1.09056584355509
OpenLoops 2.26737153141649 1.88096075053150 2.38584215383146 −1.09056584370294
GoSam 2.26737153141644 1.88096075053592 2.38584215397731 −1.09056584355520

c) PSP 3 B/10−6 Vfinite/10−6 V1/10−9 V2/10−9

MadLoop 1.37978612284930 1.55018919031339 4.89785291501769 −6.63652265273678
Recola 1.37978612284863 1.55013518201790 4.89788114834105 −6.63652866815621
OpenLoops 1.37978612284923 1.55013518232261 4.89788114988480 −6.63652866830139
GoSam 1.37978612284092 1.55011760547612 4.89816579319493 −6.63658173170046

c) PSP 4 B/10−7 Vfinite/10−6 V1/10−10 V2/10−9

MadLoop 2.19037672578717 1.68165624485106 7.61526199100670 −1.05353269570773
Recola 2.19037672578999 1.68164383557005 7.61526198688565 −1.05353269571203
OpenLoops 2.19037672578763 1.68164383554897 7.61526198357373 −1.05353269576734
GoSam 2.19037672578690 1.68164383554095 7.61526199187791 −1.05353269572332

Table I.12: Matrix-element comparison at the phase-space points given in Table I.9 for the
partonic process γγ → e+e−µ+µ−.

while other model parameters such as (MZ,MW,MH,mt) remain fixed. Within this setup, we
then compute the relative difference of Vfinite(λ) between Recola/OpenLoops28 and Mad-
Loop,

δVfinite(λ) = 2

∣∣∣∣∣∣V
MadLoop

finite (λ)− V Recola/OpenLoops
finite (λ)

V MadLoop
finite (λ) + V

Recola/OpenLoops
finite (λ)

∣∣∣∣∣∣ (I.63)

at different values of λ, as displayed in Figs. I.15 and I.16. The expected scaling of the relative
difference δVfinite(λ) with the parameter λ is dictated by the expected contribution of the UV
mass counterterms δm, which we can schematically write as follows,

V δm
finite ∝

1
p2
V −m2

V + imV ΓV
δm

1
p2
V −m2

V + imV ΓV
. (I.64)

The assumption is that the UV mass counterterms δm in MadLoop only differs from the ones
of the other OLPs by terms of order O(αΓ2, α2Γ). We can substitute this functional form of
the difference in Eqs. (I.64) and (I.63) to deduce the expected dependence of δVfinite(λ) on the
scaling parameter λ for λ→ 0,

δVfinite(λ) = λκδV
(κ)

finite +O(λκ+1) , (I.65)
28Given that the implementation in all involved OLPs except for MadLoop is identical, we restrict ourselves

to the results of Recola and OpenLoops in this comparison: We use their point-wise average for the central
values, and the difference between them as an estimate for the numerical precision.
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d) PSP 1 B/10−13 Vfinite/10−15 V1/10−15 V2/10−16

MadLoop 3.67352032122512 6.79828192861256 4.15882308803665 −8.83449344853984
Recola 3.67352032122520 6.78860727240780 4.15882308802252 −8.83449344853268
OpenLoops 3.67352032122515 6.78860727241689 4.15882308802947 −8.83449344826758
GoSam 3.67352032122515 6.78860727251103 4.15882308806114 −8.83449344857124

d) PSP 2 B/10−11 Vfinite/10−14 V1/10−12 V2/10−13

MadLoop 9.78728443151128 2.83565594714426 1.43919663402090 −2.35375586979757
Recola 9.78728443151120 2.52764290726850 1.43919663402107 −2.35375586979726
OpenLoops 9.78728443151125 2.52764290753401 1.43919663402070 −2.35375586979729
GoSam 9.78728443151106 2.52764290829874 1.43919663401982 −2.35375586979631

d) PSP 5 B/10−5 Vfinite/10−5 V1/10−6 V2/10−7

MadLoop 8.56103162287602 −2.08508067115892 1.40092813161870 −2.05885284890288
Recola 8.56103162287098 −2.08643204830236 1.40092813169621 −2.05885284880211
OpenLoops 8.56103162287173 −2.08643204831341 1.40092813323908 −2.05885283530621
GoSam 8.56103162287777 −2.08643204828055 1.40092813175874 −2.05885284872070

d) PSP 6 B/10−1 Vfinite/10−1 V1/10−3 V2/10−4

MadLoop 2.30984277049480 1.15802573980481 2.61399257786962 −5.55496881434693
Recola 2.30984277049406 1.15474814667339 2.61399259319492 −5.55496881453983
OpenLoops 2.30984277049366 1.15474813504440 2.61399265092704 −5.55496797160493
GoSam 2.30984277049006 1.15420829481100 2.61399257843170 −5.55496881427150

Table I.13: Matrix-element comparison at the phase-space points given in Table I.9 for the
partonic process γγ → e+νeµ

−ν̄µ.
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Fig. I.15: Relative differences of Vfinite(λ) between MadLoop and the average of OpenLoops
and Recola, δVfinite(λ), for the two far off-shell points PSP 1 and PSP 2, accompanied by lines
corresponding to a quadratic λ dependence of δVfinite(λ). See main text for more details.
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Fig. I.16: Relative differences of Vfinite(λ) between MadLoop and the average of OpenLoops
and RECOLA, δVfinite(λ), for the on-shell configurations PSP 3+4 (ZZ, upper plots) and
PSP 5+6 (WW, lower plots), accompanied by solid or dashed lines corresponding to a quadratic
or linear λ dependence of δVfinite(λ), respectively. See main text for more details.

with κ = 1 for exactly on-shell kinematic configurations (p2
V = m2

V ) and κ = 2 otherwise. The
coefficients δV (κ)

finite are by definition independent of λ.
Figure I.15 shows the results obtained for δVfinite(λ) at progressively smaller values of λ

for the two off-shell points PSP 1+2. Figure I.16 deals with the on-shell points PSP 3+4 for ZZ
production and PSP 5+6 for WW production, respectively. The chosen λ values are identical
for all partonic processes in each frame, but slighly shifted horizontally in Figs. I.15 and I.16
to improve readability. The error bars on the relative difference δVfinite(λ) are extracted from
the internal numerical estimate of MadLoop on the one side, and as the difference between
OpenLoops and Recola, which should be entirely due to numerical inaccuracies, on the other
side, resulting in an overall error estimate on δVfinite(λ) itself. The numerical investigation of
the on-shell phase-space points is particularly challenging because the propagators involved in
both the numerator and denominator of Eq. (I.63) diverge when λ→ 0 in a way that crucially
depends on the numerical accuracy at which p2

V = m2
V is realised. Moreover, the self-energy
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evaluation can also be numerically less stable in that regime (in the case of the W boson e.g. it
involves terms of order O(α log(Γ))). The above-mentioned estimates of the numerical stability
point towards log10 λ & −4 in the off-shell case and log10 λ & −2 in the on-shell case being
appropriate ranges for studying δVfinite(λ).

Figures I.15 and I.16 demonstrate that δVfinite(λ) between MadLoop and OpenLoops
indeed follow the expected scaling of Eq. (I.65) (at some phase-space points with even greater
values of κ), confirming that they stand beyond the target NLO EW accuracy in all kinematic
regimes and even beyond NNLO EW accuracy in the off-shell regions. We stress that within the
complex-mass scheme, virtual matrix elements of NLO EW corrections always have contributions
beyondO(α), and there is a priori no argument for deciding which incomplete set of beyond NLO
contributions better approximates the all-order result. The difference in the finite part of the
virtual matrix element between MadLoop and the other OLPs should therefore be considered,
if anything, as a systematic theoretical uncertainty, similarly to renormalization scale variations
in QCD. We note, however, that these small differences in the virtual matrix element do not
lead to resolvable effects in any of the differential observables presented in the context of this
comparison (see Sec. 7.3.4).

7.3.3 Integrated cross sections
The comparison of amplitudes at selected phase-space points in Sec. 7.3.2 essentially validates
the matrix-element generators (apart from their correct implementation and initialisation within
the corresponding integrators). In contrast, integrated cross sections focus on the validation of
the phase-space integrators and the performance of their implementations of IR-subtraction
techniques. Naturally, such comparisons on integrated level — even more so at the level of
distributions (discussed in Sec. 7.3.4) — might also uncover issues in the stable evaluation
of matrix elements in certain kinematical regions. However, to keep control of such issues,
most amplitude generators introduced in Sec. 7.2.2 employ internal stability checks for each
evaluated matrix element to guarantee that their numerical accuracy is sufficiently high such
that phenomenological results are not affected by possible numerical instabilities.

In this spirit, the results obtained from Recola, OpenLoops, and GoSam when inter-
faced to Sherpa have been combined, and are presented as a single result in the following presen-
tation. This is justified by the fact that all contributions apart from the virtual correction within
Sherpa are completely independent of the respective matrix-element generator, and their com-
parison would essentially not go beyond an internal check of Sherpa. Before combination, the
statistical compatibility of the integrated virtual contributions obtained with different OLPs was
verified. Consequently, only a single result labelled Sherpa+GoSam/OpenLoops/Recola is
shown. On the other side, it does make sense to involve integrated results obtained from different
integration frameworks that employ the same one-loop matrix elements in the comparison.

We apply the input parameters and phase-space cuts specified in Sec. 7.3.1. The integrated
results for off-shell ZZ production, which also involve the result of Refs. [225,499]29, are collected
in Table I.14, and those for off-shell WW production in Table I.15. For each of the applied
frameworks we state integrated cross sections at LO (σLO) and NLO EW (σNLO

EW ) accuracy with
the corresponding statistical errors δσLO and δσNLO

EW indicated in square brackets, referring to
the last stated digits of the respective results. Moreover, we provide a weighted average, defined

29We note again that those results, denoted here as MCBB+Recola, have been converted from the DIS to
the MS factorization scheme. Besides, we recall that in Ref. [225] a different treatment of the electromagnetic
coupling α was chosen for real photon radiation. These effects have been compensated for, which explains the
numerical difference to the cross sections presented here. The Sherpa+Recola results from Ref. [499] have not
been used here, but were generated anew for the present comparison.
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pp→ e+e−µ+µ− σLO σNLO
EW ∆σLO ∆σNLO

EW
[fb] [fb] [σ] [%�] [σ] [%�]

average 11.49675[8] 10.88697[15]

MCBB+Recola 11.49648[12] 10.88669[22] −2.9 −0.02 −1.7 −0.03
Munich+OpenLoops 11.49702[11] 10.88720[25] +3.2 +0.02 +1.2 +0.02
MoCaNLO+Recola 11.49666[26] 10.88734[56] −0.3 −0.01 +0.7 +0.03
Sherpa+GoSam/OpenLoops/Recola 11.49670[34] 10.88737[77] −0.1 −0.00 +0.5 +0.04
MadGraph5_aMC@NLO+MadLoop 11.4956[22] 10.8860[63] −0.5 −0.10 −0.1 −0.09

Table I.14: Comparison of integrated cross sections for hadronic e+e−µ+µ− (off-shell ZZ) pro-
duction, obtained with different integration frameworks.

pp→ e+νeµ
−ν̄µ σLO σNLO

EW ∆σLO ∆σNLO
EW

[fb] [fb] [σ] [%�] [σ] [%�]

average 448.5414[31] 438.1902[56]

Munich+OpenLoops 448.5468[45] 438.1920[75] +1.6 +0.01 +0.4 +0.00
MoCaNLO+Recola 448.538[10] 438.193[13] −0.4 −0.01 +0.2 +0.01
Sherpa+GoSam/OpenLoops/Recola 448.5364[46] 438.186[11] −1.4 −0.01 −0.4 −0.01
MadGraph5_aMC@NLO 448.541[40] 438.113[70] −0.0 −0.00 −1.1 −0.18

Table I.15: Comparison of integrated cross sections for hadronic e+νeµ
−ν̄µ (off-shell WW )

production, obtained with different integration frameworks.

from the individual cross sections σxi and their standard deviations δσxi via

σ̄x = (δσ̄x)2 ∑
i

σxi
(δσxi )2 , δσ̄x =

∑
i

1
(δσxi )2

− 1
2

x = LO, NLO EW . (I.66)

The deviations for both LO (∆σLO) and NLO EW (∆σNLO
EW ) cross sections with respect to the

averaged cross sections are quantified both in terms of standard deviations [σ]30 and as relative
deviations in permille [%�] in order to validate both the statistical agreement and the level of
precision on which this agreement could be achieved.

For both processes we find good statistical agreement between all compared codes on
the sub-permille level. For MCBB+Recola (only for off-shell ZZ), Munich+OpenLoops,
MoCaNLO+Recola, and Sherpa+GoSam/OpenLoops/Recola we are able to validate
integrated results even on the remarkable level of better than a tenth of a permille throughout,
which corresponds to a relative agreement of the integrated EW corrections at least at the level
of a permille.

7.3.4 Differential cross sections
In order to validate the different calculations not only in the resonance regions that dominate the
integrated cross sections discussed in the previous section, we perform also a comparison at the

30To compensate for the fact that this average depends on each single calculation i, this comparison is performed
in units of √

(δσxi )2 − (δσ̄x)2, (I.67)
which corresponds to comparing each single calculation with the average of the remaining ones, with result and
standard deviation of this average defined according to Eq. (I.66).

68



level of differential distributions. We have selected (pseudo-)observables that investigate different
regions of phase-space with certain peculiarities of the respective EW corrections: invariant-
mass distributions involving possible resonances exhibit large corrections of QED type, which
are driven by photon radiation off the involved leptons; high-energy tails of invariant-mass
and transverse-momentum distributions undergo large negative corrections due to EW Sudakov
logarithms, which are genuine weak effects and dominated by the virtual contributions; finally, we
also investigate azimuthal-angle distributions as examples for observables whose EW corrections
are only weakly phase-space dependent.

We start with a selection of distributions for off-shell ZZ production, which are shown
in Figs. I.17–I.21. All plots are organised as follows: The top–left frame depicts the abso-
lute predictions to give an idea of the overall size of the cross section in the respective region
of phase space, both at LO and NLO EW accuracy; we note here that we consider observ-
ables whose cross sections cover a range of up to five orders of magnitude. The top–right
frame shows the relative EW corrections, which vary between about −40% in the high-pT
tails of lepton transverse-momentum distributions and about +60% in invariant-mass distribu-
tions below resonance regions. In both frames, all five individual predictions for the respective
differential distribution are plotted, namely MCBB+Recola (blue), Munich+OpenLoops
(red), MoCaNLO+Recola (green), Sherpa+GoSam/OpenLoops/Recola (yellow), and
MadGraph5_aMC@NLO+MadLoop (cyan). The average of the five calculations, defined
binwise in analogy to the integrated cross sections in the previous section, is plotted on top
(black). Absolute predictions are shown both at LO (dashed) and NLO EW (solid) accuracy.
To illustrate the relative as well as the statistical agreement, we perform pairwise comparisons
between the individual predictions in the frames below: On the left-hand side, in each frame
the ratio of two predictions i and j over the overall average is plotted, accompanied by their
respective 1σ error bands, i.e.

(dσi/j ± δdσi/j)/dσ̄ . (I.68)

On the right-hand side, we show the deviation between the same two individual predictions i
and j in units of their combined standard deviation,

δdσij =
√
δdσ2

i + δdσ2
j , (I.69)

i.e. the plots are by construction symmetric. Since the available results from MCBB+Recola,
Munich+OpenLoops, MoCaNLO+Recola, and Sherpa+GoSam/OpenLoops/Recola
are typically about one order of magnitude more precise than the results provided by Mad-
Graph5_aMC@NLO+MadLoop, we start with their pairwise comparisons in frames 2–7. In
frame 8, we compare their average to the results from MadGraph5_aMC@NLO+MadLoop.

Figures I.17 and I.18 depict the invariant mass of the 4-lepton system, which exhibits the
Z → 4` peak aroundmZ and the ZZ production threshold atm4` & 2mZ, with the corresponding
photon-radiation dominated EW corrections around the resonances, detailed in Fig. I.17. In the
high-energy region, shown in Fig. I.18, the NLO EW corrections are driven by EW Sudakov
logarithms, and grow negatively to −20% at m4` ≈ 1 TeV. In the full range, all five predictions
agree very well on a statistical level. For the upper four calculations, this corresponds to a
permille-level agreement throughout, apart from the region below the Z → 4` resonance where
the cross section is suppressed by about four orders of magnitude compared to the peak region.

Figure I.19 shows the invariant mass of the µ+µ− system, which is typically produced via
an intermediate Z boson. The chosen range mµ+µ− ∈ [60; 260] GeV details both the resonance
region with its QED-dominated NLO EW corrections and an intermediate phase-space region
where the pair is far off shell, but the dominance of EW Sudakov logarithms does not set in
yet. We find agreement on a statistical level between all individual predictions, which again
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Fig. I.17: Technical comparison of NLO EW corrections to the distribution in the invariant mass
of the 4` system (resonance/threshold region) for hadronic e+e−µ+µ− (off-shell ZZ) production.
See main text of Sec. 7.3.4 for details.
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Fig. I.18: Technical comparison of NLO EW corrections to the distribution in the invariant mass
of the 4` system (high-energy region) for hadronic e+e−µ+µ− (off-shell ZZ) production. See
main text of Sec. 7.3.4 for details.
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Fig. I.19: Technical comparison of NLO EW corrections to the distribution in the invariant mass
of the µ+µ− pair for hadronic e+e−µ+µ− (off-shell ZZ) production. See main text of Sec. 7.3.4
for details.
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Fig. I.20: Technical comparison of NLO EW corrections to the distribution in the transverse
momentum of the anti-muon, pT,µ+ , for hadronic e+e−µ+µ− (off-shell ZZ) production. See
main text of Sec. 7.3.4 for details.

73



∆φµ+µ− [rad]

∆
d
σ

N
L
O

E
W

π3π/4π/2π/40

+3σ
+2σ
+1σ

0
−1σ
−2σ
−3σ

∆φµ+µ− [rad]

∆
d
σ

N
L
O

E
W

π3π/4π/2π/40

+3σ
+2σ
+1σ

0
−1σ
−2σ
−3σ

∆φµ+µ− [rad]

d
σ

N
L
O

E
W

/
d
σ̄

N
L
O

E
W

π3π/4π/2π/40

1.04

1.02

1

0.98

0.96

∆φµ+µ− [rad]

d
σ

N
L
O

E
W

/
d
σ̄

N
L
O

E
W

π3π/4π/2π/40

1.04

1.02

1

0.98

0.96

∆
d
σ

N
L
O

E
W

+3σ
+2σ
+1σ

0
−1σ
−2σ
−3σ

∆
d
σ

N
L
O

E
W

+3σ
+2σ
+1σ

0
−1σ
−2σ
−3σd

σ
N

L
O

E
W

/
d
σ̄

N
L
O

E
W

1.004

1.002

1

0.998

0.996d
σ

N
L
O

E
W

/
d
σ̄

N
L
O

E
W

1.004

1.002

1

0.998

0.996

∆
d
σ

N
L
O

E
W

+3σ
+2σ
+1σ

0
−1σ
−2σ
−3σ

∆
d
σ

N
L
O

E
W

+3σ
+2σ
+1σ

0
−1σ
−2σ
−3σd

σ
N

L
O

E
W

/
d
σ̄

N
L
O

E
W

1.004

1.002

1

0.998

0.996d
σ

N
L
O

E
W

/
d
σ̄

N
L
O

E
W

1.004

1.002

1

0.998

0.996

∆
d
σ

N
L
O

E
W

+3σ
+2σ
+1σ

0
−1σ
−2σ
−3σ

∆
d
σ

N
L
O

E
W

+3σ
+2σ
+1σ

0
−1σ
−2σ
−3σd

σ
N

L
O

E
W

/
d
σ̄

N
L
O

E
W

1.004

1.002

1

0.998

0.996d
σ

N
L
O

E
W

/
d
σ̄

N
L
O

E
W

1.004

1.002

1

0.998

0.996

∆
d
σ

N
L
O

E
W

+3σ
+2σ
+1σ

0
−1σ
−2σ
−3σ

∆
d
σ

N
L
O

E
W

+3σ
+2σ
+1σ

0
−1σ
−2σ
−3σd

σ
N

L
O

E
W

/
d
σ̄

N
L
O

E
W

1.004

1.002

1

0.998

0.996d
σ

N
L
O

E
W

/
d
σ̄

N
L
O

E
W

1.004

1.002

1

0.998

0.996

∆
d
σ

N
L
O

E
W

+3σ
+2σ
+1σ

0
−1σ
−2σ
−3σ

∆
d
σ

N
L
O

E
W

+3σ
+2σ
+1σ

0
−1σ
−2σ
−3σd

σ
N

L
O

E
W

/
d
σ̄

N
L
O

E
W

1.004

1.002

1

0.998

0.996d
σ

N
L
O

E
W

/
d
σ̄

N
L
O

E
W

1.004

1.002

1

0.998

0.996
∆

d
σ

N
L
O

E
W

+3σ
+2σ
+1σ

0
−1σ
−2σ
−3σ

∆
d
σ

N
L
O

E
W

+3σ
+2σ
+1σ

0
−1σ
−2σ
−3σd

σ
N

L
O

E
W

/
d
σ̄

N
L
O

E
W

1.004

1.002

1

0.998

0.996d
σ

N
L
O

E
W

/
d
σ̄

N
L
O

E
W

1.004

1.002

1

0.998

0.996

d
σ

N
L
O

E
W

/
d
σ

L
O

−
1

[%
]

+1

0

−1

−2

−3

−4

−5

−6

−7

−8

−9

MadGraph5 aMC@NLO+MadLoop

Sherpa+GoSam/OpenLoops/Recola

MoCaNLO+Recola

Munich+OpenLoops

BBMC+Recola

d
σ

N
L
O

E
W

/
d
σ

L
O

−
1

[%
]

+1

0

−1

−2

−3

−4

−5

−6

−7

−8

−9

d
σ
/
d
∆

φ
µ
+

µ
−

[f
b
/
ra

d
] LHC

√
s = 13 TeV

pp → e+e−µ+µ−

5

2

1
NLO EW
LO
X

average

d
σ
/
d
∆

φ
µ
+

µ
−

[f
b
/
ra

d
] LHC

√
s = 13 TeV

pp → e+e−µ+µ−

5

2

1

Fig. I.21: Technical comparison of NLO EW corrections to the distribution in the azimuthal
angle between the anti-muon and the electron, ∆φµ+µ− , for hadronic e+e−µ+µ− (off-shell ZZ)
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corresponds to a permille level agreement in the full considered range for MCBB+Recola,
Munich+OpenLoops, MoCaNLO+Recola and Sherpa+GoSam/OpenLoops/Recola.

As an example of a Sudakov-dominated observable, Fig. I.20 depicts the distribution in
the transverse momentum of the produced anti-muon, with the typical large negative NLO
EW corrections of −35% at pT,µ+ ≈ 1 TeV. Statistically, the agreement is again good for all
predictions in the full range. However, in the highly suppressed tail, a relative numerical precision
better than a percent is only achieved by the most precise predictions.

The azimuthal-angle distribution of the µ+µ− pair in Fig. I.21 exhibits a preference for
back-to-back configurations, while the collinear region dominated by γ∗ → µ+µ− splittings is
suppressed by the applied lepton–lepton isolation cut. Overall, the distribution varies by less
than one order of magnitude, and also the NLO EW corrections do not undergo particular
enhancements and show variations of less than 5%. All individual predictions agree again very
well on a statistical level, which corresponds to permille level agreement Munich+OpenLoops,
MCBB+Recola, MoCaNLO+Recola and Sherpa+GoSam/OpenLoops/Recola, and
at least percent level agreement for the MadGraph5_aMC@NLO+MadLoop prediction.

For off-shell WW production, we present a selection of distributions in Figs. I.22–I.25. The
plots are organised analogously to those of ZZ production, but since withMunich+OpenLoops
(red), MoCaNLO+Recola (green), Sherpa+GoSam/OpenLoops/Recola (yellow), and
MadGraph5_aMC@NLO+MadLoop (cyan) there are only four predictions, pairwise com-
parisons are shown for all of them in frames 2–7. As for ZZ production, we find very good
statistical agreement among the individual predictions for all considered observables.

We start with the pseudo-observable m2`2ν , the invariant mass of the 2`2ν system, in
Fig. I.22. Above the WW threshold where the bulk of the cross section is, all individual pre-
dictions agree on the permille level, whereas the highly suppressed region below the threshold
is by far less precise.

The distribution in the invariant mass of the µ+e− system, shown in Fig. I.23, exhibits the
typical Sudakov behaviour with negative NLO EW corrections of ≈ −20% at mµ+e− ≈ 1 TeV.
The statistical agreement corresponds to a permille-level agreement for Munich+OpenLoops,
MoCaNLO+Recola and Sherpa+GoSam/OpenLoops/Recola in the full range. under
consideration.

The missing transverse-momentum distribution, depicted in Fig. I.24, falls particularly
steeply since the double-resonant WW configuration is suppressed on the Born phase space for
pT,miss &MW. Correspondingly, the precision is restricted to the level of few percent in the tail
of the distribution.

Finally, the distribution in the azimuthal-angle between the anti-muon µ+ and the electron
e− exhibits no strong phase-space dependence, and the NLO EW corrections are quite flat. For
Munich+OpenLoops, MoCaNLO+Recola and Sherpa+GoSam/OpenLoops/Recola,
the good statistical agreement corresponds to a permille agreement, while deviations are well
below one percent throughout for MadGraph5_aMC@NLO+MadLoop .

Beside the kinematic distributions discussed above, a number of observables was investi-
gated in this comparison. The result is a reasonable statistical agreement for all distributions
under consideration. Moreover, the observed deviations reflect the behaviour expected from a
purely statistical distribution.

7.4 Conclusions
In this contribution we have performed a detailed comparison of calculations of NLO EW cor-
rections between different automated fixed-order codes. As benchmark cases we considered
off-shell WW and ZZ production, which offer a rich resonance structure. This allowed us to
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Fig. I.22: Technical comparison of NLO EW corrections to the distribution in the invariant mass
of the 2`2ν system (pseudo-observable) for hadronic e+νeµ

−ν̄µ (off-shell WW ) production. See
main text of Sec. 7.3.4 for details.

cross-validate many technical subtleties in the different implementations, in particular the re-
quired renormalization in the complex-mass scheme. First, we compared results obtained with
the tools MadLoop, Recola, OpenLoops, GoSam and NLOX at the amplitude level and
found very good agreement at NLO EW accuracy. Second, in order to compare results at the
level of integrated cross sections, these amplitude providers have been interfaced in different
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Fig. I.23: Technical comparison of NLO EW corrections to the distribution in the invariant
mass of the µ+e− system, for hadronic e+νeµ

−ν̄µ (off-shell WW ) production. See main text of
Sec. 7.3.4 for details.

combinations with the Monte Carlo frameworks BBMC, MoCaNLO, Munich, Sherpa and
MadGraph_aMCNLO, which entail the subtraction of QED singularities. Again very good
agreement has been found in various differential distributions including resonance peaks and
high-energy tails. This study therefore strengthens our confidence in the correctness of existing
and future predictions including NLO EW corrections from the tools considered here.
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Fig. I.24: Technical comparison of NLO EW corrections to the distribution in the missing
transverse momentum, for hadronic e+νeµ

−ν̄µ (off-shell WW ) production. See main text of
Sec. 7.3.4 for details.
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Chapter II

Parton distribution functions

1 Theoretical uncertainties and dataset dependence of parton distributions 1

We study theoretical uncertainties on parton distributions (PDFs) due to missing higher order
(MHO) corrections by determining the change of PDFs when going from next-to-leading (NLO)
to next-to-next-to-leading order (NNLO) theory. Based on the NNPDF3.1 framework, we com-
pare PDF determinations obtained from different datasets, specifically a global, a proton-only,
and a collider-only dataset. We show that PDF determinations obtained from a wider input
dataset exhibit greater perturbative stability, and thus are likely to be affected by smaller the-
oretical uncertainties from MHOs. We also show that the effect of including deuterium nuclear
corrections is smaller than that of excluding the deuterium data altogether.

1.1 Parton distribution uncertainties
The accurate determination of the uncertainties on parton distribution functions (PDFs) of
the proton [402] has been the main challenge in PDF studies at the LHC. For instance, PDFs
represent one of the main sources of uncertainty in Higgs physics [236, 594]; they also have a
significant impact on searches of physics beyond the standard model (see e.g. [595]), and on
precision measurements such as the determination of the W boson mass [596]. Uncertainties
on the current combined PDF4LHC15 PDF set [597] are typically of order 3-5% in the region
covered by data, but the more recent NNPDF3.1 PDF set [598], which includes a wide array
of LHC data, has PDF uncertainties typically between 1% and 3% in the data region (not
including, in either case, the uncertainty on αs).

This uncertainty — indeed, what is usually referred to as “PDF uncertainty” — includes
the propagated uncertainty on the data used for PDF determinations, as well as further uncer-
tainties due to the fitting methodology, but it does not include any theory error. Specifically,
the current PDF uncertainty does not include a contribution accounting for the fact that PDFs
are determined using fixed-order perturbative QCD, and thus surely one has to account for a
missing higher order uncertainty (MHOU). As the uncertainty due to the data and methodol-
ogy keeps decreasing, this theory error is bound to stop being negligible, and eventually become
dominant.

So far, there has been a broad consensus that the use of the widest possible dataset for
PDF determination — leading to so-called global PDF fits — is advantageous. Indeed, on the
one hand, more data contain more information and thus allow for the accurate determination
of the widest set of PDF in the most extended kinematic region. On the other hand, the use
of multiple datasets provides a cross-check on both the theory and methodology. One may
however ask whether the use of a wider dataset is also advantageous — or indeed not — in
terms of theoretical uncertainties, specifically the MHOUs. In particular, it is be important to
understand if MHOUs are likely to be smaller with a global dataset or with a reduced dataset.

1 S. Forte, Z. Kassabov, J. Rojo, L. Rottoli
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Fig. II.1: Distance between the central values (left) and the uncertainties (right) of NLO and NNLO
global PDFs.

1.2 Missing higher order corrections and dataset dependence
1.2.1 Comparing NLO and NNLO PDFs
Quite in general, there is currently no way to reliably estimate the MHOUs. However, when
several perturbative orders are known, we may at least study the behaviour of the perturbative
expansion. Assuming reasonable convergence, the shift between, say, known NLO and NNLO
results then provides a reasonable estimate of the MHOU on the NLO result.

We will thus address the problem of MHOU on PDFs by studying the way PDF change
from NLO to NNLO. To this purpose, we have produced PDF determinations based essentially
on the same dataset as in the NNPDF3.1 global analysis [598]. The only difference is that, while
in NNPDF3.1 some jet data for which NNLO corrections were not yet available were treated
approximately, here we only include both at NLO and NNLO jet data for which exact NNLO
theory is available (see Sect. 4.4 of Ref. [598]), and using the exact NNLO corrections [129].
This ensures perturbative consistency.

In Fig. II.1 we show the distance between PDFs determined at NLO and at NNLO. Recall
that the distance d is defined as the difference in units of standard deviation, normalized so that
d = 10 corresponds to an one-σ shift (see Ref. [598] and references therein for a more detailed
discussion). It is clear from Fig. II.1 that, whereas no distance between central values is greater
than one-σ in the data region, several distances (in particular for the gluon and light quarks)
are of order one-σ. But a one-σ distance means that NLO-NNLO shift is the same size as the
PDF uncertainty, so we conclude that, at NLO, MHOUs on central values are comparable to
PDF uncertainties. Distances between uncertainties are instead of order one, i.e. comparable
to a statistical fluctuation. This means that PDF uncertainties at NLO and NNLO do not
differ by a statistically significant amount, consistent with the expectation that they reflect the
uncertainty on the data and methodology, and thus, by and large, do not systematically depend
on the perturbative order.

1.2.2 Dataset dependence
In order to study the issue that we set out in the introduction, namely, the dataset dependence
of the MHOUs associated to a fit of parton distributions, we have repeated the previous PDF
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NLO NNLO NLO/NNLO ∆
global 1.279 1.253 1.02 1.16
proton 1.248 1.193 1.05 1.97
collider 1.181 1.114 1.06 2.07

Table II.1: Value of χ2 per data point for the global, proton-only, and collider-only fits at NLO and
NNLO. The NLO/NNLO ratio, and difference normalized to the standard deviation (see text) are also
given. Note that the total number of data points Ndat in each of the three fits is different.

determination now based on two reduced datasets. First, we have produced a proton-only
determination, in which we excluded all data with nuclear and deuterium targets (specifically
fixed-target deep-inelastic and Drell-Yan production). Then, we have produced a collider-only
determination, in which we have excluded all fixed-target DIS and DY data altogether.

These PDF determinations from smaller datasets were already discussed in Ref. [598] (as
well as in previous NNPDF studies [422,599]) where it was argued that, even though these smaller
datasets are in principle more consistent, the increased theoretical reliability does not make up
for the great loss in accuracy: the PDF uncertainty increases monotonically when reducing
the dataset, and there is no evidence of inconsistency between the data entering the global fit.
With this motivation, the use of the more global dataset for the baseline PDF determination
was advocated. These two PDF determinations have now been redone starting from the global
dataset described in Sec. 1.2.1.

The values of the total χ2 per data point for these NNPDF3.1-based PDF determinations
are collected in Table II.1. In each case, we show the χ2 per data point at NLO and NNLO,
their ratio, and the difference ∆ = χ2

NLO−χ
2
NNLO√

2Ndat
which is a measure of the improvement of the χ2

in units of its standard deviation. Note that the results in Table II.1 only consider the dataset
that was included in the fit in each case, and consequently the total number of data points Ndat
in each of the three fits is different. Clearly, the PDF fits based on smaller datasets lead to a
better χ2, due to the greater consistency of the dataset. Interestingly, however, the deterioration
of the total χ2 from NNLO to NLO, as measured both by the χ2 ratios, and the difference in
units of the standard deviation, is more severe for the fits based on a smaller datasets, and thus
largest in the case of the collider-only fit. This provides a first indication that the use of a wider
dataset may lead to greater perturbative stability.

To investigate this issue further, we have computed again the distance between the NLO
and NNLO fits, as shown in Fig. II.1, but now for the proton-only and collider-only PDF sets.
Results are shown in Fig. II.2. It is clear that while distances which were already sizable in the
global fit (specifically for the gluon and down quark) are still big, now also the light quark PDFs
(in particular also up and anti-up) display sizable NLO-to-NNLO shifts.

In order to achieve a fully quantitative comparison, in Fig. II.3 we display the shift of PDF
central values between the NLO and NNLO fits, normalized to the NLO, for the gluon and light
quarks, comparing the three PDF determinations. In order to facilitate visualization, the shifts
are symmetrized about the x axis. It is clear that while for the gluon the shift is of similar size
(and quite small) in the three PDF determinations, for the quarks there is a uniform hierarchy:
the smallest dataset, i.e. the collider-only PDF set, nearly always displays the largest shifts,
with very few localized exceptions.

A simple explanation of the greater perturbative stability of the more global fit seen in
Table II.1 could be that hadron collider processes, which have larger perturbative corrections
than deep-inelastic scattering, carry a greater weight in the fits to a reduced dataset: the global
fit improves less because it is less consistent. But in this case, we would expect the global fit,

82



0.0 0.2 0.4 0.6 0.8 1.0

x

0

2

4

6

8

10

12
d

[x
,Q

]
Central Value

g

d

u

d̄

ū
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ū

s+

c+

0.0 0.2 0.4 0.6 0.8 1.0

x

0

2

4

6

8

10

12

Q = 100 GeV

Uncertainty

NNPDF3.1 collider-only, NLO vs NNLO

Fig. II.2: Same as Fig. II.1, but for the proton-only (top) and collider-only (bottom) PDF determinations.

due to its poorer consistency, not to show a significant improvement in PDF uncertainties, or
to display a sizable change in results when going from NLO to NNLO. Instead, the opposite is
the case. As extensively discussed in Ref. [598] the more global fit has significantly smaller PDF
uncertainty, and as shown in Fig. II.3 it also changes less from NLO to NNLO. Hence the global
fit is both less uncertain and more perturbatively stable.

An alternative explanation of the observed perturbative stability then seems more likely.
Namely, that it is a consequence of the fact that missing higher order terms for different pro-
cesses distort PDFs randomly by pulling them in different directions. Therefore, in a more
global dataset in which the same PDF combination is determined from constraints by different
processes, these uncertainties tend to average out.

1.3 Deuterium nuclear corrections
Perhaps the main advantage of the PDF fits based on smaller datasets is their greater consistency
not only from the experimental, but also from the theoretical point of view. In particular, proton-
only PDFs do not make use of any data that are affected by the poorly known nuclear corrections.
It is then interesting to ask how the size of nuclear corrections compares to the uncertainties
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ū

(x
,Q

2
)

NNPDF31, Q = 100 GeV

Global

Collider Only

Proton Only

0.0 0.1 0.2 0.3 0.4 0.5

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(N
N

L
O

-
N

L
O

)/
N

L
O

fo
r
d̄

(x
,Q

2
)

NNPDF31, Q = 100 GeV

Global

Collider Only

Proton Only

0.0 0.1 0.2 0.3 0.4 0.5

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(N
N

L
O

-
N

L
O

)/
N

L
O

fo
r
s

+
(x
,Q

2
)

NNPDF31, Q = 100 GeV

Global

Collider Only

Proton Only

Fig. II.3: The relative shift between the central values of the NLO to NNLO PDFs normalized to the
NLO, for the global, collider-only, and proton-only PDF determinations. Results are shown for, from left
to right and from top to bottom, the gluon, up, down, anti-up, anti-down and total strange+antistrange
PDFs. To facilitate visualization, the shifts are symmetrized about the x axis.

that we have discussed so far. Whereas existing determinations of heavy nuclear corrections are
affected by large uncertainties [600], we may at least compare PDF determinations in which a
model of nuclear effects for deuterium is included.

In order to isolate this effect, we have thus produced a PDF determination in which
data using heavier nuclear targets have been excluded (hence specifically neutrino deep-inelastic
scattering data) but data with deuterium targets (both deep-inelastic and fixed-target Drell-
Yan) are kept. We then compare this fit either to the proton-only fit, or to itself with deuterium
corrections included using the MMHT14 best-fit model of Ref. [601] (with default settings).
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Fig. II.4: Distances between a fit with proton and deuterium target data and the proton-only fit (bottom)
compared to the distances between a fit with proton and deuterium target data with and without linear
corrections.

The corresponding distances between these fits are shown in Fig. II.4. It is clear that the
effect of including the deuterium nuclear corrections is rather smaller than that of the deuterium
data itself — whose impact is instead comparable to that of the NNLO corrections. We can
thus conclude that the inclusion of deuterium data in the global PDF fit appears to be currently
advantageous, in the sense that the impact of this data on the PDFs is greater than the likely
size of their uncertainty due to missing nuclear corrections. On the other hand, if these data are
included, some estimate of the associated theoretical uncertainty, arising both from deuterium
nuclear corrections and from MHOs, should be performed, in view of the small size of the ensuing
PDF uncertainty.

1.4 Conclusions
We have demonstrated that PDF determinations based on a wider dataset are characterized by
greater perturbative stability, and thus are most likely to exhibit smaller theoretical uncertainties
related to missing higher orders. In addition, we have shown that the inclusion of data taken
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with nuclear target, and specifically with deuterium ones, appears to be advantageous at present,
in that the uncertainty related to the modeling of deuterium nuclear corrections appears to be
rather smaller than both the MHOU and of the impact of this data on PDF uncertainties.

These results provide further evidence that the inclusion of theoretical uncertainties in
PDF uncertainties, specifically those related to missing higher orders, but also to nuclear cor-
rections, is now one of the highest priorities. An interesting observation in this respect is that
a possible way to approach the determination of MHOU on PDFs might be to study the way
they vary between different sets of experimental measurements. Indeed, our study suggests that
these uncertainties tend to compensate when combining different classes of datasets. This, in
turn, hints at the fact that the size of the MHOUs might be estimated by performing dataset
variations and studying the ensuing distribution of the best-fit PDFs. These topics are the
subject of ongoing and forthcoming investigations.

Acknowledgements
Stefano Forte thanks Daniel Maitre for interesting discussions on PDF uncertainties during the
workshop. Stefano Forte is supported by the European Research Council under the European
Union’s Horizon 2020 research and innovation Programme (grant agreement ERC-AdG-740006).
Juan Rojo and Luca Rottoli are supported by an European Research Council Starting Grant
“PDF4BSM”. The research of Juan Rojo is also partially supported by the Netherlands Organi-
zation for Scientific Research (NWO).

86



Chapter III

Jet substructure studies

1 Towards extracting the strong coupling constant from jet substructure at
the LHC 1

Recent advances in jet substructure have led to a new class of jet observables that are amenable
to systematically-improvable calculations and are robust to the complex environment of the
Large Hadron Collider (LHC). These observables exploit grooming to reduce non-perturbative
contributions and simplify perturbative calculations. With these recent advances in both theory
and experiment, we believe it is the appropriate time to begin investigating the possibility of
extracting the strong coupling constant αs from jet substructure. In this section, we perform
a proof-of-principle sensitivity study to demonstrate the suitability of such measurements to
add useful information to the existing precision extractions of αs. We highlight a number
of theoretical and experimental advantages of using groomed observables for αs extraction,
and we discuss several difficulties of the LHC environment. Using a simplified approach, we
show that a measurement of αs with an approximate 10% uncertainty should be feasible at the
LHC. This result motivates a complete analysis with a full set of theoretical and experimental
considerations, and we present a number of directions where improvements on both the theory
and experiment sides could be made in the near future.

1.1 Introduction
In quantum chromodynamics (QCD), the strong coupling constant (αs) is responsible for the
strength of interactions between quarks and gluons. Governed by this fundamental parameter,
a plethora of strong-force phenomena emerge, including the binding of partons into massive
hadrons that are responsible for most of the visible energy-density in the universe, and the
creation of collimated sprays of hadrons known as jets that are ubiquitous at high-energy particle
colliders. The internal structure of jets (jet substructure) has been extensively exploited to
search for new particles at the Large Hadron Collider (LHC). Now that both the theoretical and
experimental tools of jet substructure have reached a high degree of maturity [602–606], it is
time to ask if the radiation patterns inside jets can be used to extract fundamental parameters
of the Standard Model, such as αs.

There is a strong motivation (pun intended) for making a precise measurement of αs. The
uncertainty in αs is a limiting factor in our predictions for the stability of the universe [607],
and the uncertainty in αs at a variety of scales sets a model-independent sensitivity to strongly-
interacting particles beyond the Standard Model [608,609]. Now that many scattering processes
have been calculated to a high perturbative order, the uncertainty on αs (σαs) can be limiting
in the overall accuracy; numerically α3

s ∼ σαs , so higher-order terms can be smaller than the
leading-order correction uncertainty (see e.g. gg → H at N3LO [610]). Determinations of αs
probe a wide variety of physical phenomena, and the consistency between methods is both a
crucial test of the theory and an important ingredient to make accurate predictions for the LHC
and beyond.

The world-average value for αs at the Z boson mass (mZ) is 0.118±0.0013, an impressive
1 I. Moult, B. Nachman, G. Soyez, J. Thaler (section coordinators); S. Chatterjee, F. Dreyer, M. V. Garzelli,

P. Gras, A. Larkoski, S. Marzani, A. Siódmok, A. Papaefstathiou, P. Richardson, T. Samui

87



0.11 0.115 0.12 0.125 0.13

Thrust

←top cross-section (CMS)

↵s(M
2
Z)

0.135 0.14

Pythia A14 ± VAR2 (NNPDF)

←Herwig/Sherpa default

PDG

5% 10%5%

MS scheme
__

Pythia Monash→
←Pythia Monash CMW

Fig. III.1: Various values of αs in the MS scheme, including the world-average shown as a
black dashed line with a grey uncertainty band [611]. The point labeled Thrust is from LEP
data [618–627]. The measurement using the CMS top cross-section measurement is the first
NNLO extraction at the LHC [628]. The other points are the αs parameter value used in the
final state shower in various PS generaters: Herwig 7 [584] and Sherpa [415] use the world-
average by default, while Pythia 8 [629,630] employs a higher value in both the Monash default
tune [631] and the A14 tunes (with VAR2 as an A14 uncertainty variation) [632]. The order at
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1.1% total uncertainty [611].2 There have been significant discussions in the community about
the challenges and validity of various methods to extract αs (see for instance [611–617]). The
most precise (and dominant) input to the world average is the αs value from lattice QCD
calculations combined with measurements of B-hadron mass differences, with an uncertainty
that is less than 1%. After the lattice, the most precise determination is from measurements
and calculations of thrust and the C-parameter in e+e− collisions [618–627]. These methods are
sensitive to very different regimes of QCD and, interestingly, differ from each other at about the
5% level, corresponding to a more than 3σ tension.

Extractions based on e+e− event shapes are sensitive to soft and collinear regions of phase
space, which are modeled with precision using higher-order resummation. Figure III.1 shows
various values of αs extracted with next-to-next-to-leading order (NNLO) calculations including
various levels of resummation, such as next-to-next-to-next-to-leading logarithmic (N3LL) for
the thrust-based extraction. Also shown are the values of αs used as inputs to various Parton
Shower (PS) generators.3 The value of αs in the final-state PS is also sensitive to the soft and
collinear regime of QCD (albeit in different ways); interestingly, the values used in the Pythia 8
program [629, 633], which are fit to e+e− event shape data, suggest a higher value of αs than
the lattice result by about 15%. Another challenge with the event-shape extraction is that
non-perturbative (NP) corrections are nearly degenerate with changes to αs [618]. This is in
part because techniques to parametrically separate NP effects from perturbative effects (i.e. jet

2Unless otherwise specified, we always report αs at the Z boson mass in the MS scheme.
3Note that these programs implement much more than just the QCD shower. For example, radiated photons

are also generated, though the impact of those electroweak processes is quite negligible here (as opposed to photons
from π0 → γγ).
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grooming techniques to be discussed below) were not mature at the time of the Large Electron
Positron (LEP) collider, and because the beam energies available at LEP did not allow for a
large lever-arm between energy scales. The sensitivity to low-energy scales where QCD is in the
NP regime is also a key challenge for the lattice determination. It would therefore be timely for
a precision extraction of αs using jets at the LHC.

For most analyses at the LHC so far, jets have been used mainly as proxies for quark
and gluon four-vectors. The multiplicity and kinematics of jets in purely hadronic final states
can be predicted to high αs orders in perturbation theory with e.g. NNLOJET [129, 287] and
NLOJet++ [417,634]. As a result, measurements of jet multiplicities, energies, and angles can be
used to extract αs [635–639]. Even though these measurements have achieved an uncertainty of
around 5%, they have not yet been included in the Particle Data Group (PDG) combination [611]
since they are using only next-to-leading-order (NLO) theory calculations. With recent progress
in higher-order calculations, this will likely change soon, and it is noteworthy that an extraction
using the recent NNLO tt̄ cross-section [26] is now included (see Fig. III.1).

In extractions based on fixed-order perturbation theory, the collinear region defining the
internal structure of jets is avoided in part due to the lack of precision calculations.4 It is
important to remember that jets are not in one-to-one correspondence with individual quarks
and gluons, but rather to clusters of hadrons resulting from many quarks and gluons; for this
reason, the substructure of jets is also governed by αs. Recent theoretical and experimental
advances in jet substructure have shown that the radiation pattern inside jets has great physics
potential [602–606]. To date, the focus of jet substructures studies has been mostly on tagging
the origin of jets and searching for physics beyond the Standard Model. However, present and
future precision may be sufficient to make a useful measurement of αs.

A key tool to facilitate a substructure extraction of αs are jet grooming techniques, which
systematically removes soft and wide-angle radiation from jets [640–645]. Jet grooming can
parametrically separate the NP radiation in the jet from the hard perturbatively-described
components. At a hadron collider, grooming also mitigates the contribution from the underlying
event and additional nearly simultaneous interactions (pileup). Theoretical calculations for
groomed observables have been performed at NNLL [646,647] and NLL [648,649] accuracy and
will be extended to higher orders as calculations become available. Recently, ATLAS [650] and
CMS [651] demonstrated 5-10% measurement uncertainties of these calculated quantities using
existing technologies.

The purpose of this section is to study the feasibility of a measurement of αs using jet
substructure at the LHC, using jet shapes that are infrared and collinear (IRC) safe. Similar
techniques would of course also be interesting at both a low- and high-energy e+e− collider; we
focus here on pp since high-quality data are now pouring out of the LHC. We view this work as
part of a broader program to apply jet grooming techniques for precision QCD (see also Ref. [364]
for applications to the top quark mass). There are significant experimental and theoretical
challenges to achieve success in this program, but we believe it is possible with community
synergy. An αs extraction represents a concrete goal to push the accuracy and understanding
of jet substructure calculations in particular and QCD calculations more generally.

This remainder of this work is organized as follows. In Sec. 1.2, we define the observables
and grooming strategies that will be considered in this study. In Sec. 1.3, we highlight a num-
ber of theoretical and experimental benefits of jet grooming, which make groomed observables
particularly interesting for extractions of αs. In Sec. 1.4, we discuss the sensitivity of groomed
jet mass to the value of αs using both analytic expressions and PS generators. In Sec. 1.5, an
idealized setup is used to illustrate how an extraction of αs might work at the LHC, using real-

4Logarithms of the jet radius R may be important when the jet radius is small, and there are techniques to
incorporate these corrections into fixed-order calculations [211,212].
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istic estimates of both the theoretical and experimental uncertainties. We conclude in Sec. 1.6
and discuss future directions for improving both the theoretical and experimental uncertainties
for αs extractions from jet substructure.

1.2 Observable and Algorithm Definitions
In this subsection, we briefly review the definitions of the observables and grooming procedures
that we will focus on in this study.

1.2.1 Two-point Correlators
A simple class of jet shape observables that have sensitivity to the value of αs are two-point
correlation functions [652,653]. There has been significant theoretical study of these objects, and
their perturbative behavior is understood to relatively high accuracy. For a set of constituents
{i} in a jet J , the two-point correlation functions in pp collisions are defined as

e
(α)
2

∣∣∣∣
pp

= 1
p2
TJ

∑
i<j∈J

pT i pTj

(
Rij
R

)α
, (III.1)

where pT i is the transverse momentum of particle i with respect to the beam axis, pTJ is the
transverse momentum of the jet, Rij is the distance between particles i and j in the rapidity-
azimuthal angle plane, and R is the jet radius. Note that some authors define the correlation
functions without the Rα factor in the denominator. The angular exponent α is a parameter that
controls the sensitivity to wide-angle emissions. If all emissions in the jet are nearly collinear,
then the two-point energy correlation function reduces to a function of the jet mass (m) when
α = 2:

e
(2)
2 ∼ m2

R2 p2
T

. (III.2)

In this study, we primarily restrict ourselves to the case of α = 2 as this has been the focus
so far from both the theoretical [646–649] and experimental [650, 651] communities. However,
it is interesting to study if other values of α could provide improved sensitivity to αs. Another
benchmark value is α = 1, which corresponds to kT (or broadening) instead of mass. The two-
point correlation functions are closely related to the jet angularities [654–657], with the latter
being defined with respect to a jet axis.

1.2.2 Grooming Techniques
There are a variety of jet grooming techniques to mitigate soft and wide-angle jet contamina-
tion [640–645]. We focus here on the SoftDrop algorithm [645], defined using Cambridge/Aachen
(C/A) reclustering [658–660]. Starting from a jet identified with an IRC-safe jet algorithm (such
as anti-kt [661]), SoftDrop proceeds as follow:

1. Recluster the jet using the C/A clustering algorithm, producing an angular-ordered branch-
ing history for the jet.

2. Step through the branching history of the reclustered jet. At each step, check the SoftDrop
condition

min
[
pT i, pTj

]
pT i + pTj

> zcut

(
Rij
R

)β
, (III.3)

where zcut is a parameter defining the scale below which soft radiation is removed, and β
is an exponent that controls the angular scale for removal. If the SoftDrop condition is
not satisfied, then the softer of the two branches is removed from the jet. This process is
then iterated on the harder branch.
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FIG. 17: The smaller elongated ellipses show the experimental
39% CL error (1-sigma for αs) and best fit points for different
global data sets at N3LL′ order in the R-gap scheme and
including bottom quark mass and QED effects. The default
theory parameters given in Tab. III are employed. The larger
ellipses show the combined theoretical plus experimental error
for our default data set with 39% CL (solid, 1-sigma for one
dimension) and 68% CL (dashed).

experimental error ellipses, hence to larger uncertainties.

It is an interesting but expected outcome of the fits
that the pure experimental error for αs (the uncertainty
of αs for fixed central Ω1) depends fairly weakly on the
τ range and the size of the global data sets shown in
Fig. 17. If we had a perfect theory description then we
would expect that the centers and the sizes of the error
ellipses would be statistically compatible. Here this is
not the case, and one should interpret the spread of the
ellipses shown in Fig. 17 as being related to the theo-
retical uncertainty contained in our N3LL′ order predic-
tions. In Fig. 17 we have also displayed the combined
(experimental and theoretical) 39% CL standard error
ellipse from our default global data set which was al-
ready shown in Fig. 11a (and is 1-sigma, 68% CL, for
either one dimensional projection). We also show the
68% CL error ellipse by a dashed red line, which corre-
sponds to 1-sigma knowledge for both parameters. As
we have shown above, the error in both the dashed and
solid larger ellipses is dominated by the theory scan un-
certainties, see Eqs. (68). The spread of the error ellipses
from the different global data sets is compatible with the
1-sigma interpretation of our theoretical error estimate,
and hence is already represented in our final results.

Analysis without Power Corrections

Using the simple assumption that the thrust distribution
in the tail region is proportional to αs and that the main

αs(mZ)±(pert. error) χ2/(dof)

N3LL′ with ΩRgap
1 0.1135 ± 0.0009 0.91

N3LL′ with Ω̄MS
1 0.1146 ± 0.0021 1.00

N3LL′ without Smod
τ 0.1241 ± 0.0034 1.26

O(α3
s) fixed-order

without Smod
τ

0.1295 ± 0.0046 1.12

TABLE VII: Comparison of global fit results for our full anal-
ysis to a fit where the renormalon is not canceled with Ω̄1, a
fit without Smod

τ (meaning without power corrections with
Smod

τ (k) = δ(k)), and a fit at fixed order without power cor-
rections and log resummation. All results include bottom
mass and QED corrections.

effect of power corrections is a shift of the distribution
in τ , we have estimated in Sec. I that a 300 MeV power
correction will lead to an extraction of αs from Q = mZ

data that is δαs/αs ≃ (−9 ± 3)% lower than an anal-
ysis without power corrections. In our theory code we
can easily eliminate all nonperturbative effects by set-
ting Smod

τ (k) = δ(k) and ∆̄ = δ = 0. At N3LL′ or-
der and using our scan method to determine the per-
turbative uncertainty a global fit to our default data set
yields αs(mZ) = 0.1241 ± (0.0034)pert which is indeed
9% larger than our main result in Eq. (68) which ac-
counts for nonperturbative effects. It is also interesting
to do the same fit with a purely fixed-order code, which
we can do by setting µS = µJ = µH to eliminate the
summation of logarithms. The corresponding fit yields
αs(mZ) = 0.1295±(0.0046)pert, where the displayed error
has again been determined from the theory scan which in
this case accounts for variations of µH and the numerical
uncertainties associated with ϵ2 and ϵ3. (A comparison
with Ref. [22] is given below in Sec. IX.)

These results have been collected in Tab. VII together
with the αs results of our analyses with power corrections
in the R-gap and the MS schemes. For completeness we
have also displayed the respective χ2/dof values which
were determined by the average of the maximal and the
minimum values obtained in the scan.

VIII. FAR-TAIL AND PEAK PREDICTIONS

The factorization formula (4) can be simultaneously used
in the peak, tail, and far-tail regions. To conclude the
discussion of the numerical results of our global analysis
in the tail region, we use the results obtained from this
tail fit to make predictions in the peak and the far-tail
regions.

In Fig. 18 we compare predictions from our full N3LL′

code in the R-gap scheme (solid red line) to the accurate
ALEPH data at Q = mZ in the far-tail region. As input
for αs(mZ) and Ω1 we use our main result of Eq. (68)
and all other theory parameters are set to their default
values (see Tab. III). We find excellent agreement within
the theoretical uncertainties (pink band). Key features

Fig. III.2: An illustration of the correlations between the first NP moment Ω1 and αs for the
thrust observable. NP effects for groomed observables have a significantly different structure,
providing the possibility for complementary information to the extraction from (ungroomed)
event shapes in e+e−. Figure from Ref. [618].

3. The SoftDrop procedure terminates once the SoftDrop condition is satisfied.

This procedure generalizes the modified Mass Drop Tagger (mMDT) [644], which corresponds
to β = 0 in the SoftDrop procedure described above. Note that non-global logarithms [662] are
formally removed from the SoftDropped mass distribution, even when β > 0 (though clearly
they are restored as β →∞).

1.3 Grooming Away Soft Complications
Having defined the observables and grooming procedures of interest, in this subsection we provide
a general discussion of the potential advantages of using groomed jet observables for extractions
of αs. The grooming procedure significantly simplifies a number of theoretical and experimental
issues related to precision calculations and measurements in a pp environment. In particular,
grooming provides:

– Mitigation of NP effects;

– Perturbative simplicity; and

– Improved detector resolution, due in large part to a reduced pileup sensitivity.

Each of these will be discussed in more detail below. Combined, we believe that they provide
a strong motivation for the measurement of groomed jet observables, and the possibility of
performing a precision extraction of αs using jet substructure at the LHC.

1.3.1 Mitigating Non-perturbative Effects
One of the primary complications of αs extractions using event shapes is NP corrections, which
cannot currently be calculated from first principles. Since event shape observables probe singular
regions of the phase space, they are necessarily sensitive to NP corrections. For e+e− dijet
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event shapes, such as thrust, these NP corrections can be given operator definitions in the
dijet limit. Although these operators cannot be calculated, they can be modeled using shape
functions [663–666].5 These shape functions can be systematically expanded in moments, and for
moderately large values of the observable, only the first moment (Ω1) is required. This moment
can be shown to be universal for a wide range of observables [670, 671], and can therefore be
extracted from data along with αs [618, 619, 672].6 This moment, however, is highly correlated
with αs as shown in Fig. III.2. Therefore, observables with different, and preferably suppressed,
NP effects could provide valuable complementary information for αs extractions.

Using a scaling argument, it is a straightforward exercise to compute the value of the
groomed two-point correlators at which NP effects are expected to be important. This was
considered in Ref. [644, 647] where it was shown that NP effects become important when (for
α ≥ 1),

e
(α)
2

∣∣∣∣
NP
'
(

ΛQCD
zcutQ

)α−1
1+β ΛQCD

Q
, (III.4)

where Q = pTR is the starting scale of jet fragmentation and ΛQCD ' 1 GeV is a typical NP
scale. When α < 1, the value is instead (ΛQCD/(pTR))α. If we consider for concreteness the jet
mass (α = 2) we can learn a number of interesting lessons. First, by taking β →∞, we obtain
the ungroomed result

e
(2)
2

∣∣∣∣
NP
' ΛQCD

pTR
, (III.5)

while the groomed result gives

e
(2)
2

∣∣∣∣
NP
'
(

ΛQCD
zcutpTR

) 1
1+β ΛQCD

pTR
. (III.6)

For zcutpTR � ΛQCD, we see that the grooming significantly suppresses the scale of the NP
physics, extending the range of perturbative validity by a factor of (ΛQCD/zcutpTR)1/(1+β). For
a 1 TeV jet with zcut = 0.1 and β = 0, this is an extension by a factor of ∼ 100. Furthermore,
we observe that, under the assumption that β ≥ 0, this suppression is maximized for β = 0,
motivating this choice in later studies.7

It is important to emphasize that just because the value of the mass at which NP physics
enters is suppressed, this does not by itself imply that there is a larger region over which one
has perturbative control. In principle the whole distribution could be shifted to lower values.
We know, however, that for e(2)

2 ≥ zcut, the distribution is parametrically unaffected by the
grooming procedure, and is therefore identical to the ungroomed jet mass.

In addition to being suppressed, the structure of the NP corrections is quite different for
groomed jet mass, which may provide complementary information compared to standard event
shapes. For event shape observables, NP corrections are typically large already at the Sudakov
peak. In the case of a groomed observable, since the NP corrections are suppressed and the
observable is predominantly single logarithmic (exactly true when β = 0), we instead see that
the NP corrections appear as a bump on the falling distribution. This is shown in Fig. III.3
along with a model using a shape function. Due to the fact that this is a completely different

5There are other approaches to analytically describe and fit NP effects that have similar features to shape
functions. Another example is the dispersive model [667,668] which has also been used to make extractions of αs
using e+e− event shapes [669].

6See Ref. [673,674] for subtleties related to hadron masses and the breakdown of universality.
7Negative values of β are also possible and could be interesting to study. However, one would need to dedicate

specific attention in the vicinity of the endpoint of the distribution, which is e(α)
2 = z−αβcut at LL.
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Figure 9: Direct comparison of hadron-level output from Herwig++, Pythia, and Vincia

already shown in Figs. 7 and 8. Soft drop is performed with zcut = 0.1 and both � = 0 (left)

and � = 1 (right). Curves are displayed as relative di↵erences between Monte Carlo output

and our matched NNLL predictions, with theoretical uncertainties shown as a shaded band.
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Figure 10: Perturbative NNLL results for soft-drop groomed e
(2)
2 with zcut = 0.1 and � =

0 (left) and � = 1 (right), compared to analytic results that include the shape function

of Eq. (6.2) for modeling hadronization, and compared to hadron-level Monte Carlo. The

parameter ⌦ = 1 GeV. Note that, qualitatively, the shape function produces a hadronization-

bump similar to those seen in the Monte Carlos.

by Ref. [96]:

Fshape(✏) =
4✏

⌦2
e�2✏/⌦ . (6.2)

– 33 –

Fig. III.3: A plot showing the effects of NP corrections to the groomed jet mass. This illustrates
first that the NP corrections are suppressed over a large range, and second that they take a very
different form than for double-logarithmic observables. Figure from Ref. [647].

behavior, it may have different correlations as compared with standard event shapes, though a
more complete understanding of this effect is required.

Finally, while we have so far focused on the effect of the grooming procedure on hadroniza-
tion corrections and a comparison to e+e− event shapes, we must also emphasize that the
grooming plays an important role in suppressing NP corrections from the underlying event.
This is crucial for achieving a precision measurement in the pp environment, since there is a
limited theoretical understanding of the underlying event. Here, we must rely purely on Monte
Carlo model implementations of the underlying event. Monte Carlo studies have shown that
in the regime where one has perturbative control, underlying event is highly suppressed after
mMDT/SoftDrop [644,645]. This is again a significant benefit of groomed observables.

1.3.2 Perturbative Simplicity
By studying the analytic behavior of grooming on the jet mass, the authors of Ref. [644] showed
that grooming could be designed to enhance the simplicity and calculability of various jet shapes.
In particular, grooming significantly simplifies the perturbative resummation in the pp environ-
ment in addition to suppressing NP corrections. Calculations of the standard jet mass in pp
typically suffer from the following two perturbative difficulties:

– Global color correlations, which complicate the structure of higher-order soft functions;
and

– Non-global logarithms [662], which complicate the perturbative structure for non-global
measurements.

The jet mass was calculated in [675] ( [676]) for H+ jet with(out) a veto on additional radia-
tion, supplemented with arguments that non-global effects are small. These above two features
highlight that the ungroomed jet mass depends significantly on the particular process that cre-
ated the jet, significantly reducing its universality, and complicating its structure in a busy pp
environment. By contrast, the use of grooming can make the jet mass nearly universal.

In Ref. [647], it was shown that for e(α)
2 � zcut � 1, one can express the cross-section for
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the groomed two-point correlator as

dσpp

de
(α)
2

=
∑

k=q,q̄,g
Dk(pmin

T , ymax, zcut, R)SC,k(zcut, e
(α)
2 )⊗ Jk(e(α)

2 ) , (III.7)

where SC,k is the soft function and Jk is the jet function. The function Dk depends on the
parton flavor, and can be interpreted as the quark and gluon fractions. While the quark and
gluon fractions are generally not IRC-safe quantities, in this limit the quark fraction can be
defined jet-by-jet as

fJ =
∑
i∈JSD

fi , (III.8)

with fq = 1, fq̄ = −1, fg = 0, and JSD are the parton-level constituents of the groomed jet.
The grooming procedure makes this definition IRC safe at leading power (see related jet flavor
approach in Ref. [677]). These fractions are independent of the value of the jet mass observable
and can be extracted from fixed-order generators, for example MCFM [418,420,678].

The formula in Eq. (III.7) has a number of remarkable consequences. In the resummation
region, we see that there are no non-global logarithms and there are no global color correlations.
The collinear soft and jet functions depend only on the jet flavor, so they are therefore identical
to in the case of groomed jets in e+e− collisions. In the resummation region, the grooming
algorithm has therefore allowed the jet to be isolated from its pp environment, and the only
required input from the hard scattering process are the quark and gluon fractions.

It is important to emphasize that this simplification does not occur throughout the entire
distribution. In particular, it does not hold for m� Qzcut, though this is the fixed order region,
where we can match to standard fixed order perturbation theory. This matching has been
performed to (N)NLO for dijets (V+jets) [647–649]. Ideally this would be done using 2 → 3
matrix elements at NNLO, which are just now becoming available [123,124,289,291,679].

1.3.3 Pileup Resilience
Arguably the biggest experimental challenge for precision physics at a high-luminosity pp collider
is noise from pileup: multiple nearly simultaneous proton-proton collisions. Jet shapes are
particularly sensitive to pileup; for example, the jet mass scales as O(A2) [680] for the jet
catchment area A [681] (whereas the jet pT scales linearly with A). The jet-area subtraction
that works well for pT has been extended to event shapes [682], but must be re-calibrated per
observable. Constituent-based pileup subtraction schemes [683–687] show great promise and are
actively being studied and adapted to the actual experimental settings [688–692]. Even without
constituent-based subtraction techniques, though, there is a large reduction in pileup sensitivity
to jet substructure from grooming [604,688,692,693]. Grooming systematically removes soft and
wide-angle radiation, which is exactly the profile characteristic of pileup. Even with extreme
levels of pileup (up to 300 collisions), grooming can preserve the distribution of the jet mass
distribution [694].

Despite the power of grooming for pileup suppression, there is still a residual degradation of
resolution with increased levels of pileup which makes precision jet substructure measurements
challenging at high instantaneous luminosity. Track-based observables are robust to pileup
because their vertex of origin can be well-distinguished from pileup vertices. Precision track-
based substructure observables have been calculated [695–698], but typically require universal
NP input. It may be interesting to do a track- and jet-substructure-based extraction of αs, but
this is left as a possibility for future work.
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1.4 Observable Sensitivity to αs
In this subsection, we study the sensitivity of the groomed jet mass to variations in the value
of αs. We begin with a discussion based on the analytic formulae at LL accuracy. We then
perform a PS study, highlighting the interplay between the sensitivity of different parts of the
distribution to variations in the value of αs and NP effects. Finally, we discuss the issue of
Casimir scaling and the related issue of using normalized versus unnormalized distributions.

1.4.1 Analytic Understanding
To get an understanding of the sensitivity of the groomed mass distribution both to the value of
αs as well as to the quark and gluon composition, it is enlightening to study the LL distribution.
Here, for simplicity, we consider only the leading logs in the observable, in the resummation
region; complete expressions can be found in Refs. [645, 647–649]. For β = 0, the LL result at
fixed coupling for the cumulative distribution in the resummation region takes the schematic
form

Σ(e(2)
2 ) = exp

[
−αsCi

π
[log(zcut)−Bi] log(e(2)

2 )
]
, (III.9)

where Bi = −3/4 for quarks and Bg = −11
12 + nf

6CA for gluons (nf is the number of active quark
flavors). This highlights that for β = 0, the groomed jet mass is a single-logarithmic observable,
contrasting with the standard double-logarithmic behavior of plain jet mass. Differentiating the
cumulative distribution, we obtain the spectrum

e
(2)
2
σ

dσ

de
(2)
2

= −αsCi
π

[log(zcut)−Bi] exp
[
−αsCi

π
[log(zcut)−Bi] log(e(2)

2 )
]
. (III.10)

Here, we immediately see several interesting consequences. In the resummation region, the
slope of the distribution when plotted against log e(2)

2 is set by the product αsCi, where Ci is the
Casimir factor, namely CF = 4/3 for quarks and CA = 3 for gluons. We therefore see that the
groomed mass is indeed sensitive to the value of αs. Due to the larger color charge of gluons, we
expect that samples of pure gluon jets would have a significantly higher sensitivity to the value
of αs; this expectation will be born out in our PS studies below. Because αs is always multiplied
by a color factor, though, knowing the precise quark/gluon composition of a sample is essential,
as discussed in Sec. 1.4.3. In practice, the PS studies and the analytic studies that follow (see
Sec. 1.5) include higher-order effects, such as subleading terms in the splitting functions, that
violate Casimir scaling.

1.4.2 Parton Shower Study
From the point of view of fitting for αs, a good observable is one whose probability distribution
changes significantly with variations in αs. However, many observables that significantly change
with αs are also very sensitive to NP effects, such as the constituent multiplicity inside jets.
Here, we study many two-point correlators to quantify the tradeoff between the sensitivity to
αs and the robustness to NP effects.

Given two probability distributions f and g in some observable λ, we define the separation
power ∆(f, g) [699] as

∆(f, g) = 1
2

∫
dλ

(f(λ)− g(λ))2

f(λ) + g(λ) . (III.11)

The separation power is a number in [0, 1], where ∆ = 0 if and only if f = g. If f is the nominal
probability distribution of some observable and g is the distribution of the same observable
with a different value of αs, we would like ∆(f, g) close to 1 (sensitivity). In contrast, if g is
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Tradeoff:  Robustness vs. Sensitivity	

∆ =

∫
dλ

1

2

(
A(λ) − B(λ)

)2

A(λ) + B(λ)
Same metric as LH 2015 	
quark/gluon study

Robustness:
A = Full Distribution	
B = Adjust NP Physics	
↳ Want Δrob to be small

Sensitivity:
A = Nominal αs value	
B = Shifted αs value	
↳ Want Δsen to be large

Better

Δrob

Δsen

Fig. III.4: A schematic diagram to illustrate the sensitivity-robustness plane defined by the
separation power in Eq. (III.11).

the same as f with some variation in the NP effects, then we would like ∆(f, g) to be close
to 0 (robustness). The plane used to study the tradeoff between sensitivity and robustness is
shown in Fig. III.4. Not all information about αs sensitivity is captured by a single point in
Fig. III.4, because sensitivity to NP effects could be in regions of low αs sensitivity and vice
versa. Therefore, it is also useful to study the integrand of Eq. (III.11) as a function of different
observables λ.

This sensitivity-robustness tradeoff is studied using two PS generators: Herwig 7.1.0 [584,
700, 701] with its default settings8 and Pythia 8.223 [629, 630] with the tune 4C [708]. These
programs are formally LL accurate, though they include effects beyond Eq. (III.10). Results
are presented separately for quark and gluon jets, using the Z + q and Z + g hard-scattering
processes. We select jets with transverse momentum pT > 500 GeV and rapidity |y| < 2.5,
clustered with the anti-kt algorithm [661] algorithm using a jet radius R = 0.8. A variety of two-
point correlators (as defined in Sec. 1.2.1) are studied, with α ∈ {0.5, 1.0, 2.0} corresponding to
the Les Houches Angularity [709], width, and mass, respectively. Additionally, various SoftDrop
grooming parameters are studied by varying β ∈ {0, 1, 2} and zcut ∈ {0.05, 0.1, 0.2}. The plots in
this section are shown for Herwig 7.1 but the same qualitative conclusions hold for Pythia 8.2.

The sensitivity to αs is shown in Fig. III.5, in the case of normalized squared jet mass
(e(2)

2 ) for quark and gluon jets.9 To the left of the low-mass NP peak, the shape of the e(2)
2

distribution is nearly flat for quarks and nearly linear (in the log-space) for gluons, as expected
from Eq. (III.10). Increasing αs shifts the quark distribution up but has nearly no impact on
the shape of the distribution below the peak. The size of the NP peak is significantly impacted
by the value of αs, with smaller αs values implying that NP effects are more important to the
groomed mass distribution. In contrast, the slope of the distribution for gluons does change
with the variations in αs, but there is no low-mass NP peak.

The robustness to NP effects is shown in Fig. III.6, using the same e(2)
2 distribution but

now with variations in the modeling of hadronization and MPI effects. Overall, there is excel-
8This uses the MMHT 2014 PDFs sets [601], the angular-ordered parton shower [702], default settings for

the cluster hadronization model [703], a Multiple Parton Interaction model [704–706], and plain color reconnec-
tions [707]. The factorization and renormalization scale is set to µ2

R = µ2
F = (

∑
i
piT )2 where piT is the transverse

momentum of the i-th jet.
9Here, we have varied the αs value used in the PS only. For future work, it would be interesting to test the

sensitivity to αs in the hard matrix element and PDFs as well.
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Fig. III.5: The sensitivity to αs in Herwig 7. Shown is the distribution of the normalized
squared jet mass (e(2)

2 ) for quark jets (left) and gluon jets (right), with higher values of the mass
are on the left. The blue line uses αs = 0.118 while the green and orange lines have the value of
αs varied by 10%. The lower panels show the ratio with respect to the αs = 0.118 curve.
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Fig. III.6: The robustness to NP effects in Herwig 7, with the same distributions as Fig. III.5.
The blue line shows the default particle-level simulation that includes the standard cluster
hadronization model. The red curve has hadronization turned off and the green curve is the
same as the blue, but with the Herwig 7 model for multiple parton interactions (MPI) turned
off. MPI is also off for the red curve.

97



Jesse Thaler — Report of the Les Houches Jet Physics Subgroup(s) 36

Visualizing Robustness and Sensitivity	
≈ jet mass with α = 2, pure quark/gluon samples

Quark Jets Gluon Jets

Can identify phase space regions where	
blue (sensitivity) is high while red (robustness) is low	

Gluon channels are particularly sensitive

q robustness
q sensitivity

0 2 4 6 8 10 12 14
0

0.001

0.002

0.003

0.004

0.005

0.006

Angularity, α = 2 zcut = 0.1 β = 1

eα

1/
σ
d

σ
/
d
e

α

g robustness
g sensitivity

0 2 4 6 8 10 12 14
0

0.0005

0.001

0.0015

0.002

Angularity, α = 2 zcut = 0.1 β = 1

eα

1/
σ
d

σ
/
d
e

α

–log(eα) –log(eα)higher “mass” higher “mass”

Better Better
dΔ dΔ

-log(e2(2)) -log(e2(2))

Fig. III.7: The integrand of Eq. (III.11) in Herwig 7. Shown is the normalized squared jet
mass (e(2)

2 ) for quark jets (left) and gluon jets (right), with higher values of the mass are on
the left. The baseline f function from Eq. (III.11) is the same for the red and blue curves. For
blue (sensitivity) the g function is from varying αs by 10%, whereas for red (robustness) the g
function hadronization is turned off. Note the different vertical scale in the left and right plots.

lent stability in the e(2)
2 distribution. The low-mass peak for quarks is almost entirely due to

hadronization effects. According to Herwig 7, the impact of hadronization is much smaller
for gluon jets, as expected since perturbative effects push the distribution away from the NP-
sensitive region in Eq. (III.4).

Figure III.7 shows the distribution of the differential separation power (integrand of
Eq. (III.11)), using the variation with αs as the sensitivity and the change from turning off
hadronization as the robustness. For quark jets, Figs. III.5 and III.6 showed that the biggest
variations with αs occurred at low mass which is also where NP effects are largest. This corre-
sponds to the peak in the blue and red distributions in Fig. III.7 occurring in nearly the same
location. In contrast, the peaks are more well-separated in Fig. III.7 for gluon jets and the
blue is shifted to higher mass values where there is more perturbative control. This suggests
that gluon-enriched samples are going to play an important role for αs determination from jet
substructure.

A summary of the sensitivity-robustness tradeoff for many two-point correlators is pre-
sented in Fig. III.8. As already observed for the jet mass, gluons tend to have superior sensitivity
and robustness compared with quarks. This is not surprising, as gluons have more perturbative
radiation than quarks (CA > CF ). The jet mass has (∆sensitivity,∆robustness) = (0.097, 0.0043),
(0.015, 0.0046) for quarks and gluons, respectively, using β = 0 and zcut = 0.1. The groomed
two-point correlators with the best quark and gluon sensitivity and robustness have α = 1,
zcut = 0.05 and β = 1 or β = 2. The choice of α = 1 correspond to kt (a.k.a. width) instead
of mass, which may not be so surprising since the scale of αs is set by kt and not mass. Inter-
estingly, kt with β = 0 has significantly worse sensitivity than β = 1 or β = 2, highlighting the
importance of having some double-logarithmic information. This study suggests that kt observ-
ables are important to include in future experimental and theoretical studies. The three-loop
anomalous dimensions for the Energy-Energy Correlator (EEC) in e+e−, which is a kt sensitive
observable, were recently derived [710]. This will allow for a study of kt sensitive observables
at N3LL in e+e−, and a comparison with mass-type observables. It would also be interesting
to study how the robustness versus sensitivity picture changes when considering only subsets of
the available observable range.
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Fig. III.8: The tradeoff between sensitivity and robustness for 27 two-point correlator/jet groom-
ing combinations. Open blue symbols represent quark jets and closed red symbols represent
gluon jets.

1.4.3 The Issue of Casimir Scaling
While we have illustrated that groomed jet mass provides excellent sensitivity to αs, particularly
for gluon jets, one problem that is immediately clear from Sec. 1.4.1 is that the leading behavior
of the distributions is always dominated by the product αsCi. While this is broken at higher
perturbative orders, it implies that at lowest order there is a complete degeneracy of the value of
αs and the quark versus gluon fraction of jets. This problem is not faced for dijet event shapes
at e+e− colliders, which are almost entirely quark dominated.

There are a variety of different approaches to overcome this problem, each with their own
advantages and disadvantages. First, the quark and gluon fractions are perturbatively calculable
given the parton distribution functions (PDFs). Therefore, perturbatively calculating the quark
and gluon fractions inputs the most possible information, and should correspondingly lead to
the best sensitivity for αs. This has the downside, however, of also introducing sensitivity to
the PDFs, which in principle should be fitted along with αs [711]. This difficulty also enters
into other αs extractions at the LHC, for example the 3-2 jet rate [639] or the energy-energy
correlator [635, 636]. One of the key hopes of using jet substructure was that the sensitivity to
the PDFs could be minimized, but that is not the case if the quark and gluon fractions cannot
be determined independently.

A second approach is to simultaneously fit for αs and the quark/gluon fraction. In the re-
summation regime, the jet mass distribution only depends on αs and the quark/gluon fraction.10

Due to the fact that the two fractions must add to unity, this introduces a single additional pa-
rameter in the fit (see Fig. III.9). The degeneracy between the quark/gluon fraction and αs

is broken by higher-order effects. Furthermore, different e(α)
2 have different dependence on αs

and Ci at higher orders. Therefore, the measurement of multiple two-point correlators would
10At high mass, in the fixed-order regime, there is still residual explicit dependence on PDFs as is the case

for the total cross-section. This regime also suffers from sample-dependent effects where the quark and gluon
substructure distributions have residual dependence on the hard process.
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Fig. III.9: The slope of the probability distribution of log(e(2)
2 ) is proportional to αs(CAfg +

CF (1 − fg)), which is plotted above. The degeneracy between αs and fg (gluon fraction) are
represented by the banana-shaped isocontours.

allow the degeneracy to be broken. From a theoretical perspective, this significantly complicates
the analysis, since it would require precise predictions to be made for the joint distribution of
multiple two-point correlators.

In our fitting study in Sec. 1.5, we consider both of the above approaches. It would
be interesting to develop other approaches to disentangling the quark and gluon fractions and
αs. Without some kind of conceptual breakthrough, though, we expect that the quark/gluon
fraction will be a limiting aspect of αs extractions from jet substructure at the LHC.

1.4.4 Normalized vs. Unnormalized Distributions
In addition to the complication of quark and gluon fractions, another issue which appears for
the extraction of αs from jet substructure is the issue of normalization.11 Unlike for e+e− event
shapes, the Born dijet cross-section in pp is sensitive to the value of αs. This implies that the
rate itself, in particular the absolute quark and gluon jet rates, carries information regarding
αs.

In our studies, we have decided to focus on using normalized distributions. At a conceptual
level, this is because we want to perform a true measurement of αs from jet substructure, which
is not dominated by the overall jet rate. But there are two other practical concerns that favor
using normalized distributions.

First, it is currently only possible to perform precise measurements of the groomed mass
using normalized distributions. Experimentally, the absolute rate is determined by the accep-
tance from kinematic requirements on the jet pT . The sophisticated in-situ jet energy scale and
resolution program carried out for small-radius jets [712–715] has not yet reached the same level
of maturity for groomed large-radius jets. That said, this is simply a matter of time, and exper-
imental efforts have already started in this direction [716]. A key challenge that still remains is
to fully understand the correlations in the calibrations and uncertainties between the jet energy
and the jet substructure observables.

Second, the use of normalized distributions minimizes the sensitivity to the PDFs. As
11We thank Gavin Salam for interesting discussions on this topic.
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Fig. III.10: The fraction of qg and gg initial states for leading-order dijet production with
pT > 200 GeV, simulated at leading order with MG5_aMC 2.6.0 [88] using NNPDF 2.3 [599].
The ellipses correspond to the uncertainty from the 100 error PDF sets. For the red dashed line,
the fraction of outgoing gluon jets fg is constrained to be the same for all variations (and equal
to the nominal PDF set).

discussed in Sec. 1.3.2, grooming renders the quark and gluon two-point-correlator distributions
universal (in the resummation regime). Therefore, the measured distribution only depends on
the fraction of gluon jets fg that pass the event selection. In contrast, the total cross-section
depends on the relative proportions of all possible partonic initial states, which introduces a
source of uncertainty that is not present for the normalized cross-section. For example, the
initial state could be one of qq, qg or gg. The relative proportions can be parameterized by two
numbers fqg and fgg where fqg + fgg = 1− fqq. Figure III.10 shows the uncertainty in fqg and
fgg from leading-order PDFs. Fixing fg, which carries all of the PDF sensitivity for the shape
measurement, has little effect on the uncertainty in fqg and fgg. Thus, using unnormalized
distributions results in additional PDF sensitivity from also measuring the total cross-section in
addition to the shape of the substructure distribution.

From the perspective of perturbative accuracy, there is an important issue with using
normalized distributions, which is that jet-shape observables start at O(αs). Specifically, the
slope of the groomed mass distribution is O(αs). This implies that to have an O(α2

s) uncertainty
on the slope (as required to gain entry into the PDG world avarage), one needs to have O(α3

s)
control, namely the NNLO 2→ 3 process for a jet with two constituents. For the case of e+e−,
this level of accuracy has been achieved, where the NNLO corrections to e+e− → 3 jets are
known and indeed used in extractions of αs. Due to recent progress in the calculation of the
relevant amplitudes, we believe this is a realistic target for jet substructure, but clearly requires
substantial further work.

1.5 Idealized Performance at the LHC
The purpose of this subsection is to make some numerical estimates regarding αs extraction
from jet substructure at the LHC. Many simplifying assumptions are made, with the goal of
motivating a more complete effort within the context of ATLAS and CMS in collaboration with
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theorists. First, we illustrate how αs and the gluon fraction can be simultaneously extracted from
the distribution of various two-point correlators. Next, we estimate the needed experimental
precision required to make a useful measurement of αs. While both the theory and experimental
precision will continue to improve over the next years, the community has already demonstrated
that the work can begin with the first round of groomed jet mass results [646–651].

1.5.1 Extraction of Theory Templates
A complete extraction of αs will require matching resummed results to high fixed order and
also estimating NP effects. The two sets of predictions for dijets thus far have been matched
to LO [646, 647] and NLO [648, 649] and have used hadronization models to study NP correc-
tions [648,649]. Performing high-order fixed-order matching is conceptually straightforward but
computationally expensive; while this will be required eventually, we focus here on a demon-
stration without matching. Therefore, we isolate the resummation regime,

e
(α)
2

∣∣∣∣
NP
≤ e(α)

2 ≤ zcutR
α, (III.12)

where e(α)
2

∣∣∣∣
NP

is given in Eq. (III.4), such that regions of phase space that are highly sensitive to
NP or fixed-order effects are removed. In this range, NLL calculations exist in analytic formulae
that can be varied on-the-fly [648, 649]. Figure III.11 shows the quark and gluon templates for
α = {1, 2} and β = {0, 1}, truncated according to Eq. (III.12).

From these NLL distributions, pseudo-data are then generated from the binned analytic
probability distribution t(αs, fg). These distributions are a superposition of the quark and gluon
distributions and depend only on αs and fg. Each pseudo-dataset has n events and its binned
representation is denoted by h(αs, fg, n). For a given pseudo-dataset, the fitted values of αs and
fg are determined from a χ2-like fit:

αs, fg = argmin
∑
i

(
hi(αs, fg, n)− ti(αs, fg)

)2
σ(hi(αs, fg, n))2 , (III.13)

where ti, hi are the bin content of histograms t and h, and σ(hi) is the statistical uncertainty in
bin i of histogram h. In practice, there would also be systematic uncertainties (see Sec. 1.5.2),
but the purpose of this study is to simply illustrate the sensitivity to αs and fg for a given
number of events.

An example fit is demonstrated in Fig. III.12 for the case of α = 2 and β = 0. The left
plot of Fig. III.12 shows the χ2 from Eq. (III.13) for two samples, one with 20% gluons and one
with 80% gluons. The true value is taken to be αs = 0.1, and as expected, the χ2 probability
is high for fg = 0.2 and fg = 0.8.12 The banana shapes of the curves are a consequence of
the degeneracy due to Casimir scaling discussed in Sec. 1.4.3. From one sample alone, there is
essentially no ability to distinguish between a larger αs and a smaller fg; the only constraint
comes from the fact 0 ≤ fg ≤ 1 which results in a crude bound on αs. This is shown in the
right plot of Fig. III.12 where the distribution is marginalized over fg and normalized to unity.
One can view this as the posterior probability of the fitted αs: the peak is the fitted value of
αs and the width is the uncertainty. When fg is known, the uncertainty in αs is significantly
reduced; this is illustrated with pure quark and gluon samples. Due to the larger color factor,
the measurement with pure gluon jets is more sensitive to αs than the fit using pure quark jets,
as anticipated in Sec. 1.4.1. Using both the fg = 0.2 and fg = 0.8 samples to fit for αs, one can
extract a ∼ 30% measurement of αs, but there is no clear peak at the correct value of αs due to

102



3 3.5 4 4.5 5 5.5 6 6.5

)2

2
-log(e

0

0.02

0.04

0.06

0.08

)
2 2

 / 
dl

og
(e

σd

 = 1.0β = 0.10 and 
cut

 = 2.00, zα = 500 GeV, 
T

p

gluons

quarks

3 3.5 4 4.5 5

)1

2
-log(e

0

0.05

0.1

)
1 2

 / 
dl

og
(e

σd

 = 1.0β = 0.10 and 
cut

 = 1.00, zα = 500 GeV, 
T

p

gluons

quarks

3 4 5 6 7

)2

2
-log(e

0

0.05

0.1

)
2 2

 / 
dl

og
(e

σd

 = 0.0β = 0.10 and 
cut

 = 2.00, zα = 500 GeV, 
T

p

gluons

quarks

3 3.5 4 4.5 5

)1

2
-log(e

0

0.05

0.1

)
1 2

 / 
dl

og
(e

σd

 = 0.0β = 0.10 and 
cut

 = 1.00, zα = 500 GeV, 
T

p

gluons

quarks

Fig. III.11: The quark and gluon templates, computed at NLL [648,649] for α = 2 (left column)
and α = 1 (right column), with grooming parameters zcut = 0.1 and β = 1 (top row) and β = 0
(bottom row). Note that larger masses are on the left so that the NP regime is on the right and
the fixed-order regime is on the left.

the Casimir degeneracy.
One way to improve the situation is to combine multiple α, β, and zcut values (only α and

β are varied here). Figure III.13 shows the fg, αs fit for all of the α, β values from Fig. III.11
that were not shown in Fig. III.12. As in Fig. III.12, there are two banana-shaped regions that
correspond to the fg = 20% and fg = 80% samples. The tilt of the bananas is slightly different
than the α = 2, β = 0 case and so there is a possibility to gain from combining the information
in the observables. In practice, a challenge with a multi-observable extraction strategy is the
need to understand correlations between observables. At the moment, joint distributions of
two-point correlators are only known to NLL accuracy without grooming [657].

With that caveat in mind, Fig. III.14 shows the result of a combined fit assuming that
all four distributions are statistically (and systematically) independent. This is a rather strong

12It is not necessarily peaked at this value because this is the result of one pseudo-experiment. Averaging over
many pseudo-experiments results in peaks at fg = 0.2 and 0.8.
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Fig. III.12: Left: the probability of the minimized χ2 (assuming nbins−1 degrees of freedom) from
Eq. (III.13) as a function of fg and αs for one sample with 80% gluons and another sample with
80% quarks. The true value of αs is 0.1, as indicated by triangle markers. Right: The right plot
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Fig. III.13: The same as the left plot of Fig. III.12, but for the remaining three observables from
Fig. III.11.

assumption that is unlikely to be even approximately true in practice. However, the benefit of
having different tilts in the fg, αs plane is clearly shown and would be a generic feature of a
multi-observable fit, even if the size of the gain is not as significant as shown here. It is important
to emphasize that the black curve in Fig. III.14 assumes no prior knowledge of the gluon fraction
of the event samples. The fit can of course be improved by using some knowledge of the gluon
fractions from the hard scattering process convolved with PDFs, as discussed in Sec. 1.4.4.
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observables from Fig. III.11. The unknown combined mixture uses two samples with fg = 20%
and fg = 80%.

1.5.2 Estimate of Experimental Resolution
To keep pace with precise theory predictions, the experimental resolution must be well-under-
stood in order to ensure both precision and accuracy of jet substructure measurements. To
estimate the impact of detector resolution on αs fit illustrated in Sec. 1.5.1, a fast simulation
from Delphes 3.4.1 [717] was studied using particle-level input from Pythia 8.210. This setup
uses a CMS-like detector with jets built from particle-flow objects. There are generically two
regimes for determining the experimental resolution. At high mass, there are well-resolved hard
prongs in the jet, so the resolution is set by the jet energy resolution of those “sub-jets”. At
low mass, the groomed jet is defined by nearly collinear splittings at which point the angular
resolution can dominate.

Figure III.15 shows the fractional e(2)
2 resolution estimated from Delphes. The resolution

is smallest at high mass due to the excellent energy resolution of the CMS-like detector. The
resolution at low mass is about 10% near 15 GeV and reaches 30% near the limit of O(few GeV).
Encouragingly, the fits in Sec. 1.5.1 relied only on the regime where ∼ 10% resolution seems
to be achievable, which gives an indication that a 10% extraction of αs should be feasible. As
a check that this estimated resolution is sensible, Fig. III.16 compares the migration matrix
extracted from Delphes to the one published in the recent ATLAS measurement [650]. Here, the
comparison is between the particle-level and detector-level groomed mass values. The migration
is qualitatively the same, with an excellent diagonal behavior (low migrations) at high mass and
a worse resolution at low mass.

To understand the sensitivity to jet mass scale and resolution uncertainties, we conduct
pseudo-experiments by sampling from the templates described in Sec. 1.5.1 and smearing with
the migration matrix shown in the left plot of Fig. III.16. We then unfold with another migration
matrix [718, 719] that has the jet mass scale shifted or smeared by a fixed amount, and extract
αs via Eq. (III.13) but for fixed and known fg = 0. The results of this procedure are shown in
Fig. III.17. There is little sensitivity to the jet mass resolution while there is a large uncertainty
in the extracted αs if the uncertainty in the jet mass scale exceeds a few percent. Current jet
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mass scale uncertainties are below 5% and resolution uncertainties are below 20% [716,720]. The
mass scale uncertainty is as small as 2% in various regions of phase space. This again suggests
that a ∼ 10% measurement of αs is feasible, as the uncertainty on the jet mass scale reaches the
same level of maturity as the jet energy scale over the next few years.

1.6 Conclusions and Future Outlook
In this section, we performed a preliminary study assessing a possible extraction of the strong
coupling constant αs from groomed jet substructure measurements at the LHC. This has been
made possible by recent advances in the calculation of groomed event shapes, which allow them
to be resummed to NNLL accuracy, as well as advances in the understanding of the experimental
uncertainties for groomed jet observables.

We have highlighted a number of features that an extraction of αs from groomed substruc-
ture would offer. In particular, the grooming procedure suppresses NP hadronization corrections
to the mass distribution, extending the range of perturbative control by up to a factor of ∼ 100
as compared to the ungroomed case, where hadronization corrections are a dominant uncer-
tainty. Furthermore, the nature of the NP corrections is completely different, and therefore a
groomed extraction could provide complementary information to event shape measurements at
LEP and other e+e− colliders.

Using the groomed jet mass as a concrete example, we performed a feasibility study for the
extraction of αs from groomed jet substructure. Considered separately, the groomed quark and
gluon distributions both exhibit good sensitivity to αs. However, this study also highlighted a
key issue relevant at the LHC. The leading behavior of the shape of the distribution is sensitive
to the product αsCi, where Ci is the color Casimir factor, namely CA for gluon jets and CF
for quark jets. This immediately implies that there is a degeneracy between the value of αs
and the quark/gluon fraction of the sample. We highlighted two possible ways of overcoming
this degeneracy, either by a fixed-order calculation of the quark and gluon fractions, or by a
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Fig. III.16: Left: The migration matrix between particle-level and detector-level using the
Delphes simulation (left) and from the ATLAS measurement (right; reproduced from Ref. [650]).
Unlike previous plots, larger masses are on the right (shown this way to match the ATLAS
result).

simultaneous measurement of different substructure observables. This would ideally be combined
with multiple samples with different (and relatively pure [721]) quark/gluon fractions. While
we expect significantly better precision to be achievable by the explicit calculation, this would
introduce a stronger dependence on the PDFs which then should ideally be fitted simultaneously.

With currently achievable experimental and theoretical uncertainties, we have shown that
an extraction of αs at the 10% level is realistic using the currently available data at the LHC.
We believe that this study motivates a serious effort to extract the strong coupling constant
αs from jet substructure at the LHC using groomed jet shapes. A serious analysis will require
advances on both the theory and experiment sides, so we conclude by discussing some of the
major obstacles that must be overcome.

On the theory side, we can separately discuss three primary aspects of the calculation:

– Resummation Accuracy: For e+e− event shapes, the current state of the art is N3LL.
This has been achieved only for a few select observables using soft-collinear effective the-
ory. The extension to N3LL accuracy for the groomed jet mass would require only the
calculation of the anomalous dimensions for the groomed soft function to three loops,
which is possible using currently available techniques. At this level of accuracy, it will
also be important to assess perturbative power corrections in zcut. While Refs. [648, 649]
have shown that these corrections are numerically small, they may become important if
multiple zcut values are used that are not much less than one.

– Fixed-Order Matching: A key aspect, and a potential complication to achieve theoret-
ical accuracy competitive with e+e− determinations, is fixed-order matching. For e+e−,
the perturbative corrections to e+e− → 3 jets are known to NNLO [722–725]. To achieve
a similar perturbative accuracy for the matching for the groomed jet mass will require
2 → 3 matrix elements at NNLO. While results for the amplitudes are just becoming
available [123,124,289,291,679], it will be a while before numerically-efficient evaluations
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of the relevant cross-sections are available. We believe that this is currently the theoreti-
cally most difficult ingredient.

– Non-Perturbative Corrections: Finally, in addition to improving our understanding
of the perturbative accuracy of the observable, it will also be crucial to improve our under-
standing of the NP aspects of groomed observables (mass and others). While it has been
shown through PS studies that NP effects are suppressed throughout a large component
of the distribution, it will be important to quantify this further. In the case of e+e− event
shapes, operator definitions of soft matrix elements allow for field-theoretic definitions of
the NP parameters. Ideally, this could also be performed for groomed observables, placing
the groomed jet mass on a firmer theoretical footing.

Experimentally, there are three broad topics that need to be addressed to achieve a pre-
cision extraction of αs:

– Mass Scale Uncertainties: At the moment, ATLAS [650] and CMS [651] have very
different approaches for determining the jet mass scale uncertainty, both with known
limitations. CMS performs a fit to the hadronic W boson mass peak in one-lepton tt̄
events and takes the shift in the peak position as the uncertainty in the jet mass scale
(which is negligible and thus ignored) [726]. Two challenges with this approach are that
(a) the peak position is a convolution of particle-level and detector-level effects and (b)
it is not clear that uncertainties derived for boosted W bosons should be the same as
for generic quark and gluon jets at all masses. One can overcome (a) with a technique
like forward-folding [727, 728]. Various PS generators can be studied, but it is likely not
sufficient to have one global model comparison. The impact on the jet mass resolution
in one topology may be completely different than the impact of the scale, resolution, or
acceptance in another topology.
By contrast, the ATLAS measurement propagates constituent-based uncertainties through
to the groomed mass. These uncertainties are derived from matching tracks to calorimeter-
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cell clusters and studying the energy and angular matching. Studies have shown that this
“bottom-up” approach works well for reproducing the jet energy scale [729], which has been
validated also for groomed jets in Ref. [650]. However, this does not hold exactly for the
mass, which is not linear in the constituent energies [730]. The uncertainties are validated
using the standard ATLAS approach using track-jets [716, 731], but to achieve higher
precision, a more detailed understanding of the impact of energy thresholds, fluctuation
correlations, and calorimeter cluster merging will be required.

– Mass Resolution Uncertainties: ATLAS and CMS use their same respective ap-
proaches for the mass resolution as for the mass scale (i.e. bottom-up and W mass peak).
ATLAS validates their approach in a similar manner as CMS, by using the W mass peak
from tt̄ events.13 From Fig. III.17, it seems that the mass resolution will not be the limit-
ing factor, but it could be if the situation is not improved as the jet mass scale precision
improves.

– Pileup Modeling and Mitigation: Grooming significantly reduces the impact of pileup,
but if the Run 3+ data are to be used (pileup levels of 80+), then a significantly better and
more detailed understanding of the degradation due to pileup will be required. Statistical
uncertainties are currently not dominant, so it is conceivable that the higher instantaneous
luminosity data will not be required for the precision αs extraction. This may change if
one wants to exploit the largest lever-arm possible; to access the highest pT jets, we will
need more data.

We are optimistic that these difficulties on both the theory and experiment side can be
overcome, enabling a precision probe of the strong coupling constant from jet substructure in
the LHC environment. We also hope that this study motivates additional investigations to
broaden the potential toolbox for αs extraction. At minimum, it would be interesting to study
in more detail the use of other observables beyond the two-point correlators as well as alternative
grooming techniques beyond mMDT/SoftDrop. More ambitiously, one potentially interesting
direction is the use of track-based measurements, since it may be the case that it is ultimately
experimental uncertainties that are the limiting factor. From the experimental perspective,
this significantly reduces uncertainties, particularly in a high pile-up environment. From the
theoretical side, however, it introduces the need for NP track functions. That said, only certain
moments of the track functions are required for special observables, and it may be possible to
perform a combined fits for the moments of the track functions and αs, much like how fits are
performed for e+e− event shapes. Significantly more theoretical work is required to see if this
is truly a viable possibility, although we believe that this is well motivated.
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2 Performance versus robustness: Two-prong substructure taggers for the
LHC 14

The ability to robustly identify, or “tag", boosted hadronically-decaying resonances plays a cen-
tral role at the LHC, both in searches for new physics, as well as for probing the Standard Model
in extreme regions of phase space. While a variety of powerful and theoretically well-understood
tagging approaches exist, their behavior in a realistic experimental environment is complicated
by a number of issues including hadronization, underlying event, pileup, and detector effects.
In this section, we perform a systematic study contrasting the robustness and performance of
different theoretical approaches to designing jet substructure observables. These include stan-
dard jet shape observables as well as various grooming strategies currently used by the LHC
experiments. We also introduce a number of new observables, based on the idea of “dichroic
ratios”, which are designed to simultaneously maximize both robustness and performance. We
discuss the different choices used by ATLAS and CMS, and we introduce reliable metrics for
quantifying robustness and performance for substructure observables. Additionally, we study
the dependence of taggers on the polarization of hadronically decaying W bosons, and identify
strategies to perform polarimetry using the hadronic decay products. We conclude by mak-
ing recommendations for future tagging strategies to ensure robust procedures based on sound
theoretical organizing principles.

2.1 Introduction
With the ever-increasing dataset from the Large Hadron Collider (LHC), we are able to probe
the Standard Model and search for physics beyond the Standard Model in increasingly extreme
regions of phase space. Theoretically well-understood observables that are sensitive to phase
space extremes are therefore playing an important role at the LHC. One of the most exciting new
approaches which has emerged at the LHC are tools from jet substructure, which allow for the
identification of boosted hadronically-decaying particles within jets through a detailed study
of their radiation patterns. Techniques from jet substructure have now been widely used for
Standard Model measurements [693,732–742] as well as for searches for new physics [743–764].15

With the growing importance of jet substructure techniques, there has been a significant
effort by both the theory and experimental communities to develop a more detailed understand-
ing of the theoretical and experimental behavior of jet substructure observables. On the theory
side, this has been pursued through explicit calculations [364,644,646–649,657,695,696,765–785],
scaling arguments [786–788], and machine learning [789–795] approaches. On the experimental
side, there have been detailed studies of the behavior of substructure observables in data, and
their interplay with experimental realities, such as detector resolution and pileup. Summaries
can be found in Refs. [602–605], and Ref. [606] provides a review of recent theoretical and
machine learning developments in jet substructure.

As a result of these efforts, there now exist a number of theoretically well-motivated jet
substructure tools. For tagging hadronically-decaying W/Z/H bosons, which decay primarily
to jets with two well-resolved prongs (also referred to as subjets), a variety of powerful two-
prong taggers have been developed. Modern two-prong taggers typically consist of two or three
ingredients: a groomer which removes low-energy contamination, a two-prong finder which
identifies two (or more) hard subjets, and a jet shape observable which constrains radiation
patterns in the jet. Often, the groomer and the two-prong finder are taken identical. For jet
shapes, it is well understood how to organize and study their behavior using power counting [787].

14 P. Loch, I. Moult, B. Nachman, G. Soyez, J. Thaler (section coordinators); D. Bhatia, R. Camacho,
G. Chachamis, S. Chatterjee, F. Dreyer, D. Kar, A. Papaefstathiou, T. Samui, A. Siódmok

15More LHC studies using jet substructure can be found at https://twiki.cern.ch/twiki/bin/view/
AtlasPublic and http://cms-results.web.cern.ch/cms-results/public-results/publications/.
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A variety of different classes of observables exist, for example the energy correlation functions
[653, 796, 797] and N -subjettiness observables [798, 799], and their relation is understood. The
behavior of groomers is also now well understood, and a number of groomers with favorable
experimental and theoretical properties have been introduced [644,645].

The theoretical understanding of the behavior of tagging observables is primarily based
on perturbation theory, and it is therefore not always clear how this translates to experimental
reality, due to the presence of hadronization, underlying event, detector effects, and pileup.
Indeed, the different LHC experiments have settled on different tagging combinations. For
grooming and prong finding, ATLAS using trimming [643] uses while CMS uses the modified
Mass Drop Tagger (mMDT) [640, 644] and its generalization, SoftDrop [645]. For jet shape
observable, ATLAS uses D2 [780, 787], while CMS uses N -subjettiness ratio τ2,1 [798, 799] or
N2 [796] with DDT [800]. It is not clear whether these choices are driven by differences in the
detectors, or an optimization with respect to different criteria, samples, or modeling. While
detailed optimization must ultimately be performed by the experiments themselves, we believe
that there is still much to be understood about the general organization and design of jet
substructure observables.

In this section, we perform a comprehensive study of performance and robustness for two-
prong tagging techniques. To frame the study, we use a theoretical organization into different
tagging strategies based on the idea of dichroic observables [801], which generalize ratio ob-
servables to allow hybrid combinations of groomed and ungroomed shapes. These contain as
special instances all the familiar observables used by the experiments, as well as new observ-
ables, such as dichroic versions of the N2 and D2 observables. We therefore place the ATLAS
and CMS strategies as specific examples of broader classes of theoretical approaches for tagging
two-prong substructure, about which we can draw general conclusions regarding robustness and
performance.

The goal of this study is to highlight the interplay between performance and robustness,
and assess the choices made by the different LHC experiments. Here, “performance” refers to the
tagging efficiency (for a given background rejection) in the absence of systematic uncertainties.
This has been the primary way to assess jet substructure observables in the past, but it does not
capture the full set of considerations needed to apply jet substructure techniques in practice.
By contrast, “robustness” refers to modifications of the substructure observables as different
physics aspects are added. In particular, we consider robustness to non-perturbative effects,
namely hadronization and underlying event, robustness to detector effects, and robustness to
pileup radiation. In this study, we refine the metic introduced in Refs. [801,802] for quantifying
robustness. We believe that this dual assessment of performance and robustness will be useful in
future studies of jet substructure observables. This allows us to study each tagging strategy in
general, and the CMS and ATLAS approaches in particular. In all cases, we are able to identify
observables with improved robustness and performance as compared with those currently used
by the experiments.

As an additional aspect of this study, we also consider the robustness of the signal tagging
efficiency to the polarization of the decaying boson. We show that while jet shape observables
themselves are fairly robust to polarization, groomed mass cuts are not, so that the tagging
efficiency depends strongly on the polarization. Furthermore, we propose that the momentum
asymmetry of the subjets is a good discriminant between longitudinal and transverse polariza-
tions, and can be used to perform polarimetry for boosted hadronic decays.

An outline of this study is as follows. In Sec. 2.2, we define our metrics for studying
robustness. We discuss the key physics issues that we would like to assess robustness to, both
theoretical and experimental, and describe a chain of different steps in our simulation process
such that each physics issue can be isolated and studied. In Sec. 2.3, we define all jet substructure
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Fig. III.18: A summary of the different stages of physics considered in this study, from idealized
parton-level events to fully realistic events including detector simulation and pileup. This allows
us to address robustness to physics at each stage. Detailed definitions of each stage, and the
physics probes used, are given in the text.

observables that will be used throughout this study, and provide details of our sample generation.
In Sec. 2.4, we discuss theoretical approaches to designing robust two-prong taggers. We extend
the approach of Ref. [801] and define several new dichroic observables formed from the energy
correlation functions. In Sec. 2.5, we study the robustness of the observables to non-perturbative
radiation both from hadronization and underlying event. In Sec. 2.6, we study robustness
to detector and pileup. In Sec. 2.7, we study the robustness of substructure observables to
the polarization of a decaying W/Z boson, and introduce observables to distinguish polarized
samples. We summarize our results in Sec. 2.8 and make a number of recommendations for
future jet substructure studies.

2.2 Quantifying Performance and Robustness
The goal of this study is to study the interplay between tagging performance and robustness for
two-prong taggers. This requires a precise definition of the physics effects to which we are (or
are not) robust, as well as a metric to quantify both performance and robustness.

Since we are able to generate pure signal and background samples, the tagging performance
is straightforward to define using the signal and background efficiencies, εS and εB. In principle,
we could evaluate the full receiver operating characteristic (ROC) curve relating εB to εS . For
simplicity, we use the “tagging significance” as our metric for performance,

ε = εS√
εB

, (III.14)

evaluated at a fixed signal efficiency, typically εS = 0.4.
We will approach robustness by moving from an idealized partonic description to a com-

plete detector simulation including pileup; a“realistic" scenario representative of the LHC envi-
ronment. This chain of realism is shown in Fig. III.18, which illustrates the following stages:

– Parton Level: We define the parton level result as the perturbative distribution for the
active-active scattering (i.e. we do not include possible perturbative contributions to the
underlying event). While this can be defined in an analytic calculation, it is more difficult
in the context of parton shower generators, since there is necessarily a cut-off that must
be imposed between perturbative and non-perturbative physics. Only the complete result
is physical, and intermediate results should be interpreted with care. Nevertheless, to
have some measure of the impact of non-perturbative effects, we will define parton level as
generated by a parton shower generator with all hadronization effects turned off. We use
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Pythia 8 [629,633] as our baseline generator, leaving a study of additional generators to
future work.

– Hadron Level: We define the hadron level result as including hadronization in the shower,
but not including any effects from the underlying event.

– Truth Level: We define truth level as the hadronized result including the underlying
event as implemented in an event generator. Truth level therefore represents a complete
hard scattering process in a hadron-hadron collider in isolation.

– Detector Level: Detector-level results are defined as truth level events passed through a
detector simulation as implemented by TowerGrid. See Sec. 2.6.1 for details of the detector
simulation.

– Pileup Level: Due to the high pileup environment of the LHC, we include in our study
also the effects of uncorrelated proton interactions. We have done this separately from
detector effects to be able to isolate and study the physics effects arising from pileup and
pileup subtraction schemes. Our pileup subtraction scheme is described in Sec. 2.6.2.

– Full Realism: In the final stage of realism, we should consider events with pileup at
detector level. These represent, to the level that we can consider in this study, realistic
events as seen by the experiments at the LHC. Since our detector and pileup assessment
is still fairly basic, we have left this final stage for future work.

Comparing the differences as we progress step by step through this sequence allows us to
address at each stage the robustness to distinct physics issues, and we hope that our segmentation
is sufficiently fine that we have a comprehensive view of robustness. In particular, the different
steps in the chain allow us to study robustness to the following physics:

– Parton → Hadron: Changes in the distribution from parton level to hadron level
probe non-perturbative physics associated with hadronization. For many event shapes,
hadronization corrections can be given a field-theoretic definition in terms of a matrix
element whose symmetry properties can be used to prove basic results. Ultimately, such
corrections cannot be computed from first principles and must be included through mod-
els, such as those included in parton shower generators, or through dispersive approaches
or shape functions in analytic calculations [663–668, 803]. To have the best theoretical
control and understanding of jet substructure observables, it is therefore desirable that
their performance is robust to the effects of hadronization.

– Hadron → Truth: Changes in the distribution from hadron level to truth level probe
the impact of the underlying event, namely the physics associated with interactions of the
colliding protons and their remnants. Such contributions are in principle both perturba-
tive and non-perturbative. They are poorly understood theoretically, and it is currently
not known how to treat them systematically, or define them field theoretically. It has
been found empirically that the effects of underlying event are well modeled by a shape
function [804], although the theoretical justification for this is not clear. Other simple the-
oretical models from which intuition can be gained have been proposed in Ref. [805]. The
underlying event is implemented in parton shower event generators using models which
are tuned to data, and we take these models as our definition of the underlying event. Due
to this lack of theoretical understanding, as well as the fact that radiation from the under-
lying event is typically not associated with the physics that we are interested in probing,
it is desirable that jet substructure observables be robust to the underlying event.
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Fig. III.19: An illustration of the resilience metric ζ used throughout the text to quantify ro-
bustness. In the left panel, we illustrate graphically ζ as the change in ROC curve to a particular
aspect of the underlying physics. In the right panel, we illustrate the tagging resilience vs. tag-
ging performance plane which we will use to graphically illustrate our results. A simultaneously
robust and performant tagger lives in the upper right hand corner of this space

– Truth → Detector: Since we are ultimately interested in using jet substructure in ex-
periments, the behavior of the detectors plays an essential role. The finite energy and
spatial resolution of the detectors ultimately degrades the behavior of the observables.
Furthermore, the detector response must be unfolded, and is therefore difficult to com-
pute analytically, or to include to higher accuracy. Therefore, both for performance and
calculability, it is desirable that jet substructure observables are robust to detector effects.

– Truth → Pileup: Finally, due to the high pileup environment of the LHC, significant
soft radiation can contaminate jet substructure observables. Since this radiation is not
correlated with the underlying hard scattering process, it is not associated with the physics
of interest, and therefore can only act to degrade the performance. Furthermore, it is
difficult to model in an analytic calculation. While techniques exist to mitigate pileup, as
reviewed in Sec. 2.6.2, it is desirable that the substructure observables used are as robust
as possible to pileup contamination.

We will classify the first two of these as “Theory" issues, which will be discussed in Sec. 2.5,
while the second two are classified as “Experimental" issues, and will be discussed in Sec. 2.6.
This decomposition is of course somewhat arbitrary, since a coherent understanding involving
the complete chain is required. However, this decomposition was chosen such that the “Theory"
issues cover an idealized hadronic collision in isolation.

To compare the robustness to a particular step in this chain for different observables, we
must introduce a metric. There is of course a high degree of arbitrariness in the definition of
the metric. For example, one could base the metric on the shape of the signal or background
distribution. Since we are ultimately interested in the performance of the observable, however,
we introduce a metric which is based on the modification of the ROC curve. Consider a reference
stage (unprimed) and a modified stage (primed); in the case of hadronization, the reference stage
would be the hadron level and the modified stage would be the parton level. We first calculate
the cut on the jet shape vcut that yields a fixed signal efficiency εS for the reference stage. We
then compute the reference stage background efficiency εB from that vcut, as well as the modified
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stage signal and background efficiencies ε′S and ε′B. We can then defined a measure of robustness,
which we refer to as resilience, ζ, as

ζ =
(

∆ε2S
〈ε〉2S

+ ∆ε2B
〈ε〉2B

)−1/2

, (III.15)

where

∆εS,B = εS,B − ε′S,B, (III.16)

〈ε〉S,B = 1
2
(
εS,B + ε′S,B

)
. (III.17)

This approach gives an estimate of how much our signal and background efficiencies have
changed, for a given set of cuts, when going from one stage to another.

The meaning of ζ is illustrated in Fig. III.19, where larger values of ζ correspond to
improved robustness. Because we anchor to a fixed vcut, this method can even detect a uniform
shift in both the signal and background distributions (even though such a shift would not
change the ROC curve). We therefore believe that ζ provides a reliable metric for assessing the
robustness of the tagger. When presenting our results, we characterize observables in the plane
of ε (see Eq. (III.14)) versus ζ, with better observables being in the upper-right corner. We
find that this allows us to synthesize the information about a large number of observables in a
compact manner. A similar metric and presentation style was used in Ref. [801, 802] to study
robustness to non-perturbative effects. In addition to showing plots of the ε-ζ plane, we will
occasionally also show the modification of the distribution itself to provide additional insight
into the robustness of the observables.

It is important to emphasize that it is impossible to completely characterize an optimal
observable, particularly as jet substructure observables are being used for increasingly specific
purposes. We hope that the issues that we have chosen to focus on are representative of the issues
that will be important for a broad range of applications. Other aspects, such as the robustness
of the substructure observable distributions to changes in the jet mass or pT cuts, which are
important for certain recent applications of jet substructure [806–811], and have received recent
interest [812–814], are beyond the scope of the current project. However, it would be interesting
to investigate them using similar techniques.

2.3 Observable and Sample Definitions
In this subsection, we define all the observables that will be studied throughout this study. This
includes both the jet substructure shape observables and the grooming procedures. We also
present the details of our sample generation.

2.3.1 Jet Shape Observables
The jet shape observables that we will consider are formed from ratios of the energy correlation
functions [653,796] or the N -subjettiness observables [798,799]. The N -subjettiness observables
are defined as [798,799,815]16

τ
(β)
N =

∑
1≤i≤nJ

pT i min
{
Rβi1, . . . , R

β
iN

}
. (III.18)

Here pT i is the pT of particle i, and the sum is over all particles in the jet. The minimum is over
the longitundinally-boost-invariant angle

R2
iJ = (φi − φJ)2 + (yi − yJ)2 , (III.19)

16For this study, we have used the un-normalized definition of N -subjettiness.
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between the particle i and the axis J .
Implicit in the definition of the N -subjettiness observable in Eq. (III.18) is the definition

of the axes ni. While their placement is unambiguous (up to power corrections) in the limit of
resolved substructure, an algorithmic definition is required to determine their behavior in the
unresolved limit. Two main approaches have been used for defining the axes. The first approach
is to define the N -subjettiness axes as the axes found using an exclusive jet clustering algorithm.
The second approach is to minimize the sum in Eq. (III.18) over possible light-like axes ni. In this
study, we defined the axes using subjets obtained by reclustering the jet, with choices motivated
by the studies in Refs. [781, 816]. For β = 1, we recluster using the kt algorithm [817] with the
winner-take-all recombination scheme [818]. For β = 2, we use the generalized kt algorithm [819]
with p = 1/2.

For two-prong tagging, the relevant observable is the ratio [798]

τ
(β)
21 ≡

τ
(β)
2

τ
(β)
1

. (III.20)

For a jet with a well resolved two-prong structure, we have τ (β)
21 � 1, while for a jet without a

well resolved substructure, we have τ (β)
21 ∼ 1. This observable has been extensively used at the

LHC. It has been calculated to LL accuracy [781], and the effects of the axis definition on the
perturbative behavior have been studied at NLO [820].

The second class of observables that we will consider are based on the energy correlation
functions [653,796]. Instead of correlating particles with axes, as is done for N -subjettiness, the
idea of the energy correlation functions is to correlate n-tuples of particles. In discussing the
energy correlation functions, it is convenient to work with dimensionless observables, written in
terms of the angular variable, Rij and the energy fraction variable zi:

zi ≡
pT i∑

j∈jet pTj
, (III.21)

where pT i is the transverse momentum of particle i = 1, . . . , nJ . The generalized energy corre-
lation function is defined as

ve
(β)
n =

∑
1≤i1<i2<···<in≤nJ

zi1zi2 . . . zin

v∏
m=1

(m)
min

s<t∈{i1,i2,...,in}

{
Rβst

}
, (III.22)

where min(m) denotes the m-th smallest element in the list. For a jet consisting of fewer than
n particles, ven is defined to be zero. More explicitly, the three arguments of the generalized
energy correlation functions are as follows:

– The subscript n, which appears to the right of the observable, denotes the number of
particles to be correlated.

– The subscript v, which appears to the left of the observable, denotes the number of pairwise
angles entering the product. By definition, we take v ≤

(n
2
)
, and the minimum then isolates

the product of the v smallest pairwise angles.

– The angular exponent β > 0 can be used to adjust the weighting of the pairwise angles as
for N -subjettiness.

In this study, we use the 2-point energy correlation function,

1e
(β)
2 ≡ e(β)

2 =
∑

1≤i<j≤nJ
zizj R

β
ij , (III.23)
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as well as the 3-point correlators,

1e
(β)
3 =

∑
1≤i<j<k≤nJ

zizjzk min
{
Rβij , R

β
ik , R

β
jk

}
,

2e
(β)
3 =

∑
1≤i<j<k≤nJ

zizjzk min
{
RβijR

β
ik , R

β
ijR

β
jk , R

β
ikR

β
jk

}
,

e
(β)
3 ≡ 3e

(β)
3 =

∑
1≤i<j<k≤nJ

zizjzk R
β
ijR

β
ikR

β
jk . (III.24)

A number of 2-prong discriminants have been formed from the energy correlation functions [653,
787,788,796]. Here, we will focus on the observables

M
(β)
2 = 1e

(β)
3

e
(β)
2

, N
(β)
2 = 2e

(β)
3

(e(β)
2 )2

, D
(β)
2 = e

(β)
3

(e(β)
2 )3

, (III.25)

each of which probes the correlations between particles within the jet in a slightly different
manner. For a detailed discussion, see Ref. [796]. The N2 and D2 observables are powerful
discriminants and have been used by CMS and ATLAS, respectively. The M2 observable is
expected to have worse performance, except in particular scenarios, but we include it since it
provides an example of a remarkably robust observable.

Beyond their discrimination power, these observables have nice theoretical properties.
First, since they can be written as a sum over particles in the jet without reference to external
axes, they are automatically “recoil-free” [652, 653, 818, 821, 822]. Second, since they have well-
defined behavior in various soft and collinear limits, they are amenable to resummed calculations;
in Ref. [780], D2 was calculated to next-to-leading-logarithmic (NLL) accuracy in e+e− for both
signal (boosted Z) and background (QCD) jets, and this was extended in Refs. [784, 785] to a
hadron-collider environment by exploiting the simplifying properties of grooming.

2.3.2 Grooming Techniques
Groomers, which remove wide-angle soft radiation and contamination from a jet, also play an
important role in two-prong tagging. While a variety of different grooming approaches have
been defined [640–644, 767], we will focus on the mMDT/SoftDrop family, which is the most
theoretically well understood, as well as trimming [643], which is used by the ATLAS experiment.
In this subsection, we review the definition of the mMDT/SoftDrop and trimming algorithms
and their parameters.

Starting from a jet identified with an IRC safe jet algorithm (such as anti-kt [661]), the
SoftDrop algorithm proceeds as follows:

1. Recluster the jet using the Camridge/Aachen (C/A) clustering algorithm [658–660], pro-
ducing an angular-ordered branching history for the jet.

2. Step through the branching history of the reclustered jet. At each step, check the SoftDrop
condition

min
[
pT i, pTj

]
pT i + pTj

> zcut

(
Rij
R

)β
. (III.26)

Here, zcut is a parameter defining the scale below which soft radiation is removed. If the
SoftDrop condition is not satisfied, then the softer of the two branches is removed from
the jet. This process is then iterated on the harder branch.
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3. The procedure terminates once the SoftDrop condition is satisfied.

SoftDrop generalises the mMDT procedure [644] and the two are equivalent for β = 0. For
this reason, we will often use the two names interchangeably. Any IRC-safe observable can be
measured on a jet groomed with the SoftDrop procedure, without loosing IRC safety (for β > 0).
The aggressivity of the SoftDrop grooming can be adjusted by tuning the parameters zcut and
β. Larger values of zcut groom away more radiation within the jet for a fixed value of β. On
the other hand, as β is increased, the grooming becomes less severe. Typical values of zcut are
around 0.1, while typical values of β are between 0 and 2.

Associated with the SoftDrop algorithm, in Sec. 2.7 we will study the observable zg as
a means for performing polarimetry. The zg observable is also referred to as the groomed
momentum fraction, and is defined as

zg = min
[
pT i, pTj

]
pT i + pTj

(III.27)

for the first declustering that satisfies the SoftDrop criteria. This observable probes the mo-
mentum sharing between the two prongs in the jet. For β ≥ 0, this observable is Sudakov
safe [823,824] on QCD jets.

In addition to mMDT/SoftDrop, we also consider the trimming algorithm, since it is used
by the ATLAS collaboration. Starting from a jet of radius R identified with an IRC-safe jet
algorithm, trimming is defined by the following procedure:

1. Recluster the jet into subjets of radius Rsub.

2. Eliminate from the jet all particles in subjets that satisfy pT,subjet > zcut pT,jet.

3. The trimmed jet is then defined to consist of the remaining particles.

Trimming has been experimentally shown to be a powerful grooming algorithm, and it exhibits
excellent mass resolution. That said, trimming is known to suffer from non-global logarithms
[662], and does not have a smooth spectrum as a function of the trimmed mass. The trimmed
mass was analytically calculated in Ref. [644]. The trimming parameters used by ATLAS are
Rsub = 0.2, zcut = 0.05, and the kT algorithm is used to perform the reclustering.

2.3.3 Parton Shower Samples
For our QCD background jet samples we generated pp→ dijets in Pythia 8.230 [629,633] with
the Monash13 tune [631]. An explicit comparison to the Herwig generator [584,825] is left for
future work. Samples were generated with hadronization off (parton level), with hadronization
on but underlying event off (hadron level), and with hadronization and underlying event on
(truth level). Pileup was included by superimposing uncorrelated minimum bias events, which
are also generated in Pythia 8, this time using the 4C tune. Details of our pileup removal
strategies will be described in Sec. 2.6.2.

For our polarized W samples, we considered a gg produced resonance, X, that decays
to a pair of polarized W bosons. This kind of resonance decaying to longitudinally-polarized
W s appear in warped extra-dimensional models, where the Standard Model fields propagate in
the bulk. On the other hand, models with graviton-like tensors with minimal couplings yield
only transversely-polarized W bosons. They were produced with the JHUGEN 3.1.8 [826,827]
generator, interfaced with Pythia 8 [633] for parton showering including the effect of hard gluon
radiation. A resonance width of 1% was chosen. Table III.1 shows the coupling values used to
generate the polarised W samples (see also Ref. [826] for more information).
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Model Production couplings Decay couplings Decay helicity amplitudes
2+
b g1 = 1 g5 = 1 f00 = 0.98

2+
m g1 = 1 g1 = g5 = 1 f00 = 0.08, f+− = f−+ = 0.46

Table III.1: A description of the production and decay constants used to produced the polarized
W samples used in this studies.

2.4 Theory Approaches to Robust Ratio Observables
The observables defined in Sec. 2.3.1 are designed to distinguish boosted bosons from QCD jets
using the detailed structure of the radiation within the jets. From this perspective, it is then
immediately clear that there will be an interplay between performance and robustness. By using
a maximal amount of radiation within the jet, the maximal information is available to identify
the origin of the jet. However, an increased sensitivity to radiation also means an increased
sensitivity to contamination, both theoretically from non-perturbative hadronization effects and
underlying event, as well as experimentally from pileup. It also introduces sensitivity to the
experimental reconstruction of soft momenta in the event. On the other hand, a tight grooming
procedure, which removes radiation from within the jet, is expected to reduce the ability to
distinguish boosted bosons from QCD jets. In that context, it is interesting to see that both
ATLAS and CMS have currently adopted a tight grooming strategy.

In this subsection, we introduce a classification of different tagging strategies which will
be an organizing framework for our study of robustness and performance. This organization will
be based on the idea of dichroic observables [801], which are ratio observables constructed from
combinations of groomed and ungroomed observables. In Sec. 2.4.1, we review the physics of the
dichroic approach for the example of the τ21 observable. In Sec. 2.4.2, we generalize the dichroic
construction to energy correlation function based observables and give definitions of dichroic
N2, D2, and M2 observables. This allows us to have multiple concrete examples of observables
for each of our general tagging strategies. Then, in Sec. 2.4.3 we present the complete set of
tagging strategies that we will consider in this work, including the different parameters we will
scan within each general class.

2.4.1 Review of the Dichroic Approach
In Ref. [801], it was proposed that in addition to considering the standard τ21 observable and its
groomed counterpart, one should also consider a mixed version, with a groomed denominator,
and an ungroomed numerator. This observable was termed “dichroic”, since different levels of
grooming are sensitive to different color structures. More explicitly, Ref. [801] considered the
three observables:

τ large
21 = τ large

2

τ large
1

, τ small
21 = τ small

2
τ small

1
, τdichroic

21 = τ large
2
τ small

1
, (III.28)

where “large” refers either to the plain jet of a lightly/loosely groomed jet and “small” denotes
a more aggressively/tightly groomed jet. It was then argued that the dichroic combination was
optimal for performance, while also increasing the robustness to non-perturbative contamination.
Here we briefly summarize the motivation for the dichroic observable. Readers interested in
a more detailed discussion of the dichroic approach, including perturbative calculations, are
referred to Ref. [801].

The benefits of the dichroic approach can simply be illustrated by considering the distri-
butions of the observables after aggressive grooming (tight), moderate grooming (loose), and in
the dichroic approach. This is shown in Fig. III.20 for the particular case of τ21. Considerable
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Fig. III.20: Distributions of the tight, loose, and dichroic τ21 observables with a cut on the
mMDT/SoftDropped mass. The dichroic approach offers considerably improved performance as
compared with the tight grooming, almost preserving the performance of the loose grooming at
high signal purity. Figure taken from Ref. [801].

performance is lost in going from loose to tight grooming, since the background distribution is
pushed to lower values of τ21. For the dichroic observable, by constrast, the behavior of the
loose and dichroic observables is identical at small values of τ21, but for larger values of τ21,
the dichroic distribution is pushed to yet larger values than the loose distribution, leading to
improved performance. Since the dichroic ratio observable uses a partially-groomed observable,
it is expected to be less sensitive to non-perturbative effects due to hadronization. It therefore
represents an interesting new class of observables to consider.

2.4.2 New Dichroic Observables
It is almost straightforward to extend the dichroic definition from N -subjettiness ratios to ob-
servables formed from the energy correlation functions. For τ21 it is immediately clear what the
numerator and denominator of the observable are, however, this is initially less obvious for the
energy-correlation-function-based observables that have a more complicated structure. Here,
we define the dichroic variants of the M2, N2, and D2 by isolating a single factor of a mass
like observable (e2) as the denominator, and defining the remainder of the observable as the
numerator. The definitions of the dichroic variants of the M2, N2, and D2 observables are then

Mdichroic
2 = (1e3)large

esmall
2

, (III.29)

Ndichroic
2 =

(
2e3/e2

)large

esmall
2

, (III.30)

Ddichroic
2 =

(
e3/e

2
2

)large

esmall
2

. (III.31)

The above prescription is most easy to see for the N2 observable. In the two-prong limit, the
combination 2e3/e2 reduces to τ2, and therefore the dichroic N2 ratio behaves similarly to the
dichroic τ21 ratio.
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Observable Numerator Denominator
M2 1e3 e2
N2 2e3/e2 e2
D2 e3/e

2
2 e2

τ21 τ2 τ1

Table III.2: Definitions of the numerators and denominators for the different jet substructure
observables.

Notation: m⊗ n
d m (mass) n (numerator) d (denominator)

p⊗ p
p plain plain plain

`⊗ p
p loose plain plain

`⊗ p
` loose plain loose

`⊗ `
` loose loose loose

t⊗ p
p tight plain plain

t⊗ p
` tight plain loose

t⊗ `
` tight loose loose

t⊗ p
t tight plain tight

t⊗ `
t tight loose tight

t⊗ t
t tight tight tight

trim trim trim trim

Table III.3: A summary of the different tagging strategies considered, including the notation, and
the degree of grooming for the mass, and numerator and denominator of the shape observable.
For simplicity, we have suppressed the jet radius, R. The definitions of plain, loose, tight and
trim are given in the text.

2.4.3 Summary of Tagging Strategies
The tagging strategies we consider can be put into the general form of a (groomed) mass cut
(m) followed by a cut on a two-prong tagging observable, which takes the form

O = 3-particle observable
2-particle (mass) observable ≡

n

d
. (III.32)

The explicit numerators (n) and denominators (d) for the different observables are summarized
in Table III.2.

As our organizing principle for classes of jet substructure taggers, we use the type of
grooming applied to the initial mass cut, and the type of grooming applied to the numerator
and denominator of the two-prong observable. We use the notation

m⊗ n

d
(III.33)

to denote the grooming applied to a particular observable, where m, n, and d can take the values

– plain (p): no grooming applied;

– loose (`): SoftDrop with zcut = 0.05, β = 2;

– tight (t): mMDT with zcut = 0.1.
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Parameter Values Scanned
Jet Radius R 0.8
Jet Shape D2, N2, M2, τ21

Jet Shape Angular Exponent β 1, 2
Jet pT 500 GeV, 1000 GeV, 2000 GeV

Table III.4: Jet shapes and parameters scanned for each of the different strategies proposed in
Table III.3.

– trim: trimming with Rsub = 0.2, zcut = 0.05 and the kT algorithm to perform the reclus-
tering, as used by ATLAS.

In general, to have a good 2-prong tagging strategy, we want to have

m ≥ d ≥ n , (III.34)

where ≥ refers to the aggressiveness of the groomer, with t > ` > p.
The complete set of configurations that we consider is given in Table III.3. These constitute

generic grooming strategies, and will be studied for each of N2, D2, and τ21. They include the
dichroic ratios, as well as the current ATLAS and CMS approaches as specific examples. This will
allow us to draw general conclusions about the performance and robustness of jet substructure
taggers.

While our general approach is based on studying the different classes of grooming strategies
in Table III.3, for each of these different classes of strategies we will also scan different parameters.
In particular, we will scan the jet shape, jet shape angular exponent, and jet pT . The values
scanned are summarized in Table III.4. This allows us to understand if the conclusions drawn
are associated with specific observables within a given strategy, as well as to optimize over these
parameters. Due to the large number of physics and detector parameters that can be varied
in our study, only a subset of plots will be presented in the study. More specifically, we will
primarily show results for the following 3 benchmark points

– an ATLAS-like tagger putting cuts on the trimmed mass and on D(1)
2 computed on the

trimmed jet: D(1)
2 [trim];

– a CMS-like tagger putting cuts on the mMDT mass and on N
(1)
2 computed on the

tightly-groomed jet: N (1)
2 [t⊗ t/t];

– the Les-Houches Dichroic Taggger (LHDT) putting cuts on the mMDT mass and on
the dichroic D(2)

2 : D(2)
2 [t⊗ l/t].

To study variations, we will either fix the grooming strategy to one of the three benchmark
points and vary the jet shape, or conversely, fix the type of jet shape to one of our benchmark
points and vary the grooming strategy. A more global summary of the observables scanned,
highlighting those which we find to be most promising, will be given in Fig. III.29.

2.5 Theory Robustness
In this subsection, we study robustness to hadronization and underlying event, which we cate-
gorize as “Theory" robustness. Robustness to the detector and to pileup are treated in Sec. 2.6.
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Fig. III.21: Mass distribution after grooming for the three groomers considered in this paper.
The distributions are shown at parton level, at hadron level, and at truth level (i.e. including
both hadronization and the underlying event).

2.5.1 Hadronization
We begin by studying the robustness of different tagging techniques to hadronization. As dis-
cussed in Sec. 2.2, this must be interpreted with some care, since the unhadronized events are
not themselves physical. Nevertheless, the comparison of hadronized and unhadronized distri-
butions is the best proxy for understand the impact of hadronization short of performing an
analytic calculation. To ensure that our conclusions are robust, ideally we would consider parton
shower generators which implement different hadronization models. For example, the Pythia
shower uses the string model [828,829], while Herwig++ uses the cluster model [703,830]. See
for example Refs. [831–833] for a more detailed discussion. Due to the restricted scope of this
report, here we only consider Pythia. The effect of hadronization on two-prong substructure
observables has been studied in Refs. [780,784,785,801].

Before studying robustness under hadronization quantitatively, we begin by showing sev-
eral distributions with and without hadronization. This will help to introduce the different
observables, as well as to give the reader a feeling for the robustness at the level of the shape of
the distribution, and how this compares to our resilience measure.

In Fig. III.21, we show the jet-mass distribution for the three grooming strategies consid-
ered in this paper, for parton, hadron, and truth levels. Although we will not focus directly on
the mass distribution in this paper, it plays an important role since all of our studies will be per-
formed with jet mass cuts. Here we see two primary features. First, all three groomers give rise
to significantly different mass distributions. This has been discussed in detail in Refs. [644,645].
Second, with both tight and loose grooming, the distributions are robust to hadronization. This
is particularly true for tight grooming where hadronization has almost no effect, except at ex-
tremely small values of the observable. On the other hand, the trimmed mass distribution is
less robust to hadronization effects.

In Fig. III.22, we show distributions for our benchmark observables, namely D(1)
2 , N (1)

2 ,
and a dichroic version of D(2)

2 , measured on both background and signal jets. In all cases, we
see that hadronization has a sizable effect on the shape of the distribution, pushing it to larger
values. For the D2 observable, hadronization is mostly isolated to small values of the observable,
and at larger values reduces simply to a shift of the distribution. This has been discussed in detail
for the case of D2 in Refs. [780,784,785]. For the N2 observable, hadronization effects are larger
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Fig. III.22: Distribution of three benchmark shapes: D(1)
2 computed on the trimmed jet (ATLAS-

like), N (1)
2 computed on the tight (mMDT) jet (CMS-like), and the dichroic D(2)

2 with numerator
computed on the loose jet and denominator computed on the tight jet (LHDT). The distributions
are shown at parton level, at hadron level, and at “truth” level (i.e. including both hadronization
and the underlying event), for both WW (solid) and dijet (dashed) events.
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Fig. III.23: ROC curves corresponding to the shapes plotted on Fig. III.22. The three line types
correspond to the three benchmark points.

and are significant throughout the entire distribution. Indeed, when we study performance
and robustness quantitatively, we will find that while N2-type observables tend to be more
performant, they are also less resilient to hadronization effects.

Since the primary role of hadronization is to push the distributions to larger values at
small values of the observable, the performance of the observables is typically highly sensitive
to hadronization, particularly at high signal purity. In Fig. III.23 we illustrate this (lack of)
robustness to hadronization at the level of the ROC curves for the different shape choices. In
all cases, we see that hadronization considerably improves the performance of the observables.
This is particularly true at high signal purity, and decreases as the signal purity is decreased.
Since the region of high signal purity is typically that of interest for jet substructure studies,
this emphasizes the importance of understanding the robustness of observables to hadronization
effects.
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Fig. III.24: An illustration of the performance-resilience plane that will be used to illustrate our
results. More performant observables lie to the top, more resilient observables to the right, and
better observables in the upper-right corner.
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Fig. III.25: Plots of the peformance-resilience plane under the addition of hadronization effects
for the standard jet shape observables with different grooming strategies.

Having given a feel for the modifications due to hadronization at the level of both dis-
tributions and ROC curves, we now use our performance and resilience measures to perform a
quantitative study. Since our visualization method allows a considerable amount of information
to be condensed into a single plot, we first briefly review our presentation method with a sample
plot. In Fig. III.24, we show a plot in the performance-resilience plane, in which we will display
our results. More performant observables appear higher on the y-axis (towards the top), while
more robust (resilient) observables appear higher on the x-axis (to the right), as indicated by
the arrows. A performant and resilient observable will appear in the upper right corner. For
each observable, we also perform a scan of pT , from 500 − 2000 GeV, which are illustrated by
the three connected points. This will be the default format in which we display our results
throughout the rest of this study.

In Figs. III.25 and III.26, we show the performance-resilience plots for the effects of
hadronization for our benchmark observables. Figure III.25 shows D2, N2, and dichroic D2
for the different grooming strategies, while in Fig. III.26 we consider fixed grooming strategies
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Fig. III.26: Plots of the peformance-resilience plane under the addition of hadronization effects
for different jet shape observables, with fixed grooming strategies.
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Fig. III.27: Plots of the peformance-resilience plane going from hadron level to truth level
(inclusion of underlying event) for the standard jet shape observables with different grooming
strategies. In this and the next figure, resilience values have been cut at ζ = 10 for easier
comparison with the corresponding hadronisation plots, Figs. III.25 and III.26.

in each plot, but different jet shape observables. We first notice that, in almost all cases, a
dichroic form of the observable can be used to improve resilience while maintaining a similar
level of performance. Among the shapes, we find that D2 tends to be the most robust and that
N2 tends to be slightly more performant, although D2 becomes more performant than N2 at
larger pT . This agrees with what was seen by studying the distributions in Fig. III.22 by eye,
however, we are now able to quantify this. We will see that this conclusion remains true under
a larger scan of observables in Sec. 2.5.3. We also notice that for almost all the observables, the
trends with pT are similar.

2.5.2 Underlying Event
We can now repeat the same exercise performed for hadronization to study the robustness to
underlying event. The results in the performance-resilience plane are shown in Figs. III.27 and
III.28. These are identical to Figs. III.25 and III.26 but measure the robustness to underlying
event instead of hadronization. The first thing that is clear from comparing Figs. III.25 and
III.26 with Figs. III.27 and III.28 is that with modern grooming techniques, we are comparatively
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Fig. III.28: Plots of the peformance-resilience plane going from hadron level to truth level
(inclusion of underlying event) for different jet shape observables, with fixed grooming strategies.

much less sensitive to underlying event than to hadronization effects. With the exception of the
tight⊗plain/plain grooming strategy (which indeed does not groom the observable), all the
standard observables are robust to underlying event for all the different grooming strategies.
Similarly, all the different jet shape observables in this study are also robust to Underlying
Event effects. The dichroid D(2)

2 observable (Figs. III.25c and III.27c) shows a smaller resilience
against the Underlying Event although it remains much larger than the corresponding resilience
to hadronisation effects. We believe that this should be viewed as a success of modern grooming
tools. We also believe that it is desirable, since underlying event effects are much less under
theoretical control than hadronization effects.

2.5.3 Towards Improved Performance and Robustness for ATLAS and CMS
The strategies used by ATLAS and CMS, namely trimmed D2 [780, 787] and SoftDropped
N2 [796] with DDT [800] are specific examples of the broader approaches to two-prong tagging
discussed above, and therefore our study allows us to gain insight into the different tagging
strategies used by the collaborations,17 as well as to suggest improved observables.

An overall scan of all the observables used in this study in the performance-resilience
plane is shown in Fig. III.29. The current CMS and ATLAS observables are highlighted with
the black and green markers, respectively. We can draw two interesting conclusions from this
plot. First, for pT > 500 GeV, it appears as though ATLAS is using a more robust, but less
performant observable, while CMS is using a more performant, but less robust observable. This
must be caveated by the fact that we have not performed a full detector study, though it is
suggestive. Second, we can choose from the observables considered in our study observables
that are simultaneously more performant, and more resilient than those that are currently being
used. At 500 GeV the gains in performance are fairly minimal, but at 1000 GeV, it seems that
there are considerable gains in performance and robustness to be made. The names of a large
variety of those observables which lie on the upper boundary of the performance-resilience space
are marked in the figure.

Looking more closely at the observables along this upper boundary, we see that there is in
fact considerable structure, and a number of general lessons can be learned. First, as we move
along this boundary from least resilient to most resilient, we transition from N

(1,2)
2 observables

17And perhaps even into the sociology of the different experiments! However, such conclusions should be taken
with a grain of salt.
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Fig. III.29: The performance-resilience plane for the different observables scanned in our study
at (a) 500 GeV and (b) 1000 GeV. The ATLAS- and CMS-like observables are marked in black
and green, respectively. In both cases, more robust, and more performant observables can be
selected, and a number of such observables are marked.

which are the most performant, but less robust, through D(2)
2 , to M (2)

2 , which is more robust,
but less performant. This was also clearly observed in the distributions of Fig. III.22. We
believe that this is due to the fact that N2 has a hard phase space boundary, and therefore
non-perturbative effects are not isolated at small values of the observable, although it would be
interesting to understand this behavior in more detail.

A second pattern that is observed is that, in almost all cases, dichroic variants of the
observables of the form t ⊗ p

t or t ⊗ `
t exhibit improved performance without significant loss

in resilience. We believe that it is worthwhile for the experiments to consider some of the
dichroic observables that were newly introduced in Sec. 2.4.2 with simultaneous performance
and resilience in mind. We have highlighted in Fig. III.29 that a whole interesting phase space
of such observables exist, which map out the performance-resilience plane. Different observables
could be chosen depending on the particular needs of a given study. Note finally, that the above
study has been carried using a specific choices of grooming strategies (loose and tight). There is
therefore a potential additional gain that can be achieved by studying alternative (more or less
aggressive) options.

2.6 Experimental Robustness
Having discussed robustness to theoretical issues, we now continue through our chain of realism
of Fig. III.18 and consider robustness to detector effects. In Sec. 2.6.1 we describe our detector
model. In Sec. 2.6.2 we describe pileup removal. In Sec. 2.6.3 we study the robustness of jet
mass to detector effects. A more comprehensive study is left to a dedicated publication.
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Signal Model parameters
Coverage pmin

T pmax
T Resolution function parameters

Configuration A (Rcalo = 1150 mm, Bsolenoid = 2 T)
Towers |η| < 2.5 500 MeV 10 TeV acalo = 10%×

√
GeV

(EM) bcalo = 0
ccalo = 0.7%

Towers |η| < 4.9 500 MeV 10 TeV acalo = 50%×
√
GeV

(HAD) bcalo = 0
ccalo = 3%

Configuration C (Rcalo = 1290 mm, Bsolenoid = 4 T)
Towers |η| < 2.5 500 MeV 10 TeV acalo = 3%×

√
GeV

(EM) bcalo = 0
ccalo = 0.5%

Towers |η| < 4.9 500 MeV 10 TeV acalo = 100%×
√
GeV

(HAD) bcalo = 0
ccalo = 5%

Tracks |η| < 2.5 1 GeV 300 GeV atrack = 0.015%×GeV−1

ctrack = 0.5%

Table III.5: Principal properties and smearing parameters of the detector model configurations
A and C. Electromagnetic (EM) towers have a tower size of ∆η × ∆φ = 0.025 × 0.025, while
hadronic (HAD) towers have ∆η × ∆φ = 0.1 × 0.1. Tracks are not modeled in configuration
A, while configuration C models both tracks and calorimeter signals to simulate the effect of
a particle flow algorithm. The resolution function parameters acalo, bcalo, and ccalo are used
together with the resolution function in Eq. (III.35) to determine the width of the Gaussian
energy smearing. Similarly, atrack and ctrack are used in Eq. (III.36) to determine the width of
the track-pT resolution smearing.

2.6.1 Detector Models
The detector response is modeled by subjecting the particle-level objects18 to a simple accep-
tance and smearing model representing tracking detectors as well as calorimeters. Basic detec-
tor feature descriptors are considered together with response features and signal reconstruction
strategies similar to the ATLAS and CMS experiments at the LHC. The respective model con-
figurations are A (ATLAS-like [834]) and C (CMS-like [835]). Effects from particles showering
in calorimeters are not modeled.

Both configurations feature cylindrical detectors around the collision vertex with full az-
imuthal coverage −π < φ < π. The detector modeling produces a final state represented by a list
of pseudoparticles which are proxies for detector signals generated by stable particles. Particles
emitted at pseudorapidities |η| > 4.9 and non-detectable particles like neutrinos are excluded
from this modeling and thus not part of this final state.

In configuration A, the pseudoparticles are produced by a calorimeter-only detector model
with regular projective readout in (η, φ) space. The energy of all stable particles generating

18Those are stable particles produced by the generator that potentially reach a detector. This principally
requires a particle lifetime τ in the laboratory frame given by cτ > 10 mm.
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Fig. III.30: An illustration of the basic jet features for the configuration A (ATLAS-like,
calorimeter only) and configuration C (CMS-like, particle flow using tracks and calorimeter)
detector signal models. The solid black arrows indicate the jet composition from representations
of neutral (pale blue) and charged (pale red) particles by calorimeter towers or reconstructed
tracks. The green dashed curves show charged particle tracks bend in the magnetic field. Both
illustrations show the same truth-level jet.

hadronic shower when interacting with the detector material is collected in hadronic (HAD)
calorimeter towers of size ∆η × ∆φ = 0.1 × 0.1. Electrons, positrons, and photons emitted
within |η| < 2.5 fill electromagmetic (EM) towers of size ∆η × ∆φ = 0.025 × 0.025 with their
energy, mimicking the typical coverage of the high granularity electromagnetic calorimeter. The
direction of neutral particles is the generated direction at the vertex, while for all charged
particles φ is changed to the azimuth at the entry point of the particle into the calorimeter.
This entry point is calculated using the particle trajectory in an axial uniform magnetic field of
Bsolenoid = 2 T and the radius Rcalo = 1150 mm of the calorimeter front face. If the transverse
momentum of the charged particle is too low to reach the calorimeter, i.e. its trajectory in the
magnetic field does not exceed Rcalo, the particle is considered invisible for the detector and
thus ignored for further analysis. For particles reaching the calorimeter, the (bent) trajectory
is not radial anymore at the front face. This suggests a distribution of the particle energy into
more than one tower. In this model there is no energy sharing between towers, as this would
require to at least model the longitudinal energy distribution in an electromagnetic or hadronic
shower, with considerable computational effort.

After all energy is collected, the finite calorimeter resolution is modeled by smearing the
tower energy Etower following a Gaussian distribution with width σEtower given by the canonical
calorimeter resolution function:

σEtower(Etower)
Etower

=
√

a2
calo

Etower
+ b2calo
E2

tower
+ c2

calo. (III.35)

The three components of this function are the stochastic term acalo reflecting sampling and
intrinsic shower fluctuations, the noise term bcalo quantifying the detector noise, and the constant
term ccalo capturing fluctuations introduced in the process of the detector signal extraction. The
values for acalo and ccalo are shown in Table III.5. The detector noise is not modeled, thus the
noise term is bcalo = 0 for both configurations.

The tower energy after smearing is required to pass ptower
T > pmin

T . Towers passing
this requirement are converted into massless pseudoparticles using the nominal tower cen-
ter (ηtower, φtower) and the tower energy Etower ((Etower, ηtower, φtower) 7→ (Etower, ~ptower) with
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|~ptower| = Etower).
Configuration C models a particle flow signal from a tracking detector combined with a

calorimeter. Charged particles are bent in an axial uniform magnetic field with Bsolenoid = 4 T.
The transverse momentum of the charged particles emitted within a tracking detector acceptance
of |η| < 2.5 is smeared along a Gaussian distribution function with width σptrack

T
given by:

σptrack
T

ptrack
T

=
√

(atrack · ptrack
T )2 + c2

track . (III.36)

If ptrack
T after smearing is within pmin

T < ptrack
T < pmax

T , the charged particle is added to the list
of pseudoparticles with its direction at the interaction vertex. The trajectories of all charged
particles within |η| < 2.5 and outside of this transverse momentum range, and all charged
particles with |η| > 2.5, are extraploted to the front face of the calorimeter at Rcalo = 1290 mm.
If the extrapolated particle trajectory reaches the calorimeter, the particle energy is added to
a calorimeter tower at the extrapolated φ, similar to the treatment of all charged particles in
configuration A.

The energy of neutral particles is added to the calorimeter tower in the same way as in
configuration A. The selection employing ptower

T > pmin
T is applied as well after the tower energy

smearing with the parameters for configuration C given in Table III.5. Figure III.30 shows
the calorimeter-only composition of a given truth-level jet in configuration A together with the
track-and-calorimeter jet composition of configuration C. The two model configurations produce
significantly different jet compositions, in particular with respect to the energy flow from low-pT
constituents.

The implementation of this detector model is available from the DetectorModel subdirec-
tory of the git repository at https://github.com/gsoyez/lh2017-2prongs/.

2.6.2 Pileup Mitigation
Besides the detector response discussed above, LHC collisions are also contaminated by pileup.
While pileup multiplicities remained reasonably low, around 20, during Run I of the LHC, they
already increased to 40-60 in Run II and are expected to increase even further, in the 140-200
range, for the high-luminosity upgrade of the LHC.

To correct for the energy bias and smearing associated with the pileup contamination,
one uses a variety of pileup mitigation techniques (see Ref. [836] for a recent review). The
standard approach for most applications is the area–median subtraction method [455, 681, 682,
837] (potentially using the ConstituentSubtractor [686] for subtracting pileup from jet shapes).
Recently, more complex pileup subtraction methods have been proposed [683–685, 687] (see
also [838, 839]). In particular, PUPPI [685] and the SoftKiller [683] both provide event-wide
pileup mitigation techniques that show good performance in terms of resolution, at the expense
of requiring some degree of fine-tuning of their free parameters. PUPPI has already been used
by the CMS collaboration in a series of jet-substructure studies.

For these proceedings, we will concentrate on the SoftKiller approach. This is motivated
by its speed—for a typical LHC event with pileup would be subtracted and clustered in 200-
700 µs—by the fact that a public implementation is available, and by the fact that the SoftKiller
and PUPPI have shown similar performance (see e.g. [840]).

The SoftKiller algorithm works by iteratively removing the softest particle in the event
until the area-median pileup density estimate ρ is zero. This is equivalent to breaking the event
in patches and iteratively removing the softest particle in the event until half of the patches are
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Fig. III.31: (a) Mass reconstruction with detector effects at different jet pT . (b) The peak
position and width of the mass distribution, after pileup and, separately, after detector effects.

empty, i.e. imposing a cut

pcut
T = median

p∈patches

{
max

particle i∈p
{pT i}

}
. (III.37)

SoftKiller then removes particles below a cutoff pcut
T , chosen such that ρ = 0. We have

pcut
T = median{pmax

T i } . (III.38)

SoftKiller has been shown to provide good performance for removing pileup contamination.

2.6.3 Impact on Mass Resolution
The impact of detector resolution and pileup is far more complex than including the detector
simulation discussed in Sec. 2.6.1. In particular, we have not performed any calibrations or
in-situ corrections. We have therefore limited the scope of these proceedings to a discussion of
their effects on mass resolution. This will highlight the need to perform a more sophisticated
study when considering detector effects, which will be left to a future publication.

In Fig. III.31, we show distributions of the groomed mass for a hadronically-decaying
boosted W boson in our CMS-like and ATLAS-like detectors at different values of the jet pT
(Fig. III.31a), together with the measure peak position and width, for the trimmed mass with
the ATLAS-like detector simulation and the tight (mMDT) mass with the CMS-like simulation
(Fig. III.31b).19 We see that the detector has a significant impact on the distributions: while the
W peak remains decent for 500-GeV jets, typical of most applications today, the raw resolution
considerably degrades as the pT is increased. We also see that both detectors show a similar
trend, despite their different approaches. For pT ’s up to 1 TeV, it seems that the configuration C
gives a slightly better resolution thans the configuration A, an effect that is tentatively attributed
to particle flow. However, at high pT there is a trade off between tracking and calorimetry, which

19The position and width are defined as the median and width of the smallest mass window containing 40% of
the events.
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is better in configuration A, leading to comparable detector resolution. Furthermore, in the full
experiments, the reconstruction algorithms are complementary and adapted to the experiments’
detector technologies, so that the two experiments achieve similar performance. Due to the
fact that the end results of the two detectors are quite similar, we find it unwise to draw any
deeper conclusions, since there are potentially other effects, not included in our simulation, that
could determine the final outcome. We will however point out that, in our (over-simplified)
preliminary studies, the main patterns observed in Sec. 2.5.3, i.e. the overall good performance
of N (1,2)

2 and D(2)
2 and the interest in investigating dichroic ratios, seem to remain valid.

Figure III.31b also includes the mass resolution in the presence of pileup, here Poisson-
distributed with an average multiplicity of 50, mitigated using the SoftKiller method described
in Sec. 2.6.2. Based on this simple analysis, it seems that the reconstruction of W mass peak
still behaves properly in the presence of pileup. It is important to note, however, that this pileup
result is in the absence of detector effects, and there is a non-trivial interplay between detector
corrections and pileup corrections.

This brief study highlights the essential importance of understanding detector effects when
designing jet substructure observables. Although we have found that the N2 and D2 observables
emphasize, respectively, performance and robustness, it would also be interesting to understand if
the different detectors played a role in the choice of one observable as compared with the other.
As highlighted by the specific example of the groomed jet mass here, such a study requires
considerable care to perform in a meaningful manner. The detectors have a large impact, and
the two detectors appear qualitatively similar in our analysis setup. Differences may therefore be
due to more subtle features, beyond those included in our study, and this is probably something
that is best left to the experimental collaborations to study with realistic detector simulations.
We hope that this study motivates the experimental collaborations to further investigate the
performance and robustness of different two-prong tagging observables at each of the different
steps along the chain of realism in order to understand the different choices in observables.

2.7 Polarization Dependence
For signal jets, there is another consideration related to the robustness of two-prong tagging,
namely the specific nature of the decaying electroweak-scale resonance, which can also affect
the substructure observables. Assuming that this electroweak-scale resonance is a color-singlet
decaying to quarks, it is completely characterized by its spin structure.

All of our taggers consist of two conceptually distinct components, which will be affected in
different ways by the polarization. We begin by making a cut on the (groomed) mass, followed
by a cut on a particular jet shape which is sensitive to the two-prong structure. These two
steps are associated with very different physics. A jet from a W → qq̄ decay consists of two
collimated sprays of radiation, which are proxies for the q and q̄, along with radiation emitted
from the dipole. Ideally, a groomer should terminate when it de-clusters the jet into two subjets
corresponding to the jets initiated by the two quarks. If there is a large fraction of decays where
the momentum sharing between the two subjets is hierarchical, though, then the groomer can
remove one of the subjets. In this case, the jet will fail the groomed mass criteria. Since the
polarization controls the momentum sharing of the subjets, this introduces a sensitivity on the
polarization into the tagging procedure. On the other hand, the 2-prong tagging observables
that we consider are all formed as ratios of an observable which is sensitive to radiation from
the prongs, divided by a mass-type observable, which (largely) removes the dependence on the
momentum sharing of the subjets.

In this subsection, we consider two main issues, namely the dependence of the standard jet
substructure observables to the polarization of the signals, and the ability to perform polarimetry
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Fig. III.32: a) Distributions of the D2 observable as measured on the samples with different
polarization compositions. These observables are found to be largely insensitive to the polar-
ization. b) ROC curves comparing the different grooming strategies for different polarization
samples. While the polarization has a limited effect on the jet shape observables, it modifies the
groomed mass acceptance, and therefore the tagging efficiency, significantly.

using jet substructure observables measured on the hadronic decay products.

2.7.1 Performance Impact of Polarization
We begin by studying the sensitivity of two-prong taggers to polarization. To do this, we
consider samples of hadronically decaying W s, which are either purely transversely polarized,
purely longitudinally polarized, or have the Standard Model fraction (mostly transverse). The
details of the sample generation were discussed in Sec. 2.3.3.

In Fig. III.32a, we show the D2 observable as measured on longitudinal and transverse
hadronically-decaying W bosons, as well as the Standard Model mixture, as a representative
example of the dependence of a two-prong tagger on polarization. From this figure, we see
that the jet shape observable itself is remarkably insensitive to the polarization, due to its ra-
tio nature. However, it is important to emphasize that this does not imply that the tagging
performance is also independent of the polarization. As can be seen in Fig. III.32b, the tag-
ging performance is significantly worse for transversely-polarized W bosons as compared with
longitudinally-polarizedW bosons. This is due to the fact that transversely-polarizedW bosons
have a more asymmetric energy sharing, and it is therefore more likely that one of the subjet
prongs is groomed away, leading to the jet failing the mass cut. This difference between longi-
tudinally and transversely-polarized bosons should be taken into account in studies at the LHC.
It would also be interesting to develop tagging or reconstruction schemes that are less sensitive
to polarization.

2.7.2 Tagging Longitudinal vs. Transverse Bosons
Having understood the dependence of standard jet substructure observables on polarization, it
is interesting to know whether jet substructure observables are able to tag distinct polarizations
on hadronically-decaying particles, and with what efficiency this can be done. Here, we do
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not perform a comprehensive study, but restrict ourselves to studying a particular example of
an observable which is sensitive to the W polarization, and we evaluate its performance for
distinguishing transverse and longitudinal W bosons.

The sole impact of the polarization of the decaying object is to determine the kinematics of
the decaying subjets. Indeed, this can be made rigorous in the sense of a factorization theorem
for boosted jets in the two-prong limit. We are therefore interested in an observable that is
sensitive to the kinematics of the two subjets. While a variety of different observables could be
considered, here we consider the zg observable [645, 824, 841], which measures the momentum
sharing of the subjets. The precise definition of zg was given in Sec. 2.3.2, which we recall for
convenience

zg = min
[
pT i, pTj

]
pT i + pTj

. (III.39)

Here pT i and pTj are the momenta of the first set of subjets that pass the SoftDrop criteria.
Since we are focused on robustness in this paper, it is also worth commenting on the robust-

ness of the zg observable. For signal jets, since this observable measures global energy properties
of the subjets, it is stable. Interestingly, it is also remarkably stable on the background, where
it flows in the high-pT limit to the QCD splitting function [824].

In Fig. III.33a, we show the zg distribution for different polarizedW bosons. For reference,
the zg distribution for QCD dijets is also shown. The zg distribution for transversely-polarized
W bosons follows most closely the QCD distribution, as expected, being peaked at small values
of zg. On the other hand, for longitudinally-polarized W bosons, the zg distribution is peaked
at high values of zg. This illustrates that the zg observable is indeed behaving as expected, and
is achieving sensitivity to the polarization of the decayingW boson only from its hadronic decay
products. In Fig. III.33b, we show the ROC curve for separating longitudinal from transverse
W bosons. Here we see that zg provides moderate separation power for tagging the polarization
of the decaying W bosons. It would be interesting to investigate this further to see if more ideal
observables could be found, however, we are not optimistic that significant improvement can
be achieved, since the primary imprint of the polarization should be in the kinematics of the
subjets.

2.8 Summary and Recommendations
In this paper, we performed a comprehensive study of performance and robustness for two-
prong tagging, and provided a unifying approach to understanding different classes of two-prong
taggers based on dichroic observables, which allow for different amounts of grooming in the
numerator and denominator of observables. We introduced measures of robustness, in addition
to the standard measures of performance, and we used these measures to study the robustness
of two-prong taggers to theory issues, namely hadronization and underlying event. We believe
that these will be of more general utility in jet substructure, and could be applied also to study
three-prong tagging, for example.

As a part of our study, we have also introduced a number of new dichroic observables,
which generalize the dichroic N -subjettiness observables to observables formed from the energy
correlation functions. This offers a general and unifying approach to designing new jet sub-
structure observables which are simultaneously performant and resilient. We have shown that
the N2-style observables used by CMS tend to be more performant, but less resilient than the
D2-style observables used by ATLAS. For a given observable, we have found that moving to a
dichroic variant can typically improve performance without significantly decreasing its robust-
ness to hadronization.
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Fig. III.33: a) The zg distribution as measured on boostedW samples with different polarization
compositions. Transversely-polarizedW s behave similarly to the QCD background, while decent
separation is observed between longitudinally- and transversely-polarized W s. b) A ROC curve
showing the separation between transversely- and longitudinally-polarized W bosons using the
zg observable. Moderate separation is observed.

We have also studied the effect of polarization on two-prong taggers. We found that
while polarization has minimal effect on standard two-prong tagging observables, since they are
typically defined as ratios, it has a large effect on their tagging efficiency due to applied mass
cuts. Significantly better tagging performance is observed for longitudinally-polarized bosons.
An interesting avenue beyond standard two-prong tagging is using jet substructure observables
to tag the polarization of decaying Standard Model bosons using their hadronic decay products.
We proposed the observable zg, which measures the momentum sharing asymmetry between
subjets, as an effective polarization tagger. We illustrated that separation between longitudinal
and transverse bosons can be achieved. It would be interesting to study this problem in more
detail.

We have identified a number of new two-prong taggers that outperform, in both robustness
and tagging performance, those currently used by the ATLAS and CMS collaborations. These
findings are summarized in Fig. III.29, which also lists a number of promising new observables.
We therefore believe that further studies using more detailed simulations of the ATLAS and
CMS detectors, and ultimately on real data, would be of significant interest. More generally,
we expect that the emphasis on a simultaneous evaluation of the performance and robustness,
as well as the particular metrics introduced in this paper, will play a significant role in future
studies of jet substructure techniques at the LHC.
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Chapter IV

Standard Model Higgs

1 Transverse momentum resummation in Higgs boson plus two jet produc-
tion via weak boson fusion process 1

We study the soft gluon resummation effect in the Higgs boson plus two-jet production at
the LHC. By applying the transverse momentum dependent factorization formalism, the large
logarithms introduced by the small total transverse momentum of the Higgs boson plus two-jet
final state system, are resummed to all orders in the expansion of the strong interaction coupling
at the accuracy of Next-to-Leading Logarithm. We also compare our result with the prediction
of the Monte Carlo event generator Pythia8, and found noticeable difference in the distributions
of the total transverse momentum and the azimuthal angle correlations of the final state Higgs
boson and two-jet system.

1.1 Introduction
In this letter, we apply the transverse momentum dependent (TMD) resummation method to
study the soft gluon resummation effect on the production of Higgs boson plus two jets via
weak boson fusion (VBF) at the LHC. By applying the TMD factorization formalism, the large
logarithms introduced by the small total transverse momentum (q⊥) of the Higgs boson plus
two-jet final state system, are resummed to all orders in the expansion of the strong interaction
coupling at the accuracy of Next-to-Leading Logarithm. In terms of our TMD factorization
formalism, the q⊥ differential cross section is factorized into several individual factors, and
each factor is calculated up to the one-loop order. As of today, the Monte Carlo (MC) event
generators are the only available tools to predict the soft gluon shower effect for this channel.
Our calculation, for the first time, provides an important test on the validity of the commonly
used MC event generators.

1.2 The Model
Our TMD resummation formula can be written as:

d6σ

dyHdyJ1dyJ2dP 2
J1⊥dP

2
J2⊥d

2~q⊥
=
∑
ab

∫ d2~b

(2π)2 e
−i~q⊥·~bWab→Hcd(x1, x2, b) + Yab→Hcd

 , (IV.1)

where yH , yJ1 and yJ2 denote the rapidities of the Higgs boson and the jets, respectively, PJ1⊥
and PJ2⊥ are the jets transverse momentum, and ~q⊥ = ~PH⊥ + ~PJ1⊥ + ~PJ2⊥ is the imbalance
transverse momentum of the Higgs boson and the two final state jets. The first term (W )
contains all order resummation effect and the second term (Y ) accounts for the difference between
the fixed order result and the so-called asymptotic result which is given by expanding the
resummation result to the same order in αs as the fixed order term. x1 and x2 are the momentum
fractions of the incoming hadrons carried by the incoming partons.

1 P. Sun, C.-P. Yuan, F. Yuan
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Fig. IV.1: The differential cross sections of Higgs boson plus two jet production at the LHC as
functions of q⊥ and azimuthal angle φ between Higgs boson and the final state two-jet system. In
these plots, the αs order Y pieces are included in the resummation curves. The predictions from
Pythia8 are based on the tree level scattering amplitudes with parton showers. The uncertainty
of our resummation calculation is estimated by varying the resummation scale µ̂ from P leadJ⊥ to
P subJ⊥ .

1.3 Numerical Results
Following the study in Ref [842], The uncertainty of our resummation calculation is estimated
by varying the resummation scale µ̂ from P leadJ⊥ to P subJ⊥ , where the P leadJ⊥ and P subJ⊥ are the
transverse momenta of the final state leading jet and sub-leading jet, respectively. In addition,
we set the renormalization scale in the hard factor to be µ̃ = mH , and use the CT14 NNLO
PDFs [843], with the mass of the Higgs boson (mH) set to be 125 GeV. Following the experimental
analysis in Ref. [844], we require the rapidity of the observed jets to satisfy |yJ | < 4.4. We use
the anti-kt algorithm to define the observed jets, and the jet size and the minimal transverse
momentum are set at R = 0.4 and PJ⊥ > 30 GeV. In our calculation we have applied the
narrow jet approximation. We have also constrained the two final state jets to have a large
rapidity separation with |∆yJJ | > 2.6, which is the signal region for detecting the Higgs boson
production via weak boson fusion process. In the same figure we also compare to the predictions
from Pythia8 which are based on the tree level scattering amplitudes with parton showers.

As shown in Fig. IV.1, we find large difference between the Pythia8 and our predictions in
the distributions of the total transverse momentum (q⊥) and the azimuthal angle (φ) correlations
of the final state Higgs boson and two-jet system, after imposing the kinematic cuts used in the
LHC data analysis. Specifically, Pythia8 predicts a flatter shape, in q⊥ distribution, than our
resummation calculation. Another significant disagreement lies in the peak position of the q⊥
distribution. Pythia8 predicts a peak in q⊥ around 10 GeV, while ours is at about 5 GeV.
Similarly, they also differ in predicting the φ distribution. Pythia8 predicts a less back-to-back
configuration, between Higgs boson and the final state two-jet system, than ours. In Ref. [844],
the ATLAS Collaboration required the azimuthal angle separation (φ) between the Higgs boson
and the di-jet system to be φ > 2.6, and compared the measured fiducial cross section with the
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Pythia8 prediction. For φ > 2.6, Pythia8 and ours differ by about 8%, and our resummation
calculation results in a larger total fiducial cross section. This implies a larger value in the
coupling of Higgs boson to weak gauge bosons by about 4%. At the High-Luminosity LHC, with
an integrated luminosity of up to 3000 fb−1, the expected precision on the measurement of the
production cross section of the SM-like Higgs boson via VBF mechanism is around 10% [845].
Hence, the difference found in our resummation and Pythia8 calculations of the fiducial cross
sections could become important. Further comparisons on various event shapes between the
experimental data and our resummation predictions could also be carried out in order to test
the Standard Model and to search for New Physics.

2 Higher order corrections in VBF Higgs production 2

Recently, a significant error was discovered [135] in the virtual matrix elements of the VBF
Higgs plus three jet NLO cross section calculated in Ref. [846] and implemented in the program
packages VBFNLO [477, 847, 848] and Powheg-Box [350, 351, 849, 850]. Since this result was
used as part of the calculation of the fully differential NNLO QCD corrections [194], this bug
impacts the size of the second order corrections. We report here on updated cross sections after
implementation of the correct virtual corrections.

Because the issue is in the H + 3j calculation, there is no impact on the inclusive cross
section. However, after VBF cuts, the cross section is slightly increased. We impose the following
conditions on the tagging jets

mj1,j2 > 600GeV , ∆yj1,j2 > 4.5 , (IV.2)

where the jets j1, j2 are required to have transverse momentum pt,j > 25 GeV and rapidity
|yj | < 4.5, as well as being in opposite hemispheres (yj1yj2 < 0). The NNLO cross section after
these cuts is σ = 0.844+0.008

−0.008 pb, which is a ∼ 2% change to the result originally reported in
Ref. [194].

In Fig. IV.2, we present the differential cross sections of the transverse momentum of the
two leading jets and the Higgs boson, and the rapidity separation between the tagging jets. The
correction of the bug in Ref. [846] leads to slightly harder jets, with an increase of ∼ 2% of
the NNLO cross section at high transverse momentum. The difference is most visible on the
rapidity separation, where the shape of the K-factor is changed for very widely separated jets.

Both the VBF Higgs NNLO QCD and the VBF Higgs plus three jet NLO cross sec-
tions have then been used to study the dependence of the NNLO result on the jet definition in
Ref. [851]. For the dependence of the integrated cross section on the jet clustering radius R,
shown in Fig. IV.3, the matching value between LO, NLO and NNLO results stays at approx-
imately R=1.0 after the correction. The slope of the NNLO cross section flattens slightly. In
Fig. IV.4 we show the updated results on the differential distributions. The smallness of the
NNLO corrections in the transverse momentum distributions of the subleading jet and the Higgs
boson when using R=1.0 is unchanged from our original result. In contrast, we had seen relevant
remaining NNLO effects when using the larger clustering radius at small transverse momenta
of the leading jet and at large rapidity differences of the two tagging jets. In both cases, the
remaining effects are significantly reduced after the update.

2 F. Dreyer, A. Karlberg, M. Rauch
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Fig. IV.2: Differential cross sections for the transverse momentum of the tagging jets and the
higgs boson, as well as for the rapidity separation between the jets.
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3 The gluon-fusion component of Higgs boson-jet-jet production and its sup-
pression in weak-boson fusion studies 3

We compare various perturbative predictions for the gluon-fusion component of Higgs-boson
production in association with dijets (Hjj), in particular within the cuts designed to enhance
the acceptance of Hjj from the production through weak-boson fusion.

The first sub-leading corrections from the high-energy limit have recently been included
in the description of HEJ. The predictions are changed only minimally by the inclusion of these
sub-leading corrections, and are here contrasted with those obtained at next-to-leading order
accuracy. We show that a moderate cut on further central hard jet activity can reduce the
gluon-fusion component in weak-boson fusion measurements by about 10–15%.

3.1 Introduction
The study of the process of Higgs boson production in association with dijets is significant for
several reasons. It can proceed through the Born level fusion of two weak bosons exchanged
between quarks from each proton to a Higgs boson [852] (WBF) – or as a radiative correction to
the top-loop mediated fusion of two gluons [853, 854] (GF). The quantum interference between
the two processes is negligible [855], so the processes can in theory be studied independently.
As such, the WBF process provides a direct and independent measurement of the Higgs boson
coupling to weak bosons. Meanwhile, the GF process allows for tests of the CP -properties of
the Higgs-boson couplings to gluons [856–858]; in particular the small admixtures from extended
sectors with direct CP -violations can be measured by studying the azimuthal angle between the
jets [858,859].

The degree of success of all such studies will, however, depend not just on the standard
suppression of background events unrelated to Higgs-boson production, but also on separating
the WBF and GF component of the Hjj production. We will here report on an updated study
on possibilities of suppressing the GF component during WBF studies. The GF component has
the largest cross section at the inclusive level of Hjj, but it is dominated by the sub-processes
involving two incoming gluons. This skews the partonic processes towards smaller total invariant
masses than that for WBF, since the gluons predominantly carry less of the proton energy than
the valence quarks do. A minimal cut on the invariant mass between the two jets (anti-kt,
pt > 30 GeV) will therefore favour WBF over GF. We will consider cuts of m(j1j2) > 400 GeV,
in line with current experimental studies. Similarly, a minimal rapidity difference between the
jets is often required, e.g. |yj1 − yj2 | > 2.8. This constitutes the WBF cuts.

A reliable calculation of the GF component within these cuts obviously rely on a successful
description not just of the total rate, but also the spectrum in mj1j2 and |yj1 − yj2 |. The
description of QCD processes at large dijet invariant masses is traditionally difficult, and has
been studied for both Wjj [860,861] and Zjj [862], where also both a WBF and a QCD-dominated
process contribute.

We will here be concerned with predictions from pure NLO [863,864] and High Energy Jets
(HEJ) [865–869], which both give a good description of e.g. the dijet invariant mass spectrum
for the QCD-dominated processes in Wjj [860, 861, 870, 871]. The properties of the radiative
corrections associated with the colour-octet exchange between jets separated by a large invariant
mass is similar between various underlying processes, such that a test of the predictions for Zjj or
Wjj can aid the investigation of Hjj. This is particularly useful, when further discrimination
between the WBF and GF processes is sought by utilising the observation that the colour
exchange associated with the GF process leads to increased perturbative jet-activity in the
rapidity range of the colour-octet exchange compared to the WBF process [872]. The recent

3 J. R. Andersen, M. Heil, A. Maier, J. M. Smillie
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Fig. IV.5: dσ/dmj1j2 : The spectrum of the invariant mass between the two hardest jets for
WBF and GF HJJ calculated at NLO and with HEJ. The GF component dominates at small
mj1j2 . See text for further details.

measurement by ATLAS utilised this to isolate the WBF component of Zjj, but found very
large variations in the predictions of the spectrum of mj1j2 for the GF enhanced sample where
a third jet was required, and between these predictions and data.

The reliability of the perturbative prediction for the jet veto can be jeopardised by suc-
cumbing to the temptation of using a small transverse momentum for the cut. In this study we
will investigate how the suppression of the GF component can be obtained with perturbatively
more stable cut on larger transverse momenta, but with the cut applied in a larger region of
rapidity. The difference in jet radiation pattern between GF and WBF is valid not just for
region in rapidity between the two hardest jets, but in the full region of colour octet exchange,
which predominantly is between the forward (jf ) and backward (jb) jet. Ref. [452] found stable
predictions for dσ/dmjf jb between shower, NLO and HEJ for a jet cut of p⊥ > 40GeV. Current
analyses of LHC data frequently apply a jet veto cut 25GeV to veto QCD contributions. In this
contribution we will investigate the effect of applying a harder jet cut (which will reduce the
effect of the veto), but in a larger region of rapidity (which will increase the effect of the veto).

3.2 Results
The predictions for the invariant mass spectrum between the two hardest jets for the GF (ob-
tained at NLO and with HEJ) and WBF component (at NLO) of Hjj is displayed on Fig. IV.5.
The cross sections for HEJ reported here have been normalised to NLO accuracy at the level of
the inclusive cross section for Hjj. This decreases the scale variation of the results compared
to those reported in Ref. [869]. Frequently applied WBF cuts designed to enhance the WBF
component over that of GF apply a cut on the minimum invariant mass of the hardest two jets
of 400GeV. The spectrum for the GF component falls off slightly faster for HEJ than for NLO,
which leads to differences for the prediction of the GF component within the WBF cuts. Pre-
dictions for the distribution in mj1j2 with similar jet cuts as those applied in the studies of Hjj
have been checked against data for Wjj [861, 871], albeit for centre-of-mass energies of 7TeV
and 8TeV. A measurement of the distribution for pure dijet, Wjj or Zjj for similar jet cuts and
parameters as those applied in Hjj would help in determining the shape at large invariant dijet
mass, and thus reduce the uncertainty in the determination of the GF component. We note that
it was found [862] for Zjj at 13TeV that the predictions for the QCD-dominated contributions
vary by more than a factor of 5 at large invariant masses.
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Fig. IV.6: The cross section passing the WBF cuts on the two hardest jets, and a further veto
on central jet activity, either between the forward and backward jets (top left) or between the
two hardest jets (top right). The former is rejecting more of the gluon-fusion component. The
lower panel shows the relative size of the GF component compared to WBF.

The study of [862] discriminates further the GF and WBF components by referring to
the dominance of further jet radiation from the GF component from the colour connection
between the two jets [872], and thus applies a slightly softer jet veto in-between the two hardest
jets. However, the discrimination need not apply just to the rapidity region in-between the two
hardest jets. We will here investigate how a harder jet cut (thus perturbatively safer) can be
applied to a larger region in rapidity to get the same effect. Instead of applying a jet veto to
suppress the GF contribution only if a hard jet exists in-between the two hardest jets of the
event, we will investigate the following procedure: Define the two tagging jets to be either the
two hardest (j1, j2) or the two furthest apart in rapidity (jf , jb), and let y0 = (yj1 + yj2)/2 or
y0 = (yjf + yjb)/2. The region of jet veto is then characterised by a rapidity yc > 0, and an
event is removed by the veto if it contains a further jet (with transverse momentum at least
30GeV) in-between the two tagging jets, and with a rapidity yj with |yj − y0| < yc (cf. [873]).
This definition corresponds to applying no central jet veto at all for yc = 0, whilst in the case
of the tagging jets being the forward/backward pair the limit of large yc corresponds to vetoing
all additional jets, and σ(yc = ∞) is the cross section for the exclusive production of a Higgs
boson with two jets.

At the top of Fig. IV.6 we plot the result for the predictions of the GF and WBF compo-
nents passing the cuts on a minimum invariant mj1j2 and rapidity separation between the two
hardest jets, as a function of a further veto of jet activity in an increasing region of rapidity
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described as mentioned above by yc, either between the forward/backward jet pair or just the
two hardest jets (right). The difference between vetoing jets in-between the forward/backward
pair or the hardest pair is modest, as illustrated on the bottom plot, which shows the relative GF
component of WBF+GF passing the cuts, calculated at both NLO and with HEJ. We observe
that for a veto characterised by yc = 1 there is almost no drop in the WBF component, whereas
the relative size of the GF component compared to WBF can be lowered from 50% to 45% (NLO
predictions, a 10% reduction in the GF contribution) or 33% to 28% (HEJ predictions, a 15%
reduction in the GF contributions). We observe that the NLO scale dependence is comparable
to the promised reduction in the GF contribution by such a central jet veto.

3.3 Conclusions
We find that while a jet veto certainly can serve as a useful tool for further suppressing the
GF contribution to HJJ in WBF studies, the GF contribution at large dijet invariant mass in
itself has an uncertainty comparable to the promised effects of a moderate central jet veto on
the surviving cross section. The difference between the HEJ and NLO predictions is larger than
the suppression, which in turn is roughly of the same size as the NLO scale dependence. It
therefore seems prudent to perform detailed measurements of the dijet invariant mass spectrum
for related processes, and utilise these to improve predictions compared to those contrasted to
electroweak production of Zjj [862].

4 The sensitivity of a ZH/WH ratio measurement in the H → bb̄ channel 4

4.1 Introduction
Since no new fundamental particles beyond the SM have been found at the LHC up to now,
the focus is turning towards indirect signals for New Physics. This requires the comparison
of precise measurements with higher-order calculations. At a hadron collider, however, effects
such as parton luminosities or jet tagging efficiencies influence both the accuracy of the theory
prediction as well as the measurement. The identification of suitable observables where the
sources of uncertainty are minimised is thus essential for a successful high-precision program at
the LHC.

With this objective, we investigate the ratio of ZH to WH production. As suggested
in [257], the close similarity in the leading-order production mechanisms for both processes
should lead to a large cancellation of both the theoretical and the experimental uncertainties
in this ratio. However, due to qualitatively different contributions to ZH production which, in
the SM, occur at higher orders, the ratio reveals significant sensitivity to potential new physics.
In the SM, the dominant difference between WH and ZH production is due to the partonic
process gg → ZH, which is mostly mediated by top- and bottom-quark loops. In extensions of
the SM, this process may receive contributions from virtual loops of new particles which may
alter its effect on the total cross section, as well as on its kinematics [258] (see also [874]). In
addition, new s-channel effects due to the exchange of new Higgs bosons may occur [257].

A detailed analysis of such effects on various kinematical distributions will be presented
elsewhere [875]. In this contribution, we study the potential of a dedicated measurement of
the ZH/WH ratio at the LHC, based on recent results for the individual WH and ZH cross
sections and assuming various degrees of correlation among their uncertainties.

4 R. Harlander, J. Klappert, C. Pandini, A. Papaefstathiou, L. Perrozzi
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4.2 The double ratio RZWR
We consider first the experimental quantity:

RZWexp = dσZH
dσWH

, (IV.3)

where dσV H represents the (differential) rate for vector boson (V = (Z,W )) plus Higgs boson
(H) production. Despite the different final states in the numerator and the denominator, we
expect that a number of systematic experimental uncertainties cancel. Here we derive rough
estimates of the statistical and systematic uncertainties.

We can also define the contributions of the “gluon-fusion” (ggF) and “Drell-Yan”-like (DY)
component of the ZH process by:

Rgg = dσgg
dσZHDY

= RZWR − 1, (IV.4)

The “double ratio” RZWR can be constructed by dividing the experimental measurement of ratio
of ZH and WH events with the theoretical prediction for the ratio between the DY ZH and
WH:

RZWR =
RZWexp
RZWDY,th

. (IV.5)

4.2.1 Statistical uncertainty
Error propagation on RZWR yields:(

δRZWR
RZWR

)2

=
(
δRZWDY
RZWDY

)2

th
+
(
δRZW

RZW

)2

exp
, (IV.6)

where the second term on the r.h.s. contains the experimental statistical and systematic uncer-
tainties. In practice, the experimental ratio RZWexp can be evaluated either by performing a fit,
or explicitly, e.g.:

RZWexp = dNZH

dNWH
=

dN `+`−bb̄ − dN `+`−bb̄
bkg

dN `±bb̄ − dN `±bb̄
bkg

, (IV.7)

where dNXbb̄ and dNXbb̄
bkg represent the total and background events, respectively, in a certain

bin for a given observable, in the final state Xbb̄, where X is either one or two leptons. The
background subtraction induces a systematic uncertainty which we absorb in the estimations of
the next section. Assuming sufficiently large event samples, the (data) statistical uncertainty
on the experimental ratio is given by:

(
δRZW

RZW

)2

exp, stat
=

 δ(dN `+`−bb̄)
dN `+`−bb̄ − dN `+`−bb̄

bkg

2

+

 δ(dN `±bb̄)
dN `±bb̄ − dN `±bb̄

bkg

2

= dN `+`−bb̄

(dN `+`−bb̄ − dN `+`−bb̄
bkg )2

+ dN `±bb̄

(dN `±bb̄ − dN `±bb̄
bkg )2

, (IV.8)

where we have assumed that the event sample sizes are sufficiently large.
The theoretical ratio RZWDY,th is affected by theoretical systematic uncertainties due to

parton density functions and higher-order corrections. Due to the similarity between the DY
WH and ZH processes, these are expected to be highly correlated. Under the assumption that
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the scale uncertainties are fully correlated, we have verified that the combined QCD scale and
PDF uncertainties on this ratio are of the order of ∼ 1% and we neglect them here for simplicity.
The effect of electroweak corrections is left to future work [875]. In the next section we describe
an estimation of the systematic experimental uncertainty on RZWexp .

4.2.2 Systematic uncertainty
The systematic uncertainty on the RZWexp includes all uncertainties contributing to an experi-
mental measurement of this quantity. While a precise determination of the systematics would
require a fully-fledged experimental analysis, we can nevertheless extract an estimate of the
uncertainty from the results presented in [876], for the separate ZH and WH signal strengths:

µZH = 1.12+0.34
−0.33(stat.)+0.37

−0.30(syst.) ,
µWH = 1.35+0.40

−0.38(stat.)+0.55
−0.45(syst.) (IV.9)

The systematic term of the signal strength uncertainty includes all sources of experimental
nature, related to the background and signal Monte Carlo simulation and data driven estimates,
and to the finite size of the simulated samples.

We assume that these systematic uncertainties can be propagated directly on the experi-
mental ratio defined by Eq. (IV.3). For simplicity, the uncertainties are symmetrized, and three
different correlation scenarios are explored: uncertainties on µZH and µWH completely uncorre-
lated, 50% correlated or 100% correlated, which we denote as: pWZ = (0, 0.5, 1.0) respectively.

4.3 Analysis and results
We present here a proof-of-principle Monte-Carlo level analysis demonstrating the usefulness of
the double ratio RZWR . The V H(bb) selection follows the experimental cuts applied in [876] as
closely as possible.

In the analysis, jets are reconstructed using the anti-kt clustering algorithm with a jet-
radius parameter of R = 0.4. The jet transverse momentum is required to be greater than
20 GeV for ‘central jets’ (|η| < 2.5) and greater than 30 GeV for ‘forward jets’ (2.5 < |η| < 5).
Selected central jets are labeled as ‘b-tagged’ if a b-hadron is found within the jet. A b-tagging
efficiency of 70% is considered, flat over transverse momentum of the jets, to reproduce the
efficiency of the experimental b-tagging algorithm. The leading b-jet is required to have a
transverse momentum larger than 45 GeV. The missing transverse energy is reconstructed by
taking the transverse momentum of the negative sum of the four-momenta of all the visible
particles. Electrons and muons were subject to isolation criteria, by requiring the scalar sum
of the transverse momenta of tracks in R = 0.2 around them to be less than 0.1 times their
transverse momentum: ∑R<0.2 pT,tracks < 0.1× pT,`.

Three event selections were considered in [876], corresponding to the Z → νν, theW → lν,
and the Z → ll channels. Here we only consider the 1- and 2-lepton channels. All selections
require at least 2 b-tagged central jets, used to define the invariant mass mbb. For the W → lν
selections events with more than 3 central and forward jets are discarded.

To calculate the reconstructed top quark mass, mtop, an estimate of the four-momentum
of the neutrino from the W boson decay is obtained, considering the neutrino’s transverse mo-
mentum components identical as the EmissT vector component, and constraining pνz from the W
mass. Further details on 1-lepton and 2-lepton channels are as follows:

The Z → ll-channel selection is further defined by:

– exactly 2 same-flavour (and opposite charge for muons) leptons pT > 7 GeV and |η| < 2.5,
of which at least one with pT > 25 GeV
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stat. (L/fb−1) syst. (pWZ)
RZWR 36.1 300 3000 0 0.5 1

all mV H 1.32 ±0.88 ±0.31 ±0.10 ±0.79 ±0.58 ±0.22
high mV H 1.51 ±1.43 ±0.50 ±0.10 ±0.79 ±0.58 ±0.22

Table IV.1: Results for the double ratio RZWR following the analysis of [876]. The statistical
uncertainty is shown for integrated luminosities of 36.6, 300, and 3000 fb−1, and the systematic
uncertainty for fully uncorrelated, moderately-correlated, and fully correlated uncertainties in
WH and ZH production, respectively (pWZ = (0, 0.5, 1.0)). In the second line, the V H invariant
mass was restricted to mV H ∈ (300, 600)GeV. The systematic uncertainties are assumed to be
unchanged by this restriction.

– lepton invariant mass 81 GeV < mll < 101 GeV

The W → lν-channel selection is further defined by:

– exactly 1 lepton with pT > 25 GeV and |η| < 2.5

– pWT > 150 GeV

– EmissT > 30 GeV in the electron sub-channel

– mbb > 75 GeV or mtop ≤ 225 GeV

Event samples at 13 TeV have been generated using MG5_aMC@NLO [88, 877], interfaced to the
general-purpose event generator HERWIG 7 [584, 700, 878–880] for the parton shower and non-
perturbative effects, such as hadronization and multiple-parton interactions. No smearing was
applied to the momenta of jets or leptons entering the analysis and no backgrounds originating
from mis-tagging of charm jets or light jets were considered.

For simplicity, we concentrate on the “dijet-mass analysis” of [876], where the BDTV H
discriminant is replaced by the mbb variable. This results in 10 signal regions, shown in the
second and third rows of Table 12 in [876]. In the present analysis, we have only included signal
regions with pT,V > 150 GeV. We have verified that the signal and background event yields are in
reasonable agreement at the “selection” level with those of [876]. We have calculated the double
ratio by constraining the invariant mass of the two b-jets to lie within mbb ∈ [110, 140] GeV.

4.3.1 Results
Table IV.1 shows results for the double ratio RZWR after applying the analysis, as well as rough
estimates of the statistical and systematic uncertainties. The ggF component of ZH was rescaled
by a flat K-factor of K = 2 to account for higher-order QCD corrections that are presently un-
available. The systematic uncertainty is given assuming a correlation between the individual
ZH and WH sample systematic uncertainties of pWZ = (0, 0.5, 1.0), i.e. fully uncorrelated,
moderately-correlated, and fully correlated, respectively. We show results for integrated lumi-
nosities of L = 36.1, 300, 3000 fb−1, corresponding to Ref. [876], the LHC before LS3, and the
HL-LHC, respectively.

It is evident from Table IV.1 that a measurement of RZWR 6= 1, demonstrating the presence
of a ggF component of ZH, will eventually be dominated by systematic uncertainties. However,
the analysis of [876] has not been optimised to maximize the performance of RZWR . Indeed,
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if one restricts the range of the invariant mass of the reconstructed vector boson and Higgs
boson system to mV H ∈ (300, 600) GeV, the ratio increases to RZWR ' 1.51, with an associated
increased statistical error, as shown in the second line of Table IV.1. Such a cut is not applied
in [876], but we expect its effect on the systematic uncertainty to be rather minor and leave it
unchanged for the current discussion. We also stress that the numbers of Table IV.1 do not take
into account any reduction of the systematic uncertainties to be expected from future improved
analysis methods.

4.4 Conclusions
We have presented rough results on the feasibility of measurement of the double ratio RZWR in the
V H process, defined by Eq. (IV.5). By exploiting this potential measurement, we have examined
the prospects of constraining the gluon-fusion component of ZH production. Our preliminary
estimates of statistical and systematic uncertainties, obtained through a hadron-level Monte
Carlo analysis, indicate that both an optimised experimental analysis and a detailed investigation
of systematic uncertainties would facilitate extraction of ggF-induced ZH production. This
would allow constraints to be placed on several new physics models affecting ggF ZH.
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5 Parton shower and top quark mass effects in Higgs boson pair production 5

We study the effects of various parton shower approaches on distributions relevant for Higgs
boson pair production measurements. In particular, we investigate the behaviour of the Higgs
boson pair transverse momentum spectrum which is particularly sensitive to both parton shower
and top quark mass effects.

5.1 Introduction
In order to obtain fully exclusive descriptions of final states, and to improve the accuracy of
theoretical predictions in regions of the phase space where the convergence of the perturbative
series is spoiled by large soft and collinear logarithms, matching Next-to-Leading Order (NLO)
predictions to parton shower (PS) Monte Carlo programs is desirable and mostly represents the
current state of the art. Parton shower Monte Carlo programs describe multiple soft and collinear
emissions by resumming at least the leading tower of logarithms to all orders in perturbation
theory. There are several different schemes which allow to match a fixed order calculation to a
PS without spoiling the NLO accuracy of the former. One of the aspects which distinguishes
them from each other is a different treatment of corrections which are formally of higher order,
suppressed by higher powers of the strong coupling. It is however well known that these formally
subleading terms can lead to large differences in the final prediction, especially for processes with
large higher order corrections. A typical example which was already studied extensively in the
past is the production of a Higgs boson in gluon fusion [881,882].

More recently Higgs boson pair production in gluon fusion was computed at NLO accuracy
with full top quark mass dependence [65,66]. In a second step this was matched to different PS
Monte Carlo programs [276,277] following the three different matching schemes as implemented
in the POWHEG-BOX [350, 351], MG5_aMC@NLO [88, 502] and Sherpa [415]. The aim of the present

5 G. Heinrich, S. P. Jones, M. Kerner, S. Kuttimalai, G. Luisoni
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study is to identify where the differences between the various PS Monte Carlo descriptions come
from and to assess how they depend on the matching and shower parameter settings.

5.2 MC@NLO Parton Shower Matching
In this report we will consider the two most widely used NLO parton shower matching schemes,
POWHEG [849] and MC@NLO [503]. In order to point out the most relevant differences between
them it is both sufficient and notationally convenient to consider the special case where the
splitting kernels appearing in the fixed order subtraction terms D are identical to the splitting
kernels used for parton shower evolution. In the MC@NLO formalism, the fixed-order NLO
cross section is split up in two parts, one to be integrated over the born phase space φB and
one to be integrated over the real emission phase space φR = φB × φ1. In terms of the leading
order contributions B, the virtual corrections V , and the real emission corrections R, the seed
cross sections for the two contributions are respectively given by

B̄(φB) = B(φB) + V (φB) +
∫
D(φR)Θ(µ2

PS − t(φR)) dφ1 (IV.10)

H(φR) = R(φR)−D(φR)Θ(µ2
PS − t(φR)) , (IV.11)

where t is the parton shower evolution variable and µPS is the parton shower starting scale.
Events of both types are then dressed with additional QCD radiation through a parton shower
algorithm. Making this explicit in the hardest emission off the B̄ events, we thus have

σNLO+PS =∫
B̄(φB)

[
∆(t0, µ2

PS) +
∫

∆(t, µ2
PS)D(φB, φ1)

B(φB) Θ(µ2
PS − t)Θ(t− t0) dφ1

]
dφB (IV.12)

+
∫
H(φR) dφR, (IV.13)

with the Sudakov form factor ∆(t0, t1) = exp
[
−
∫ t1
t0

D(φR)
B(φB) dφ1

]
and the infrared cutoff scale of

the parton shower t0.
It is useful to consider the above expression in the kinematic regimes of soft and hard

emissions separately. In the soft real emission phase space region where t� µ2
PS we have D ≈ R

and thus H ≈ 0 by construction of the subtraction terms. The remaining contribution is given
by the term (IV.12) and gives a LO+PS like result that is rescaled by a local K-factor of B̄/B.
Considering only hard emissions with t ≈ µps, on the other hand, we can set ∆ ≈ 1 and also
drop the first term in the square bracket of (IV.12), where no emission occurs at all. After some
re-arrangements, this gives

σNLO+PS =
∫ [

B̄(φB)−B(φB)
] D(φB, φ1)

B(φB) Θ(µ2
PS − t) dφB dφ1 (IV.14)

+
∫
R(φR) dφR , (IV.15)

where the term on the second line gives the fixed-order result and the term on the first line
cancels up to differences between B̄ and B, which are of higher order in αs.

In MC@NLO matching, the scale µPS therefore separates the real emission phase space
in a resummation region that is populated by the parton shower through the B̄ events and a
region that is populated mostly by the fixed-order real-emission contributions in H. Variations
of this scale can thus be used in order to assess uncertainties associated with this separation.
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Fig. IV.7: Comparison between POWHEG and MG5_aMC@NLO results Higgs boson pair transverse
momentum distribution. Left: results based on the new definition of the shower starting scale
Qsh (MG5_aMC@NLO version ≥ 2.5.3) , compared to POWHEG with hdamp=250. Right: results based
on the shower starting scale µPS before version 2.5.3, compared to POWHEG with hdamp=∞.

5.3 POWHEG Parton Shower Matching
In the formulation presented above, the POWHEG method can be understood as the limit in which
µPS →∞ and D = R. This leads to H = 0. All real emission contributions are thus generated
by parton shower emission off B̄ events. Taking µPS → ∞ ensures that the full real-emission
phase space is covered while setting D = R in the first emission ensures that the fixed-order
radiation pattern is recovered. This method comes with the benefit that no negative event
weights occur (in MC@NLO, the event weight (IV.11) can become negative). However, setting
D = R also leads to the exponentiation of the full real-emission corrections in the Sudakov
form factor. This is in general not justified since R contains hard, non-factorizing contributions.
Instead of setting D = R, it has therefore been suggested in Ref. [881] to use

D =
h2

damp
p2
T + h2

damp
R , (IV.16)

where pT is the transverse momentum of the Born final state (pT = phh
T in our case). This

implements a phase space separation as it is achieved in terms of the parton shower evolution
variable in MC@NLO. Effectively, the damping term h2

damp
p2
T+h2

damp
assumes the role of the Heaviside

theta functions in Eqs. (IV.10) and (IV.11).

5.4 POWHEG and MG5_aMC@NLO results
In Fig. IV.7 we clearly see the effect of damping the radiation as explained above by using
a value for hdamp different from hdamp=∞ in POWHEG and by using a lower shower starting
scale Qsh = µPS in the MC@NLO approach6. However, even with hdamp=250, the effects in the
tail of the phh

T distribution are surprisingly large. This is why we made further investigations
in order to understand its origin. First of all, we should mention that the phh

T distribution is
particularly sensitive to extra radiation because NLO is the first order where a non-zero phh

T is
generated at the level of the hard matrix element. Therefore, it is not too surprising that the
extra emission generated by the parton shower strongly affects this distribution. However, the
large effects are not expected to extend into a region where resummation should not play a role.
Figure IV.8 shows that indeed the impact of the parton shower is small for other distributions

6In version 2.5.3 of MG5_aMC@NLO, the shower starting scale is picked with some probability distribution to be in
the interval shower_scale_factor × [0.1HT /2, HT /2] with HT computed with Born kinematics, while previously
it was picked in the interval shower_scale_factor × [0.1

√
ŝ,
√
ŝ].
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Fig. IV.8: Comparison between fixed order and POWHEG +Pythia 8 results. Left: transverse mo-
mentum distribution of the leading-pT Higgs boson. Right: transverse momentum distribution
of the leading jet.
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Fig. IV.9: Higgs boson pair transverse momentum distribution phh
T : left column with hdamp=∞,

right column with hdamp=250. We compare the fixed order result with showered results from
both Pythia 6 and Pythia 8 in the basic HEFT approximation (upper row) and in the full SM
(lower row).

like the transverse momentum of the leading Higgs boson, and even for the transverse momentum
distribution of the leading jet. As the Higgs boson pair recoils against this jet in the fixed order
calculation, while in the showered results more jets can be present, we again conclude that the
enhancement in the tail of the phh

T distribution must be related to the fact that the shower
generates a lot of radiation. From Eq. (IV.14) we can at least partly trace this back to the
fact that B̄ − B is large for Higgs boson pair production, with an NLO K-factor of about 1.6.
However, this cannot be the only reason, as we will see in the following.
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Fig. IV.10: Subleading jet transverse momentum distribution pj2
T as obtained with Pythia 8

and Pythia 6 with hdamp=250. Left: basic HEFT approximation. Right: Full top quark mass
dependence.
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Fig. IV.11: Higgs boson pair transverse momentum distribution phh
T at LHE level within the

basic HEFT approximation: left column with hdamp=250, right column with hdamp=150.

In Fig. IV.9 we compare the fixed order results to predictions obtained with the Pythia 6
shower and the Pythia 8 shower both in the basic HEFT approximation and in the full SM,
for hdamp=250 and hdamp=∞. It is interesting to see that with Pythia 6, the enhancement
in the tail of the phh

T distribution is much less pronounced, which means that the hardness of
the radiation recoiling against the Higgs-pair system is higher in Pythia 8 than in the older
Pythia 6. Although this behaviour is known [708,883], it has a particularly large impact in the
case considered here7. To exhibit very clearly the difference in the hardness of the radiation
generated by the two showers, in Fig. IV.10 we compare the transverse momentum spectrum of
the subleading jet pj2

T in basic HEFT and in the full theory. This jet is of pure shower origin, since
the matrix elements in our calculations can describe only one jet. Above 200 GeV the difference
between the two reaches a factor of 2 for predictions in the full SM. Even more evidence is given
in Fig. IV.11, which compares POWHEG-BOX predictions at the Les Houches event level (LHE) for
two different values of hdamp. These plots corroborate the hypothesis that the enhancement of
the tail is not solely caused by the POWHEG matching procedure, since at the LHE level the tail
of the distribution touches down on the fixed order result for hdamp=150, hdamp=250 and even
for hdamp=∞ in the shown phh

T range. This is not the case after showering with Pythia 8, as can
be seen from Fig. IV.7.

7Very recent developments in Pythia 8 [884] are likely to soften the observed behaviour in the tail of the phh
T

distribution. We thank Stefan Prestel for pointing this out to us.
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Fig. IV.12: Higgs boson pair transverse momentum distribution phh
T with variations of the

parameter phard
T . The default corresponds to pThard=0.

Therefore we investigated further the influence of the Pythia 8 settings by varying the
parameters SCALUP and pThard. Both these parameters control the hardness criterion. By
default the POWHEG-BOX transfers this value in the SCALUP member of Les Houches Events.
When pThard=0 the default SCALUP value is used, leading to the results already discussed. In
order to estimate the uncertainty due this choice it is possible to change the value of the pThard
flag to be pThard=1 or pThard=2. In the former case the transverse momentum of the POWHEG
emission is tested against all other incoming and outgoing partons, and the minimal value is
chosen, in the latter case the pT of all final-state partons is tested against all other incoming
and outgoing partons, and the minimal value is selected. Since in Higgs boson pair production
there is only one coloured final state particle, and this coincides with the POWHEG emission, the
two options lead to identical results, as shown in Fig. IV.12. The two curves where pThard6= 0
are exactly superimposed. Changing pThard does not lead to significant changes because, as
already mentioned above, in this process only one coloured final state parton is present, and
hence there is only a single choice for a pT reference value.

Another possibility is instead to keep the default value pThard=0 and modify the SCALUP
value within the POWHEG-BOX using the changescalup and maxscalup flags. In Fig. IV.13 we
show results where we set maxscalup=50. This means that the shower starting scale in Pythia 8
is lowered to be less than 50 GeV, irrespective of the hardness of the first POWHEG emission. To
verify this we can look at the transverse momentum of the subleading jet, shown in Fig. IV.14,
which is purely generated by shower emissions. The plots clearly show a sharp decrease at
50 GeV. Comparing the corresponding transverse momentum spectra of the Higgs-pair system
we note a qualitative difference between basic HEFT predictions, shown on the left in Fig. IV.13,
and full theory predictions, shown in the right plot in Fig. IV.13. While in the effective theory
predictions the change in maxscalup is barely visible for both values of hdamp, in the full
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Fig. IV.13: Higgs boson pair transverse momentum distribution phh
T with variations of the

maxscalup parameter in Pythia 8. Left: basic HEFT approximation, Right: Full top quark
mass dependence.
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Fig. IV.14: Higgs boson pair transverse momentum distribution pj2
T with variations of the

maxscalup parameter in Pythia 8. Left: HEFT approximation, Right: Full top quark mass
dependence.

theory the curves start to deviate around 200 GeV. In both plots we also show fixed order NLO
predictions, which we use as a reference in the ratio plots displayed in the lower inset. Imposing
a smaller upper limit on the shower starting scale seems to cure the problem partially, at least
in the full theory predictions, bringing the NLO+PS curves more in agreement with the fixed
order NLO ones at large transverse momenta.

5.5 SHERPA results
Using an implementation in the Sherpa event generator it was shown in [277] that the large
parton shower effects in the tail of the Higgs boson pair transverse momentum distribution can
be traced back to the formally subleading term (IV.14). Here we will repeat the main arguments
made in [277] and show the corresponding results obtained from the Sherpa implementation.

As stated above, in the full theory the term (IV.14) can become numerically large compared
to the fixed-order result that is given by (IV.15). This is due to the fixed-order spectrum rapidly
dropping above scales of the order of the top quark mass. The impact of the uncanceled parton
shower contributions in (IV.14) therefore becomes large relative to the fixed-order prediction.
In the HEFT approximation the fixed-order spectrum is considerably harder and the parton
shower effects in the tail are thus of smaller significance.
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Fig. IV.15: LO+PS results for the Higgs pair transverse momentum spectrum in the HEFT
approximation (left panel) and in the full theory (right panel). The results are compared to the
fixed-order prediction shown with an uncertainty band that corresponds to variations of µf and
µr by factors of two. The bands around the LO+PS results are obtained through variations of
the parton shower starting scale µPS by factors of two.

This effect is illustrated in Fig. IV.15, where the fixed-order transverse momentum spec-
trum is compared to predictions derived from LO+PS type simulations. The uncertainty bands
on the LO+PS simulation correspond to variations of the parton shower starting scale µPS by
factors of 2. The central scale choice in case of the Dire shower [492] is µPS = mhh/4, whereas
µPS = mhh/2 is set for the CS shower [491]. As expressed by the Heaviside theta function in
(IV.12), the parton shower starting scale implements a phase space restriction that restricts
parton shower emissions to the phase space region where t < µ2

PS. If the hard region of phase
space is made accessible to the parton shower by choosing a high parton shower starting scale
(represented by the upper edge of the uncertainty band), both parton showers overestimate the
fixed-order real-emission result in the tail of the distribution in the full theory. This is not the
case in the HEFT approximation. In this approximation, the fixed-order spectrum is consid-
erably harder and the parton shower therefore underestimates the fixed-order spectrum in the
tail.

In MC@NLO, the parton shower effects in the tail are removed at order αs relative to the
born through the modified subtraction prescription, i.e. by the term −D(φR)Θ(µ2

PS − t(φR)) in
Eq. (IV.11). The higher-order remainder (IV.14) that is left over is, however, relatively large due
to the large numerical difference between B̄ and B. This is shown in Fig. IV.16. As indicated by
the upper uncertainty bands, the left-over parton shower effects in the tail can be of order one
if a high shower starting scale is chosen in the full theory. For more moderate choices, however,
the fixed-order result is reproduced at large transverse momenta. In the HEFT approximation,
parton shower effects are much smaller. This is to be expected, since, as shown in Fig. IV.15,
the fixed-order spectrum is extremely hard. Even though B̄ − B is numerically large in the
HEFT as well, any parton shower effects thus appear small when compared to the fixed-order
spectrum.

5.6 Conclusions
We have studied parton shower effects on the Higgs boson pair transverse momentum spectrum
based on NLO calculations matched to several parton shower Monte Carlo programs. Since
these effects were found to be surprisingly large, we investigated in more detail the cause of the
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Fig. IV.16: MC@NLO results for the Higgs pair transverse momentum spectrum in the HEFT
approximation (left panel) and in the full theory (right panel). The results are compared to the
fixed-order prediction shown with an uncertainty band that corresponds to variations of µf and
µr by factors of two. The bands around the MC@NLO results are obtained through variations
of the parton shower starting scale µPS by factors of two.

enhancement in the tail of the phh
T spectrum, comparing results in basic HEFT and in the full

SM, obtained with three different matching schemes and various different shower settings.
We identified the following reasons for the growth of the phh

T tail in NLO+PS matched
predictions. As can be seen from Eq. (IV.14), there are three factors which play a role: large
K-factor (B − B̄), large splitting kernel, and the shower starting scale in the case of MC@NLO
matching. The large NLO K-factor is certainly given for the process under consideration, further
the contribution from the splitting kernel also seems to be large relative to the hard real radiation.

Depending on the matching scheme, the largeness of the (formally subleading) terms in
Eq. (IV.14) can be controlled by tuning the shower starting scale or by separating the hard
real radiation phase space from the Sudakov region. On the other hand, we observed important
differences between various parton shower programs while using the same matching procedure.
For example, the radiation pattern produced by the Pythia 8 and Pythia 6 showers seems to
be quite different. These differences are harder to control without an in-depth knowledge of the
parton shower programs. They are however a manifestation of the theoretical uncertainty related
to the showering, which should be taken into account when estimating the total theoretical
uncertainty related to an NLO+PS prediction.
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6 Treatment of theory uncertainties for Simplified Template Cross Sections 8

6.1 Introduction
Simplified Template Cross Sections (STXS) have been adopted as an evolution of the signal
strength measurements performed during Run 1 of the LHC. Their goal is reduce the theoretical
uncertainties that are directly folded into the measurements and provide more finely-grained
measurements, while at the same time allowing and benefiting from the combination of mea-
surements in many decay channels. For a detailed discussion, see Sec. III.3 of Ref. [1] and Sec.
III.2 of Ref. [236].

The primary features to achieve these goals are as follows. First, they are cross sections
(instead of signal strengths) defined in mutually exclusive regions of phase space. The bin
definitions are abstracted and simplified compared to the exact fiducial volumes of specific
analyses in different Higgs decay channels. The measurements are unfolded to these signal
regions, the STXS “bins”, which are common for all analyses, allowing for a subsequent global
combination of different decay channels as well as measurements from ATLAS and CMS. In
particular, the STXS are defined inclusively in the Higgs boson decay, to naturally combine
the various decay modes. While the bin definitions are simplified to allow for the combination
of different decay channels (and also for ease of use), they nevertheless try to be as close as
possible to the typical experimental selections to avoid any unnecessary extrapolations. The goal
is to allow the use of advanced analysis techniques such as event categorization or multivariate
techniques while still keeping the unfolding uncertainties small.

Second, the STXS bins are defined for specific production modes, with the SM production
processes serving as kinematic templates. This separation into production modes is an essential
aspect to reduce their model dependence, i.e., to eliminate the dependence of the measurements
on the relative fractions of the production modes in the SM.

The number of separately measured bins can evolve with time, such that the measurements
can become more fine-grained as the size of the available dataset increases. Several “stages” have
been defined, and can be further extended. The stage 0 bin definitions essentially correspond to
the production mode measurements of Run 1, while stage 1 has been defined as the target for
the full Run 2 measurements. At intermediate stages individual bins can be merged and only
their sum measured according to the sensitivity of each analysis and decay channel. While the
full stage 1 granularity should become possible in the combination of all decay channels by the
end of Run 2, individual decay channels will require some bins to be merged for the foreseeable
future.

The measured STXS together with the partial decay widths are meant to serve as input
for subsequent interpretations. Such interpretations could for example be the determination of
signal strengths or coupling scale factors κ (providing compatibility with earlier results), EFT
coefficients, tests of specific BSM models, and so forth. The treatment of theory uncertainties
when reporting experimental measurements will be discussed in Sec. 6.5.

6.2 Overview of Theory Uncertainties
There are two places where theory uncertainties enter, which are important to distinguish. First,
there are residual theory uncertainties in the measurements of the STXS bins, resulting from
the assumed SM predictions of the kinematic distribution within each bin that enter in the
unfolding of the experimental event categories to the STXS bins. Second, there are the theory
uncertainties on the SM and beyond predictions of the STXS bins which are required in any
subsequent interpretation. One of the primary purposes of the STXS bin definitions is to move
the dominant theory uncertainties to the second interpretation step, since they are much easier

8 N. Berger, F. J. Tackmann, K. Tackmann
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to deal with there. Here, were are primarily concerned with the theory uncertainties at the
interpretation level.

To combine the information from all measured bins in the interpretation, the theoretical
predictions and their uncertainties must be evaluated separately for each bin, since different bins
will in general contribute with different relative weights to the final result. In this context, the
correlations of the theory uncertainties for different bins must be taken into account. This is
particularly important whenever a certain binning cut induces an important additional source of
perturbative uncertainties that affects each bin but should cancel in their sum. (A well-known
example is the case of jet binning, where it is essential to treat the uncertainties induced by the
jet-binning cut as anticorrelated between the jet bins [885,886].)

Hence, to enable such interpretations in a flexible way, it is important to have a common
treatment of theory uncertainties across all bins and production modes. The goal is to provide a
general parameterization of theory uncertainties, which is physically motivated, in particular al-
lowing to take into account the possible theory correlations between different bins, and is flexible
enough to accommodate different (types of) theory predictions. In this way, the underlying un-
certainty parameterization can be implemented once and used to easily test different predictions
or include future theory improvements. For the gluon-fusion production process, such a param-
eterization has already been worked out [887]. Here we will discuss similar parameterizations
for the vector-boson fusion (VBF) and associated (VH) production processes.

In general, to properly treat the theoretical uncertainties one should try to identify and
distinguish different sources of uncertainties and take into account the correlation implied by
each common uncertainty source. For the practical implementation, an essential requirement is
to parametrize the uncertainties such that they can be implemented in terms of fully correlated
and uncorrelated nuisance parameters. This is facilitated by parameterizing the uncertainties
in terms of uncertainty sources, each of which is considered common and hence fully correlated
among all bins, while the different sources are considered mutually independent and hence
uncorrelated. The uncertainties can then be implemented via a single nuisance parameter for
each source. For this purpose, we follow the generic parameterization strategy for uncertainties
in kinematic bins discussed in Sec. I.4.2.a of Ref. [236], and which is briefly reviewed in Sec. 6.3
below.

It should be stressed that the theory uncertainty parameterization discussed here is not
meant and not necessarily suitable to assess the residual theory uncertainties in the measurement
step. However, whenever two bins are merged in the measurement, this in general reintroduces
the dependence on the SM prediction for the (ratio of the) cross sections of the two merged
bins with the resulting theory uncertainty. In this context, a common parameterization of the
theory uncertainties between measurement and interpretation is essential to allow for a consistent
treatment in the combination of measurements with differently merged bins as well as between
measurements and interpretation.

Finally, we note that here we are only concerned with the perturbative theory uncertainties
due to missing higher-order corrections. Uncertainties due to the imprecise knowledge of input
parameters, like parton distribution functions or quark masses, are not considered here, since
their correct treatment including correlations is straightforward.

6.3 Theory Uncertainties in Kinematic Bins
In this subsection, we review a general parameterization strategy for uncertainties in kinematic
bins. For a more detailed discussion we refer to Sec. I.4.2.a of Ref. [236]. First, consider a single
bin boundary a/b that splits the cross section σab = σa + σb into two bins with cross sections
σa and σb. In general, the binning cut has a nontrivial influence on the perturbative structure
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of σa and σb, for example, it can introduce sensitivity to an additional energy scale or separate
different jet multiplicities. This implies that the binning cut corresponds to an additional and
a priori nonnegligible source of uncertainty that is not present in σab.

The uncertainty matrix for {σa, σb} can be parametrized in terms of fully correlated and
fully anticorrelated components as

C({σa, σb}) =
(

(∆y
a)2 ∆y

a ∆y
b

∆y
a ∆y

b (∆y
b )2

)
+

 ∆2
a/b −∆2

a/b

−∆2
a/b ∆2

a/b

. (IV.17)

This is a general parameterization of a 2 × 2 symmetric matrix, and hence the uncertainties
obtained with any prescription can always be written in this form, provided sufficient information
or assumptions on the correlations are available. This parameterization is convenient for two
reasons: First, the separation into independent components that are ±100% correlated between
the different bins allows for a straightforward implementation in terms of independent nuisance
parameters for each component. That is, we can use two nuisance parameters θy and θcut, whose
absolute uncertainty amplitudes for {σab, σa, σb} are

θy : {∆y
ab, ∆y

a, ∆y
b} θa/b : {0, ∆a/b,−∆a/b} , (IV.18)

where ∆y
ab = ∆y

a + ∆y
b . Second, this parameterization admits a simple physical interpretation:

The first correlated component with superscript “y” can be interpreted as an overall yield uncer-
tainty of a common source for all bins. The second anticorrelated component can be interpreted
as a migration uncertainty between the two bins σa and σb, which is introduced by the a/b
binning cut and must drop out in their sum. Having such a physical interpretation is very useful
to identify and estimate each component in the actual theory calculation. For example, for
jet-binning this interpretation has been explicitly exploited to construct uncertainty estimates
for both fixed-order and resummed predictions [885,886,888].

Consider now the general case of multiple bins, where each bin can have more than one
boundary and each boundary can be shared by different bins. To make this tractable in a
systematic fashion, the idea is to use Eq. (IV.18) for any given single bin boundary a/b with all
additional subdivisions removed. Then given the bin boundary a/b separating the cross section
as σab = σa + σb, we can include additional binning cuts that further subdivide σa and σb as
σa = ∑

i σai and σb = ∑
j σbj . Since we interpret the a/b boundary as a common uncertainty

source, we can consider it as fully correlated among each set of sub-bins and implement it via
a single nuisance parameter θa/b. The corresponding uncertainty amplitudes for all the bins are
now given as

θa/b : ∆a/b ×
{
{xai},−{xbj}

}
with

∑
i

xai =
∑
j

xbj = 1 , (IV.19)

where the parameters xai and xbj specify how the absolute uncertainty ∆a/b gets distributed
among the sub-bins. That is, the impact on σai is xai∆a/b and on σbj it is −xbj∆a/b. The xai
and xbj parameters are specific to each nuisance parameter θa/b.

In this way, we can consider each bin boundary as a potential source of an uncertainty
with an associated nuisance parameter. Of course, in practice with sufficiently complicated
bin boundaries, we have to apply some theoretical judgment in how to choose the relevant
independent binning cuts. In addition, we can have one or more overall yield uncertainties
correlated among all bins.

Mathematically speaking, this way of parameterizing the uncertainties has some redun-
dancy. This is desired and makes it flexible enough to accommodate different scenarios while
maintaining the simple physical interpretation in terms of the underlying uncertainty sources.
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Fig. IV.17: Stage 1 bins for VBF production.

On the other hand, for the case of N bins, it is also desirable to have at least N indepen-
dent nuisance parameters, such that in principle any generic N ×N uncertainty matrix can be
reexpressed in this form.

6.4 Parameterization of Theory Uncertainties
To parametrize the perturbative uncertainties, we consider both QCD and EW sources. We
give the physical interpretation of each source that should be followed when estimating the
uncertainty in practice. While providing explicit uncertainty estimates is beyond the scope
here, we will try to indicate in which cases estimates from fixed-order calculations are likely
to be appropriate and where resummation (or parton-shower) uncertainties are expected to be
relevant. We also point out where additional studies are needed to decide on whether certain
sources should be treated as correlated or uncorrelated, or where additional sources might be
needed in the future.

We hope that the parameterizations below will provide a sufficiently flexible and somewhat
future-proof baseline for the experimental measurements and interpretations of STXS bins at
stage 1.

6.4.1 VBF Production
The VBF template process is defined as electroweak qqH production, which includes the usual
VBF topology but also qq̄ → V H production with hadronic V → qq̄ decays. Since they lead
to the same final state, they essentially represent the t-channel and s-channel contributions to
the same physical process, and can only be distinguished by enriching one or the other type of
contribution via kinematic cuts.

The full stage 1 bins for vector-boson fusion are depicted in Fig. IV.17. They include a
high-pT bin and low-pT bin, defined by a cut on the leading jet to be above or below pj1T =
200 GeV. The low-pT bin is further split into three bins targeting the typical VBF and VH
topologies and a bin for the rest. The VBF topology cuts are mjj > 400 GeV and ∆ηjj > 2.8
with both signal jets required to have pjT > 30 GeV. The VH topology cuts are 60 GeV < mjj <
120 GeV. For our purposes we can essentially consider these as splitting the mjj spectrum into
three regions. (Technically, the Rest bin also includes events where one or zero jets pass the jet
selection cuts.) Finally, the VBF topology bin is split into an exclusive 2-jet-like and inclusive
3-jet-like bin using a cut on pHjjT to be above or below 25 GeV.
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6.4.1.1 QCD Uncertainties
For the QCD uncertainties, we identify the following sources/nuisance parameters:

– θy
VBF: The primary yield uncertainty for the high mjj > 400 GeV region.

– θy
Rest: The primary yield uncertainty for the low mjj < 400 GeV region.

– θy
VH: The overall yield uncertainty for the underlying VH production process.

– θ200: The migration uncertainty related to the pj1T = 200 GeV bin boundary.

– θ25: The migration uncertainty related to the pHjjT = 25 GeV bin boundary.

For the VBF process, an important question that should be studied is how the uncertainties
are correlated between the low and highmjj regions, i.e., between the “VBF cuts” and the “Rest”
bin. Here, we took the approach of considering them as primarily uncorrelated with each having
their own nuisance parameter θRest and θVBF. In principle, correlations between the bins can
be taken into account by allowing these to also impact the corresponding other regions. An
alternative would be to use an overall yield uncertainty and a migration uncertainty across
the mjj = 400 GeV boundary. However, since the bins differ by more cuts, this seems less
appropriate in this case.

For completeness, we have included the θy
VH nuisance parameter here. It is the same

parameter entering for the VH process below, such that the uncertainties for the hadronic and
leptonic VH process are correlated. It will primarily impact the VH cuts bin, providing the
dominant uncertainty there. In principle, it could also have a small impact on the other bins as
well. In general, all the VH nuisance parameters discussed below can have some impact here.
For example, the high pjT bin can have contributions from the boosted regime of VH production,
where the hadronically decaying boosted vector boson produces a high-pT jet.

The overall impacts of the yield uncertainties (∆y
VBF, ∆y

Rest) and of the θ200 migration
uncertainty (∆200) can be evaluated based on fixed-order uncertainties. Their separation into
the individual bins for most bins could be evaluated from fixed-order predictions or based on
Monte-Carlo predictions. (If different predictions are utilized to estimate the overall size and the
separation into the bins, one must be careful to check that both predictions are consistent with
each other.) The pHjjT cut is in principle sensitive to resummation effects. Therefore, the size of
the θ25 migration uncertainty (∆25) as well as the separation of the other uncertainties within
the pHjjT bins should preferably be evaluated (or at least cross checked) based on parton-shower
Monte Carlos or resummed calculations.

6.4.1.2 EW Uncertainties
For the EW uncertainties, we identify the following sources/nuisance parameters:

– θSud: The uncertainty related to EW Sudakov effects.

– θhard: The uncertainty related to hard EW (non-Sudakov) effects.

The reason to separate these two sources is that they correspond to structurally different types
of EW corrections, and hence can be considered as largely uncorrelated. The Sudakov effects
refer to the appearance of EW logarithms from the virtual exchange of EW gauge bosons. They
are expected to be most relevant in the high-pjT bin, while the non-Sudakov effects are likely
to affect all bins. Since the EW uncertainties can be expected to be less relevant than the
QCD ones, it should not be necessary to separate them further based on the individual bins,
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QCD uncertainties EW uncertainties

∆y
VBF ∆y

Rest ∆y
VH ∆200 ∆25 ∆Sud ∆hard

pj1T [0,200] ≈ 1 ≈ 1 ≈ 1 −1 y y

≥ 2-jet VBF cuts ≈ 1 ≈ 0 ≈ 0 −x1 0 x1y x1y

pHjjT [0, 25] (≈ 1)z · · · · · · −x1z +1 · · · · · ·

pHjjT [25,∞] (≈ 1)(1−z) · · · · · · −x1(1−z) −1 · · · · · ·

≥ 2-jet VH cuts ≈ 0 ≈ 0 ≈ 1 −x2 x2y x2y

Rest ≈ 0 ≈ 1 ≈ 0 −x3 x3y x3y

pj1T [200,∞] ≈ 0 ≈ 0 ≈ 0 +1 1− y 1− y

Table IV.2: Structure and expected impact of different uncertainty sources for VBF production.
Each column correspond to one independent nuisance parameter. The ∆i denote the absolute
impact, which are multiplied by the corresponding parameters for each bin. Empty entries mean
that a source has by definition no impact on a bin. The xi, y, z parameters can be different in
each column, and ∑i xi = 1.

and hence they effectively act as overall yield uncertainties correlated among all bins. Their
evaluation should be based on the corresponding EW calculations.

The structure and expected impact of the different sources are illustrated in Table IV.2.
Here, the ∆i denote the absolute uncertainties, and the xi, y, z parameters in the different
columns are different parameters, i.e., they are specific to each source (to each column). For
notational simplicity, we did not adorn them with additional subscripts. The xi satisfy

∑
i xi = 1.

6.4.2 VH Production
The VH template process is formally defined as Higgs production in association with a lepton-
ically decaying vector boson. It is separated into the three underlying processes qq̄′ → WH,
qq̄ → ZH, and gg → ZH. The full stage 1 bins are depicted in Fig. IV.18. They include three
pVT bins (two for gg → ZH) with binning cuts at pVT = 150 GeV and pVT = 250 GeV. The second
pVT bin is further separated into an exclusive 0-jet bin and an inclusive ≥ 1-jet bin, with a cut
at pjT = 30 GeV.

The hadronic VH processes qq̄ → V (→ qq̄)H are included as part of the VBF template
process. Similarly, the gluon-induced gg → Z(→ qq̄)H is included as part of the gg → H
template process (where it corresponds to an electroweak real-emission correction).

6.4.2.1 QCD Uncertainties
For the QCD uncertainties, we identify the following sources/nuisance parameters:

– θy
VH, θy

gg→ZH : The overall yield uncertainty for the underlying VH production process.

– θVH
150 , θ

gg→ZH
150 : The migration uncertainty related to the pVT = 150 GeV bin boundary.

– θVH
250 : The migration uncertainty related to the pVT = 250 GeV bin boundary.

– θVH
0/1 , θ

gg→ZH
0/1 : The migration uncertainty related to the 0/1-jet bin boundary.
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Fig. IV.18: Stage 1 bins for VH production.

These parameters are the same for the qq̄′ → WH and qq̄ → ZH subprocesses, whose QCD
uncertainties are thus treated as correlated. The overall impacts (∆s) for the two subprocesses
however do not have to be the same. The corresponding nuisance parameters for gg → ZH are
separate, such that the quark-induced and gluon-induced processes are treated as uncorrelated.

The overall impacts of the yield and pVT migration uncertainties (∆y
WH, ∆y

ZH, ∆y
gg→ZH ,

∆WH
150 , ∆ZH

150, ∆WH
250 , ∆ZH

250) can be evaluated based on fixed-order uncertainties. Their separation
into the individual bins for most bins could be evaluated from fixed-order predictions or based
on Monte-Carlo predictions. The 0/1-jet binning cut is likely to be sensitive to resummation
effects. Therefore, the size of the θ0/1 migration uncertainty (∆ZH

0/1, ∆WH
0/1 , ∆gg→ZH

0/1 ) as well as
the separation of the other uncertainties within the jet bins should preferably be evaluated based
on parton-shower Monte Carlos or resummed calculations.

For the gg → ZH process it should be studied to what extent the uncertainties should be
correlated with corresponding uncertainties in the gg → H process. For example, most likely it
would be most appropriate to identify the θ0/1 for gg → H and gg → ZH, since the relevant
resummation effects for both processes are the same.

6.4.2.2 EW Uncertainties
For the EW uncertainties, we identify the following sources/nuisance parameters:

– θVH
Sud: The uncertainty related to EW Sudakov effects.

– θWH
hard, θZH

hard: The uncertainty related to hard EW (non-Sudakov) effects.

As for the VBF process, we can distinguish EW Sudakov and hard (non-Sudakov) uncertain-
ties. The Sudakov corrections are universal and are thus treated as correlated for WH and ZH
production. On the other hand, the hard EW corrections are different with separate nuisance
parameters for WH and ZH. One aspect to be studied is to what extent the EW uncertainties
should be treated as correlated or uncorrelated between the VBF and VH processes. The naive
expectation is that it would be most appropriate to treat the EW Sudakov uncertainties as
correlated and the others as uncorrelated.
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QCD uncertainties EW uncertainties

qq̄′ →W ∆y
WH ∆WH

150 ∆WH
250 ∆WH

0/1 ∆WH
Sud ∆WH

hard

pVT [0,150] x1 −1 −y x1 · · ·

pVT [150,250] x2 +1− y −(1− y) 0 x2 · · ·

= 0-jet x2z +(1−y)z −(1−y)z +1 · · · · · ·

≥ 1-jet x2(1−z) +(1−y)(1−z) −(1−y)(1−z) −1 · · · · · ·

pVT [250,∞] x3 y +1 x3 · · ·

qq̄ → Z ∆y
ZH ∆ZH

150 ∆ZH
250 ∆ZH

0/1 ∆ZH
Sud ∆ZH

hard

pVT [0,150] x1 −1 −y x1 · · ·

pVT [150,250] x2 +1− y −(1− y) 0 x2 · · ·

= 0-jet x2z +(1−y)z −(1−y)z +1 · · · · · ·

≥ 1-jet x2(1−z) +(1−y)(1−z) −(1−y)(1−z) −1 · · · · · ·

pVT [250,∞] x3 y +1 x3 · · ·

Table IV.3: Structure and expected impact of different uncertainty sources for VH production.
Each column correspond to one independent nuisance parameter. The ∆i denote the absolute
impact, which are multiplied by the corresponding parameters for each bin. Empty entries mean
that a source has by definition no impact on a bin. The xi, y, z parameters can be different
in each column, and ∑i xi = 1. In addition, gg → ZH production has an independent set of
nuisance parameters with the analogous structure of uncertainties.

We do not yet consider EW uncertainties for gg → ZH, since they are not yet relevant
(due to the fact that the contribution of the subprocess itself is small with relatively large
QCD uncertainties). Once they become relevant, they can easily be added as for the dominant
quark-induced subprocesses. We also do not separately distinguish uncertainties due to mixed
QCD-EW corrections, which for now should be included as part of the (hard) EW uncertainties.
If it becomes necessary, one could add a separate source for these in the future. Uncertainties
from photon-induced corrections are also not yet separately considered.

The structure and expected impact of the different sources are illustrated in Table IV.3.
As before, the ∆i denote the absolute uncertainties, and the xi, y, z parameters in the different
columns are different parameters, i.e., they are specific to each source (to each column). The
xi satisfy

∑
i xi = 1. The uncertainties for gg → ZH production are not shown. They have the

same structure but with an independent set of nuisance parameters.

6.5 Treatment of Theory Uncertainties in Reporting Experimental Results
The STXS measurements are performed with the SM production processes serving as kinematic
templates. They can be interpreted in the context of the SM, but can also be recast in the
context of beyond-the-SM models to help set constraints on new physics. In order to make
optimal use of the measurement information, the interpretation should be performed using the
full experimental likelihood.

This is however difficult in practice: full likelihoods are typically not made public by the

166



experimental collaborations, and also involve a large number of parameters including both the
parameters of interest (POIs) and a large number of nuisance parameters (NPs) representing
systematic uncertainties. Experimental results are usually reported in terms of the profile like-
lihood ratio (PLR), in which all nuisance parameters have been profiled. A Gaussian form is
further assumed for the PLR, and results are reported in terms of the best-fit values of the POIs
and their covariance matrix.

This presentation of results suffers from two limitations: firstly, non-Gaussian effects in the
measurements are neglected; and secondly it is not possible to correlate systematic uncertainties
in the interpretation stage with the same uncertainties in the experimental measurements, since
the NPs representing the uncertainties in the latter case have been profiled in the reported
results.

In this section, we present possible directions of improvement for the reporting of experi-
mental results to address the second point.

6.5.1 Gaussian measurements with linear parameter response
We start by defining a simplified model in which the measurement is described as N independent
Gaussian observations ni, which can represent for instance event counts in N mutually exclusive
signal regions. The corresponding likelihood is

Ln(n) = exp
[
−1

2(n− n̂)THn(n− n̂)
]

(IV.20)

where n̂ is the best-fit value of n and Hn is the Hessian matrix, defined as the inverse of the
covariance matrix

C =


σ2

1 0 · · ·

0 . . . . . .
... . . . σ2

N

 (IV.21)

We further assume that the expected values of the ni are linear functions ni = ∑
α
kiαxα of the

model parameters xα. The measurement of the xα is then described by the Gaussian likelihood

Lx(n) = exp
[
−1

2(x− x̂)THx(x− x̂)
]

(IV.22)

where x̂ is the maximum-likelihood estimator of x, and

Hx = KTHnK, (IV.23)

K denoting the matrix of the kiα. We furthermore explicitly split x into POI and NP compo-
nents, µ and θ respectively, xT =

(
µ θ

)
, and assume that the n similarly decompose into

true experimental measurements and auxiliary measurements [889] providing constraints on the
θ. We also follow the usual convention [889] of orthogonalizing and normalizing the θ so that
the auxiliary measurements are all represented by standard Gaussians of unit width. We then
have

Hn =

 Σ−1 0

0 I

 K =

 R ∆

0 I

 (IV.24)

where Σ−1 is the diagonal matrix of the uncertainties of the experimental measurements; R is
the response matrix giving the impact of the POIs on the measurements; and ∆ provides the
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impacts of the NPs on the measurements, representing systematic uncertainties. It follows that

Hx =

 RTΣ−1R RTΣ−1∆

∆TΣ−1R I + ∆TΣ−1∆

 =

 C−1
stat Λ

ΛT I +Kθ

 . (IV.25)

The Cstat matrix represents the statistical component of the measurement of µ; the bottom-right
block describes the uncertainties of the θ, which can be reduced from the initial unit values due
to constraints from the measurements; and the off-diagonal blocks Λ represent the correlation
between the measurements of µ and θ through systematic effects.

The measurement of the POIs µ is performed using the profile likelihood ratio

λ(µ) =
L

(
µ,

ˆ̂
θ(µ)

)
L
(
µ̂, θ̂

) = exp
[
−1

2(µ− µ̂)TH ′µ(µ− µ̂)
]
. (IV.26)

In terms of a general Hessian matrix

Hx =

 Hµµ Hµθ

HT
µθ Hθθ

 , (IV.27)

the profiled values of the nuisance parameters are

ˆ̂
θ(µ) = θ̂ +H−1

θθ H
T
µθ (µ− µ̂) (IV.28)

and the profile likelihood ratio has a Gaussian form with the reduced Hessian matrix

H ′µ = Hµµ −HµθH
−1
θθ H

T
µθ. (IV.29)

which for the Hessian of Eq. (IV.25) gives

H ′µ = C−1
stat − Λ (I +Kθ)−1 ΛT . (IV.30)

In terms of the covariance matrix

Cx = H−1
x =

 Cµ Cµθ

CTµθ Cθ

 (IV.31)

of the full measurement, one has H ′µ = C−1
µ : the sector of Cx corresponding to the POI

measurement is the inverse of H ′µ computed above after profiling the NPs and thus already
includes their impacts. Assuming these are small compared to statistical uncertainties (∆∆T �
Σ), this can be written to linear order as

Cµ = Cstat + CstatΛΛTCstat (IV.32)
≡ Cstat + Csyst, (IV.33)

where the first term represents statistical uncertainties and the second one systematics.
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6.5.2 Link with experimental results
Higgs couplings measurements typically report uncertainties using the profile likelihood ratio,
computed from the full experimental likelihood. They also often provide the covariance matrix
Cµ, obtained from the Hessian matrix Hx of second derivatives of the likelihood evaluated
at the best-fit position and truncated to POIs only. This allows the experimental results to
be recast under specific theoretical models, accounting for correlation between the measured
parameters. This suffers from the two limitations mentioned in the introduction: first the
Gaussian assumption on the likelihood form, which is assumed to hold here; and secondly
the non-inclusion of the nuisance parameters describing systematic uncertainties. If the same
parameters also play a role at the level of the reinterpretation, Cµ alone does not provide
sufficient information to properly correlate the two effects.

Such a treatment can be performed using the full covariance matrix Cx = H−1
x . To limit

the size of the matrix, one can still truncate from C the uncertainties that are not relevant to the
interpretation stage (for instance experimental uncertainties), leading to a reduced parameter set
x̃ = (µ, θ1 · · · θp). This approach allows to rebuild an experimental likelihood as in Eq. (IV.22),
assuming Gaussian assumptions.

A third option, inspired by Eq. (IV.33), is to report Cµ together with Cstat, which allows
to extract the effect of the relevant systematic uncertainties. Cstat can be obtained from the full
likelihood in the same way as Cµ, but keeping the systematics NPs fixed to their best-fit value.
The method is most straightforwardly applied by reporting the matrices

Cp = Cµ, Cp−1 = Cµ|θp , Cp−2 = Cµ|θp,θp−1 · · · , C0 = Cµ|θp,···θ1 (IV.34)
where the NPs after the vertical bar are fixed to their best-fit value when computing the corre-
lation matrix. C0 therefore corresponds to the covariance matrix of the µ without the effect of
any of the θ1 · · · θp included, C1 corresponds to the covariance matrix including the effect of θ1
only, and so on until all the θ1 · · · θp are included in Cp. Under the same assumptions as those
leading to Eq. (IV.33), one then has

δCi = Ci − Ci−1 = Ci−1ΛiΛTi Ci−1 (IV.35)
which allows to extract the impact Λi of the NP θi. The sign of Λi is however ambiguous and
needs to be provided in addition to the covariance matrices. The Λi can also be obtained without
simplifying assumptions by re-expressing Eq. (IV.29) as

C−1
i = C−1

i−1 − Λi(1 +Ki)−1ΛTi . (IV.36)
The Λi (the impact of θi on the POIs) and 1+Ki (which determines the uncertainty on θi) cannot
be unambiguously determined since the covariance matrix is only sensitive to their combination.
A possible convention is to require that the post-fit uncertainty on θi is 1, as for the pre-fit case,
by setting Ki = ΛTi Ci−1Λi. The components of Λi are then given by

[Λi]α = ±
√

(1 +Ki)[C−1
i−1 − C

−1
i ]αα, 1 +Ki = [1− Tr(I − Ci−1C

−1
i )]−1 (IV.37)

with the sign of the [Λi]α again provided as external input. The full matrix Hx̃ can then be
reconstructed as

Hx =



C−1
0 Λp Λp−1 · · · Λ1

ΛTp I +Kp 0 · · · 0

ΛTp−1 0 I +Kp−1
. . . ...

...
... . . . . . . 0

ΛT1 0 · · · 0 I +K1


. (IV.38)
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Parameters 0-jet 2-jet
σggF 102 fb× 96% 102 fb× 4%
σVBF - 8 fb
Signal A× ε 40%
σvis

Bkg 1500 fb 100 fb
L 150 fb−1

Systematics 0-jet 2-jet
Experimental, 0-jet 5% -
Experimental, 2-jet - 5%
ggF theory on inclusive A× ε 2% 2%
VBF theory on inclusive A× ε - 2%
ggF theory on 2-jet A× ε - 15%

Table IV.4: Summary of numerical parameters defining the example model. σggF and σVBF
are the total cross-sections for signal production in the ggF and VBF modes; A × ε is the
overall efficiency of the signal selection; L is the integrated luminosity of the data sample; and
σvis

Bkg is the visible cross-section the continuum background (the ratio of the number of observed
background events after all selections to the integrated luminosity). In the lower half of the
table, each line corresponds to an independent source of systematic uncertainty, associated with
a separate nuisance parameter.

This expression of Hx can then be used to represent the experimental likelihood as above. It
has the property that successively profiling away θ1 · · · θp leads to reduced Hessian matrices
with top-left sectors equal to C−1

1 · · ·C−1
p , so that profiling recovers at each stage the covariance

matrices obtained from the full profile likelihood computation9.

6.5.3 Example
As an illustration, we consider a simple example inspired by the measurement of the gluon-fusion
and VBF cross-sections in the H → γγ decay channel [890]. The measurement is modeled by
counting experiments in two bins, denoted as 0-jet and 2-jet, and considering contributions from
gluon-fusion Higgs production (ggF), VBF production and background. Theoretical and exper-
imental uncertainties are considered on the experimental acceptance values, and implemented
with log-normal profiles. The parameters of the model are summarized in Table IV.4. A profile
likelihood ratio (PLR) scan in the (σggF, σVBF) plane for the SM hypothesis is performed, and
the corresponding confidence level contours computed in the asymptotic approximation [891]
are shown in Fig. IV.19a. The numerical results are

σggF = 102+8.2
−8.5(stat) 5.7

−4.1(exp) 2.3
−1.7(theo) fb (IV.39)

σVBF = 8.0± 2.1(stat)+0.7
−0.5(exp)+0.7

−0.4(theo) fb (IV.40)

with a correlation coefficient of 17%. The covariance matrix of the fit is used to build a Gaus-
sian likelihood following Eq. (IV.22). The PLR contours for this likelihood are also shown in
Fig. IV.19a. Small differences are visible between the two due to the non-Gaussian form of
the full likelihood. A similar comparison without systematic uncertainties included shows ex-
cellent agreement, which suggests the log-normal profiles of systematics is the main source of
non-Gaussianity.

9Note that this works only if the parameters are profiled in the same order as for the computation of the Ci,
since correlation information between the NPs is not included.
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Fig. IV.19: Confidence level contours at the 1σ (solid lines) and 95% CL (dashed lines) levels,
computed from the profile likelihood ratio in the asymptotic approximation. (a) Contours in
the (σggF, σVBF) plane of the original measurement, using the full likelihood (black) and the
Gaussian likelihood built from the covariance matrix reported by HESSE at the best-fit point.
(b) Contours in the (µggF, µVBF) plane computed from those in (a), using a reparameterization
the full likelihood (black); the Gaussian likelihood built from the covariance matrix of the
parameter set (σggF, σVBF, θggF, θVBF) reported by HESSE (blue); the Gaussian likelihood built
from the covariance matrix recomposed as in Eq. (IV.38) (red); and the Gaussian likelihood built
from the covariance matrix of (σggF, σVBF), with additional interpretation-stage uncertainties
uncorrelated with those of the measurement.

The measurement is reinterpreted in the µ parameterization of Higgs couplings, with
parameters of interest defined as the ratios µggF = σggF/σggF,SM and µVBF = σVBF/σVBF,SM
of the measured cross-sections to their SM values. The parameterization includes uncertainties
of 5% on the SM ggF and VBF cross-sections with log-normal profiles. They are considered
to be fully correlated with the corresponding inclusive acceptance systematics (θggF and θVBF
respectively), making it possible to compare the possibilities described in the preceding section.

We consider the 3 cases of the model of Eq. (IV.27) in which the full covariance matrix is
provided; the model of Eq. (IV.38) in which the covariance matrix is provided in decomposed
form; and the case where the covariance matrix is only reported for the POIs, and the systematics
on the interpretation are added separately without accounting for their correlation with those
of the measurement.

The results are shown in Fig. IV.19b. The contours from the two methods of reporting
the full covariance matrix are rather close to those of the exact likelihood, differing by the non-
Gaussian effects already visible on Fig. IV.19a. No difference between the two methods is visible
on the plot, as expected due to the smallness of the impact of NP/NP correlations. Both results
provide a better description than the case where the systematics for the interpretation stage are
not correlated with those of the measurement. The uncertainties are somewhat smaller in this
case, since to first approximation the uncertainties at each stage add in quadrature, whereas
they add linearly when fully correlated. The magnitude of the difference would however be
reduced for smaller values of the theoretical uncertainties on the measured values.
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Chapter V

Phenomenological studies

1 Top-pair production including multi-jet merging and EW corrections 1

1.1 Introduction
The detailed study of top-quark properties, in particular in the dominant top-pair production
mode, is amongst the main goals of the ongoing physics program at the LHC. After initial
measurement at the inclusive cross section level [368,892–896], where very good agreement with
perturbative calculations at the NNLO+NNLL level in QCD [26, 336, 337] has been observed,
the attention in the study of top-pair production has shifted towards differental measurements.
In fact, the ATLAS and CMS collaborations already performed various measurements in the
different top-decay channels, at 7 TeV [897–899], 8 TeV [373, 737] and 13 TeV [737, 900–903],
presenting in particular results for the reconstructed top transverse momentum distribution,
whose reliable modelling is of great importance for background estimates in a multitude of
searches for Physics Beyond the Standard Model. These measurements have mostly been com-
pared against predictions obtained with the Monte Carlo frameworks MC@NLO [904] (or more
recently MadGraph_aMC@NLO [88]) and POWHEG [905]. In these frameworks top-pair pro-
duction at NLO QCD is matched to parton showers from Pythia [629] or Herwig [906]. These
measurements consistently indicate that the top quark transverse momentum distribution at low
pT is well predicted by the Monte Carlo programs, both in normalisation and shape, but these
predictions exceed the data at high pT. Comparing these measurements at the unfolded parton
level to differential NNLO QCD predictions [146], this excess has been alleviated. This indicates
the relevance of including higher jet multiplicities [352, 353, 375, 378–380, 907–917] in the mod-
elling of the top quark transverse momentum distribution at high pT. At the same time, it is
well known that higher-order EW corrections alter the shape of the top transverse momentum
distribution at high pT due to the appearance of EW Sudakov logarithms [329, 331, 918–923]
yielding corrections of about −10% at pT,top = 1 TeV.

In this contribution [332], we first present a calculation of tt̄(+jet) production at fixed-order
NLO EW focussing on the top transverse momentum distribution, however, also showing results
for the invariant mass distribution of the top-quark pair. Second, we present predictions based
on the MEPS@NLO multi-jet merging in Sherpa [924–926], incorporating the EW corrections
in an approximation that we show holds at the level of a few percent up the TeV range. In this
approximation, the dominant virtual NLO EW corrections are incorporated exactly, while the
NLO QED bremsstrahlung is first integrated out and subsequently incorporated via YFS multi-
photon emission [927]. We compare the resulting MEPS@NLO QCD+EWvirt predictions for
the top-quark transverse momentum distribution at particle-level against a recent measurement
performed by ATLAS in the lepton+jet channel, based on a selection of top-quark candidates
in the boosted regime [737].

1.2 From NLO EW to approximate EW corrections in the MEPS@NLO framework
Based on the automated Sherpa+OpenLoops framework fixed-order NLO EW corrections
to tt̄ and tt̄+jet production can readily be computed [85, 304, 497] . They comprise virtual
corrections that are enhanced at large energies due to the appearance of EW Sudakov logarithms

1 C. Gütschow, J. M. Lindert, M. Schönherr
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and QED bremsstrahlung corrections. For tt̄+jet production also mixed QCD-EW interference
contributions arise in 4-quark channels and are included in our NLO EW predictions.

To be precise, at NLO EW, the cross section is defined as

dσNLO = dΦB

[
B(ΦB) + Ṽ(ΦB)

]
+ dΦR R(ΦR) . (V.1)

Therein, B is the Born matrix element including all PDF and symmetry/averaging factors and
ΦB is its accompanying phase space configuration. R and ΦR are defined analogously for the
O(α) real correction and its phase space, while Ṽ contains the virtual O(α) correction V as
well as the corresponding collinear counterterm of the PDF mass factorisation. At subleading
orders of the strong coupling αS , further tree and one-loop contributions and photon-induced
contributions arise. However, as shown in [329, 923] for tt̄ production these are numerically
unimportant, given for the latter a determination of the photon content of the proton is based
on the recent advances of [928]. In the following we consider the subleading tree contributions,
but neglect any subleading one-loop or photon-induced contributions.

In order to approximate the full expression for the NLO EW contribution in the high-
energy regime, by a form that is local in the Born phase space, and thus suitable for straight-
forward incorporation in the current MEPS@NLO framework in Sherpa, we define the Wvirt
approximation [305] as

dσNLO Wvirt = dΦB

[
B(ΦB) + V(ΦB) +

∫
1

dΦ1 Rapprox(ΦB · Φ1)
]
. (V.2)

Here, we introduce the approximated real-emission contribution Rapprox such that its integral
over the real-emission phase space equals the standard Catani-Seymour I-operator. This con-
struction is both finite and correctly reproduces the exact NLO EW corrections in the Sudakov
limit, but also contains important non-logarithmic terms extending its validity in practice.

This result can now be straightforwardly used to incorporate approximate electroweak
corrections in the MEPS@NLO method [924–926] of merging multiple samples of successive mul-
tiplicities at next-to-leading order accuracy in QCD. For any such multiplicity n, n < nNLO

max , its
exclusive n-jet cross sections are defined as

dσ(MEPS@NLO)
n =

[
dΦn B̄n(Φn) F̄n(µ2

Q ;<Qcut)

+ dΦn+1 Hn(Φn+1) Θ(Qcut −Qn+1)Fn+1(µ2
Q ;<Qcut)

]
Θ(Qn −Qcut) ,

(V.3)

with the familiar B̄n and Hn functions of the MC@NLO matching method [929–931] and their
parton shower functionals F̄n and Fn+1. To this end, we modify the standard NLO QCD B̄n

function to also incorporate the approximate NLO EW corrections now local in Φn,

B̄n(Φn) −→ B̄n,QCD+W(Φn) = B̄n(Φn) + Vn,W(Φn) + In,W(Φn) + Bn,sub(Φn) . (V.4)

Additional multiplicities can be merged at leading order accuracy. They receive a differential K-
factor [926,932,933], ensuring the continuity of the corrections applied throughout the spectrum.
The term Bn,sub allows for the inclusion of additional subleading Born contributions in the
merging.
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Gµ = 1.1663787 · 10−5 GeV2

mW = 80.385 GeV ΓW = 2.0897 GeV
mZ = 91.1876 GeV ΓZ = 2.4955 GeV
mh = 125 GeV Γh = 4.07 MeV
mt = 173.2 GeV Γt = 0

Table V.1: Numerical values of all input parameters. While the masses are taken from [934],
the widths are obtained from state-of the art calculations.

1.3 tt̄ and tt̄+jet production at NLO EW
In Fig. V.1 we present predictions for the top-quark transverse momentum distribution and
top-pair invariant mass distribution in top-pair and top-pair plus jet production at the LHC
with 13 TeV including NLO EW corrections. For our predictions input parameters are chosen
as listed in Table V.1 and the electroweak coupling α is fixed and renormalized according to
the Gµ-scheme, α =

√
2
π Gµ

∣∣∣µ2
W sin2

θw

∣∣∣, where µW denotes the complex-valued W mass, with
µ2
V = M2

V − iΓVMV and θw the also complex valued weak mixing angle, derived from the
ratio µW /µZ . The massive vector bosons and the Higgs are renormalised in the complex-mass
scheme, while the top-quark is kept stable and correspondingly renormalised in the on-shell
scheme. The introduction of finite widths for the massive vector bosons is mandatory due to
the appearance of otherwise singular resonant internal propagators in the O(α) bremsstrahlung.
As renormalisation and factorisation scales for the strong coupling αS we use µ = µR = µF =
1
2(ET,t+ET,t̄), where ET,t/t̄ denotes the transverse energy of the top/anti-top. In the predictions
for top-pair plus jet production we cluster jets according to the anti-kT algorithm implemented
in FastJet [819] and require pT,j > 30 GeV and |ηj | < 4.5.

The EW corrections to the top transverse momentum distribution shown in Fig. V.1
display a typical Sudakov behaviour and reach -10(-20)% at 1(2) TeV consistently in tt̄ and
tt̄+jet production. In fact, the difference in the relative NLO EW corrections between tt̄ and
tt̄+jet production is below 1(2)% up to about pT,t = 1(2) TeV. This indicates a factorisation
of the EW correction from QCD radiation and supports a multiplicative combination of QCD
and EW corrections for tt̄ production. The NLO EWvirt approximation introduced in Eq. (V.2)
reproduces the full NLO EW corrections in the transverse momentum of the top at the percent
level, both for tt̄ and tt̄+jet production. Subleading Born contributions of O(αSα) and O(α2)
in tt̄ production and O(α2

Sα) and O(αSα2) in tt̄+jet production only contribute at the percent
level.

In the invariant mass of the top-quark pair the corrections reach -5(-10)% at 1(5) TeV,
where again we observe a universality of the EW corrections between tt̄ and tt̄+jet production.
Here the accuracy of the NLO EWvirt approximation is slightly worse compared to the transverse
momentum distribution. Still, the full NLO EW correction and the approximation agree at the
percent level. Subleading Born contributions are marginally relevant for tt̄+jet production, while
for tt̄ production the subleading O(α2) contribution yields a relevant contribution at very large
top-pair invariant masses.

1.4 Multi-jet merged predictions for tt̄ production including EW corrections
In Fig. V.2 we present on the left parton-level multi-jet merged MEPS@NLO predictions for the
top-quark transverse momentum at the LHC with 13 TeV. The input parameters and settings
are chosen as detailed in Sec. 1.3. We merge tt̄ plus zero and one jet production based on
NLO matrix elements including EW corrections in the EWvirt approximation of Eq. (V.4) and
subleading Born contributions are included. Additional jet multiplicities up to tt̄+4 jets are
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Fig. V.1: Top quark transverse momentum (left) and top-antitop invariant mass (right) distri-
butions in inclusive tt̄ production (blue) and tt̄+ jet production (red) at NLO EW at 13TeV at
the LHC. The top panel shows the differential cross section, while the three lower panels show,
from top to bottom, the NLO EW corrections to inclusive tt̄ production and tt̄+ jet production,
respectively. The lowest panel shows the ratio of both corrections.

merged at LO accuracy. Comparing the MEPS@NLO QCD predictions with the MEPS@NLO
QCD+EWvirt predictions we recover an EW correction factor consistent with the fixed-order
results presented in Sec. 1.3.

In the right plot of Fig. V.2 we finally compare particle-level MEPS@NLO predictions for
the reconstructed top-quark transverse momentum distribution at the LHC with 8 TeV against
a recent ATLAS measurement of differential top-pair production in the lepton+jets channel,
based on a tagging of hadronically decaying top-quark candidates in the boosted regime [737].
In both the QCD and the QCD+EWvirt predictions the top-quarks are decayed preserving spin
correlations [493]. Non-perturbative effects, i.e. hadronization and MPI, are also included, as are
higher order QED corrections [927]. Here, scales are set using the CKKW procedure [924,935].
Thus, µR = µCKKW is defined through

αs
2+n(µ2

CKKW) = αs
2(µ2

core) · αs(t1) · · ·αs(tn) , (V.5)

and µF = µQ = µcore, where as core scale was have [352,914]

µcore = 1
2

(
1
ŝ

+ 1
m2
t − t̂

+ 1
m2
t − û

)− 1
2

, (V.6)
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Fig. V.2: Top-quark transverse momentum distribution at parton-level (left) and particle-level
(right), where for the latter hadronically decaying top candidates are reconstructed in a lep-
ton+jets sample based on jet substructure techniques. Compared are MEPS@NLO QCD and
MEPS@NLO QCD+Wvirt predictions obtained with Sherpa+OpenLoops . The particle-level
predictions are also compared against a recent measurement performed by ATLAS [737].

based on a reclustered core 2 → 2 process. The remaining parameters are as discussed above.
Again zero and one jet multiplicities are merged based on NLO matrix elements. In the high-pT
tail the inclusion of the EW corrections results in a significantly improved agreement of the
ATLAS data with the Sherpa+OpenLoops Monte Carlo prediction.

1.5 Conclusions
In this contribution we have presented predictions for the top-quark transverse momentum
distribution and top-pair invariant mass distribution in top-pair production and top-pair plus
jet production including NLO EW corrections. Subsequently, based on the MEPS@NLO multijet
merging framework in Sherpa, we derived parton- and particle-level predictions for inclusive top-
pair production including higher-order EW corrections. The EW corrections are incorporated in
an approximation, based on exact virtual NLO EW contributions combined with integrated-out
QED Bremsstrahlung. We showed that this approximation is able to reproduce the full NLO
EW result for tt̄ and tt̄+jet production at the percent level. Comparing our predictions against
a recent measurement for the top-quark pT-spectrum performed by ATLAS in the lepton+jet
channel we find very good agreement between Monte Carlo predictions and data when the EW
corrections are included.
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2 Parton shower and off-shell effects in top quark mass determinations 2

We compare different theoretical descriptions of top quark pair production in the di-lepton
channel. The full NLO corrections to pp → W+W−bb̄ → (e+νe) (µ−ν̄µ) bb̄ production are
compared to calculations in the narrow width approximation, where the production of a top
quark pair is calculated at NLO and combined with different descriptions of the top quark
decay: LO, NLO and via a parton shower.

2.1 Introduction
A precise knowledge of the top quark mass is very important for many aspects of collider physics,
ranging from electroweak precision tests and constraints on New Physics to investigations about
the vacuum stability of the universe. Recent measurements at the LHC [936–939] reach an
uncertainty below 1 GeV, which implies that theoretical work is demanded to further reduce
it. As the top quark mass is not a physical observable, its definition is scheme dependent.
The most commonly used mass definitions are the pole mass and the MS mass, where the
different masses are related by a perturbative series, see e.g. Refs. [940,941]. Recent theoretical
studies with regards to the definition and extraction of the top quark mass can be found in
Refs. [360–365,942].

For stable top quarks, NNLO corrections to differential distributions are known [146,327,
328] and have been combined with NLO electroweak corrections recently [329]. Due to their very
high complexity, the NNLO fixed-order calculations have so far only been combined with top
quark decay in the narrow-width approximation (NWA), which factorises the production and
decay processes. NLO corrections to top quark decays have been calculated in Refs. [333–335],
and NNLO QCD corrections to the decay are also known meanwhile [148,943]. The combination
of fixed-order NLO corrections to both production and decay with a parton shower in the narrow
width approximation has been done in Ref. [349] within an extension of the PowHeg [350, 351]
framework, called ttb_NLO_dec in the POWHEG-BOX-V2. Within the Sherpa [415] framework,
NLO QCD predictions based on the NWA for top quark pair production with up to three jets
matched to a parton shower are also available, see Refs. [352,353].

However, a description of top quark production and decay which can describe the shapes
of distributions to an accuracy required for improvements on current experimental precision
needs to go beyond the narrow-width approximation. NLO QCD calculations of W+W−bb̄
production, including leptonic decays of the W bosons, have been performed in Refs. [342–345].
These calculations use the 5-flavour scheme, where the b-quarks are treated as massless partons.
NLO electroweak corrections with complete off-shell effects have been calculated in the di-lepton
channel in Ref. [331]. In the lepton+jets channel, NLO QCD corrections with full off-shell effects
are available since recently [346].

The b-quark mass effects on observables like the invariant mass of a lepton-b-quark pair
(mlb) are very small. However, the use of massive b-quarks (more precisely, the 4-flavour scheme,
4FNS) has the technically important feature that it avoids collinear singularities due to g → bb̄
splittings. This implies that any phase space restrictions on the b-quarks can be made without
destroying infrared safety, and thus allows to consider 0, 1- and 2-jet bins for pp→ e+νeµ

−ν̄µbb̄
in one and the same setup, which is important for cross sections defined by jet vetos. In
Refs. [347,348], NLO calculations in the 4FNS have been performed.

Based on an NLO calculation of W+W−bb̄ production combined with the Powheg frame-
work, first results of the W+W−bb̄ calculation in the 5-flavour scheme matched to a parton
shower have been presented in Ref. [355]. However, it has been noticed subsequently that the
matching of NLO matrix elements involving resonances of coloured particles to parton showers

2 G. Heinrich, L. Scyboz
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poses problems which can lead to artifacts in the top quark lineshape [356]. As a consequence,
an improvement of the resonance treatment has been implemented in POWHEG-BOX-RES, called
“resonance aware matching”, and combined with NLO matrix elements from OpenLoops [85],
to arrive at the most complete description so far [357], based on the framework developed in
Ref. [356] and the 4FNS calculation of Ref. [348]. An alternative algorithm to treat radiation
from heavy quarks in the Powheg NLO+PS framework has been presented in Ref. [358]. An
improved resonance treatment in the matching to parton showers for off-shell single top produc-
tion at NLO has been worked out in Ref. [944], and for off-shell tt̄ and tt̄H production in e+e−

collisions in Ref. [945]. A recent study of top quark mass measurements at the LHC using vari-
ous NLO+PS approaches can be found in Ref. [367], and a detailed assessment of fragmentation
uncertainties in Ref. [366].

Here we investigate the impact of different theoretical approximations on distributions
relevant to top quark mass measurements, as described in more detail in Ref. [359]. We compare
the NLO calculation of W+W−bb̄ production of Ref. [345] with the calculation based on the
narrow-width approximation where both tt̄ production and decay are calculated at NLO [334]
and with a calculation in the narrow-width approximation where the Sherpa [415] parton shower
is combined with our matrix elements of top quark pair production calculated at NLO.

2.2 Theoretical descriptions
We consider the following descriptions of the top quark pair production cross section in the
di-lepton channel:

NLOfull: full NLO corrections to pp→W+W−bb̄ with leptonic W -decays,

NLONLOdec
NWA : NLO tt̄ production ⊗ NLO decay,

NLOLOdec
NWA : NLO tt̄ production ⊗ LO decay,

NLOPS: NLO tt̄ production+shower ⊗ decay via parton showering.

The calculations NLOfull and NLOLOdec
NWA follow the ones described in Ref. [345], but now

at
√
s = 13 TeV and with cuts as described in Ref. [359]. The results for the NLONLOdec

NWA
calculation are obtained as described in Ref. [334], relying on the factorisation of the matrix
elements according to

MNWA
ij→tt̄→bb̄2l2ν = Pij→tt̄ ⊗Dt→bl+ν ⊗Dt̄→b̄l−ν̄ , (V.7)

where Pij→tt̄ describes the tt̄ production process and Dt→blν the top quark decay dynamics.
Spin correlations are included as indicated by the symbol ⊗.

The NLOPS computations shown here are based on the NLO plus parton-shower matching
scheme as implemented in Sherpa [914,929]. Using this scheme, we obtain an NLO+PS accurate
description of tt̄ production. The top quark decays are attached afterwards in a way that spin
correlations are preserved, and supplemented by their respective decay showers following the
same procedure as proposed in [493].

In the following we will focus on the observable mlb which is defined as the invariant mass

m2
lb = (pl + pb)2 , (V.8)

where pl denotes the four-momentum of the lepton and pb the four-momentum of the b-jet. As
there are two top quarks, there are also two possible mlb values per event. Since experimentally,
it is not possible to reconstruct the b-quark charge on an event-by-event basis with sufficient
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accuracy, one also needs a criterion to assign a pair of a charged lepton and a b-jet as the one
stemming from the same top quark decay. Following [946], the algorithm applied here is to
choose that (l+b-jet, l−b-jet′) pairing which minimises the sum of the two mlb values per event.
Finally, the mlb observable used in the analysis is the mean of the two mlb values per event
obtained when applying the above procedure.

The mlb distribution has a kinematic edge at medge
lb =

√
m2
t −M2

W = 152.6 GeV, beyond
which it is only populated by additional radiation, non-resonant contributions and incorrect
b-lepton pairings.

2.3 Phenomenological results
We use the PDF4LHC15_nlo_30_pdfas sets [422, 597,601,843] and a centre-of-mass energy of√
s = 13 TeV. Our default top quark mass is mt = 172.5 GeV. LO top quark and W boson

widths are used in the LO calculations and the NLO tt̄⊗ LO decay calculation, while NLO
widths [947] are used in the remaining NLO calculations. NLO widths appearing in propagators
are not expanded in αs. The QCD coupling in the NLO widths is varied according to the chosen
scale. For more details on the input parameters an kinematic requirements we refer to Ref. [359].
The b-quarks are treated as massless in all fixed-order calculations.

We chose µR = µF = mt as our central scale. The impact of choosing HT /2 (rather than
mt) as the central scale on the top quark mass determined by our method has been shown to
be very small [345]. Further it would be difficult to come up an HT definition for the NLOPS
approach that matches the one in the full W+W−bb̄ calculation.

For the NLOPS case, the standard µR and µF variations that we employ for our fixed-order
calculations are not fully sufficient to assess the theory uncertainties, as the showering depends
on further scale and parameter settings. Our variation in the NLOPS case, denoted by µFµRαPS

s ,
is a combination of simultaneously varying µF , µR and µPS

R ∼ pemit
T by a factor of two up and

down. By evaluating αs(µPS
R ), the latter variation determines the shower uncertainty which we

abbreviate by αPS
s . Other ways of uncertainty assessment include the variation of the shower

starting scale µQ, which regulates the overall size of the resummation regime primarily affecting
the tt̄ production showers. The Sherpa default is to set this resummation scale equal to the
factorisation scale, i.e. for our NLOPS results, we have set µQ = µF = mt.

Experimentally, the top quark mass is measured most precisely by fitting normalised dif-
ferential cross sections to Monte Carlo templates produced with different values for the top mass.
This procedure is therefore sensitive to the modeling of the shape of the distributions entering
the fit. Figure V.3 shows the differential cross section for the mlb observable based on the four
theoretical predictions NLOLOdec

NWA , NLONLOdec
NWA , NLOPS and NLOfull, where the latter is the base-

line of the ratio plot, and its scale uncertainties are shown as grey bands. We observe that the
simplest description, NLOLOdec

NWA , differs substantially from the NLOfull prediction, in the range
40 GeV ≤ mlb ≤ 150 GeV, which comprises the bulk of the cross section, effectively moving the
peak to greater values of mlb. The NLO corrections to the top quark decay, NLONLOdec

NWA , restore
agreement with NLOfull to within less than 10%, while the NLOPS prediction mostly lies between
NLOLOdec

NWA and NLONLOdec
NWA in this region. In contrast, the high-mass tail features substantial

differences between the predictions, ranging from 70% for NLOLOdec
NWA , 50% for NLONLOdec

NWA , to
20% for NLOPS. Taking only the range 40 GeV ≤ mlb ≤ 150 GeV into consideration, which is
also within the range used for fits determinng the top quark mass based on the mlb distribu-
tion [359], the NWA predictions NLONLOdec

NWA and NLOPS, which describe the top quark decay
beyond the leading order, but do not contain non-resonant, singly-resonant and non-factorising
contributions, come rather close to the full W+W−bb̄ calculation. Thus we conclude that the
non-resonant and off-shell contributions are less important than corrections to the decay for top
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Fig. V.3: Normalised differential cross sections for the invariant mass mlb at the 13 TeV LHC for
four different theoretical descriptions: full NLO calculation including off-shell and non-resonant
contributions (NLOfull), NLO calculation in the NWA with and without NLO corrections to the
top quark decay (NLONLOdec

NWA and NLOLOdec
NWA , respectively) and NLO calculation for top quark

pair production matched to a parton shower (NLOPS). The ratio of all descriptions to NLOfull
including its scale uncertainty band is also shown.

quark mass determinations based on the mlb observable.
In the case of the full W+W−bb̄ calculation, the NLO corrections introduce important

changes in the shape of the mlb distribution, as shown in Fig. V.4a. While this is expected for
the tail of the distribution, it is remarkable that the result also gets corrections of up to 50% for
lower mlb values. The various descriptions of the top quark decay in the NWA exhibit a different
behaviour, as shown in Fig. V.4b: when compared to the NLOLOdec

NWA central prediction, both the
NLONLOdec

NWA and the NLOPS predictions soften the distribution up to the kinematic edge, while
the region beyond the kinematic edge gets substantially enhanced by the parton shower. Notice
that incorporating higher-order corrections to the decay pushes the mlb distribution outside of
the NLOLOdec

NWA scale uncertainty bands, also in the peak region.
As a complementary study, and in order to disentangle the effect of additional emissions

in the parton shower before and after the decay, we now consider the NLOPS description in
more detail. The parton shower can be artificially truncated after a given number of emissions
nprod and ndec in the tt̄ production, respectively in the top quark decay. In Fig. V.5a, the
unnormalised differential cross section for the mlb observable is shown for four combinations of
nprod and ndec, namely

(A) (nprod =∞, ndec =∞)
(B) (nprod =∞, ndec = 0)
(C) (nprod = 0, ndec =∞)
(D) (nprod = 1, ndec = 1) ,

181



LOfull

NLOfull

10−4

10−3

10−2

d
σ

/
d

m
lb
[p

b
/

4
G

eV
]

40 60 80 100 120 140 160 180 200
0.5

1

1.5

2

2.5

mlb [GeV]

R
a

ti
o

(a)

NLOLOdec
NWA

NLONLOdec
NWA

NLOPS

10−4

10−3

10−2

d
σ

/
d

m
lb
[p

b
/

4
G

eV
]

40 60 80 100 120 140 160 180 200
0.5

1

1.5

2

2.5

mlb [GeV]

R
a

ti
o

(b)

Fig. V.4: Results including scale variation bands for mlb, for (a) the LOfull and NLOfull calcu-
lations, (b) the calculations based on the NWA. The ratio plot in (a) is with respect to LOfull,
while the ratio plot in (b) is with respect to NLOLOdec

NWA .

where n =∞ symbolically denotes the full shower emission (with default cutoff µQ). Comparing
(A) to (B), that is the full shower and the deactivated shower in the top quark decay, we observe
that the high-mlb tail is still described in a similar way in both cases, while the ratio (B)/(A)
peaks sharply just before the turnover around the kinematic edge at ∼ 145 GeV. On the other
hand, comparing (A) and (C), this time deactivating the shower in the top quark pair production,
the agreement between the full and truncated shower is fair in the bulk of the distribution, while
the ratio (C)/(A) drops in the high-mlb region. This is because there is no additional (mainly
initial state) radiation in the production, which would further dilute the kinematic edge by
radiating into the b-jet cone. If we consider case (D), where one emission is allowed in both
the production and the decay shower, we can anticipate that allowing more emissions would
progressively flatten the truncated curves shown in the ratio plot to the full shower baseline.
We also observe that for mlb values between 40 GeV and 140 GeV, the NLOfull result is within
the uncertainty band of the NLOPS result.

The underlying dynamics is exhibited more clearly if we look at a more theoretical observ-
able, which does not suffer from the spread in phase space coming from the unknown neutrino
four-momentum. We define the invariant mass of the W and b-jet system as

m2
Wb = (mlb + pν)2 = (pl + pb + pν)2 , (V.9)

where the same assignment for lepton and b-jets is used as in Eq. (V.8), and pν designates the
four-momentum of the neutrino corresponding to the lepton l. Again, the value of mWb used in
the analysis is the mean of the two mWb values per event.

Figure V.5b describes the truncation of the parton shower for the mWb observable. In the
case of the full shower (A), it peaks at the top mass mt = 172.5 GeV, and is spread by the real
radiation on both sides. Going to the case (B), which corresponds to switching off the shower
for the top quark decay, the spread of the peak drops to a constant baseline for mWb values
below the peak, while even exceeding the nprod = ∞ result for mWb values beyond the peak.
This behaviour can be understood from the fact that, if there is no radiation off the top quark
at all, larger mt values are preferred. In addition, initial state radiation being clustered into the
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Fig. V.5: Truncated shower emissions for the observabls (a) mlb, (b) mWb. The shaded area in
the ratio plot left denotes the scale uncertainty of the full NLOPS prediction.

b-jet increases the mWb values. Mirroring this situation, if the production shower is switched
off as in case (C), the left side of the peak follows the fully-showered result (A) within 40%.
The shower contribution above the top mass peak, in contrast, is reduced to almost zero, as
additional radiation in the decay shower can only decrease the invariant mass of the Wb system.
In case (D), we observe that one emission in the decay shower suffices to bring the curve below
the peak to its final, fully-showered level. In contrast, the distribution only slowly builds up
with each emission from the production shower in the high-mass tail.

These considerations show that the shape of observables sensitive to the top quark mass,
like mlb and mWb, is considerably affected by higher order corrections to both, production and
decay.

2.4 Conclusions
We have investigated how various theoretical descriptions of top quark pair production translate
into the behaviour of the distributions mlb and mWb in view of measurements of the top quark
mass in the di-lepton channel. In particular, we have compared the NLO QCD results for
W+W−bb̄ production (NLOfull) to results based on the narrow-width approximation, combining
tt̄ production at NLO with (i) LO top quark decays (NLOLOdec

NWA ), (ii) NLO top quark decays
(NLONLOdec

NWA ) and (iii) a parton shower (NLOPS). We have found that corrections beyond the
leading order in the decay (NLONLOdec

NWA and NLOPS descriptions) are important, being always
closer to the NLOfull result than the leading order W+W−bb̄ result, even though the latter also
contains non-resonant and non-factorising contributions.

We have further seen that the NLONLOdec
NWA and NLOPS descriptions are pretty close to each

other within an mlb range that is usually taken into account for template fits to measure the
top quark mass. We also considered parton showers with restricted emissions, restricting to zero
or one emission in production and/or decay. The behaviour of the mlb and mWb distributions
in these cases shows that both the production and the decay shower play an important role to
arrive at the fact that the NLOPS result, based on the narrow-width approximation, comes quite
close to the NLOfull result.
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3 Study of electroweak production of WZ in association with two jets at the
LHC 3

3.1 Introduction
The electroweak (EW) production of vector-boson pairs in association with two jets at the
CERN Large Hadron Collider (LHC) forms an important class of processes both theoretically
and experimentally. This signature includes vector-boson scattering (VBS) contributions, which
constitute the principle example of processes where the scattering of two massive gauge bosons
can be observed at the LHC. These processes provide a natural probe of the vector-boson
quartic couplings, which arise due to the non-Abelian nature of the electroweak gauge group
and are exactly predicted in the Standard Model (SM). The Higgs boson plays a unique role
in these interactions, preventing the cross section from diverging in the high-energy limit and
preserving the unitarity of the associated scattering amplitudes. Deviations in these channels
could therefore indicate physics beyond the SM in the electroweak sector.

The measurements of these processes are particularly challenging due to their high multi-
plicities and small cross sections. They have been observed and even measured only recently by
the experimental collaborations at the LHC. The most precise current measurement [948–951]
concerns the scattering of two same sign W bosons (usually denoted W±W±jj). This process
has a unique signature due to the same-sign charged leptons in the final state. The cross section
is well within reach with the large data sets being collected in the LHC Run II, and the signa-
ture is experimentally accessible due to the precise lepton identification, charge assignment, and
momentum resolution of the LHC experiments. The nature of the final state is also attractive
due to the low rate of background processes producing two prompt, same sign leptons associated
with forward jets (referred to as the irreducible background).

Measurements of other VBS signatures such as ZZjj, W+W−jj, or W±Zjj present additional
challenges due to the lower cross section and larger irreducible backgrounds, which dominate over
the VBS contribution in most regions of phase space. Nonetheless, studies have already been
made at the LHC of both the ZZjj [952] and W±Zjj [953] signature at

√
s = 8 TeV. In these cases,

separation of the electroweak component of the V V jj state depends on exploiting the different
characteristics of the EW and non-EW components through kinematic selections. Accurate
predictions for discriminating distributions and a detailed understanding of their associated
uncertainties therefore directly impact such measurements. A theory-agnostic measurement that
does not attempt separation of states by production mode avoids such dependencies, but cannot
fully leverage the statistical tools and treatment of uncertainties available in an experimental
analysis. The approaches are therefore complementary, and are often presented together in
experimental results.

From a theoretical point of view, one of the challenges for the predictions of the EW di-
boson production in association with two jets is its high multiplicity. This is why in the past,
next-to-leading order (NLO) predictions have focused on VBS approximations. Only recently,
full NLO computations became available at NLO QCD and EW for both the EW component

3 K. Long, M. Pellen (section coordinators); S. Bräuer, V. Ciulli, S. Gieseke, M. Herndon, M. Mozer, S. Plätzer,
M. Rauch, E. Yazgan
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and the QCD-induced process for W±W±jj [226]. For this process, preliminary results [954] of
a comparison of different theoretical predictions have shown that differences between the full
computation and VBS-approximated ones are not significant given the present experimental
accuracy. Qualitatively, one could expect a similar conclusion for other processes such as W±Zjj
but a quantitative check is still needed. Therefore, in these proceedings we aim at making a
similar comparison of theoretical predictions implemented in Monte Carlo programs. This allows
to infer the quality of the VBS approximation at leading-order (LO).

As such there is strong motivation for an investigation of the theoretical predictions,
tools, and uncertainties used in a typical VBS analysis. We focus on the W±Zjj [953] state, the
measurement of which is strongly limited by the size of the data set, but which has not yet been
studied at the 13 TeV LHC. Hence, a preliminary study on this process is of particular interest.

Due to its colour structure, the W±Zjj signature possesses three different contributions
at LO. The first, of order O(α6), is usually referred to as the EW component or even VBS
component (even if it also possesses non-VBS contributions such as tri-boson production). The
two quark lines can also be connected via a gluon while the gauge bosons are radiated off the
quark lines. This contribution is of order O(α2

sα
4) and is called QCD contribution/background.

Finally, there exists a non-zero interference of order O(αsα
5). For this signature (as opposed

to e.g. W±W±jj) the EW component is highly suppressed with respect to the QCD one. This
implies having very exclusive experimental cuts in order to enhance the EW contribution and
a good control over the description of both the EW signal and QCD background. To that end,
the understanding of theoretical predictions and Monte Carlo programs is key. In particular, it
is vital to ensure that all different programs can provide equivalent physics result. Such com-
parisons can also shed light on the true uncertainties of such predictions. Typically, uncertainty
treatments asses the impact of parton density function (PDF) uncertainties or of missing higher
orders in perturbative QCD. But in addition, Monte Carlo generators require many input pa-
rameters and the selection of which can have a significant impact on the predictions both in
shape and normalisation. In the present study we use a common set-up for all predictions at
LO accuracy. We additionally provide results with variations in some parameters and comment
on their effects and motivations.

In these proceedings, we start with Sec. 3.2 where a short review of the theoretical state-
of-the-art predictions is given. The programs used in the present work are also briefly described.
In Sec. 3.3, the set-up of the calculation is presented. It amounts to give the input parameters
as well as the event selection. Section 3.4 is devoted to the results of the study. It starts with
LO predictions for the three different contributions to the e+νeµ

+µ−jj final state at the LHC.
Then the various comparisons are reported at both fixed-order and with parton shower. Finally,
Sec. 3.5 contains a summary, concluding remarks as well as recommendations.

3.2 Theory and event generators
The study focuses on the W±Zjj signature and more precisely on the partonic processes

pp→ e+νeµ
+µ−jj, (V.10)

and
pp→ e−ν̄eµ

+µ−jj. (V.11)

The predictions presented are all at LO but NLO QCD corrections to the EW contribution and
its irreducible background are known since 10 years in the VBS approximation [955] while the
QCD corrections to the QCD-induced process have been computed more recently [956]. The
NLO EW corrections are currently unknown. In Ref. [224], it has been argued that large NLO
EW corrections to the EW contributions are an intrinsic feature of VBS at the LHC. Therefore,
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they are expected to play a significant role for all VBS signatures. In Ref. [226], which focuses
on the computation of the full NLO corrections to the W±W±jj process, it has been shown that
the EW corrections to the EW process are the dominant NLO corrections. This means that
the EW corrections to the EW contributions are expected to be at least of the same order as
the QCD corrections for other VBS signatures. Parton-shower effects to VBS processes and
the resulting uncertainties induced by a variation of factorisation, renormalisation, and shower-
starting scale have also been studied recently [957, 958], taking the W+W−jj VBS process as
an example. Thereby, the standard LHC jet definition with a cone radius of R=0.4 leads to
migration effects [851] and a reduction of the cross section by about 10% compared to the
fixed-order results after VBS cuts.

In the following, the codes used for the predictions are briefly described.

MADGRAPH5_aMC@NLO
MadGraph5_aMC@NLO [88] is an automatic meta-code (a code that generates codes) which
makes it possible to simulate any scattering process including NLO QCD corrections both at
fixed-order and including matching to parton showers. The commands that have been used for
the present computation (for the W− case) are

> set complex_mass_scheme
> set gauge Feynman
> generate p p > e- ve~ mu+ mu- j j QED=6 QCD=0
> output WmZJJToENu2MuJJ

The version used is 2.6.0. We use the complex mass scheme and Feynman gauge for consistency
with MoCaNLO +Recola, but verify that we obtain equivalent results if they are not explicitly
specified. We note that the “deltaeta” variable in the MG5_aMC run_card also applies a re-
quirement that the two jets have opposite rapidity sign. We do not make this requirement for
our fiducial region definition, so we remove this condition for our comparisons. This is accom-
plished by modifying the cut behaviour in cuts.f in the “SubProcesses” folder, and validated by
generating events without this condition and applying selections to the LHE-level partons using
standalone code.

HERWIG7
Based on extensions of the previously developed MATCHBOX module [959], the HERWIG7 event
generator [584, 825] facilitates the automated set-up of all ingredients necessary for a full NLO
QCD calculation. It relies on an implementation of the Catani–Seymour dipole subtraction
method [187,489], as well as interfaces to a list of external matrix element providers – either at
the level of squared matrix elements, based on extensions of the BLHA standard [505,506,594]
or at the level of colour-ordered sub-amplitudes.

For this study the relevant tree-level matrix elements have been provided by an interface
to VBFNLO [477, 847, 848] using an extension of the BLHA accord. We have matched these
calculations to the angular ordered shower using the subtractive matching and default settings
of the HERWIG7 7.1 release. The PDF sets that have been used to tune the parton shower
are MMHT2014lo68cl and MMHT2014nlo68cl [601]. These sets are not the one used for this
computation (see below). This can in particular impact initial-state radiations. We consider
variations of the hard shower scale as detailed in Ref. [960], using the ’resummation’ profile scale
choice.
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MoCaNLO+Recola

The program MoCaNLO+Recola is made of a flexible Monte Carlo program dubbed Mo-
CaNLO and of the general matrix element generator Recola [89, 481]. The program can
compute arbitrary processes in the Standard Model with NLO QCD and EW accuracy. The
fast integration is ensured by using similar phase-space mappings to those of Refs. [483,484,487].
The complex-mass scheme [483,517] to treat unstable particles is always used. These tools have
been successfully used for the computation of NLO corrections for high-multiplicity processes
and in particular VBS processes [224,226].

SHERPA

SHERPA [415,490] is a multipurpose event generator for high-energy particle collisions. It is built
out of several algorithms and modules tailored to many different physics challenges of collider
physics. In the SHERPA framework the infrared divergences appearing in the real-emission are
treated by the Catani–Seymour dipole-subtraction method [187, 489, 496]. The default parton-
shower algorithm of SHERPA is based on the Catani–Seymour factorisation [491,961]. For NLO
computations, interfaces to several one-loop generators exist, with the interface to Recola [89,
481] being the latest addition [499]. For correctly combining the matrix elements in multijet-
production processes with the parton shower, SHERPA has adapted the MEPS@LO method [924]
at LO and its generalisation MEPS@NLO [932] at NLO. In this study, the matrix elements are
provided by Comix [495], one of the two built-in generators next to Amegic [494]. Both of the
studied partonic processes are then showered with the default shower.

VBFNLO

VBFNLO [477, 847, 848] is a flexible Monte Carlo event generator for processes with electroweak
bosons. Besides the Standard Model, selected processes can also be calculated in a variety of new-
physics models, including effective field theories with dimension-6 and dimension-8 operators.
The matrix elements for VBF and VBS processes are calculated in the VBS approximation. The
corresponding s-channel contribution, which can be seen as triboson production where one vector
boson decays hadronically, is available as well, but its contribution not included in the studies
presented here. Its use of leptonic tensors in the calculation of the matrix elements can lead to
a significant speed improvement compared to automatically generated code. For results with
parton showers in this study, VBFNLO can serve as the matrix-element provider and phase-space
generator for HERWIG7. The interface between the two programs is based on an extension of
the BLHA standard [505,506,594]. When combining VBFNLO results with showering performed
by Pythia, event files following the Les Houches LHE file standard [962,963] are used instead.

3.3 Details of the set-up
In this section we describe default input parameters that have been used. Also, the event
selection used in the comparison is described.

Input parameters
All simulations are performed for the LHC running with a center-of-mass energy

√
s = 13 TeV.

The default PDF used is the NNPDF 3.0 set [422] with four active flavour at LO and a strong
coupling constant αs (MZ) = 0.130.4 If this default PDF is not employed, it is explicitly stated.
The masses and widths of the particle used in the simulations are

Mt = 173.21 GeV, Γt = 0 GeV,
4Its lhaid in LHAPDF6 [964] is 263400.
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MOS
Z = 91.1876 GeV, ΓOS

Z = 2.4952 GeV,
MOS

W = 80.385 GeV, ΓOS
W = 2.085 GeV,

MH = 125.0 GeV, ΓH = 4.07× 10−3 GeV. (V.12)

The value of the mass and width of the Higgs boson are those recommended by the Higgs cross
section working group [236]. The top quark does not appear at tree level in the simulations
when the bottom-quarks in the initial state are neglected. Therefore its width is set to zero. The
numerical values used in the simulation for the pole mass/width of the gauge bosons (V = W,Z)
are obtained from the measured on-shell (OS) values for the masses and widths according to
Ref. [591] as:

MV = MOS
V /

√
1 + (ΓOS

V /MOS
V )2 , ΓV = ΓOS

V /
√

1 + (ΓOS
V /MOS

V )2. (V.13)

The EW coupling is renormalised in the Gµ scheme [590] where

Gµ = 1.16637× 10−5 GeV−2. (V.14)

The input parameters above yield a numerical value for α of

α = 7.555310522369× 10−3. (V.15)

Note that for the EW contribution of orderO(α6), no dependence on the strong coupling appears.
For contributions (interference or QCD-induced contributions) where there is a dependence on
αs, the numerical value used is the one extracted from the PDF set.

For the renormalisation and factorisation scales, two choices have been adopted. For the
fixed scale, it is

µ = µfix = MW, (V.16)

while the dynamical scale used is

µ = µdyn = Max
[
pT,j

]
. (V.17)

The latter should be understood as the maximum of the transverse momenta of the tagging
jets (defined below). This observable is closely connected to the momentum transfer through
the virtual vector boson, which has been shown to be a reasonable scale choice, and is also a
reasonable choice when used as the starting scale of the parton shower [957]. These two scales
are the default fixed and dynamical scale, respectively. If the scale used is different, this is
explicitly stated in the text.

Photon-induced as well as bottom-induced contributions have been neglected. The photon
contributions are expected to be small [226] while the bottom-induced contribution can lead to
single-top resonant contributions. The later can in principle be isolated thanks to kinematic
constraints.

Event selection
Following experimental studies [953,965], the event selection used for the present work is:

– All charged leptons are required to have

pT,` > 20 GeV, |y`| < 2.5. (V.18)
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µ = µdyn / σLO [fb] pp→ e+νeµ
+µ−jj pp→ e−ν̄eµ

+µ−jj
O(α6) 0.25416(6) 0.15003(3)
O(αsα

5) 0.006833(6) 0.003977(3)
O(α2

sα
4) 0.9912(2) 0.6306(6)

Table V.2: Fiducial cross sections at LO for the process pp→ e+νeµ
+µ−jj and pp→ e−ν̄eµ

+µ−jj
at orders O(α6), O(αsα

5), and O(α2
sα

4). The predictions are expressed in fb and are for the
LHC running at a centre-of-mass energy of

√
s = 13 TeV. The scale used in the simulations is

µ = µdyn = Max
[
pT,j

]
. The integration errors of the last digits are given in parentheses.

– For the leptons of opposite charge and same flavour, an invariant mass cut to single out
the Z-boson resonance is applied:

76 GeV < ml+i l
−
i
< 106 GeV. (V.19)

– QCD jets are clustered thanks to the anti-kT algorithm [661] with radius parameter R =
0.4. At least two jets are required to have

pT,j > 30 GeV, |yj| < 4.7, ∆Rj` > 0.4, (V.20)

and are called tagging jets.

– On the two leading tagging jets, typical VBS cuts are applied:

mjj > 500 GeV, |∆yjj| > 2.5. (V.21)

These cuts have been issued either directly in the Monte Carlo programs or using a Rivet
routine [500]. This file will be made public in order to make the present study easily reproducible.

3.4 Results
Several contributions for one process
As explained previously, the processes pp → e+νeµ

+µ−jj and pp → e−ν̄eµ
+µ−jj possess at LO

three contributions of orders O(α6), O(αsα
5), and O(α2

sα
4). As it can be seen in Table V.2, the

EW component represents only about 20% of the total cross section5. This is in contrast with the
W±W±jj signature where the EW component represents almost 90% of the cross section [226] in
a comparable fiducial volume. Hence measuring the EW component is much more challenging.
Therefore, inferring the shape of the signal and irreducible background is key. Note that the
interference contribution is about 0.5% which is negligible with respect to current experimental
accuracy.6

In Fig. V.6, several differential distributions are shown. In the upper plot the absolute
predictions for each component as well as their sum are displayed. In the lower plot, each
contribution is normalised to their sum and expressed in percent. These distributions reflect the
same conclusion as for the cross section namely that the processes are largely dominated by QCD-
induced contribution. The first two observables displayed (top) are the invariant mass and the
rapidity difference of the two tagging jets. These two observables are used as cuts [see Eq. (V.21)]

5In this subsection and in particular for the results of Table V.2 and Fig. V.6, the cut |yj| < 4.5 as been used
instead of 4.7 as everywhere else. This has a 1% effect on the fiducial cross section.

6For the W±W±jj signature, the interference contribution has been shown to be around 3% [226].
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Fig. V.6: Differential distributions at a centre-of-mass energy
√
s = 13 TeV at the LHC for

pp→ e+νeµ
+µ−jj with the contributions at orders O(α6) (EW), O(αsα

5) (INT), and O(α2
sα

4)
(QCD): invariant mass of the two jets (top left), rapidity separation between the two jets (top
right) transverse momentum of the anti-muon–muon system (bottom left), and distance between
the two jets (bottom right). The upper panels show the LO predictions as well as their sum.
The lower panels display the respective contributions normalised to their sum.

in order to enhance the EW component over the QCD background. The cuts are clearly visible on
the plots and it is easily understandable why they are enhancing the EW contribution. Toward
high invariant-mass, the EW component becomes more and more important. It even becomes of
the same size as the QCD one for an invariant-mass of 2000 GeV. The same holds true for high
rapidity separation for the two jets. On the other hand, the transverse invariant mass (bottom
left) of muon–anti-muon pair does not display significant differences in the different contributions
over the whole range. Other transverse-momentum distributions display the same pattern.
Finally, we show the distance between the two jets, defined as ∆Rjj =

√
∆η(j1, j2)2 + ∆φ(j1, j2)2.

This observable also seems to possess a good discriminating power. In particular, for large
distances, the EW component becomes dominant but with very low statistics. The interference
effects are extremely suppressed due to the smallness of the cross section. Contribution of each
of the studied observable does not exceed the per-cent level over the whole phase-space range.
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µ = µfix / σEW
LO [fb] pp→ e+νeµ

+µ−jj pp→ e−ν̄eµ
+µ−jj

MADGRAPH5_aMC@NLO 0.2857(8) 0.1657(4)
MoCaNLO+Recola 0.2885(1) 0.16718(3)

Sherpa 0.2885(2) 0.1670(2)
VBFNLO 0.2867(5) 0.1661(3)

Table V.3: Fiducial cross sections at LO for the process pp→ e+νeµ
+µ−jj and pp→ e−ν̄eµ

+µ−jj
at order O(α6). The predictions are expressed in fb and are for the LHC running at a centre-
of-mass energy of

√
s = 13 TeV. The scale used in the simulations is µ = µfix = MW . The

integration errors of the last digits are given in parentheses.

µ = µdyn / σEW
LO [fb] pp→ e+νeµ

+µ−jj pp→ e−ν̄eµ
+µ−jj

MADGRAPH5_aMC@NLO 0.2550(8) 0.1492(5)
MoCaNLO+Recola 0.2574(2) 0.15003(3)

Sherpa 0.2574(2) 0.14998(6)

Table V.4: Fiducial cross sections at LO for the process pp→ e+νeµ
+µ−jj and pp→ e−ν̄eµ

+µ−jj
at order O(α6). The predictions are expressed in fb and are for the LHC running at a centre-of-
mass energy of

√
s = 13 TeV. The scale used in the simulations is µ = µdyn = Max

[
pT,j

]
. The

integration errors of the last digits are given in parentheses.

Parton level comparisons
We start the comparison of the various predictions by a comparison at the level of the cross
section. The fiducial volume is the one described in Eqs. (V.18)–(V.21). The results are docu-
mented in Tables V.3 and V.4, which give the cross sections for both processes pp→ e+νeµ

+µ−jj
and pp → e−ν̄eµ

+µ−jj at fixed and dynamical scales. The predictions of MoCaNLO +Recola
and SHERPA are generally in perfect agreement, but those of MADGRAPH5_aMC@NLO show
slight statistical disagreement for fixed scale. In this case the difference between MoCaNLO
+Recola/SHERPA and MADGRAPH5_aMC@NLO is about one percent as it can be seen in Ta-
ble V.3. We note that the source of the difference is likely unchanged in the dynamic scale
result, where the setup is otherwise unchanged, but is not clear due to the higher statistical
uncertainty.

The predictions of VBFNLO are not expected to be in perfect agreement with the others
as VBFNLO is not using full matrix elements but VBS-approximated ones. Nonetheless, the
difference between the VBFNLO predictions and the ones of MoCaNLO+Recola/SHERPA amounts
to 0.6% for the fixed scale.

As it can be seen in Fig. V.7, where the invariant mass and rapidity separation of the
two tagging jets are displayed, the agreement between the predictions is good in both shape
and normalisation. This is particularly true for the jet rapidity separation, where all predictions
agree within statistical uncertainties over the whole range. On the other hand, for the di-
jet invariant mass, subtle but statistically significant differences are more pronounced towards
higher masses between MADGRAPH5_aMC@NLO’s predictions and the others. We do not see
such discrepancies in other distributions, however, we see that this discrepancy is accentuated
when relaxing the cuts applied at generation time through the run card and manually applying
the selection to the LHE events, as shown in Fig. V.8.

Concerning the validation of the VBS approximation (MoCaNLO+Recola vs.
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Fig. V.7: Differential distributions computed at fixed-order with centre-of-mass energy
√
s =

13 TeV at the LHC for pp → e−νeµ
+µ−jj at LO with fixed scaled µ = MW: invariant mass

of the two jets (left), rapidity separation between the two jets (right). The predictions in the
lower plot are normalised to the prediction of MoCaNLO +Recola. The shaded bands indicate
the relative statistical uncertainty by bin for each sample. The statistical uncertainty on the
MoCaNLO+Recola predictions is shown in grey, other samples are indicated in the ratio with the
color indicated in the legend.

VBFNLO for example), both predictions are in very good agreement as at the level of the cross
section. This supports the findings of Ref. [954] where preliminary results for similar compar-
isons for W±W±jj have been reported. This means that the VBS approximation (VBFNLO)
approximates rather well the full computation (MoCaNLO+Recola) in the fiducial region
chosen.

We stress that differences of configuration should be considered independently of typical
estimates of theoretical uncertainties such as QCD scale and PDF uncertainties. To illustrate
this, we compute the PDF uncertainty for the NNPDF3.0 set and the two scale choices considered
here. The PDF uncertainty is evaluated to be 3–5% using MADGRAPH5_aMC@NLO. Scale
uncertainties are evaluated using the typical prescription of varying µR and µF subject to the
constraint 1/2 ≤ µF /µR ≤ 2, using MADGRAPH5_aMC@NLO and cross-checked with MoCaNLO
+Recola, and are found to be between 7–10% for the scale choices considered. The full results
obtained with MADGRAPH5_aMC@NLO are shown in Table V.5.

Scale choice pp→ e+νeµ
+µ−jj pp→ e−ν̄eµ

+µ−jj
µR = µfix = mW 0.286+9.2%

−7.8% ± 3.7% 0.166+9.0%
−7.7% ± 4.3%

µ = µdyn = Max
[
pT,j

]
0.255+8.0%

−6.9% ± 3.7% 0.149+9.0%
−7.7% ± 4.3%

Table V.5: Fiducial cross sections at LO for the process pp→ e+νeµ
+µ−jj and pp→ e−ν̄eµ

+µ−jj
at order O(α6) via MADGRAPH5_aMC@NLO. The predictions are expressed in fb and are for
the LHC running at a centre-of-mass energy of

√
s = 13 TeV. Uncertainties are expressed as

σ+δscale
−δscale ± δPDF.
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s =

13 TeV at the LHC for pp → e−νeµ
+µ−jj at LO with fixed scaled µ = MW. The predictions

in the lower plot are normalised to the prediction of MoCaNLO +Recola. The shaded bands
indicate the relative statistical uncertainty by bin for each sample. The statistical uncertainty
on the MoCaNLO +Recola predictions is shown in grey, other samples are indicated in the ratio
with the color indicated in the legend. MADGRAPH5_aMC@NLO events are generated using
loose selections in the run card before applying the selection on the LHE events. The trend
of disagreement in high mjj is accentuated for looser generation cuts, pointing to a possible
phase-space integration effect.

We also compare the effect of configurations changes using the general-purpose generators
Sherpa and MADGRAPH5_aMC@NLO. These generators are able to compute arbitrary pro-
cesses in the standard model, and therefore have default configurations designed to cover a wide
range of processes. It is thus advisable to explicitly configure settings most appropriate to the
process considered.

Using the same fiducial definition, but with the default parameter settings (defined in
param_card.dat) for MADGRAPH5_aMC@NLO, we obtain a cross section of 0.1561(5) fb for the
Max

[
pT,j

]
scale, an increase of 4% from the nominal value. The primary source of this difference

is the settings of the boson masses and widths, which are set to their LO values by default
in MADGRAPH5_aMC@NLO. Such a setting can be considered appropriate in cases where the
partial widths of many decay channels must be considered together, but for an explicitly leptonic
process where no gauge boson is set on-shell, we argue that the best measured values are more
appropriate. We do not believe that this 4% difference constitutes an additional uncertainty,
but warn that careful configuration of such parameters should be considered.

We similarly study the default dynamical scale choices in MADGRAPH5_aMC@NLO and
Sherpa. In both cases, this choice is motivated by a desire for broad application to a variety
of processes. Sherpa uses the inverted parton shower to cluster the matrix element onto a core
2 → 2 process. This procedure determines the scales and is especially suited for truncated
shower merging. For MADGRAPH5_aMC@NLO, the default scale depends on the order of the
process and shower settings. At LO without merging of parton multiplicities, the scale is set
to the central mT scale after kT-clustering of the event. If the last clustering is a t-channel

193



colourless exchange, the scale is set to the last mT values on either side 7. The resulting cross
section is 5% greater than the Max

[
pT,j

]
result. Using both the default scale and parameter

settings (note however, that we still specify the PDF) we obtain a value of σdefault = 0.1638(5)
fb, 9% greater than our configured µ = Max

[
pT,j

]
value. We reiterate that this difference,

which is of comparable size to the phenomenological uncertainties, should not necessarily be
considered on equal footing. The fact that the functional form of the dynamical scale choice can
have a significant impact compared to the usual factor of two variation around a nominal value
is well established. One should therefore take care to select an appropriately motivated choice.
Additional uncertainties may be appropriate, but should be considered with care rather than
taking a broad envelope of less motivated choices. This comparison additionally highlights the
advantage of the reduced scale dependency at NLO-QCD accuracy.

Comparisons after parton shower
In Figs. V.9 and V.10, a comparison of results obtained with different generators for the process
pp→ e−νeµ

+µ−jj at LO supplemented with parton shower with fixed scaled µ = MW is shown.
The predictions have been obtained from VBFNLO and MADGRAPH5_aMC@NLO in association
with PYTHIA8, VBFNLO withHERWIG7, and SHERPA with its own parton shower. In Fig. V.9
several differential distributions are shown: the invariant mass of the two jets, the rapidity
separation between the two jets, the transverse momentum of the anti-muon–muon system, and
the distance between the two jets. The error band in the plots represents the statistical error of
the Monte Carlo integrations. The overall picture is that the predictions obtained from SHERPA,
VBFNLO +PYTHIA8, and VBFNLO +HERWIG7 agree rather well over the whole kinematic
range. This is not the case for the predictions of MADGRAPH5_aMC@NLO +PYTHIA8 which
differ by up to 20% in certain phase-space regions. Because of kinematic changes in jet and
lepton kinematics due to the parton shower, it is necessary to generate events with a selection
looser than the one used in the fixed-order fiducial definition and applied in the Rivet routine.
The showered events for MADGRAPH5_aMC@NLO are therefore generated with the conditions
of Fig. V.8. The disagreement at high di-jet invariant mass, already seen at fixed order, is thus
not an effect of the parton shower. The normalisation differences are also consistent with a
reduction in acceptance into the fiducial region for the MADGRAPH5_aMC@NLO sample due
to this trend.

Differences are more pronounced in Fig. V.10 where the Zeppenfeld variable for the three
charged leptons and the third jet as well as the number of jets are displayed. The Zeppenfeld
variable for a given particle X is defined as

zX =
yX −

yj1+yj2
2

|yj1 − yj2 |
, (V.22)

where yj1/2 are the rapidity of the first and second hardest jet, respectively. The Zeppenfeld
variable of the third jet, as well as the number of jets beyond two, are observables that are
not defined at LO, and are only non-zero thanks to the emissions of the parton shower. It is
thus expected that these feature a worse agreement than the previously discussed observables, as
significantly different algorithms are employed by the parton shower generators considered. Here
the differences can reach up to 100% in the central region. The fact that Pythia predicts more
central jet activity has already been observed for the W±W±jj signature in preliminary results
of a comparative study [954] but also for the Zjj signature [862, 966], where the predictions
are compared with data. We note we have not tuned the parameters and algorithms of the
shower but rather consider the spread of predictions as reflective of the uncertainty of parton

7The procedure is described at https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/FAQ-General-13.
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Fig. V.9: Differential distributions at a centre-of-mass energy
√
s = 13TeV at the LHC for pp→

e−νeµ
+µ−jj at LO matched with parton shower with fixed scaled µ = MW: invariant mass of the

two jets (top left), rapidity separation between the two jets (top right), transverse momentum
of the anti-muon–muon system (bottom left), and distance between the two jets (bottom right).
In the lower plot, the normalisation is with respect to the VBFNLO +PYTHIA8 predictions.
The error band represents the statistical error of the Monte Carlo integrations.

195



VBFNLO+Pythia8
MG5 aMC+Pythia8
VBFNLO+Herwig7
Sherpa

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

W
−
Z opposite lepton flavour

d
σ
/
d
z 3

ℓ
[f
b
/

0.
5]

-4 -2 0 2 4
0

0.5

1

1.5

2

Zeppenfeld(3ℓ)

R
a
ti
o

VBFNLO+Pythia8
MG5 aMC+Pythia8
VBFNLO+Herwig7
Sherpa

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

W−Z opposite lepton flavour

d
σ
/
d
z
j3
)
[f
b
/

0.
5]

-4 -2 0 2 4
0

0.5

1

1.5

2

Zeppenfeld(j3)
R
a
ti
o

VBFNLO+Pythia8
MG5 aMC+Pythia8
VBFNLO+Herwig7
Sherpa

0

0.02

0.04

0.06

0.08

0.1

0.12

W
−
Z opposite lepton flavour

d
σ
/
d
n
je
ts
[f
b
]

2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

njets

R
a
ti
o

Fig. V.10: Differential distributions at a centre-of-mass energy
√
s = 13TeV at the LHC for

pp → e−νeµ
+µ−jj at LO matched with parton shower with fixed scaled µ = MW: Zeppenfeld

variable for the three leptons (top left), Zeppenfeld variable for the third jet (top right), and
number of jets (bottom). In the lower plot, the normalisation is with respect to the VBFNLO
+PYTHIA8 predictions. The error band represents the statistical error of the Monte Carlo
integrations.
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shower dominated observables. While variables such as the Zeppenfeld of the third jet have
known separation power between the EW and QCD induced production, tuning an experimental
selection on this observable would introduce large theoretical uncertainties, especially if only LO
predictions are considered. A similar argument holds for a veto on extra jet activity.

In Figs. V.11 and V.12 results obtained using the fixed scale µ = MW and dynamic scale
µ = Max

[
pT,j

]
are compared. In particular, predictions for MADGRAPH5_aMC@NLO and

Sherpa for both scales are presented. For MADGRAPH5_aMC@NLO this prediction is obtained
by reweighting each event for the difference between the matrix-element calculation with the
fixed scale and the dynamic scale. The statistical uncertainty is therefore largely correlated
between the two predictions for this Monte Carlo. The observables displayed are the same as
for the previous comparison. For the invariant mass of the two jets as well as the transverse
momentum of the anti-muon–muon system, for both generators, the use of fixed scale enhances
the predictions toward high transverse momentum. For the rapidity separation of the two jets
as well as the distance between the two jets, the shape difference between fixed and dynamical
scale is not present for MADGRAPH5_aMC@NLO. On the other hand, in Sherpa, the use of
fixed scale enhances the predictions for small separations.

Concerning the last set of observables (Zeppenfeld variable of the three leptons and third
jet as well as the number of jets) in Fig. V.12, the use of fixed or dynamical scale does not
have a large impact. The only clearly visible difference between fixed and dynamical scale is
the normalisation. This effect is already observed at the level of the fiducial cross section in
Tables V.3 and V.4. The effect of the different scale amounts to a change in normalisation of
about 12% for both pp→ e+νeµ

+µ−jj and pp→ e−ν̄eµ
+µ−jj processes.

3.5 Conclusions
The measurement of the EW component of the pp→W±Zjj process constitutes a real challenge
for experimental collaborations. Such a measurement is complicated for several reasons including
the low cross section and the large irreducible background. Therefore, these measurements have
to rely on theoretical predictions in order to extract a signal, which makes theoretical predictions
implemented in various Monte Carlo programs very important. It is thus key to have a good
control over these predictions. To that end we have performed LO comparisons of different
theoretical predictions with and without shower and hadronisation. The comparisons have all
been performed with pre-defined input values for the matrix element calculation and a generic
fiducial region for VBS measurements.

The first finding of the present study is that the EW component is overwhelmingly dom-
inated by its irreducible QCD background. In the fiducial region that we have chosen, 80%
of the fiducial cross section in accounted by the QCD background. This indicates the need
for observables that enhance the EW contribution. Beyond the di-jet invariant mass and the
rapidity separation between the two jets, we found that the distance between the two jets could
have a good discriminating power. We also found that interferences between the QCD and EW
amplitudes are also negligible in the fiducial region.

In the present proceedings, we have also performed a LO comparison. At parton level, the
agreement between the various theoretical predictions is generally very good. This statement
holds both for the inclusive cross section and differential distributions. Nonetheless differences
can appear especially with respect to MADGRAPH5_aMC@NLO predictions. These can probably
be attributed to the subtle miss-configuration of the runs presented here or underestimated
statistical errors. On the other hand, the differences between the full computations and the VBS-
approximated one are relatively small. This implies that, as for the W±W±jj signature [954],
given the present experimental precision, the VBS approximation is satisfactory in the typical
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Fig. V.11: Differential distributions at a centre-of-mass energy
√
s = 13TeV at the LHC for

pp → e−νeµ
+µ−jj at LO matched with parton shower with fixed and dynamic scale values:

invariant mass of the two jets (top left), rapidity separation between the two jets (top right),
transverse momentum of the anti-muon–muon system (bottom left), and distance between the
two jets (bottom right). In the lower plots, the predictions are normalised to the prediction
of Sherpa with dynamical scale. The error band represents the statistical error of the Monte
Carlo integrations. For the two MADGRAPH5_aMC@NLO calculations this statistical error is
largely correlated, as explained in the text.
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Fig. V.12: Differential distributions at a centre-of-mass energy
√
s = 13TeV at the LHC for

pp → e−νeµ
+µ−jj at LO matched with parton shower with fixed and dynamic scale values:

Zeppenfeld variable for the three leptons (top left), Zeppenfeld variable for the third jet (top
right), and number of jets (bottom). In the lower plots, the predictions are normalised to the
predictions of Sherpa with dynamical scale. The error band represents the statistical error of
the Monte Carlo integrations. For the two MADGRAPH5_aMC@NLO calculations this statistical
error is largely correlated, as explained in the text.
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fiducial regions used by experimental collaborations for their measurements.
The predictions at LO supplemented with parton shower have relied on the fixed-order

configuration. No tuning of the parton shower parameters have been performed and the default
values have been taken. For PYTHIA8, the CUETP8M1 tune [967] which is based on the
Monash tune [631] has been used. The agreement is in general worse, in particular for observ-
ables that are defined only beyond LO, where the theoretical predictions diverge significantly.
Concerning the role of the fixed and dynamical scales, we have found that they can have a rather
large influence on the predictions for the inclusive cross section and differential distributions.
The inclusion of higher order predictions may cure this behaviour.

Finally, we would like to stress that these results constitute only a preliminary study of
theoretical predictions for the process pp → W±Zjj. In particular, with a strictly fixed-order
computation, some differences have been observed. These propagate to LO predictions matched
to parton shower. In addition, for observables defined beyond LO, large differences due to the
parton-shower algorithms appear. This study demonstrates the difficulty to obtain consistent
Monte Carlo predictions. In particular, the choice of inputs and configuration can have a large
impact on physics results. The effects of NLO QCD and EW corrections have not been studied
in this work. They play a significant role in theoretical predictions for VBS and should be taken
into account as much as possible in future studies. Overall, this study presents a benchmark
for the performance of leading-order Monte Carlo generators for the simulation of vector boson
scattering, and motivates further efforts in the above-mentioned directions that have not been
fully addressed here.
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4 Considerations for the underlying event in jet calibration at the LHC 8

The jet reconstruction algorithms used by the two multi-purpose experiments ATLAS and CMS
at the LHC provide jets calibrated at the level of stable particle jets. These particles are
produced by the fragmentation of the hard scattered partons and by the underlying event gen-
erated in the same proton–proton collision. The corresponding calibration procedures apply
corrections that not only remove the signal contribution from diffuse particle emissions from
multiple proton collisions in the same bunch crossing, but also signal remnants from previous
(or future) bunch crossings affecting the detector signals. These corrections typically reduce or
remove the underlying event contribution to the experimental jets to an indeterminate degree.
It is desirable to add the underlying event contribution back into the truth jet definition, as
the detector jet is supposed to be calibrated to the full particle level for physics analysis. The
recovery of this contribution in the applied jet calibration procedures is an inherent feature of
the Monte Carlo based jet energy scale correction, which provides the absolute calibration for
jets in simulation and experiment. The model-dependent nature of this approach is emphasized
and the considerations of model variations in the determination of the systematic uncertainties
are summarized.

8 J. Huston, P. Loch
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4.1 Introduction
The jet calibration applied by both ATLAS [834] and CMS [968] includes a necessary correction
to remove signal contributions from multiple proton–proton interactions happening in the same
LHC bunch crossing (in-time pile-up), together with contributions from preceding and possibly
even following bunch crossings (out-of-time pile-up). In both Run 1 and Run 2, approaches based
on the jet-area-based correction described in Ref. [837] have been used. Its stochastic nature
does not distinguish between pile-up contributions and contributions from the underlying event
(UE) when subtracting the estimated pile-up signal from a reconstructed jet. An additional
consideration when discussing the UE signal inside and outside of jets is that the significant
pile-up at high LHC intensities, with a typical average number of pile-up collisions per bunch
crossing of about 〈µ〉 ≈ 20 towards the end of Run 1, and rising to around 〈µ〉 ≈ 60 during
the recently concluded 2017 data taking period of Run 2, may render the UE contribution
insignificant. Nevertheless, after corrections are applied to the detector jet to mitigate the effect
of pile-up at any level, the UE contribution approaches scales of relevance, in particular for jets
with low transverse momentum. This is even more important particular true when considering
the typical precision reached for jet energy measurements at LHC, which in large regions of
phase space approaches 1%.

This note briefly summarises a typical jet calibration scheme and the resulting represen-
tation of the UE in the calibrated jet signal. The strategies are similar for CMS and ATLAS,
even though the detector signals entering the jet calibration are different. The discussion here
focusses on the UE signal and the jet calibration procedures applied in ATLAS.

4.2 Pile-up mitigation in jet reconstruction
The jet reconstruction in the two multi-purpose experiments at the LHC uses particle-flow
objects in CMS [969] and clusters of topologically connected calorimeter cell signals (topo-
clusters) in ATLAS [970]. The principal pile-up mitigation technique applied in both experiments
is the (scalar) jet-area-based pile-up subtraction method introduced in Ref. [837]. It is applied
right after jet reconstruction, before any absolute calibration.

The set of topo-clusters in ATLAS reconstructed for a given event encompasses contribu-
tions from the hard scatter final state and the two softer contributions, UE and pile-up. Both
pile-up and UE generally manifest themselves in generating additional topo-clusters with low
energies (direct contribution). The inherent possibility of merging of signals of particles from the
three sources in the topo-cluster formation algorithm, together with the splitting of topo-clusters
implicit to this algorithm, leads to complex hard scatter signal modifications by the two soft
contributions (indirect contribution) with significant variations from event to event, even with
similar levels of soft activity. In addition, the overlap in phase space and the basically identical
emission characteristics in terms of average transverse momentum flow between pile-up and UE
makes it basically impossible to remove the pile-up signal contribution without affecting the UE
contribution, in particular in high pile-up conditions like the ones observed at the end of Run 1
and during Run 2.

The formation of topo-clusters is guided by signal significance (signal-to-noise) patterns
steered by thresholds adjusted to expected noise levels for a given run year at LHC. The in-
creasing 〈µ〉 in LHC operations from early to late Run 1, from Run 1 to Run 2, and recently
in Run 2 leads to a reduced sensitivity of the ATLAS calorimeter to UE in general.9 The noise
thresholds rise approximately proportional to

√
〈µ〉, which means that e.g. the energy needed to

9The transverse momentum scale of UE contributions is set by ŝ in each hard scatter proton–proton interaction,
and thus changed only slightly in Run 1 when LHC moved from

√
s = 7 TeV to

√
s = 8 TeV. It changed a bit

more significantly from Run 1 to Run 2, when
√
s = 8 TeV increased to

√
s = 13 TeV.
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seed a topo-cluster at 〈µ〉 = 40 is two times higher than at 〈µ〉 = 10. This renders a significant
portion of the UE invisible at higher pile-up conditions, especially in signals outside of jets.

All topo-clusters with a positive energy signal are used for finding jets. This means
that the topo-clusters collected into one jet include direct and indirect contributions from all
three sources, and the total jet kinematics, which is reconstructed from the four-momentum
recombination of all these clusters, is rather sensitive in particular to pile-up, which dominates
at high proton intensities.

Early in Run 1, when pile-up was at a relatively low level (〈µ〉 < 10), ATLAS used a purely
Monte Carlo (MC) simulation based mitigation technique, which actually formally preserved the
UE contribution in a jet as much as it was visible in the detector at all. In this approach the
transverse momentum (pT) contribution from pile-up was measured by the dependence of the
ratio of the initial reconstructed jet -pT to the expected pT from a matched particle jet in MC
simulations. This dependence was evaluated with respect to the in-time pile-up represented by
the number of reconstructed primary vertices NPV and to the out-of-time pile-up measured by
the average number of pile-up collisions µ around the signal event (see Ref. [970] for details).
The correction was then applied to each jet in MC simulations and experimental data using the
average slopes ∂pT/∂NPV and ∂pT/∂µ, together with the obvious assumption that the transverse
momentum contribution from pile-up is expected to vanish for NPV = 1 and µ = 0. As the
UE contribution is expected to not depend on either NPV or µ, this approach in principle does
not remove it from the jet signal. It was purely MC based and required complex validation in
data [971]. In addition, this approach is only sensitive to the expected fluctuations in the in-time
pile-up activity, where the number of additional proton–proton collisions fluctuates from bunch
crossing to bunch crossing following a Poisson distribution around 〈µ〉. Similarly, the out-of-time
pile-up induced calorimeter signal modifications are only corrected at an average level. Further
fluctuations in the pile-up contribution to the reconstructed jet-pT even in events recorded in
bunch crossings with the same NPV and µ, which reflect varying pT-flow patterns in the in-time
pile-up collisions as well as in surrounding (previous) bunch crossings, are not addressed and
limit the efficiency of this pile-up mitigation technique.

The recent approach implements the jet-area-based pile-up mitigation technique suggested
in Ref. [837]. In this case the calorimeter signal itself is used to determine the level of pile-up in
each event. This signal is sensitive to the in- and out-of-time pT-flow patterns, and this technique
thus reduces bunch crossing to bunch crossing fluctuations. The initially reconstructed small
radius jet with transverse momentum pjet,raw

T is corrected by using its area Ajet and the median
transverse momentum density ρ to a basic transverse momentum measure pjet,basic

T such that

pjet,basic
T = pjet,raw

T − ρ×Ajet . (V.23)

This procedure removes a signal of the scale of the pT contribution from pile-up, together with
the part of the UE which is represented by topo-clusters outside of the jet.10 The measurement
of ρ uses topo-clusters that are most likely outside of jets, due to its construction as a median
transverse momentum density. Residual local fluctuations of the signal contribution from pile-up
to a given reconstructed jet are not corrected. Reconstructed calorimeter jets with pjet,basic

T <
pmin

T are considered as originating from pile-up and thus are dropped.11

This UE contribution to ρ in terms of topo-clusters is hard to determine independently
in the experiment, even in low pile-up scenarios.12 In the presence of significant pile-up, with

10CMS uses the same technique but based on particle flow signals [972].
11The actual value of pmin

T is adjusted to the pile-up conditions. It is typically of O(20 GeV).
12The pT-flow from charged particles associated with the UE can be directly measured using reconstructed

tracks from the hard scatter vertex, at least within the tracking detector acceptance of |η| < 2.5, following the
strategy lined out in Ref. [973].
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Fig. V.13: The ATLAS jet calibration scheme for early (2015) LHC Run 2 (taken from Ref. [713]).

the already discussed higher clustering thresholds, the ρ contribution from the UE is likely very
small, in particular in terms of topo-clusters with a signal dominated by a particle from the UE.
Here the indirect UE contribution merged into pile-up or hard scatter seeded clusters is more
relevant, yet with a relatively small effect on the scale for ρ. It is also expected to be different
inside and outside of jets, due to the clustering algorithm, which leads to a higher probability
of small signal survival in the presence of the larger signals especially in the core of the jet. In
this respect, UE and pile-up emissions close to the jet axis are likely to still contribute to the
jet signal even after the jet-area-based correction, at a harder scale.

In addition to the jet-area-based correction given in Eq. (V.23), MC simulation based
corrections similar to the ones discussed for low pile-up conditions are applied to pjet,basic

T to
mitigate residual dependencies on NPV and µ. These small corrections are again not expected
to change the UE contribution.

4.3 Calibration of narrow jets
The full chain of jet calibration in ATLAS, as applied in 2015, is described in Ref. [713] and
schematically shown in Fig. V.13. When jets are clustered from topo-clusters on the electro-
magnetic energy scale [970] (EM-scale jets), their direction is reconstructed with respect to the
nominal detector centre. As a first step of the calibration chain, their direction is recalculated
with respect to the reconstructed hard scatter vertex (origin correction). The jet-area-based
pile-up correction, as discussed in the previous section, is applied next, followed by the previ-
ously mentioned residual pile-up correction. After this, the jets are subjected to the absolute
MC-based calibration.

This absolute jet energy scale (JES) calibration is determined by matching calorimeter jets
with truth particle jets in full MC simulations including pile-up, in QCD dijet calibration samples
generated with a default MC generator configuration13 and a detector simulation configuration.
The match is based on the angular distance of the two jets and thus purely geometrical. The
calorimeter jet energies Ejet,raw

calo include all contributions from in-time and out-of-time pile-up,
and the UE. After all corrections up to the ones for pile-up are applied (Ejet,raw

calo → Ejet,basic
calo ), the

ratio of reconstructed calorimeter jet energy Ejet,basic
calo to the truth jet energy Ejet

truth is collected
13In 2015, the 2 → 3 matrix element calculation in Powheg-Box 2.0 [350, 849] employing the CT10 PDF

set [974] is used combined with parton showers and underlying event from Pythia8.1 [633], and the A14 tune of
UE parameters [632].
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from the calibration sample in bins of Ejet
truth and the truth jet pseudorapidity ηjet

truth,

R(Ejet
truth, η

jet
truth) = Ejet,basic

calo
Ejet

truth
.

The average 〈R〉(Ejet
truth, η

jet
truth) is determined in each bin of Ejet

truth in a given slice of ηjet
truth. Using

numerical inversion to project

〈R〉(Ejet
truth, η

jet
truth 7→ 〈R〉(E

jet,basic
calo , ηjet,basic

calo ) ,

and inverting the averages

〈R〉(Ejet,basic
calo , ηjet,basic

calo ) 7→ 〈R〉−1(Ejet,basic
calo , ηjet,basic

calo ) ,

yields a calibration function when fitting a smooth functional form over all energies in an ηjet,basic
calo

slice.
The truth jet includes all stable particles generated in MC simulations, except for neu-

trinos, muons and any particle14 emerging from the overlaid in-time pile-up interactions. The
remaining set comprises all particles with lifetimes τ given by cτ > 10 mm in the laboratory
frame. Among those are particles generated by the fragmentation of the parton showers as-
sociated with the hard scatter partons as well as the particles generated by radiation, and by
multiple parton interactions, all characteristic for the UE. The total truth jet energy and, to
a lesser extent, its direction are thus affected by the UE. With this respect, the UE energy
contribution is reinstated in the calorimeter jet after this absolute calibration – the calibrated
calorimeter jet energy corresponds on average to the truth jet energy in the same phase space,
and thus contains an average UE at particle level.

This approach scales the calorimeter jet to a model dependent JES. Direct application
of this calibration to data projects this model dependence into the jet measurement. To un-
derstand the bias introduced by this calibration method, alternative generators with different
orders of, or approaches to, the hard process calculation and/or different choices of the parton
distribution functions (PDFs), fragmentation models and sets of tuned UE parameters are used
in the simulation of calorimeter jets, which are then subjected to the jet calibration derived with
the default configuration. Recent (2015) generators considered are Sherpa 2.1 [415] employing
multi-leg 2 → N matrix elements and their own default tuned set of soft event modelling pa-
rameter, and Herwig++ 2.7 [825,906] with a 2→ 2 matrix element and their own default tuned
parameter set. Any observed differences of the alternative calorimeter JES with respect to the
default JES are absorbed into a systematic uncertainty. Due to the small contribution that can
be expected from the UE in recent pile-up conditions, no particular uncertainty component is
attributed to this modelling feature.

It is notable that the actual survival of the UE in the calorimeter signal space does not
really enter into the jet calibration, as long as the jets in the calibration samples are subjected
to the same reconstruction chain, up to and including the full pile-up correction, as any other
jet in MC simulations and in experimental data. No matter how much UE signal might have
been removed in this chain, the jets will consistently be calibrated including the UE. Significant
changes in the default truth jet generator or in the detector simulation require a redetermination
of the calibration functions.

In addition, significant changes to any of the steps leading up to calibration typically re-
quire a new round of determining the absolute MC calibration functions, such that calibrated
calorimeter jets on average maintain the same truth JES. In cases where the changes in the

14Due to the large number of pile-up particles, those are not even stored in the calibration samples.
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upstream corrections are insignificant, the calibration functions may not be changed and addi-
tional systematic uncertainty components may be injected. Changes in the pile-up activity e.g.
due to increasing beam intensities at the LHC, may not require a full recalibration if the pile-up
mitigation maintains its hard scatter jet finding efficiency. Smaller changes in the simulated de-
tector response also add an uncertainty component. A rather complete evaluation is described
in [712].

The next step after the absolute MC calibration is the global sequential calibration, which
attempts to reduce fluctuations in the jet response by reducing its sensitivity to the jet flavour
composition and possible longitudinal energy leakage in the calorimeters. This step is designed
to not change the average response in any given phase space bin anymore, but to improve the
resolution of the response function.

The origin correction is independently applied in data and MC simulations, as it only needs
the reconstructed hard scatter vertex. The jet-area-based pile-up correction is also independently
applied, as it only needs the reconstructed ρ in any given event. Assuming that this ρ reflects
the pile-up (and possibly UE) contribution to jets in the same way in data and MC simulations,
the remaining jet signal should have the same quality (e.g. with respect to the level of pile-up
suppression) in both environments. In this context it is not required that ρ is actually the same
in data and MC simulations (their distributions are typically found to be quite similar). This
introduces a certain level of insensitivity to the actual pile-up simulation, which is typically far
from perfect, see e.g. case studies in Ref. [970].

The residual pile-up correction, the absolute calibration and the global sequential cal-
ibration are all derived from MC simulations. A final set of in-situ measurements provide
calibrations that are applied only to data and lead to the same average jet response in data and
MC simulations.

4.4 Large radius jets
At LHC, jets with large radius (R ≥ 0.8) are often considered in searches for new particles
or boosted Standard Model particles. The large catchment area in (y, φ)-space associated with
these jets, especially their large extension in rapidity y, prohibits the straight forward application
of a jet-area-based pile-up correction at the typically required levels of precision (e.g., O(1%)
for the pT scale). This is largely due to the y range covered by these jets and the fact that both
the number density of particles emerging from minimum bias (soft) proton–proton collisions and
the average pT are y-dependent. This suggests a significant variation of ρ inside the large radius
jet. Additional complications may arise from a changing calorimeter readout granularity across
such a large detector object.

Often large radius jets are groomed with e.g. trimming [] to extract hard radiation pattern
inside the jets. Such techniques often remove pile-up and inadvertently UE contributions from
the jet, with significant effects on the reconstructed jet kinematics, including the single jet mass.
While the UE contribution can indeed affect the jet mass in ungroomed jets, in particular those
without two- or three-prong decay substructure, the grooming reduces the impact of signals
from any soft emission into the large radius jet.

The phase space of interest for large radius jet applications is usually determined by a
search or decay tag goal. Assuming an attempt to tag hadronic W boson decays in a jet of
R = 1.0, a typical (lower) pT scale is given by pT ≈ 2 ×MW , where MW is the mass of the
W boson. Higher masses introduce higher pT scales accordingly. Even for the largest practical
jet radii, the UE contribution to the overall pT is insignificant, in particular in high pile-up
conditions. Any loss of UE signal after grooming seems to be acceptable when jet-mass-based
searches are conducted.
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Any grooming attempt introduces a non-trivial modification of the jet composition, and
as such needs careful reflections using MC simulations and careful validation with experimental
data. In particular scenarios where UE may significantly affect a reconstructed jet feature,
modelling dependencies have to be studied and incorporated into any relevant uncertainty or
efficiency.

A cleaner inclusion of the UE into large radius jets by using jet re-clustering [975] is
emerging for ATLAS (see first evaluations in Ref. [976]). The clustering of narrow jets into
large radius jets provides fully corrected and calibrated inputs to any grooming technique and
reconstruction of substructure-related observables for these large jets. Each narrow jet includes
a contribution from the UE, as discussed in the previous section, and is corrected for pile-up
as well. In analyses where softer radiation or energy flow between harder structural elements
of the large radius jet are not explored, the re-summed large jet kinematics, including its mass,
correctly include the UE within the physics model used for the narrow jet calibration.

4.5 Conclusions
Both ATLAS and CMS apply a MC simulation based absolute jet energy calibration that includes
the particle-level underlying event contribution. Independent of how well this contribution is
actually represented in the detector signals – clusters of topologically connected calorimeter
cell signals in ATLAS and particle flow objects in CMS – the final jet energy scale reflects the
underlying event as modelled by the physics models used in the determination of the absolute
calibration. A limited but well motivated set of models and modelling parameters is used to
evaluate systematic uncertainties introduced to the calibration of the jets in the experiment
by the choice of a certain default MC simulation. The concern that any pile-up correction
removes underlying event signals is valid but has no detectable influence on the jet energy scale,
as long as all corrections and calibrations are derived and applied in a consist manner. Final
calibration functions derived from in-situ transverse momentum balance studies applied to data
only shift the experimental jet energy scale to the one from the default MC simulation. In this
the underlying event contribution is scaled in the same way as the overall jet energy scale.

The complexity of the jet calibration procedure in both CMS and ATLAS, and the mis-
understandings arising from it, encouraged this pedagogical contribution to the proceedings.

5 Precision comparisons of predictions for Higgs boson + jet production at
the LHC as a function of jet size 15

We perform a phenomenological study of Higgs-boson production in association with a jet at
the Large Hadron Collider. We investigate in particular the dependence of the leading jet cross
section on the jet radius as a function of the jet transverse momentum. Theoretical predictions
are obtain using perturbative QCD calculations up to next-to-next-to-leading order. They are
compared to results obtained from matching next-to-leading order calculations to parton showers
and possibly including higher-order real radiative effects through multi-jet merging.

5.1 Introduction
During Les Houches 2015 [1], a detailed comparison of fixed order (at NLO and NNLO) and
matrix element plus parton shower (MEPS) predictions for differential Higgs boson (+jet) pro-
duction was carried out. The goal was multi-fold: using identical starting configurations, to
check the consistency of the MEPS predictions among themselves, and to demonstrate that the
MEPS predictions revert to their underlying fixed order predictions in non-Sudakov kinematic

15 J. Bellm, A. G. Buckley, X. Chen, J. R. Currie, A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover,
S. Höche, A. Huss, J. Huston, S. Kuttimalai, J. Pires, S. Plätzer, M. Schönherr
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regions. These comparisons largely showed good agreement among the ME+PS predictions and
that the ME+PS predictions agreed reasonably well with their fixed-order counterparts.

We have continued these studies in Les Houches 2017, but now looking in finer detail at
the level of agreement. In particular, the perturbative jet shape is not as well modeled at fixed
order as with the NLO matrix element plus parton shower predictions that are available. This
may have a quantitative impact on the cross section predictions, especially for small jet sizes.

The study is designed to use Higgs+jet, Z+jet and inclusive jet production, taking ad-
vantage of the NNLO calculations available for all three processes. The latter two processes are
important for global PDF fits, where only fixed order predictions (along with the relevant non-
perturbative corrections) have been used. Due to time constraints, only the Higgs+jet process
will be considered in detail in these proceedings. The other two processes, along with Higgs+jet,
will be included in a more comprehensive study in a future publication.

As a further test of the impact of parton showers versus fixed order, the jet size was varied
over the values R ∈ [0.3, 0.4, 0.5, 0.6, 0.7, 1.0], using the anti-kT jet algorithm [661]. Indirectly,
this tests how well the one (two) extra gluon(s) at NLO (NNLO) reproduce the perturbative
aspects of the jet shapes, as embodied by the parton shower. This is of particular interest as the
Higgs boson + jets measurements that have been performed at the LHC in Run 2 have used a
jet size of 0.4, which is slightly above the jet size region where small R effects may be important.
Taking them into proper account would require resummation, as discussed in [212]. The MEPS
predictions also basically provide this resummation, through the parton showers. The MEPS
predictions at NLO can properly take these effects into account. However, the highest precision
for H+ ≥ 1 jet is from the NNLO predictions, and there is no MEPS formalism that works at
this order. As an additional motivation, there has been recent speculation that the quark jet
shape is not well-described at NLO. This study provides samples of both quark and gluon jets
to test this hypothesis.

Predictions from MEPS programs were carried out at the parton shower level (for easiest
comparison to fixed order).16

To the degree to which it was possible, the initial conditions have been constrained to
be the same for all predictions. Each calculation used the PDF4LHCNNLO_30 PDFs [597],
with its central value of αs(mZ) of 0.118. As its name implies, this PDF has 30 error PDF sets
that completely determine the PDF uncertainty. The scale choices for all predictions have been
designed to be as similar as possible, providing a greater level of control than was available in
the 2015 Les Houches study. More detail will be provided in the sub-sections dealing with each
prediction. A CMS Rivet [500] routine from the 13 TeV inclusive jet analysis [977], was modified
to add the different R values, as well as additional variables. This Rivet routine was further
modified for the Higgs boson + jet (and Z boson + jet) studies.

5.1.1 NNLOJET - NNLO Calculation of pp → H + j

The NNLO corrections to pp→ H+j receive contributions from three types of parton-level sub-
processes: the H+5 parton tree-level process [978–980] (double-real correction), the H+4 par-
ton process at one-loop [981–983] (real–virtual correction), and the two-loop H+3 parton pro-
cess [984] (double-virtual correction). Each of these contributions are separately infrared (IR)
divergent, while the divergences cancel upon integration over the unresolved phase space by
virtue of the Kinoshita–Lee–Nauenberg theorem. In order to arrive at a fully differential pre-

16In the future publication, comparisons will also be made at hadron level, as a way of comparing the non-
perturbative corrections as a function of jet radius. As a reminder, the non-perturbative corrections used for
fixed order predictions are determined from a comparison of the parton shower predictions with and without the
non-perturbative effects, as a function of jet radius. This implicitly requires the integrated jet shape determined
by fixed order predictions to agree with those determined by parton showers.
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diction, a procedure for the subtraction of IR singularities is required to make this cancellation
manifest. To this end, we employ the antenna subtraction formalism [125, 126, 985–991] to ex-
tract the IR singularities from the various contributions and to achieve their cancellation prior to
the phase-space integration. As a result, the phase-space integration over the contributions with
different parton multiplicities are individually rendered finite and can therefore be performed
numerically using Monte Carlo techniques. The antenna subtraction formalism is implemented
in the NNLOJET framework. The application to NNLO corrections for H + j production and
its validation against an independent calculation using the sector-improved residue subtraction
method [150] was described in Refs. [236,238,992].

For the current study, we employ the dynamical scale

µ0 = 1
2HT = 1

2

(√
m2
H + p2

T,H +
∑
jet

pT,jet

)
, (V.24)

as our central scale choice. The renormalisation (µR) and factorisation (µF ) scales are varied
independently around µ0 by factors of 1

2 and 2 to estimate the size of missing higher-order
contributions. Here, the two extreme variations are excluded such that we arrive at the custom
7-scale variation:

(µR, µF ) =
{

(1, 1), (2, 2), (1
2 ,

1
2), (1

2 , 1), (1, 1
2), (2, 1), (1, 2)

}
× µ0. (V.25)

The LO and NLO contributions using this dynamical scale choice were validated against Sherpa
and Herwig7 as described in other sections in this report.

In order to obtain the results for the various cone sizes (R = 0.3, 0.4, 0.5, 0.6, 0.7, and 1.0)
required in this study, we have exploited the fact that the Born-level kinematics is insensitive to
R. As a result, the difference between two cone sizes can be obtained from a H + 2j calculation
at one order lower:

σNNLOH+j (R)− σNNLOH+j (R′) =
∫ [

dσNLOH+2j(R)− dσNLOH+2j(R′)
]
njets≥1

. (V.26)

Note that the difference has to be taken at the level of the integrand, since one term acts as a
local counter-term of the other in all IR-divergent limits where a jet becomes unresolved and
H + 2j → H + j. Using Eq. (V.26), all predictions for different R values can be obtained from a
single NNLO computation by adding differences of H + 2j computations that are substantially
cheaper to compute.

5.1.2 Herwig
We used HERWIG 7 [584,825,959] based on version 7.1.2 and ThePEG version 2.1.2 with minor
changes to standard HERWIG 7 scale settings to the agreed ones. The NLO matching was
performed with matrix elements form OpenLoops [85] and MadGraph [877] interfaced with the
BLHA2 standard [506]. For parton distributions the PDF interface from LHAPDF6 [964] was
used. In the results we show matched NLO ⊕ PS predictions – to emphasise the similarities of
matching and merging at high transverse momenta – with the Q̃-shower but tested with lower
statistics that merging according to [993] and matching to the HERWIG 7 dipole shower [994]
show similar behaviour. Hadronisation and MPI models are switched off and αS of the hard
process is synchronized with the PDF set. We include effects of CMW scheme [995] by an
enhanced shower αS = 0.124. The scale used for the core process in the Matching is defined as
in Eq. (V.24). As shower starting scale we use the transverse momentum of the hardest jet.17

17The effect of changing this scale to the one in Eq. (V.24) is moderate and only noticeable for transverse
momenta smaller or in the range of the Higgs mass.
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Fig. V.14: Shown on the left panel is the transverse momentum spectra of the Higgs boson
(pHiggs
⊥ ) and the leading jet (pleadjet

⊥ ) in Higgs plus jet production at
√
s = 13 TeV. We compare

LO, NLO, NNLO and multi-jet merged predictions for a jet radius of 0.7. The K-factors
(NLO/LO, NNLO/LO and NNLO/NLO) determined from the NNLOJET predictions in this
study, as a function of pHiggs

⊥ (pleadjet
⊥ ) for various jet sizes is shown on the middle (right) panel.

5.1.3 Sherpa
We use a pre-release version of the SHERPA Monte Carlo event generator [415, 490], based on
version Sherpa-2.2.4. The NLO matching is performed in the S-MC@NLO approach [929, 930],
while the multi-jet merging employed is based on the MEPS@NLO formalism [925,926]. We use
a modified version of a parton shower algorithm [491], which is based on Catani-Seymour dipole
subtraction [187,489]. We use a running coupling consistent with the PDF, and we employ the
CMW scheme to include the two-loop cusp anomalous dimension in the simulation [995]. In
the merging procedure a core scale needs to be defined. To make the result comparable to the
FO result we use the same definition as in Eq. (V.24). If no ordered clustering history can be
defined, the couplings in the effective gluon-gluon-Higgs-vertex are evaluated at this core scale.

5.2 Results
The analyses use the anti-kT jet algorithm, with varying jet size as described above, with a jet
transverse momentum threshold of 30 GeV, along with an (absolute) rapidity cut on the jets
of 4.5. To avoid generation cut effects, the comparisons are performed above a jet transverse
momentum value of 50 GeV.

Figure V.14 (left) shows the transverse momentum spectrum of the Higgs boson as pre-
dicted by the fixed-order LO, NLO and NNLO calculation, as well as the result from a multi-jet
merged computation using the SHERPA event generator and the NLO-matched HERWIG result.
We observe that above a pT value of the order of the Higgs mass, the distributions agree in
their shape, while the normalization differs slightly due to the higher-order effects included in
the NNLO calculation and the differences between fixed-order and the MEPS results in their
choice of renormalization and factorization scales. The Higgs boson pT spectrum is the most
inclusive observable in this study, and the prediction above a certain pT may therefore serve as
a useful normalization when comparing shapes of other distributions between fixed order and
MEPS results.

Figure V.14 (middle) shows the K-factors as a function of the Higgs boson pT ; as expected
there is no jet size dependence for this variable. Figure V.14 (right) shows the local K-factors
(NLO/LO, NNLO/LO, NNLO/NLO) for H+ ≥ 1 jet production, as a function of the leading
jet transverse momentum, for various jet sizes, obtained from NNLOJET. The K-factors are
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Fig. V.15: Ratios of integrated jet shapes (see Eq. V.27) as function of r, for R = 0.5, R = 0.7
and R = 0.9 (left to right).

relatively flat as a function of jet pT . They grow with increasing jet size, due to inclusion of
additional real radiation.

In Fig. V.15 we investigate the difference between the fixed-order NLO and multi-jet
merged predictions for integrated jet shapes (Eq. V.27). The integrated jet shape is defined as

Ψ(r) = 1
N jet

∑
jets

pT(0, r)
pT(0, R) , (V.27)

with r being the radius of a cone which is concentric to the jet axis and pT(r1, r2) being the
magnitude of the vectorial momentum sum of all particles in the annulus between radius r1 and
r2. We also compare to a truncated merged prediction, where the number of final-state partons
generated in the simulation is limited to at most two. This simulation presents the closest
possible approximation to the fixed-order result that we are able to generate using the merging
algorithms. It reflects the kinematical restrictions of the NLO calculation (i.e. that only up to
one additional final-state parton can be present), but it also includes additional approximate
higher-order virtual corrections by means of Sudakov factors. Nevertheless we observe that
the full NLO result and the truncated merged result approach each other well within the jet
cone, and the convergence is naturally faster for larger jet transverse momenta. This strongly
suggests that the differences between the fixed-order predictions and merged results in Fig. V.19
below are due to higher-multiplicity final states. The discrepancies between fixed-order results
and merged predictions for small and large R should therefore be reduced for higher-order
perturbative calculations.

Figure V.16 shows the cross section scale variations at LO, NLO and NNLO for H+ ≥ 1
jet production, as a function of the leading jet transverse momentum, for various jet sizes. The
uncertainty band is given by the highest and lowest cross section predictions at each order. As
expected, the uncertainty on the cross section decreases from LO to NLO to NNLO. It also
decreases as the jet size decreases, perhaps not unsurprising given that larger jet radii lead to
inclusion of more real radiative corrections. Also shown for comparison are the predictions from
the two MEPS calculations (nominally of NLO accuracy). We scale the MEPS predictions with
the K-factors derived from the Higgs pt distribution above 150 GeV, see discussion of Fig. V.14.

Figure V.17 shows the leading jet pT cross sections for the different scale choices, at NLO
and NNLO, as a function of the jet size R. In this case, a minimum transverse momentum
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Fig. V.16: The scale variations at LO, NLO, and NNLO from NNLOJET for 3 jets size, as a
function of leading jet transverse momentum, are shown. For comparison, the nominal NLO
MEPS predictions are also shown. The generator predictions are scaled with the inclusive Kincl

factor with Higgs pH⊥ > 150 GeV, see Fig. V.14.

requirement of 150 GeV has been placed on the leading jet. We assume this scale to be large
enough such that MH is not the large scale in the process. The dots for each scale choice have
been fit to a functional form motivated by the expected behavior for jet-vetoed cross sections.
We assume the leading functional form:

f(R) = a+ b log(R) + c log2(R) (V.28)

as we expect a logarithmic behaviour for the scales induced by the effective veto on the cross
section by cutting with the jet cone R. The lines in Fig. V.17 are then interpolations with
Eq. (V.28) and the fitted values.

Again, the scale variation band is given by the upper and lower curves at each order. It is
notable that the scale uncertainty bands shrink as the jet size decreases, as mentioned earlier.
For very low values of R, this improvement in the uncertainty can be regarded at least partially
due to accidental cancellations that stem from the restrictions in phase space. Similar effects
were pointed out in the context of exclusive jet rate measurements [886]. It can also be observed
that for each particular scale, the slope is greater at NNLO than at NLO. The MEPS predictions
are also plotted in the figure, and can be observed to have a greater slope than even the NNLO
predictions. This can be seen as an effect of either including (at large R) or not excluding (at
small R) additional semi-hard real emissions, which have a leading-order scale dependence and
therefore induce a large change in the cross section.

Figure V.18 shows the cross sections for the Higgs transverse momentum (top) and leading
jet transverse momentum (bottom) for several different jet sizes, at LO, NLO and NNLO (from
NNLOJET) and from the two MEPS predictions. All cross sections have been scaled to their
respective value for the reference jet size of R = 0.7. At this value we observe the best agreement
between fixed-order and multi-jet merged results, save for an overall normalization which can be
extracted from the Higgs transverse momentum spectrum, cf. Fig. V.14. The absolute value of
the difference between the fixed-order and the multi-jet merged predictions away from R = 0.7
increases roughly proportional to log(R/0.7) (cf. Fig. V.19), which is expected due to the higher-
multiplicity real-emission corrections included in the multi-jet merged calculation. Depending
on kinematics they either enhance (at R > 0.7) or reduce (at R < 0.7) the cross section. The
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Fig. V.17: The R-dependence of the cross sections at NLO, NNLO and MEPS are shown, for
particular scale values, as a function of the jet radius, for leading jet transverse momenta above
150 GeV.

differences between the MEPS predictions and those from NNLOJET decrease as the order is
raised from NLO to NNLO. The difference is on the order of 5% for R = 0.5 at NLO and of the
order of a few percent at NNLO.

Given the better description of the jet shape provided by the MEPS predictions, this is
an indication of the theoretical uncertainty associated with the truncation of the perturbative
series. The uncertainty is reduced at NNLO as expected. It is noteworthy that the ratios in
Fig. V.18 are relatively flat as a function of the transverse momenta.18

Figure V.19 shows the dependence of the relative difference between a NLO-matched,
multi-jet merged prediction from Sherpa and the NLO fixed-order result as a function of the
leading jet transverse momentum for varying jet radii. The ratio is flat as a function of the leading
jet pT . In Fig. V.17 we compared integrated cross sections, while here we observe interestingly
a similar behaviour for the differential cross sections. In the right plot, the projection is with
respect to the radius, and displays, in grey, the various transverse momentum intervals and, in
coloured, the lowest and highest energies. Assuming the leading behaviour is given by Eq. (V.28),
and with the flatness in the leading jet transverse momentum, the linear, (but slightly quadratic)
behaviour in the logarithmic plot is expected. We note the zero crossing of the curve on the right-
hand side, which corresponds to the best agreement between fixed-order and matched/merged
result, is located at R ≈0.7 (see the discussion of Fig. V.18). In configurations where the jet
rapidity is zero, this corresponds to a roughly equal partitioning of the rapidity phase-space into
collinear sectors for color dipoles spanned between the initial-state partons and the final-state

18 The flatness may in fact be somewhat accidental as we are using the EFT and needs to be confirmed upon
including finite top mass effects.
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jet.
Finally, for comparison, in Fig. V.20, we show a (simplified) plot of the comparison of

predictions carried out in Les Houches 2015 [1] for the leading jet transverse momentum. For
these particular scale choices, the NNLO [176] and NLO [249,996,997] give essentially the same
result. The predictions from Sherpa and Herwig agree with NNLO at low pT , but fall 10-15%
below at higher pT . This can be due partially to differences in the scale choices between each
prediction in the figure, differences between the scale choices used in [1] compared to ours, and
to the jet shape differences explored in detail in this note.

5.3 Outlook
Searches for new physics, as well as a better understanding of standard model physics, require an
increasing level of precision, both for measurement and for theory. For differential distributions
for H+ ≥ 1 jet, the highest level of precision is obtained with NNLO predictions. Matched NLO
plus parton shower predictions (MEPS) provide a more complete event description, but at a level
of precision one order of αs lower (although with a more complete logarithmic treatment). Most
physics measurements at the LHC make use of relatively small jet sizes (anti-kT with R = 0.4),
and H+ ≥ 1 jet production is no exception. There can be differences between fixed order and
MEPS predictions for the same observable just due to the different estimates of the amount of
jet energy contained in a jet of radius R. These differences can be comparable to the size of the
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Fig. V.20: Predictions for the leading jet transverse momentum cross sections, for NLO, NNLO
and MEPS calculations, from the 2015 Les Houches study [1].

scale uncertainty for the cross section at that order.
In this contribution, we have reported on an investigation of the impact of different jet

sizes on Higgs boson plus jet physics at the LHC, paying close attention to the impact of the
jet size on K-factors, on scale uncertainties, and on differences between fixed order and MEPS
predictions. A more detailed study, intended for a future publication, will proceed from this
contribution, expanded to also include inclusive jet and Z boson + jet final states. Better
understanding of the issues described in this contribution may allow an improvement in the
accuracy, and precision, of such predictions at the LHC.
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Chapter VI

Monte Carlo studies

1 On renormalization scale variations in parton showers 1

We perform a phenomenological study of different schemes for varying the renormalization scale
in parton shower calculations. To this end, we compare the conventional CMW scheme against a
method which explicitly includes higher-order corrections proportional to the QCD beta function
and the two-loop cusp anomalous dimension. The techniques are implemented in both SHERPA
and PYTHIA, and compared to the default methods employed by these generators. In contrast
to earlier studies of the same topic, we find that the uncertainty estimates agree well between
the different parton-shower algorithms.

1.1 Introduction
General-Purpose Event Generators are tools that combine perturbative calculations and phe-
nomenological models to predict the final states of particle-particle collisions. The perturbative
calculations include a fixed-order, matrix-element based component and an all-order (resummed)
parton shower component. Precise, fixed-order predictions have become readily available due to
improvements in calculation methods and numerical techniques. The limiting factor in testing
predictions on data, particularly for observables that are not fully inclusive, are uncertainties in
the parton shower evolution. Thus, realistic prescriptions to assess parton shower uncertainties
are needed. They should ensure that only the effect of uncalculated or ambiguous higher-order
terms are estimated, while preserving the leading higher-order corrections that have been in-
cluded in the simulation due to their importance for practical applications. The latter include
the use of transverse momenta as a scale in the evaluation of the strong coupling [998], and the
use of the Catani-Marchesini-Webber (CMW) scheme [995] to recover known O(α2

s) corrections
to soft gluon emission.

Changes in the renormalization scale are diagnostic of parts of the parton shower uncer-
tainty. Weighting techniques [961,999,1000] have made it very convenient to perform the related
variations [501, 1001, 1002]. A previous analysis has thus focused on the comparison of uncer-
tainties estimated by the various public parton-shower generators [1], with partially surprising
results. It is timely to perform such a comparison again, and to question how parton shower
variations should be implemented such as to obtain realistic, but not overly aggressive or overly
conservative uncertainty estimates. The technique investigated here is motivated by comparison
to analytic resummation, see for example [652]. We perform a dedicated comparison of different
implementations of the method in the two event generators PYTHIA and SHERPA, using three
different parton shower algorithms.

This contribution is organized as follows. First, we will motivate and define our renor-
malization scale variation scheme in Sec. 1.2. Next, we specify the implementation details for
PYTHIA and SHERPA in Sec. 1.3. We present first results and compare the predicted uncertain-
ties in jet production at LEP Run I and gluon-induced Higgs-boson production at LHC Run
II in Sec. 1.4. The study concludes with a short summary in Sec. 1.5. Note that our aim is
to better understand the impact of higher-order corrections related to soft-gluon emission in a
phenomenological study. While the underlying computational technique is based on soft-gluon
resummation at NLL, no claim of formal theoretical improvements of the parton-shower method

1 S. Höche, S. Mrenna, S. Prestel, M. Schönherr, P. Z. Skands
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is implied.

1.2 Motivation
The leading-order evolution kernels for a parton shower with evolution variable t and splitting
variable z can be written in the universal form [831]

Kı̃→i,j(t, z) = 1
t

αs(µ)
2π Pı̃→i,j(t, z) +O(α2

s) (VI.1)

In this context, P (i)
ı̃→i,j(t, z) are the model specific splitting probabilities for parton ı̃ branching

into partons i and j, in the presence of a parton (or set of partons) k that accounts for momentum
conservation. This parton is conventionally called the recoil partner. Only the first-order pieces
are usually considered in Eq. (VI.1), and a judicious scale setting is applied, based on the analysis
in [998]. For transverse-momentum ordered showers, for which the evolution variable reduces
to the relative transverse momentum p2

⊥ between the partons i and j in the soft and collinear
limits, this leads to

Kı̃→i,j(t, z) = 1
t

αs(bt)
2π P

(0)
ı̃→i,j(t, z)

The prefactor b can be chosen according to the so-called CMW scheme [995] in order to reproduce
the higher-logarithmic corrections arising from the two-loop cusp anomalous dimension [1003–
1006]. This implies b(t) = exp{K(t)/β0(t)}, where

K(t) =
(

67
18 −

π2

6

)
CA −

10
9 TR nf (t) , β0(t) = 11

3 CA −
4
3TR nf (t) .

Note that nf (t) is the number of active flavours at scale t. For five active flavors, b = 0.45, thus
roughly halving the scale. For evolution kernels with soft gluon enhancement, this scale choice
leads to sub-leading logarithmic corrections. At NLO, they take the expected form

Kı̃→i,j(t, z)
∣∣∣
O(α2

s)
= 1
t

(
αs(t)
2π

)2

K(t)
{ 2

1− z + . . .

}
, (VI.2)

where the dots stand for terms that are non-singular in the soft-gluon limit. Alternatively,
using b(t) can be interpreted as using a larger value of the strong coupling at the Z pole,
i.e. αs(MZ) ≈ 0.130 instead of the world average αs(MZ) ≈ 0.118. In the resummation of the
transverse momentum of Drell-Yan lepton pairs and similar observables, Eq. (VI.2) would lead to
the familiar resummation coefficient A2. In addition, explicit logarithms of the renormalization
scale and the transverse momentum in a dipole picture, k2

T , appear in these calculations (see for
example [652]), such that the double-logarithmic piece of the O(α2

s) correction to the parton-
shower splitting kernels should read

Kı̃→i,j(t, z)
∣∣∣
O(α2

s)
= 1
t

(
αs(t)
2π

)2 [
β0(t) log k

2
T

t
+K(t)

]
2

1− z . (VI.3)

The existing techniques for renormalization scale variations in parton showers implement this
equation in different ways that are discussed in Sec. 1.3. Depending on the precise treatment of
higher-logarithmic contributions, the related uncertainty estimates can exhibit a sizable varia-
tion. The phenomenological consequences of this effect will be discussed in Sec. 1.4. Our main
demand is that variations around a central scale should not ruin the NLO accuracy in the soft
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limit. It will be necessary to introduce a compensation factor to undo part of the naive scale
variation.

In the current contribution, we will maintain a close correspondence with analytical results,
but without any claim about the parton shower accuracy2. Thus, when varying the renormal-
ization scale of parton shower splittings, we will implement variants of Eq. (VI.3), which differ
only in how K(t) is included in the calculation. Note, however, that the definition of the soft
enhanced part of the leading-order splitting function P (0)(z, t) differs between parton showers
with different definitions of t and z, and that the correspondingly different single-pole terms can
also lead to visible differences. Nevertheless, we employ this minimalistic approach to define the
least common denominator for three rather different parton showers, assuming our method will
still provide insight that can be helpful for future studies.

1.3 Monte-Carlo Event Generators for this study
We have implemented the scheme outlined at the end of Sec. 1.2 in PYTHIA and SHERPA. Before
presenting our results, we will describe the current default variation schemes and the precise
technical realization of our new technique in the various generators.

1.3.1 Pythia
PYTHIA 8 [630] is the most recent General-Purpose Event Generator in the PYTHIA family [629,
633, 1008]. It includes a native p⊥-ordered parton shower supplemented with matrix-element
corrections and multiple choices of recoil scheme, and further supports the VINCIA [1009, 1010]
and DIRE [492] parton shower plugins. For this study, we will use the native shower in PYTHIA
version 8.230 and the proper settings to enable the CMW scheme to set the argument of αs, by
scaling ΛQCD(nf ) appropriately.

The PYTHIA implementation of scale variations [1002] reflects the ambiguity in how com-
pensation terms should be applied [1]. Similar to what is now assumed, it was decided that
compensation terms should only apply to gluon emission, and not to g → qq̄ splittings. Beyond
that, the PYTHIA implementation of compensation terms was conservative, i.e. the effect of com-
pensation was minimized when confronted with choices beyond O(α2

s). This led to modifying
the parton-shower branching probability to

Kı̃→i,j(t, z) = αs(kbt)
2π

(
1 + (1− ζ)αs(bµmax)

2π β0 ln k
)
P (z)
t

, (VI.4)

for gluon emission, where P (z) is the full DGLAP splitting kernel, possibly including matrix-
element corrections, µmax = max(m2

dip, kt) and

ζ =
{

1− z for splittings with a 1/(1− z) singularity
min(z, 1− z) for splittings with a 1/(z(1− z)) singularity . (VI.5)

The inclusion of the factor (1 − ζ) was motivated by the fact that the compensation is only
theoretically motivated in the soft limit (i.e. for ζ → 0). Thus, to remain conservative, the
compensation was explicitly linearly damped outside of the soft limit.

To implement the new scheme proposed in Sec. 1.2, we change the branching probabilities
to

Kı̃→i,j(t, z) = αs(kbt)
2π

(
1 + αs(bt)

2π β0 ln k
)

1
t

2CF
1− z + αs(kbt)

2π
1
t

[
Pqq(z)−

2CF
1− z

]
(VI.6)

2A formal comparison of other uncertainties and of the relation between parton showers and analytic NLL
resummation for simple observables has been presented in [1007].

217



for gluon emission off (anti)quarks, and to

Kı̃→i,j(t, z) = αs(kbt)
2π

(
1 + αs(bt)

2π β0 ln k
)

1
t

[
2CA
1− z + 2CA

z

]
(VI.7)

+ αs(kbt)
2π

1
t

[
Pgg(z)−

2CA
1− z −

2CA
z

]

for gluon emission off gluons. For the first (and partially also subsequent) parton-shower emis-
sions, Eqs. (VI.6) and (VI.7) are potentially rescaled with finite matrix-element correction fac-
tors. Note that the implementation does enforce that the compensation terms are only applied
to pieces yielding double-logarithmic contributions. However, the two-loop cusp term is not only
added to the soft contribution, but also enters in the hard- and collinear phase sectors, as is
common for implementations of the CMW scheme. The difference w.r.t. Eq. (VI.3) is of O(α3

s)
in the soft region, and of O(α2

s) in the hard and collinear regions.

1.3.2 Sherpa
The SHERPA Monte Carlo event generator [415] in its latest release, Sherpa-2.2.4, comprises
two parton shower algorithms: CSS [491] and DIRE [492]. Both are based on Catani-Seymour
[187, 489] dipole splitting functions. While CSS is constructed along the lines of a standard,
transverse momentum ordered parton shower, DIRE combines the standard treatment of collinear
configurations in parton showers with the resummation of soft logarithms in color dipole cas-
cades. The evolution kernels of CSS can be written in the form of Eq. (VI.2), while in DIRE
b(t)→ 1 and the two-loop cusp anomalous dimension multiplies the soft enhanced terms of the
splitting functions with 1 + αs/(2π)K(t).

When varying the argument of the strong coupling constant, i.e. replacing t→ kt with k a
constant, the higher-logarithmic structure induced by the running of the coupling constant in the
presence of the CMW scale factor needs to be preserved in order not to change the resummation
implemented by the parton shower. Thus, in [1] the following naive replacement was used

αs(b(t) t) → αs(b(t) k t) f(k, t) , f(k, t) = 1 +
nth+1∑
i=0

αs(b(t) t)
2π β0(nf (t)) log ti

ti−1
(VI.8)

The sum runs over the number nth of parton mass thresholds in the interval [t, k t] with t0 = t,
tnth+1 = k t and ti are the encompassed parton mass thresholds. If k < 1, the ordering is
reversed, recovering the correct sign. It is clear that this method will largely eliminate the
dependence of the overall prediction on k. In order to obtain a realistic uncertainty estimate,
we use Eq. (VI.3).

In the case of the CSS shower, we remove the explicit dependence on K(t) and reweight
instead with a factor αs(b(t) t)/αs(t), which leads to the definition of the final-state emitter,
final-state spectator branching probabilities

Kı̃→i,j(t, z) = αs(kbt)
2π

1
t

2CF
1− z(1− y) f(k, t) + αs(kbt)

2π
1
t

[
Vij,k(z, t)−

2CF
1− z(1− y)

]
(VI.9)

for gluon emission off (anti)quarks, and

Kı̃→i,j(t, z) = αs(kbt)
2π

1
t

[
2CA

1− z(1− y) + 2CA
y + z(1− y)

]
f(k, t) (VI.10)

+ αs(kbt)
2π

1
t

[
Vij,k(z, t)−

2CA
1− z(1− z) −

2CA
y + z(1− y)

]
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for gluon emission off gluons. The Vij,k are the splitting kernels in [187]. This will generate
higher-logarithmic corrections compared to Eq. (VI.3), which are, however, much smaller than
the ones produced by Eq. (VI.8).

In the case of the DIRE shower, we use the branching probabilities

Kı̃→i,j(t, z) = αs(kt)
2π

CF
t

 2(1− z)
(1− z)2 + κ2

(
f(k, t) + αs(t)

2π K(t)
)
− (1 + z)

 (VI.11)

for gluon emission off (anti)quarks, and Kı̃→i,j(t, z) = Kgg(t, z) + (i↔ j), for gluon emission off
gluons in the final state. The unsymmetrized gluon-to-gluon kernel is given by

Kgg(t, z) = αs(kbt)
2π

2CA
t

 (1− z)
(1− z)2 + κ2

(
f(k, t) + αs(t)

2π K(t)
)
− 1 + z(1− z)

2

 . (VI.12)

Note that the definition of κ2 depends on the type of dipole and is given in [492]. For gluon
emission off gluons in the initial state we use

Kı̃→i,j(t, z) = αs(kbt)
2π

2CA
t

 (1− z)
(1− z)2 + κ2

(
f(k, t) + αs(t)

2π K(t)
)
− 2 + 1

z
+ z(1− z)

 .(VI.13)

1.4 Results
In the following, we will use the baseline parton-shower settings αs(MZ) = 0.118, use two-loop
running of αs, and employ the CMW prescription for all parton showers except DIRE. It is
important to emphasize that these settings are only chosen to aid the comparison of parton
shower variations, and are not based on the resulting quality of data description. With this
in mind, we will also refrain from comparing our results to data, although we will employ the
analyses [620] and [1011], as implemented in the RIVET framework [500]. We then perform
variations of αs(kt) with k = {1/4, 1, 4} (and t of dimension GeV2) for both e+e− collisions
at LEP I and gluon-induced Higgs-production at a 13 TeV LHC. For the latter, we do not
include multiple parton interactions, primordial kT modelling, QED effects or hadronization in
the predictions. We use the parton distribution functions given in NNPDF30_nlo_as_0118 [422]
and implemented in LHAPDF [964]. Finally, for the LHC setup, we use µQ = 125 GeV as starting
scale of the parton shower. Please note again that these settings define a theory study, and
should not be considered a recommendation when performing a detailed experimental analysis.

The results will be presented as a main plot and three adjoint ratios. The latter show
the predictions of one shower, compared to the baseline prediction of this same shower. The
gray band represents the current default variation band of the tool, while the colored bands give
the results of the schemes proposed in Sec. 1.2. The hatched gray bands show naive variations
without any compensation terms, as a baseline. From these, it is immediately obvious that the
inclusion of compensating terms has significant effects.

1.4.1 LEP results
In this section, we compare the MCEGs to each other, using the analyses of [1011] and [620].
We include both parton showering and hadronization into the simulations.

Figure VI.1 shows the separation between jets in the Durham algorithm. As expected,
we observe that the default (gray) SHERPA variation is much more aggressive, while default
(gray) PYTHIA is much more conservative. The variation bands of PYTHIA, CSS and DIRE
are much more similar in size, highlighting that although different single-logarithmic terms in
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Fig. VI.1: Uncertainty estimates for the Durham 2→ 3 jet rate (left) and 3→ 4 jet rate (right)
in the analysis setup of [1011]. Gray bands show the estimates using the method of [1] for
SHERPA and DIRE, and of [1002] for PYTHIA. Blue bands give PYTHIA variations according to
Sec. 1.3.1. Red and green bands give, respectively, SHERPA and DIRE variations according to
Sec. 1.3.2. Hatched gray bands show naive variations without any compensation terms.

different showers, the minimal prescription leads to a convergence. The region below ∼ 10−3 is
dominated by hadronization effects, and thus, the differences between MCEGs here should not
be considered problematic, since it heavily depends on how the event generator tune had been
produced. It is however interesting to observe that the PYTHIA bands in the non-perturbative
region are reduced in the minimal prescription, which will clearly aid in finding MCEG tunes
including scale variations3

Similar conclusions can be drawn from Fig. VI.2. We again observe that the minimal
prescription leads to a variation band that is more conservative than the default CSS and DIRE
scheme, and more aggressive than the default PYTHIA variation. The width of the band becomes
comparable in all three showers. Note again that the regions of τ ∼ 1 and C < 0.25 show large
hadronization corrections, i.e. that the difference of the three tools in this region is dominated
by tuning (and by using αs setups that are rather different from those used in the tunes). Again,
it is worth mentioning that a smaller perturbative variation band in the non-perturbative region
will ease tuning in the presence of perturbative variations.

These results – and other distributions not shown here – indicate that at LEP, varying
the renormalization scale in the parton shower by factors of 1

4 , 1, 4 (i.e. 1
2 , 1, 2 when applied to

GeV-valued scales) in the “minimal" prescription leads to uncertainty bands of O(10−15%) in all
3Such a study was performed elsewhere in the proceedings of this workshop.
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Fig. VI.2: Uncertainty estimates for the thrust (left) and C parameter (right) in the analysis
setup of [620]. The gray bands show the estimates using the method of [1] for SHERPA and DIRE,
and of [1002] for PYTHIA. Blue bands give PYTHIA variations according to Sec. 1.3.1. Red and
green bands give, respectively, SHERPA and DIRE variations according to Sec. 1.3.2. Hatched
gray bands show naive variations without any compensation terms.

three showers considered here. This improves over previous attempts that should be considered
as too aggressive.

1.4.2 LHC results
We will now discuss the impact of variations on distributions in gluon-induced Higgs-boson
production at a 13 TeV LHC. The results of this section are at the parton level, i.e. we do
not include the effect of multiple parton interactions, beam remnants, hadronization or other
non-perturbative effects.

Figure VI.3 shows the Higgs-boson transverse momentum on logarithmic and linear scale,
with the latter focussing on the low-p⊥ region interesting for parton shower resummation. Be-
fore discussing the size of the bands, it is interesting to see that PYTHIA and the SHERPA CSS
shower produce very similar results for 2 GeV < p⊥h < 100 GeV. The differences above 100 GeV
would be ameliorated upon NLO matching or multi-leg merging, while the differences below
2 GeV are covered by non-perturbative effects in a hadron-level simulation. The DIRE shower
predicts a rather different shape of the p⊥ spectrum above the Sudakov peak, which arises from
the different choice of ordering variable compared to the CSS and PYTHIA. This difference is
not covered by the respective uncertainty bands, because effects relating to momentum conser-
vation and ordering variables are an inherently different degree of freedom of the parton shower
implementation [1007].
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Fig. VI.3: Impact of shower variations on the Higgs p⊥ spectrum. The gray bands show the
estimates using the method of [1] for SHERPA and DIRE, and of [1002] for PYTHIA. Blue bands
give PYTHIA variations according to Sec. 1.3.1. Red and green bands give, respectively, SHERPA
and DIRE variations according to Sec. 1.3.2. Hatched gray bands show naive variations without
any compensation terms.

The effect of employing the minimal compensation scheme on the variation bands is very
different in PYTHIA and SHERPA. As before, we see that the minimal scheme squeezes the band
w.r.t. the default scheme in PYTHIA, while the the minimal scheme widens the band in CSS and
DIRE. However, the PYTHIA band within the minimal scheme reduces to 10% or less, the CSS
band increases beyond 50% at low p⊥h and 20% at high values, and the DIRE band spans up
to 35% variation at low p⊥h and 20% at high values. These trends are reversed in the ∆R and
mjj distributions shown in Fig. VI.4. Here, the PYTHIA band in the minimal scheme yields the
largest variation, while the band of CSS is almost vanishing.

These effects should make clear that, as anticipated in the motivation, the effect of the
compensation is observable-dependent. In particular, since the difference of parton shower evo-
lution variables will lead to different single-logarithmic terms, the effect of compensation can,
for one observable, be quantitatively different for different showers. Gluon-induced Higgs-boson
production is, due to high parton-shower activity, an ideal laboratory to highlight these sub-
tleties.

1.5 Discussion and Summary
In this study, we have investigated renormalization scale variations in parton showers. We have
discussed compensation terms to ensure that such scale variations do not deteriorate expressly
introduced higher-order corrections, and attempt to define a common baseline for applying such
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Fig. VI.4: Impact of shower variations on the Higgs-jet ∆R separation and dijet invariant mass
in Higgs + jets events. The gray bands show the estimates using the method of [1] for SHERPA
and DIRE, and of [1002] for PYTHIA. Blue bands give PYTHIA variations according to Sec. 1.3.1.
Red and green bands give, respectively, SHERPA and DIRE variations according to Sec. 1.3.2.
Hatched gray bands show naive variations without any compensation terms.

compensation in PYTHIA and SHERPA. We have then compared this new “minimal" prescription
to traditional LEP observables and to the result of the previous default variation schemes in the
generators. This comparison suggests that in the minimal scale variations by factors k = 1

4 , 4
lead to reasonable agreement between the three showers used in the study, while not impeding
the ability to tune the event generator due to large perturbative variations in hadronization-
dominated phase space regions. The study of Higgs-boson production at the LHC does not
lead to conclusive results, since the shower- and observable-dependence of the variation bands
is exposed by the high parton-shower activity. In this case, we recommend to use the most
conservative uncertainty estimate available in the event generator.
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2 On the cross-talk of parameter optimization and perturbative variations in
event generators 4

We discuss the interplay of parton-shower variations and optmimization of non-perturbative
parameters in general-purpose event generators. To understand the correlation between infrared
cut-offs and hadronization parameters with variations of αs, we investigate the interplay of
tuning and αs-variations for e+e− colliders. For LHC collisions, we investigate the cross-talk of
αs- and PDF variations.

2.1 Introduction
General-Purpose Monte Carlo Event Generators (MCEG) [831] are the backbone of collider-
physics analysis prototyping, while at the same time providing the accurate background predic-
tions to new-physics searches. With ever more detailed measurements at the LHC, the focus
of MCEG developments has been providing and enabling precision calculations in perturbative
QCD. At this point, it is important to stress that the most accurate simulation should predict
unknown phenomena based on known effects. The latter will include the results of previous mea-
surements as well as higher order calculations. Event generators combine both into a simulation
that allows predictions for new analyses and collider setups by using higher order calculations
and transferring, or extrapolating, a realistic model of previous experimental data. To this end,
MCEG parameters are commonly “tuned” to many different data. This “tuning” helps constrain
parameters that cannot be fixed by theory considerations alone, and encodes the global picture
of previous measurements into the MCEG. On top of the (mostly non-perturbative QCD) pa-
rameters that are constrained by this exercise, MCEGs also heavily rely on pre-tabulated parton
distribution functions (PDFs) [1012] to describe the longitudinal structure of colliding hadrons.
The non-perturbative component of these PDFs is usually “extracted" by fitting the parameters
of the PDF parametrizations to measurements of (mostly inclusive) scattering cross-sections.
In either case, we expect strong correlations between non-perturbative parametrizations and
perturbative input.

This has made a comprehensive error budget for MCEGs a long-standing problem. Tuning
will thus have the effect of mixing perturbative and non-perturbative effects, and will potentially
also account for deficienscies in the perturbative prediction. Thus, a well-defined event gener-
ator uncertainty should include both effects, and correctly incorporate the cross-talk between
them. This is a daunting task in principle, but also in practice, since correlations and subtleties
can easily be masked by the overall statistical uncertainty inherent to finite-time Monte Carlo
simulation. With the advent of weighting techniques [501, 1001, 1002], some of the technical
difficulties of correlated parton-shower variations were recently ameliorated. Thus, we will in-
vestigate the correlation of perturbative and non-perturbative MCEG pieces with these new
tools. In this study, we do not attempt to provide a theoretical answer to the question of defin-
ing uncertainties. Instead, we provide a phenomenological study of some cross-talk, in hopes of
gaining insight for the future.

This article is organized into two main sections followed by the summary. The main
sections are in spirit intimately connected, in that we try to assess different perturbative-non-
perturbative correlations from different angles. The first part is devoted to the cross-talk between
the tuning of the parameters of hadronization models and final-state parton shower variations.
The second part investigates the correlation between PDF choices and initial-state parton show-
ering.

4 J. Bellm, L. Lönnblad, S. Plätzer, S. Prestel, D. Samitz, A. Siodmok, A. H. Hoang
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2.2 Generator tuning vs. parton-shower variations
In this section, we will investigate the cross-talk between non-perturbative hadronization param-
eters and changes of αs in the (perturbative) parton shower evolution. Parameters in hadroniza-
tion models are commonly extracted at lepton colliders and then used unchanged at hadron col-
liders (with the primordial kT of partons inside of colliding hadrons being one notable exception).
To not over-complicate the study, we thus discuss the cross-talk using LEP measurements.

2.2.1 Methodology
In order to investigate the interplay between generator tuning and parton-shower variations
studied in [501, 960, 1002] we use two different parton shower Monte Carlo event generators
HERWIG 7 [584] and PYTHIA 8 [629, 630] to produce a fully exclusive simulation of the events
at the Leading Order. Both generators provide an option for using different shower modules,
however at this stage of the project we only use default parton showers algorithms5: the angular
ordered shower in HERWIG [702] and p⊥-ordered shower in PYTHIA [1013]. For generator tuning
we use the parametrization-based tune method provided by the PROFESSOR package [1014]. The
starting point for the tuning procedure is the selection of a range [pmin

i , pmax
i ] for each of the N

tuning parameters pi.
Since we want to explore the correlation of generator tuning and parton-shower variations

our selection of parameters consist of the main parameters of non-perturbative hadronization
models and the parton shower cut-off scale. To be more precise in HERWIG we adjust the shower
cut-off (pTMin), and main hadronization parameters of the cluster model [703]: gluon constituent
mass (g:ConstituentMass) and splitting parameter for clusters PSplit (not flavour specific6).
Initially we also included into the procedure flavor depended parameters: ClMaxs and ClPows,
however since the data selection was not really able to constrain the parameters we decided to
keep them close to their default values and effectively remove from the tuning procedure. In
PYTHIA except for the shower cut-off (TimeShower:pTmin) we also tune three main hadronization
parameters of the Lund model [828]: a- and b-parameter (StringZ:aLund and StringZ:bLund)
and non-perturbative pt-width (StringPT:Sigma).

For both generators, event samples are generated for random points in this multidimen-
sional hypercube in their parameter space. The number of points sampled is chosen, depending
on the number of input parameters, to ensure good control of the final tune. Each generated
event is directly handed over to the Rivet package [500], which implements the experimental
analyses. Thus the results for each observable are calculated at each set of parameter values.
PROFESSOR parametrizes each bin of each histogram as a function of the input parameters. It
is then able to find the set of parameters that fit the selected observables best. As a user, one
simply has to choose the set of observables that one wishes to tune to and, optionally, their
relative weights in the fit.

Usually, the hadronization and shower parameters are tuned to a wide range of experi-
mental data, however, most of them are from LEP. Therefore, in our tuning effort, we also use
LEP data. In particular we use ALEPH data from [620], however, we have not tuned to all
available distributions7. We have, e.g. left out the higher jet multiplicities while including the
lower ones. We also note that although the average multiplicity is included, it is only one bin
and will therefore not constrain the tuning very much. It should be noted that the tunings done
here are mainly for illustration and are not optimized in any way nor do they reflect the optimal

5In the future, we plan to use also Dipole Shower of HERWIG [994] and Dire [492]
6Cluster model implemented in HERWIG has possibility to set splitting parameters separately for light

(PSplitLight), bottom (PSplitBottom) and charm (PSplitCharm) clusters, see [825] for details. However, in
our exercise for simplicity we keep them all the same.

7The full list of selected observables and their weights are provided in Appendix 2.A.1.
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outcome with respect to a global tuning effort.
To assess the effect of the correlation between infrared cut-offs and hadronization parame-

ters with variations of αs, for each MCEG we perform two sets of tunes with the scale variation
bands:

1. The central (reference) tune, is obtained by using a "central" αs(Mz) in the tuning proce-
dure. This is simply chosen to be the default value in the respective generator. Its scale
variation band (the envelope of the tune) is estimated by shifting αs(Mz)→αs({1

ξ , 1, ξ}Mz)
→α′s(Mz), with8 ξ = 2 without additional retuning for each α′s(Mz) variation.

2. Two more tunes, called “retune” and the corresponding scale variation band, are obtained
by the same αs(Mz) variation as for ”central“ tune but this time we also retune to ALEPH
data for each α′s(Mz) variation.

In the next section we compare in details the results from the both MCEG using their ”central“
and ”retune“ versions of the tunes.

2.2.2 Results
We start by looking at the distributions that were actually tuned to. In Fig. VI.5 we show the
distribution in jet resolutions scales where an event with three jets would be clustered into two,
y23, and the thrust minor (Tminor) distribution (the thrust calculated wrt. the axis out of the
event plane spanned by the thrust and thrust major axes), respectively. We see immediately that
both generators are able to fit the distributions fairly well and, as expected, the scale variations
of the central tune are much larger then the ones obtained when retuning for each scale choice.

We note that since the distributions are normalised to unity, the scale variations are
artificially reduced around the center of the distributions. Looking more closely, we see some
imperfections in the fits. For example, we see that both generators have problems describing
the region of large Tminor region, corresponding to large activity out of the event plane driven by
hard effects of O(α2

s), where neither generator includes matrix element corrections in our studies.
Similarly, HERWIG has problems describing large y23 values (small −ln(y23)). However, this is as
expected since the HERWIG simulations had switched-off matching to the O(αs) tree-level matrix
elements, while the PYTHIA simulation had it on. We would also like to note that in the region of
large y23 (small −ln(y23)) the scale variations for PYTHIA are not reduced by the retuning. This
is expected since there is no mechanism by which the non-perturbative parameters in PYTHIA
can compensate for the effect of scale changes on hard jets. This is, however, not the case for
HERWIG, where sometimes a cluster with a large mass is allowed to decay isotropically into two
lighter clusters, then decaying into hadrons and ending up as jets in the Durham algorithm.
This is regulated by the PSplit parameter which in this case can compensate somewhat for the
scale variations at large y23.

Turning now to the predictions for observables not tuned to, we first stay at the Z0 peak
and look at the Durham y54 distribution in Fig. VI.6. Here we see again that the retuned scale
variations are smaller than the central ones. We see the same pattern as for the y23 distribution,
that for large y45 the scale variations are not much reduced for PYTHIA, while for HERWIG
the reduction is significant. Comparing with the data, one could argue that the central scale
variations overestimate the uncertainties in the predictions, while the retuned scale variations,
where we use data to constrain the fit, give a more reasonable estimate of the uncertainties
involved. Although in the region of low y45 where the retuned variations could be argued to be
too small.

8We also performed studies for ξ =
√

2, however in order to show clearly the effect of the retuning we only
present results for ξ = 2.
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Fig. VI.5: Examples of the resulting tunes, ”central“ and ”retune“, with their uncertainty band
compared to ALEPH data at 91.2 GeV. Top plots are HERWIG and bottom is PYTHIA. Left
plots are the Durham jet resolution 3→ 2 distribution, and the right plots are the Thrust minor
distribution. The both observables were used in the tuning procedure.

Moving on to extrapolations in energy, we first look at the average charged multiplicity
in Fig. VI.7. Here we see an unexpected behaviour for PYTHIA in the middle plot. The scale
variations are actually increased with the tuning. This is because, even though the 91 GeV point
is included in the tuning set, it is only one bin and the tuning procedure has clearly decided
to sacrify this bin in order to fit many others in other distributions. There are indication that
one of the variations in HERWIG leave more space for other parameters to still adopt to the
multiplicity bin, though this issue deserves a more detailed investigation. In the right plot, we
have instead included the full multiplicity distribution from L3 [1015] in the tunings and there
we get the expected behaviour, similar to that of HERWIG.

Finally we return to y23 and Tminor in Fig. VI.8, but at the higher collision energy, where
we again see that the retuned scale variations in the predictions gives a more reasonable estimate
of the uncertainties than the variations using the central tune. Again we see that for PYTHIA
the variations are not reduced in the hard part of the spectra (small y23 and large Tminor), while
the retuning in HERWIG is able to compensate for the scale variations.
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Fig. VI.6: The distribution of the Durham jet resolution scale 5→ 4 at LEP for HERWIG (left)
and PYTHIA (right).
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Fig. VI.7: Average charged multiplicity as a function of energy. Only two energies (91 and
200 GeV) are shown for HERWIG (left) and PYTHIA (middle). The right plot shows an alternative
tuning of PYTHIA which includes the charged jet multiplicity at 91 GeV from L3 [1015].

2.2.3 Discussion
We think it is safe to say that using retuned scale variations gives a better estimate of the
uncertainties in the predictions of shower/hadronisation models. This does however not mean
that it gives a better estimate of the uncertainties in general. It is, in any case, an interesting
exercise to make, as it can increase our understanding of how the models behave and how the
tunings work in more detail. From our results it is e.g. clear that not using leading order
matrix element matching in HERWIG can be compensated also in the hard regions by non-
perturbative parameters in the hadronisation. Similarly, in PYTHIA it is possible to compensate
some shortcomings in the description of several event shapes at the expense of an accurate
description of the total multiplicity.

2.3 PDF fits and parton-shower variations
In this section, to complement the previous section, we will investigate the cross-talk between
(collinear) non-perturbative initial-state parton distributions and changes of αs in the (perturba-
tive, initial-state) parton shower evolution. We expect correlations due to the presence of PDF
ratios in the evolution kernels used in backward parton-shower evolution [1016]. We can illus-
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Fig. VI.8: Predictiona for 200 GeV from the tunes to ALEPH data at 91 GeV. Top plots are
HERWIG and bottom is PYTHIA. Left plots are the tune Durham jet resolution 3→ 2 distribution,
and the right plots are the Thrust minor distribution.

trate this effect by dissecting the parton-shower result for the Drell-Yan lepton pair transverse
momentum at a hadron collider. In an initial-state parton shower that is ordered in kinematical
p⊥ with respect to the incoming proton beams, the first emission will, schematically, yield the
distribution9

dnσ

dΦ0dp⊥
= dσ̂(pp→ Z; Φ0)fp̃+

(x+, µF )fp̃−(x−, µF ) (VI.14)

⊗


∫
dz+Π(µQ, p⊥)αs(p⊥)

2π
fp̃+

(x+
z+
, p⊥)

fp̃+
(x+, p⊥)

fp̃−(x−, p⊥)
fp̃−(x−, p⊥)Pp̃+→p+

(z+, p⊥) + (− ↔ +)


9 Note that we only use this as a schematic illustration. For parton showers not ordered in (this particular

definition of) p⊥, the result will be more complicated, but the main message will still apply. The symbols in
Eq. (VI.14) are defined by dσ̂(pp → Z; Φ0) → differential partonic cross section for Z-boson production at a
“Born" phase space point Φ0; fpi (xi, µ) → PDF for parton flavour p̃i with momentum fraction xi, evaluated at
scale µ with hadron moving in the i = ±pz direction; µQ → parton-shower starting or veto scale; zi → energy
fraction carried away from the initial line by emission off parton moving in i-direction; P

p̃i→pi
→ probability of

producing parton pi from parton p̃i by a parton-shower branching.
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with the parton-shower no-emission probability

Π(µQ, p⊥) = (VI.15)

exp

− ∫ µQp⊥ dp̄⊥
∫
dz̄+

αs(p⊥)
2π

f
p̃+

(x+
z̄+

,p̄⊥)

f
p̃+

(x+,p̄⊥)

f
p̃−

(x−,p̄⊥)

f
p̃−

(x−,p̄⊥)Pp̃+→p+
(z̄+, p̄⊥) + (− ↔ +)


and where, to ease notation, the symbol P (z, p⊥) collects splitting kernels, propagator- and
Jacobian factors. Assuming that the parton shower is a faithful implementation of DGLAP
evolution of fp̃+

(and fp̃−) from µQ = µF to p⊥, we can write

Π(µQ, p⊥) =
fp̃+

(x+, p⊥)
fp̃+

(x+, µQ)
fp̃−(x−, p⊥)
fp̃−(x−, µQ)∆(µQ, p⊥) where (VI.16)

∆(µQ, p⊥) = exp
{
−
∫ µQ

p⊥

dp̄⊥

∫
dz̄+

αs(p⊥)
2π Pp̃+→p+

(z̄+, p̄⊥) + (− ↔ +)
}

which leads to a result reminiscent of analytic resummation10

dnσ

dΦ0dp⊥
= dσ̂(pp→ Z; Φ0)fp̃+

(x+, p⊥)fp̃−(x−, p⊥) (VI.17){∫
dz+∆(µQ, p⊥)αs(p⊥)

2π Pp̃+→p+
(z+, p⊥) + (− ↔ +)

}

It is important to stress again that this result assumes that the parton shower is a faithful
implementation of DGLAP evolution of fp̃, which in particular suggests that the parton-shower
evolution should be adjusted for different PDF sets f ′

p̃
. Conversely, it is sensible to assume that

particular parton shower settings should correspond to a particular choice of PDF.
In the following, we will investigate the cross-talk between the choice of αs in the parton

shower and (input) PDF sets. To prevent bias, we will investigate the effect of correlations
on Higgs-boson and Drell-Yan lepton pair p⊥ distributions at two different energies at a pp
collider. The uncertainties on boson transverse momentum distributions often contribute heavily
to background modelling uncertainties in experimental new physics searches at the LHC. MCEGs
are often used to study and model p⊥ distributions. We expect that significant changes in the
uncertainty estimates due to the inclusion of correlations will provide useful information for the
experimental communities. We will further check our findings on the complementary observable
〈Njets〉, which should be very sensitive to the details of the parton shower, but only mildly PDF
dependent.

2.3.1 Methodology
We will assess the correlations by investigating how αs(MZ) choices in the parton shower and
PDF choices interact. For this, we first define the “baseline" α(c)

s (MZ) = 0.118 and produce
parton-shower results with α(c)

s (k · t) with k ∈ { 1√
2 , 1,
√

2}. We have verified that a) the result of
α

(c)
s ( 1√

2 t) is numerically equivalent to using α↓s(t) with α↓s(MZ) = α
(c)
s ( 1√

2MZ) ≈ 0.124, and that
b) the result of α(c)

s (
√

2t) is numerically equivalent to using α↑s(t) with α↑s(MZ) = α
(c)
s (
√

2MZ) ≈
0.112, see gray lines in second ratio plots of Fig. VI.9.

This allows to reinterpret parton-shower renormalization scale variations as variations of
αs(MZ). For judiciously assigned values of αs(MZ), we can find PDF sets that used this αs(MZ)

10See e.g. [1017,1018] for overviews of analytic resummation of color-singlet boson p⊥ spectra.
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Fig. VI.9: Variation according to Table VI.1 for the bosons transverse momentum in Z boson
(top) and Higgs (bottom) production at 14 (left) and 100 TeV(right). While the upper ratio
plot shows the ratio to the baseline for differential cross section, the lower ratio plot illustrates
the ratio w.r.t. normalized distributions. In the first ratio plot we add the lines for pure scale
variations in the shower αS to display the similarity to value variations. See Sec. 2.3.4 for
discussion.

when performing the fit. Such sets using a predetermined αs have recently become supplied by
several PDF fitting groups. With these prerequisites, we compare the results with the settings
given in Table VI.1.

As discussed above, we will focus the discussion on transverse momentum spectra. To
investigate the effects of correlating αs and PDF further, we will check if changes in the p⊥
distribution also translate to the average number of jets 〈Njets〉. The number of jets Njets

produced through parton showering is, by virtue of Eq. (VI.16), only sensitive to the value of
the PDF at the parton-shower cut-off. 〈Njets〉 will thus only have a mild PDF dependence, but
showcase the cross-talk between PDFs and αs.
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Name Description αs and PDF set Legend in plots
Baseline: Result of showering using

only default settings and
α

(c)
s (MZ).

αs(MZ) = 0.118,
baseline PDF set,
e.g. CT10nlo_as_0118

αs(MZ) = 0.118 and
green solid line

α↓s varia-
tion

Result of changing
α

(c)
s (MZ) → α

(c)
s ( 1√

2MZ)
when showering.

αs(MZ) = 0.124,
baseline PDF set,
e.g. CT10nlo_as_0118

αs (0.124) and red dot-
ted line

α↑s varia-
tion

Result of changing
α

(c)
s (MZ) → α

(c)
s (
√

2MZ)
when showering.

αs(MZ) = 0.112,
baseline PDF set,
e.g. CT10nlo_as_0118

αs (0.112) and blue
dotted line

Correlated
PS varia-
tion

Result of simultaneously
changing α

(c)
s (MZ) →

α
(c)
s ( 1√

2MZ) and PDF set
used for showering.

αs(MZ) = 0.124,
PDF fitted with
αs(MZ) = 0.124,
e.g. CT10nlo_as_0124

αs ⊕ fPS (0.124) and
red dashed line

Correlated
PS varia-
tion

Result of simultaneously
changing α

(c)
s (MZ) →

α
(c)
s (
√

2MZ) and PDF set
used for showering.

αs(MZ) = 0.112,
PDF fitted with
αs(MZ) = 0.112,
e.g. CT10nlo_as_0112

αs ⊕ fPS (0.112) and
blue dashed line

Correlated
PS+ME
variation

Result of simultaneously
changing α

(c)
s (MZ) →

α
(c)
s ( 1√

2MZ), and the PDF
set used for showering and in
the calculation of the hard
scattering cross section.

αs(MZ) = 0.124,
PDF fitted with
αs(MZ) = 0.124,
e.g. CT10nlo_as_0124

αs⊕fPS⊕fME (0.124)
and red solid line

Correlated
PS+ME
variation

Result of simultaneously
changing α

(c)
s (MZ) →

α
(c)
s (
√

2MZ) and the PDF
set used for showering and in
the calculation of the hard
scattering cross section.

αs(MZ) = 0.112,
PDF fitted with
αs(MZ) = 0.112,
e.g. CT10nlo_as_0112

αs⊕fPS⊕fME (0.112)
and blue solid line

Table VI.1: List of settings to assess the correlations between PDFs and αs choices. In the
text, we will refer to the envelope of α↓s and α↑s variation as “(uncorrelated) αs variation", refer
to the combiation of the third and fourth items as “correlated PS variation", and refer to the
combination of the fifth and sixth curve as “correlated PS+ME" variation.

2.3.2 Simulation Setup
We use the default leading-order HERWIG setup for the simulations in this study. This includes
matrix element corrections for the first jet in Higgs- and Z-boson production. As the baseline
we use the central value of αs = 0.118 by setting

set /Herwig/Shower/AlphaQCD:AlphaMZ 0.118;.

As PDF set, we use CT10nlo_as_0118, as implemented in LHAPDF [964]. Since our goal is to
study the compensation effect of fitting in the evolution of parton showers, we limit most of the
following to the ME+PS level. To turn off hadronisation and multiple parton interaction we set
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Fig. VI.10: Rapidity distributions for H-boson and Drell-Yan lepton pair production at leading-
order, for 14 TeV LHC.

read Matchbox/PQCDLevel.in;.

If desired we will further, as described in Table VI.1, correlate PDF set and αs-values by using
α↑s(MZ) = α

(c)
s (
√

2MZ) ≈ 0.112 together with CT10nlo_as_0112 PDF sets, and α↓s(MZ) =
α

(c)
s ( 1√

2MZ) ≈ 0.124 together with CT10nlo_as_0124 PDF sets.

2.3.3 Results
The effect of correlated αs + PDF variation and uncorrelated αs variation on color-singlet bo-
son p⊥ spectra is illustrated in Fig. VI.9. The top ratio plots give the ratio to the baseline
configuration on cross section level, while the lower ratios are taken by dividing the correspond-
ing normalised distributions. For both for Higgs and Drell-Yan p⊥ spectra at the cross-section
level (top ratio), the difference between correlated PS variation and uncorrelated αs variation is
smaller than the difference correlated PS+ME variation and uncorrelated αs variation. The nor-
malized differential distributions, however, show that the difference in correlated PS and PS+ME
variations can be traced back to variations in the overall cross-section, which is induced by the
difference in the PDFs fME used in the hard cross section calculation. It is important to note
that the difference between uncorrelated αs variation and correlated PS variations remains visi-
ble at the level of normalized spectra, i.e. leads to p⊥-dependent shape changes: The correlated
PS variation leads to a squeezed band w.r.t. uncorrelated αs variation for the Drell-Yan p⊥, and
has little effect on the p⊥ of the Higgs boson.

The larger differences at the cross-section level can be understood by considering the ra-
pidity distributions in Fig. VI.10, and the PDF changes in Fig. VI.11. As expected, the αS
variation and the correlated PS variation lead to a vanishing uncertainty band11, whereas the
correlated PS+ME variations yield a band. The normalization uncertainty of rapidity distribu-
tions in Fig. VI.10 is more uniform for the Drell-Yan process. At the same time, the uncertainty
for Higgs production is very small at large rapidity, i.e. in the region that will most likely lead

11We do not vary the αS in the effective ggH-coupling.
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Fig. VI.11: Relative change CT10nlo_as_0112 and CT10nlo_as_0124 w.r.t. of
CT10nlo_as_0118, as function of x.

to a significant contribution to the parton-shower radiation pattern and thus the Higgs p⊥ spec-
trum. This property then leads to smaller shape changes in the Higgs p⊥ spectrum, compared
to the Drell-Yan p⊥ distribution - for Drell-Yan leptons, the correlated PS curves will uniformly
be rescaled by a O(5%) cross section differences, thus changing the apparent “shape" of the
variation band, while for Higgs, the effect is smaller. Changes in the collider energy enhance
this effect further, as can be seen in the second column of Fig. VI.9. In addition, for the typi-
cal x-values for different collider energies, gluon and quark PDF uncertainty behave differently.
This is indicated in Fig. VI.11 for CT10nlo sets by plotting the PDF ratio

f ′1(x,Q)f ′2(x,Q)
f c1(x,Q)f c2(x,Q) and Q = 100GeV , (VI.18)

for a configuration x = x1 = x2 corresponding to a central rapidity bin in Fig. VI.10. The
vertical lines represent the values at x = MZ/H/

√
S for

√
S = 14 and 100 TeV and in gray

the central rapidity bin for Z-production at Tevatrons Run II energy
√
S = 1.96 TeV. The

spread in the PDF values for quark-initiated Z-boson production grows with collider energy,
while it diminishes for gluon-initiate Higgs-boson production. This explains why the effect of
PDF changes on the Z-boson p⊥ grow with collider energy, while they become smaller in the
Higgs-boson p⊥ distribution. Note that, as indicated by the grey line, the uncertainty on the
quark PDFs is small at Tevatron energies, since the PDF fit includes Tevatron data. Also, note
that had we investigated compensation effects in Drell-Yan p⊥ spectra below Tevatron energies,
the distributions would have painted a picture similar to what we now observe in the Higgs p⊥
case.

The normalized p⊥ distributions expose that the difference between correlated PS variation
and correlated PS+ME variation is in fact minimal. The difference between correlated variation
and uncorrelated αs,PS is most visible in the DY process, where the band shrinks. As desired,
the inclusion of correlations reduces the overall shape uncertainty. No such effect is visible for
Higgs. This effect can again be traced to the different PDF sets dominating the color-singlet
boson production cross sections.

We now move on to the question if the effect in normalized distributions is robust to
changing the observable, and when taking non-perturbative and soft-physics phenomena into
consideration. The average number of jets defined in Sec. 2.3.1, binned in rapidity provides
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Fig. VI.12: Average number of jets in intervals of Z boson rapidity ∆η, left for 14 TeV collider
energy, right for 100 TeV. The second plot shows the relative size of the cross section in the
intervals. The dependences of jet definition is illustrated as ratio plots w.r.t. the central predic-
tion. The red and blue lines show the prediction for modified αS values, αS(MZ) = 0.124 and
αS(MZ) = 0.112 respectively. For dotted lines we exclusively change the value of αS(MZ) used
in the showering process. To receive the dashed lines, also the pdf set used in the showering
process was fitted with the corresponding αS(MZ) value. The solid lines correspond to a full
correlation of αS(MZ) values in shower and the pdf sets used in hard cross section and shower
calculation.

a complementary observable that is both very sensitive to the parton-shower evolution and to
multiple parton interactions (MPI), while at the same time insensitive to the overall normaliza-
tion.

In Figs. VI.12 and VI.13 we show the average number of jets for Z- and Higgs-boson
production as a function of the boson rapidity. The first ratio plots (green line) is the relative
cross section contribution in the rapidity intervals. The multiple ratios show the result when
using different definitions of anti-KT jets: RaKT ∈ [0.5, 0.7] and pjT ∈ [5, 10, 20, 30] GeV. The last
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Fig. VI.13: Same as Fig. VI.12 here for Higgs boson production.

bin in the distribution represents the inclusive average number of jets. Figure VI.14 highlights
the effect of including multiple parton interactions.

Compared to the transverse momenta this observable does not show the usual effect of
crossing error bands due to parton shower unitarity. We further observe, depending on the jet
definition, a drastic reduction of variation when using fully correlated variations in Figs. VI.12
and VI.14. In gluon dominated processes like Higgs and dijet production, this effect is not
visible. The comparison between Figs. VI.12 and VI.14 also shows an interesting reduction of
the variation bands when including the effects of hadronisation and multi parton interaction
(MPI). Although the difference between correlated and uncorrelated variation is hardly altered
by including MPI it is worth noting that if the shower produces fewer emissions because of a
reduced strong coupling, the MPI is more active and adds more partons, since more of the hadron
energy/momentum is left after evolution. Similar effects are expected with the interleaved MPI
employed by Pythia.
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Fig. VI.14: As Fig. VI.12. Here including hadronisation effects as well as multiple parton
interactions. Compared to Fig. VI.12 the average number of jets is less dependent on the value of
the strong coupling constant. This is especially visible for low pt jet definitions. This reduction
of the error band is explained by the available energy left after hard process calculation and
parton shower evolution. While the enhanced αS(MZ) radiates more and therefore leaves less
energy for additional MPI interactions, reducing the value of αS(MZ) allows more additional
MPI jets. This directly moderates the effect of value variation.

2.3.4 Discussion
Before concluding, let us summarise and discuss the findings of Sec. 2.3.3. We find that un-
normalized distributions suggest large differences between αs variations and correlated PS+ME
variations. These are directly linked to scaling with different PDFs used in the hard-scattering
calculation. Since such uncertainties are beyond the scope of a (cross-section preserving) parton
shower, it is prudent to base conclusions on normalized distributions. In this case, the effect
of correlations is clearer. Including correlations by aligning the PDF with the αs used in the
parton shower shrinks the envelope of variations. This effect is moderate for the Drell-Yan pair
p⊥ distribution at a 14 TeV LHC, and small for the Higgs-boson p⊥ distribution at the same
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setup. This might suggest that it is not necessary to respect the correlation for a 14 TeV LHC.
However, aligning PDFs with αs variations can lead to more pronounced effects for observables
that are sensitive to more details of the shower evolution. For the average number of jets,
included correlations lead to larger differences between variations and to a more pronounced
uncertainty reduction. Since multiple parton interactions are sensitive to the proton content
after showering, the effect remains upon including MPI. In fact, the difference between corre-
lated and uncorrelated variations is enhanced and develops intricate phase-space dependences.
This is particularly visible for uncorrelated αS variations, which, after including MPI, exhibit a
dependence on the pT,min cut used to define jets. This is because larger shower variations lead
to larger variations in MPI activity. The situation is improved when performing correlated PS
variations. Thus, we conclude that for normalized distributions, it is reasonable to align the
PDF and the αs when performing shower variations.

2.4 Summary
In this contribution, we have tried to illustrate and assess the cross-talk of perturbative parton-
shower uncertainties and non-perturbative modelling in the context of MCEGs. We have argued
that we should regard an MCEG as a tool that transfers our most detailed and well-constrained
knowledge of the theory and previous data to new measurements. Adhering to this philosophy
means that perturbative and non-perturbative MCEG aspects should be considered correlated.
We have investigated this effect from two angles.

In the first part, we have argued that perturbative variations that clearly do not describe
known data should be complemented with an adjustment of non-perturbative parameters to
achieve a sensible description of known data. This can be achieved by retuning the MCEG’s
description of hadronization-sensitive data for each parton-shower variation. We have compared
the results of the envelope of such tunes with naive parton-shower scale variations around a
“central" tune, for both HERWIG and PYTHIA. We find that, as expected, the retuned results
exhibit a smaller variation in phase-space regions dominated by non-perturbative effects. The
naive ”central“ variation bands of HERWIG and PYTHIA are rather different, with HERWIG being
conservative-leaning and PYTHIA being more optimistic about the size of the variation band. The
size of the retuned uncertainties is comparable between the two simulations. This convergence
of two very different models suggests that comparing retuned variations might provide a better
assessment of MCEG uncertainties in the future.

The second part of the study was motivated by cross-talk between PDF sets and parton-
shower variations due to initial-state parton-shower backward evolution. In particular, we argued
that the assumption of a faithful implementation of PDF evolution suggested that αs variations
in the parton shower should be accompanied changing to a corresponding PDF set. We find,
depending on the process, large changes in p⊥ distributions when including the changes in
normalization due to changing PDF sets. These effects are much reduced when discussing
normalized distributions. In these, as expected, using correlated PS variations leads, in some
cases, to a reduced variation band. The impact is of order 5% for the Drell-Yan p⊥ spectrum at
14 TeV collider energy. Larger effects can be seen in the average number of jets in boson rapidity
intervals of ∆y = 1. In this observable, the effect of correlated PS variations is of 5% for the
Drell-Yan process without the inclusion of muliple parton interactions, and more pronounced
when including the latter. Multiple parton interactions enhance the impact of correlations,
since the probability for MPI is very sensitive to parton-shower variations. Thus, we are led to
conclude that it is prudent to change the parton-shower PDF consistently when varying αs in
the parton shower.
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2.A Appendix
2.A.1 Generator tuning vs. parton-shower variations: Weights
For the tuning to LEP data we used the following weights in the PROFESSOR tune, for both
HERWIG and PYTHIA.

A_2004 := ALEPH_2004_S5765862
L_2004 := L3_2004_I652683

/A_2004/d01-x01-y01 1 # Charged multiplicity
/A_2004/d102-x01-y01 1 # Thrust minor
/A_2004/d110-x01-y01 1 # Jet mass difference
/A_2004/d118-x01-y01 1 # Aplanarity
/A_2004/d133-x01-y01 1 # Oblateness
/A_2004/d141-x01-y01 1 # Sphericity
/A_2004/d149-x01-y01 1 # Durham jet 2->1
/A_2004/d157-x01-y01 1 # Durham jet 3->2
/A_2004/d165-x01-y01 1 # Durham jet 4->3
/A_2004/d187-x01-y01 1 # 1-jet fraction
/A_2004/d195-x01-y01 1 # 2-jet fraction
/A_2004/d203-x01-y01 1 # 3-jet fraction
/A_2004/d211-x01-y01 1 # 4-jet fraction
/A_2004/d54-x01-y01 1 # Thrust
/A_2004/d62-x01-y01 1 # Heavy jet mass
/A_2004/d70-x01-y01 1 # Total jet broadening
/A_2004/d78-x01-y01 1 # Wide jet broadening
/A_2004/d86-x01-y01 1 # C-parameter
/A_2004/d94-x01-y01 1 # Thrust major

For PYTHIA we also did a separate tune where also the charged multiplicity distribution from
L3 [1015] was included.

/L_2004/d59-x01-y01 1 # Charged multiplicity

3 Determination of nonperturbative correction factors and their dependence
on Monte Carlo modeling 12

In this contribution we discuss the influence of Monte Carlo modelling on the extraction and
calculation of nonperturbative correction factors. In particular we address the question whether
the choice of PDF sets and Monte Carlo models in the extraction of nonperturbative correction

12 J. Bellm, S. Kuttimalai
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factors may bias measurements in which the correction factors are used, e.g. PDF measurements
at the LHC. We determine the non perturbative factors for various settings and explain the
outcome in detail.

3.1 Introduction and Motivation
With an increasing amount of data being recorded and getting analyzed by the LHC experi-
ments, it becomes possible to perform measurements more and more differentially in the event
kinematics. This allows for the extraction of more information that can be used for a more
precise determinations of key quantities, like the parton distribution functions (PDFs) of the
proton.

At the same time, recent theoretical progress has lead to an increase in precision of fixed-
order calculations [2,129] which can, in many cases, be carried out at the next-to-next-to leading
order in the strong coupling constant. Using such high-precision calculations and more differen-
tial observables for PDF fits requires the application of corrections that capture nonperturbative
(NP) effects. They are not included in fixed-order calculations but their impact can be compa-
rable to the remaining fixed-order uncertainty.

Modern Monte Carlo event generators (MCEGs) typically operate only at the leading
order (LO) or the next-to-leading order (NLO) but supplement fixed-order calculations with an
all-order treatment of soft and collinear QCD radiation through parton shower (PS) simulations
and nonperturbative effects through models for hadronization and multiple parton interactions
(MPI). While hadronization models account for the nonperturbative transition of QCD partons
to observable colorless hadrons, MPI models account for the effect of interactions between the
beam remnants which generally lead to an increase of softer jet activity in the events.

In order to correct high-precision fixed-order calculations for NP effects correction factors
are often extracted MCEGs by performing separate runs with both hadronization and MPI
disabled and enabled. The ratios of the corresponding predictions are then applied to fixed-
order calculation as differential correction factors of the form

KONP = dσPS+HAD+MPI/ dO
dσPS/ dO , (VI.19)

where dσPS+HAD+MPI/dO is the MCEG prediction differential in observable O with parton
showering, hadronization, and MPI [705,1019] enabled and dσPS/ dO refers to the MCEG pre-
diction with hadronization and MPI disabled. Here O can be multi differential.

It can be shown that the NP corrections, defined in Eq. (VI.19), can be minimized by
a smart choice of the jet radius in the observable definition. This is due to the hadronization
correction and the MPI corrections exhibiting different scaling behaviors with R [1020]. While
decreasing the jet radius R leads to larger hadronization corrections, it decreases corrections
due to MPI. This can be intuitively understood since a large radius increases the chance of the
jet receiving contributions from uncorrelated MPI interactions. A very small jet radius, on the
other hand, leads to energy getting emitted outside of the jet cone in the transition from partons
to hadrons, thereby increasing the impact of hadronization corrections. An optimal cone size
can thus be chosen in order to minimize the sum MPI and hadronization effects.

When extracting PDFs from data it is crucial to ensure that the NP corrections discussed
above do not introduce any bias. In particular, the NP correction factors should be independent
of the PDFs and the MCEGs that were used to calculate them. In this note we study the
effect of different PDFs, MCEGs, and the perturbative order at which the MCEGs operate
(LO or NLO) on the the extracted NP factors and on the jet radius that minimizes the NP
corrections. In order to do so we choose the NNLO PDF4LHC recommendation and the LO pdf
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Fig. VI.15: Gluon and up-quark pdf ratio for the NNLO PDF set PDF4LHC15_nnlo_30 [597]
w.r.t. the leading order set NNPDF30_lo_as_0118 [422] this the same αS(MZ) = 0.118 value.

set from NNPDF30_lo_as_0118 as the ratio of gluon and quark pdfs can be large, see Fig. VI.15.
Despite the warning in [1021] and the discussion in [1022] we explicitly choose very diverse gluon
distributions to estimate an upper bound on the effect.

In [1023] it was shown that parton shower evolution is usually less effected by PDF vari-
ations and more by modifications of the strong coupling, for example. More parton shower
uncertainties have been studied in [501, 960]. Here we concentrate on the modification of the
NP part of the simulation.

3.2 Analysis and Observable
As a benchmark observable we use the inclusive jet transverse momentum pT at the LHC. It was
measured by the CMS collaboration for two different jet radii R = 0.4 and R = 0.7 in several bins
of jet rapidity [977]. For this purpose of the presented study we extended the corresponding
validated Rivet [500] analysis to include more radii in the range R ∈ [0.1, 0.2...1.1]. In this
analysis jets are defined using the anti-kT [661] jet algorithm. We perform our analysis for the
LHC operating at a center-of-mass energy of

√
s = 13 TeV.

3.3 Simulation Setup
For the extraction of NP correction factors we use the two general purpose MCEGs Herwig7
[584,700] and Sherpa [415]. For parton showering we use the Q̃-shower in Herwig7 [702] and the
CS dipole shower [491]. We calculate the hard scattering process of inclusive jet production at
LO or at NLO and use adaptations of the MC@NLO parton shower matching scheme [503] for
consistent combination with the parton showers. In the calculation of the hard scattering we set
the factorization and renormalization scales to µf = µr = HT /2, where HT is the scalar sum of
all parton transverse momenta in the event. The hadronization and MPI models implemented
in Sherpa are detailed in [415]. Herwig7’s models are documented in [825]. For the study of the
impact of PDFs we use the PDF4LHC15_nnlo_30 [597] and the NNPDF30_lo_as_0118 [422] sets
as implemented in LHAPDF [964]. We replace all PDFs sets used in the modelling (hard cross
section, parton shower, MPI and proton remnant handling) and all instances of strong coupling
constants to the cossesponding αS(MZ) = 0.118 value.

We would like to stress that our generator settings are not tuned to data but rather aligned
across both MCEGs for a comparison. The focus of this study is not the nominal NP correction
factor but rather it’s dependence on the parameters in the extraction.

3.4 Results
We start our discussion with results for the NP corrections for the differential inclusive jet
transverse momentum spectrum in bins of pseudorapidity y as obtained from MCEG runs using
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Fig. VI.16: Double differential cross section in transverse momentum and in intervals of rapidity.
Left panel shows the differential cross section. The ratio plots in the center and to the right
show the non perturbative factor for various jet opening angles RantiKT . While for small radii
hadronisation effects tend to remove energy from thin jets, for large radii the jets tend to collect
more MPI jets. Therefore the former get softer the latter harder. For broad jet definitions
(R > 0.8) even the generation cut is visible as the MPI addition allows to shift the cross section
drop off into the analysis region.

LO matrix elements for the hard scattering process calculation. As shown in Fig. VI.16 we
observe large negative NP corrections of the order of 10 % in the region of small pT when
choosing a small jet radius of R ≈ 0.1. The origin of these corrections is the energy that gets
radiated out of the jet in the process of hadronization, as discussed above. At large values of
R, we see large positive corrections of up to 20 % due to additional MPI radiation entering the
jets. At values of R ≈ 0.5 the NP corrections are minimized to the 1 % level. We note that
the dependence of NP effects on the pseudorapidity is very small and that NP effects generally
vanish at very large transverse momenta of the order of 1 TeV.

Having shown the qualitative features of the NP corrections themselves, we now turn to
the discussion of their dependence on the MCEG parameters used for the extraction. For this
purpose, we show the ratio of NP factors extracted with Herwig7 and Sherpa at leading order
in Fig. VI.17. The observed differences are below the 5 % level and most pronounced at small
jet radii. This suggests that the source of the small discrepancies are mainly differences in the
hadronization and parton shower models. In addition we note that there are differences at large
R > 0.8 and very small pT close to the analysis jet cut. We were able to trace these discrepancies
back to different event generation cuts on the leading jet transverse momentum, which was set to
90 GeV and 100 GeV for Sherpa and Herwig7, respectively. This effect is illustrated in Fig. VI.18,
where the event generation cuts are clearly visible as features in the NP factor. For larger jet
radii this effect gets washed out, thus extending it into the region shown in Fig. VI.17.

In Fig. VI.19 we show the impact of using a different PDF set. Hadronization corrections
can be expected to be independent of the PDF, as the hadronization models act only on final
state of partons after the full evolution through parton showers has terminated. Correspondingly,
we see barely any dependence on the PDF at small R where hadronization corrections dominate.
At large R, we see larger effects. This is to be expected since the MPI modelling, which mostly
affects large jet radii, crucially depends on the PDFs. We note, however, that MPI models are
typically tuned to data based on a specific PDF set. It is thus very likely that the observed
differences would have been much smaller, had we re-tuned the MPI models to the respective
PDFs. In that sense, the MPI models in MCEGs are to be understood as a ’postdiction’ or
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Fig. VI.17: Ratio of NP factors calculated using Herwig7 and Sherpa. With the setup in use the
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Fig. VI.18: Effect of event generation cuts on the NP factors. The cut on the leading jet
transverse momentum was set to 100 GeV and 90 GeV for Herwig7 and Sherpa, respectively

parametrization of MPI effects as measured in data.
In order to show how the optimal choice of R is affected by the variables considered in

this study, we quantify the overall size of NP corrections by the following measures

K(R) =
∫ ∣∣∣(KpT ,y

NP (R)− 1
)∣∣∣ θ(pmax

T − pT ) dpT dy . (VI.20)

Note that we do not apply a weight proportional to the double differential cross section
dσ/dpT dy in the definition above since we would like to minimize the NP corrections equally
well in the entire phase space. As shown in Fig. VI.20, the value of R that minimizes the NP
corrections we find13 is R ≈ 0.6 for Herwig and R ≈ 0.5 for Sherpa, and it is independent of
PDF or perturbative order within ∆R = 0.05.

3.5 Conclusions
In this contribution, we investigated the effect of PDF set choice and simulation setup used to
calculate nonperturbative correction factors. In order to do so, we chose strongly diverse PDFs

13Note that these can change with tuned values.
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Fig. VI.20: For the simulation setup as described in Sec. 3.3 we calculate the measure according
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by MC statistics.

and calculated for two different shower and hadronisation models as well as LO and NLO plus
parton shower simulations the NP factors. As expected we confirmed in this study that these
factors are only mildly affected by the choice of model parameters or the perturbative order.
The observed differences in the extracted NP factors are of the order of only 5 % relative to the
absolute value of the NP correction themselves. We found that jet radii of R ≈ 0.5−0.6 minimize
the NP corrections to the level of only a few percent and the phenomenlogical impact of the
differences in the extracted NP factors should therefore be very small. In addition we illustrated
that event generation matrix element cuts can have an impact on NP correction factors if the
opening angle of the jets allows the collection of much MPI activity.
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4 Is there room for improvement in the description of the gluon splitting to
heavy quarks? 14

We perform a comparison of three different Monte Carlo generators for a process involving B-
hadrons in the final state, with the aim of assessing to which extent NLO tools, based on a
4-flavour scheme, are successful in simulating kinematic configurations sensitive to the gluon
splitting to pair of (massive) b-quarks.

4.1 Introduction
The Monte Carlo modelling of processes featuring an heavy-quark pair in the final state, possibly
in association with an heavy color-singlet, has been, for several years, one of the open issues for
Monte Carlo developers.

Due to their large mass, top quarks are always treated differently with respect to the
other QCD partons, i.e. they are always simulated using exact matrix elements, and, nowadays,
whenever possible, this is done at NLO. Moreover, because of their large mass, it’s nearly
impossible for a parton shower algorithm to produce a top-quark pair from a gluon splitting,
hence, even in (multijet-merged) NLO+PS accurate predictions, the kinematics of top quarks
is, to a very large extent, dominated by the matrix-element description.

The situation is very different for bottom (and charm) quarks, and, in fact, one of the open
issues related to the treatment of heavy quarks in event generators has to do with processes where
b quarks are present. As detailed below, in this context one of the main problem is the modelling
of the g → QQ̄ splitting, especially when b-quarks are produced at small opening angles. It turns
out that this region is relevant in several LHC analysis, not only when precise SM measurements
are performed and compared with theory [1024–1028], but also when simulation tools become
necessary to simulate Higgs production (e.g. bb̄→ H [1029,1030]) or backgrounds with several b-
jets. An important example belonging to the latter category is the modelling of QCD production
of bb̄ pairs in association with vector bosons, which is one of the main backgrounds for measuring
associated Higgs-boson production with H → bb̄ decay. In this case in fact, complications arise
from double b-taggs in a single jets, which come from a collinear g → bb̄ which is only seen as one
jet. Similarly, it is known [913,917] that a proper description of the g → bb̄ splitting (with mass
effects) is very important for the simulation of tt̄+ b jets production, an irreducible background
for measurements of tt̄H production in the H → bb̄ channel.

In this short contribution we want to have a critical look at how well the production of final
states involving b-quarks is described, by means of a comparison among different generators, for
the production process pp→ bb̄.

4.2 Schematic outline of the problem
Broadly speaking, the problem of simulating processes with b quarks can be formulated as
follows: as the mass of the b quark (mb) is relatively small, a b-quark is a quasi-massless particle.
This means that, a priori, in the limitmb → 0, a parton shower algorithm is expected to simulate

14 J. A. McFayden, D. Napoletano, E. Re
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fairly well the kinematic regions dominated by the splitting g → bb̄. One should also notice that,
even in the limit mb → 0, the splitting g → bb̄ does not contain soft singularities, i.e. only a
single collinear logarithm is present (the splitting probability dPg→qq̄(q2, z, φ) is proportional to
dq2/q2, with q2 being the invariant mass, or the transverse momentum of the splitting).

When one needs to keep mb finite, it is natural to use a four-flavour (4F) scheme, that is, a
scheme where there are no PDF for b-quarks (and hence no hard processes initiated by b-quarks).
By using these matrix elements, power suppressed effects are, by definition, included, at the order
of the matrix-element used. For phenomenological reasons, one also allows off-shell gluons, in a
time-like shower, to split into massive b-pairs. This last step is intrinsically ambiguous, because
the splitting is now, strictly speaking, non-singular, whereas the basic principle underlying
parton shower algorithms is deeply connected to the logarithmic structure of QCD splittings.
These ambiguities are related to the treatment of the kinematics for a quasi-collinear splitting,
as well as to the choice of the renormalization scale µ at which the strong coupling is evaluated.
In modern parton showers, for massless splittings, the latter is chosen to be the transverse
momentum of the splitting itself, as this choice guarantees that (known) subleading logarithmic
terms are dynamically taken into account by the algorithm. As soon as the splitting contains
massive quarks, several constraints based on theoretical arguments are lifted, leaving room for
several a-priori legitimate choices [491,584,1031].

Despite the significant progress made in the last years to study and improve the simulation
of processes with b-quarks (or b-jets) in the final state [586, 1029, 1030, 1032, 1033], it’s not yet
clear what is the best strategy to treat the g → bb̄ splitting in final-state showers. For instance,
the results presented in Ref. [1034] or refs. [1026,1028] show that the data/theory agreement for
observables sensitive to the kinematics of g → bb̄ splitting is not always satisfactory, especially
when the splitting is quasi-collinear. It’s also worth noticing that this conclusion often applies
not only to simulations based on LO matrix elements, but also on NLO ones. In short, it is fair
to say that a better understanding of the aforementioned splittings is still needed.

In this contribution, we decided to make a small step forward, by performing a comparison,
as fair as possible, among different generators and by using different observables. In particular,
for the first time we will compare 4-flavour NLO predictions, matched to different parton showers,
for observables sensitive to the underlying process pp → bb̄ (+ jets) at the LHC. Data from a
recent ATLAS measurements will also be included. In the following sections, we describe the
tools used and the analysis considered, and comment on our findings. As we will observe, also for
NLO-accurate tools, differences are observed mostly when the dominant kinematics is collinear
g → bb̄ splitting, calling therefore for further investigations.

4.3 Settings
4.3.1 Measurements and analysis
Monte Carlo predictions are compared to a recent ATLAS measurement of the production of B-
hadron pairs in proton-proton collisions at

√
s = 8 TeV [1034]. The measurement considers the

B(→ J/ψ[→ µµ] +X)B(→ µ+X) decay mode where normalised differential cross sections are
measured for observables designed to be sensitive to the different B-hadron production modes.
For example, B-hadron production is measured as a function of ∆φ and ∆R =

√
∆η2 −∆φ2.

This includes measurement down to ∆R = 0, a region sensitive to gluon-splitting to bb̄. As de-
scribed above, these measurements can help developing more effective phenomenological models
for the g → QQ̄ splittings.

These are the parameters that we will focus on for the remainder of this study. The
predictions described below are analysed at B-hadron-level and the results are translated to the
3-muon-level via transfer functions provided by in Ref. [1034].
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A similar study was carried out in the context of [1], where many set-ups and generator
where compared against one another, and data, in the case of the associated production of a
vector boson Z,W with b-quarks. However in that case the most relevant effects where coming
from space-like (or initial state) splittings.

4.3.2 Configuration of event generators used
In the following we describe the generator setups used throughout. As we are mainly interested
in the region where the two b-flavoured objects are not widely separated, we expect kinematical
mass effects to play an important role. For this reason we chose to show only 4F scheme results.
In the 4F scheme, b-quarks are decoupled from the evolution of QCD, and can only appear as,
massive, final state particles as the result of a “hard” g → bb̄ splitting.

SHERPA–MEPS@NLO [925, 926]: pp → bb̄+ up to 3j, merging scale QCut = 20 GeV.
Renormalization, factorization and shower starting scales are set according to SHERPA’s default
choice. Each emission is clustered until a suitable core, 2→ 2, process is found. Scales appearing
in the fixed order matrix elements are calculated as

µR = µF = µQ = − 1√
2

(
s+ t+ u

s t u

)
, (VI.21)

while for each emission from the shower the scale appearing in αs, or in the Jacobian PDF ratio,
is set to be the kT of the splitting. Instead for the g → QQ̄ splitting the scales are set equal to
the invariant mass of the QQ̄ pair. Jets are clustered using the anti-kT [661] algorithm with a
pT cut of 5 GeV. Finally, results are obtained using the NNPDF30 NNLO PDF [422] set with
αs(mZ) = 0.118, the default choice in SHERPA.

MADGRAPH5_AMC@NLO [88]+Pythia8 [633]: MADGRAPH5_AMC@NLOv2.5.5 is used to
provide production of pp → bb̄ events at NLO in the 4-flavour scheme with massive b-quarks
that are subsequently showered by Pythia8.230. In the matrix element calculation a dynamical
renormalization and factorization scale, defined as the sum of the transverse masses divided by
two of all final state particles and partons, and the NNPDF30 NNLO PDF set with αs(mZ) =
0.118 are used. In Pythia8 the g → bb̄ splitting scale is “Option 1” as described in Ref. [1031]
which uses kT -based scale. The A14 tune [632] is used.

HERWIG7 [584, 700, 825]: HERWIG7.1 is used to provide pp → bb̄ events at NLO in the
4-flavour scheme with massive b-quarks. The MC@NLO matching scheme is used along with
the angular-ordered parton shower. In the matrix element calculation the maximum jet pT is
used for the renormalization and factorization scales, and the MMHT14 PDF set [601] with
αs(mZ) = 0.118 is used. The default HERWIG7 tune is used and the g → bb̄ splitting scale is
defined as the virtuality of the splitting.

4.4 Comparisons and discussion
Results described in the previous section, compared to experimental results are collected in
Fig. VI.21, where we show normalized distributions for the azimuthal angular separation ∆φ =
φ2 − φ1 between the J/ψ and the third muon in the azimuthal plane (top left), and the ∆R
distance among the same two final states, both in the inclusive case (top right), and for
pT (J/ψ, µ) ≥ 20 GeV (bottom). We start our discussions by noting that in all three plots
two regions can be identified: a matrix element region and a parton shower one. Leaving, for
a moment, the transition between the two regimes aside, it appears that while in the former
a good level of agreement is shown among the three Monte Carlo predictions15, and between

15modulo large statistical uncertainties
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Fig. VI.21: Top-left plot: ∆φ distance between the J/ψ and the third muon; Top-right plot:
∆R distance between the J/ψ and the third muon, in the fully inclusive case; Bottom plot: ∆R
distance for pT (J/ψ, µ) ≥ 20 GeV

Monte Carlo and data, the latter present visible discrepancies. The former statement is some-
how obvious: apart from scale and PDF choices there are not many places in which the three
generators can be much different. Note that scale/PDF variation bands are not shown, however
it is to be expected that they would cover the difference in the matrix element region, i.e. the
region ∆φ & 0.3, ∆R & 0.5.

On the other hand, in the shower dominated regime, one could argue that the spread in
Monte Carlos is a testament of the size of theory uncertainties. To see how such large difference
can come up, let us remind the reader that the splitting kernel for the g → QQ̄, that enters the
Sudakov form factor splitting can, symbolically, be written as [1031]

Pg→QQ̄ ∝
αs(X)

2π

P (mq=0)
g→qq̄ +

m2
Q

YQQ̄

 . (VI.22)

While the ambiguity in the exact choice of YQQ̄ is a genuine subleading contribution in the
shower, the actual value of X, while being formally higher order, can be quite large in specific

248



phase-space corners [1034], like the in the small ∆φ and ∆R region.
Crucially, the three shower implementations we compare here, as discussed in the previous

section, differ in the choice of both X and Y , and this is most likely the reason for the difference
displayed in the plots we show here.

4.5 Conclusions
In this study we have observed that even 4-flavour NLO computations for pp→ bb̄, matched to
parton showers, don’t describe very accurately the ∆R distribution among B-hadrons, in the
region that receives an important contribution from the kinematical conigurations associated to
a (quasi)-collinear g → bb̄ splittings. Given that all the simulations considered contain the same
(or very similar) perturbative accuracy at the level of hard matrix elements, it is very likely that
a large part of the observed disagreement can be attributed to the parton showering part. This
is also reflected by the spread of predictions obtained with different tools.

It would be highly desirable to perform further, dedicated studies to ameliorate the the-
oretical understanding of the g → bb̄ splitting, and/or to find processes and observables that
enhance the contribution of gluon splitting. In fact, having a better discrimination power among
different choices for the modelling of gluon splitting into heavy quarks seems necessary in order
to rule out some a-priori legitimate choices by means of a comparison with measured distribu-
tions. For instance the methods proposed in Ref. [1035] look very promising. We also note that
to better understand the mechanics of b-quark pair production in regimes important for H → bb̄
production, the pT dependence of g → bb̄ production would be important to measure. We hope
that our study will help as a motivation and starting point for future studies on this topic.
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