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Abstract. We report on the performance of a specialized processor capable of recon-

structing charged particle tracks in a realistic LHC silicon tracker detector, at the same

speed of the readout and with sub-microsecond latency. The processor is based on an in-

novative pattern-recognition algorithm, called “artificial retina algorithm”, inspired from

the vision system of mammals. A prototype of the processor has been designed, simu-

lated, and implemented on Tel62 boards equipped with high-bandwidth Altera Stratix III

FPGA devices. The prototype is the first step towards a real-time track reconstruction

device aimed at processing complex events of high-luminosity LHC experiments at 40

MHz crossing rate.

1 Introduction

With the luminosity increase expected at the Large Hadron Collider (LHC) in the next years, the

available amount of collected data will scale by more than one order of magnitude. For many years,

advancements in electronics technology (i.e. Moore’s law) were able to cover for most of bandwidth

increase due to higher luminosity and higher number of channels. However, this is not valid anymore,

and today’s technology advancements, when available, carry an additional development cost (compare

a simple clock speed increase to software development for multi-core CPU), while physics complexity

is still growing (luminosity, event pile-up, higher precision measurements). In some cases big steps

forward in algorithms and architectures are already required, but it will be the default when moving

to LHC Phase-2.

While in the past for one-collision events requirements on simple quantities (e.g. total calorimeter

energy, number of muons, high transverse-momentum tracks) were sufficient to lower the bandwidth,

multiple-collision events can contain interesting processes in almost any event, and different solutions,

like real-time reconstruction, need to be explored. Real-time reconstruction of charged particle trajec-

tories can help selecting events and reducing data size, but it will bring larger combinatorial problems,

that require higher parallelization to be solved within typical latencies. In the ’90s the Collider Detec-

tor at Fermilab (CDF) demonstrated the possibility to reconstruct in real-time two-dimensional tracks
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from clusters of aligned hits in a large drift-chamber [1]. The algorithm used by CDF was based on

matching hits in the detector with precalculated patterns, and an updated version of the same approach

is at the root of other current projects for LHC experiments [2, 3]. Performing a similar task at the

LHC crossing rate is very problematic, due to the large combinatorial and size of the associated data

flow that would require a massive network infrastructure and computing power. The ATLAS experi-

ment is implementing an updated version of the CDF algorithm [2], called Fast TracKer (FTK). The

typical number of clock cycles required by the FTK trigger to reconstruct an event is around 20,000,

while the same number for a low-level trigger at the high-luminosity LHC is estimated to be around

25, so this solution cannot be used at the first-level trigger. An alternative approach developed for

the CMS experiment is focused on reducing combinatorial locally at the detector level using pairs of

tracking layers at short distance (1-4 mm) [4]. The local readout electronic searches for pairs of hits

(called stubs), and sends out only the ones corresponding to tracks with transverse momentum greater

than 2 GeV/c.

A new pattern-matching methodology has been recently proposed under the name “artificial

retina” algorithm [5], inspired by the quick detection of edges in the visual cortex of mammals. Its

aim is to further increase the parallelism of the pattern-matching process and decrease the number

of stored patterns, to reduce latencies and hardware size. The purpose of the INFN-Retina project

described below is to explore the possibility of using the artificial retina algorithm for a detailed

tracking reconstruction at 40 MHz, compatible with the first step of online event selection at LHC,

at a reasonable cost. A hardware prototype based on already-existing FPGA readout boards is under

development, to explore the potential of this new approach in a realistic experimental environment,

albeit at lower rates. The main purpose of the prototype is to show the possibility of reconstructing

quality tracks using the same hardware resources that are normally required just for reading out the

raw hits.

2 The “artificial retina” algorithm

The “artificial retina” algorithm, elsewhere referred to as retina algorithm, was inspired by the first

stage of mammal vision. Recent experimental studies show that specific neurons, called receptive

fields, receive signals only from specific regions of the retina, in order to reduce the connectivity and

save bandwidth. The neurons are tuned to recognize a specific shape and the response is proportional

to how close are the stimulus shape and the shape for which the neuron is tuned to. Generated in

parallel, the responses of neurons are then interpolated to create a preview of image edges in about

25 ms, corresponding to about 25 clock cycles and perfectly matching the requirement for process-

ing an event mentioned above. Therefore those concepts of early vision can be used to realize a

viable highly-parallel implementation of an “analog” pattern-matching system, where each pattern is

assigned a continuous level of “matching”, rather than a simple binary response. The mathematical

aspects of the algorithm have some similarities with the “Hough transform” [6, 7], a method already

applied for finding lines in image processing; however, the main challenge here is the design of the

physical layout and the development of an implementation capable to sustain the event rate at high-

luminosity LHC experiments [8].

For configuring the algorithm, the space of track parameters is divided into cells, which mimic

the neurons connected to the receptive fields of the retina. The center of each cell corresponds to a

specific track in the detector that intersects the layers in spatial points called receptors. A first mapping

connects each cell with the receptors, as shown in Figure 1. For a group of contiguous cells, where

variations of track parameters are small, the corresponding receptors in the detector layers would

belong to a limited area. A second mapping, also shown in Figure 1, connects clusters of cells to
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Figure 1: Retina mappings for tracks on a plane without magnetic field, where tracks can be described

by two parameters u and v.
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Figure 2: Processing steps of track reconstruction with the artificial retina algorithm.

areas of the detector, and this information is recorded in a look-up-table (LUT). A commercial PC is

enough to generate the two mappings starting from simulated tracks.

The track reconstruction, to be implemented on high-speed FPGA devices, has three steps. During

step 1, also referred to as the switching step, detector hits are distributed only to a reduced number

of cells, according the LUT’s created in the configuration phase, as shown in Figure 2a. In step 2,

sketched in Figure 2b, for every incoming hit a Gaussian weight w is accumulated in each cell by a

logic unit called “engine”. The weight is proportional to the distance to the receptor and defines as

follows:

w = exp

⎛
⎜⎜⎜⎜⎝−

d2
l

2σ

⎞
⎟⎟⎟⎟⎠
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where dl is the distance, on the layer l, between the hit and the corresponding receptor, and σ is a

parameter of the algorithm, that can be adjusted to optimize the sharpness of the response of the re-

ceptors. After all the hits from the same event have been processed, in step 3 tracks can be identified

looking for local maxima of the accumulated weight over the cell’s grid. For a track resolution similar

to offline reconstruction, the grid does not require a high granularity, because significantly better pre-

cision can be obtained by computing the centroid of the accumulated weights for the cells surrounding

each maximum, as shown in Figure 2c.

Compared to other algorithms, the retina method takes advantage of two levels of parallelization.

First, each cell processes in parallel hits from a limited region of the detector, reducing the required

input bandwidth for the single cell. Moreover, if time information is associated to every hit and

weights are accumulated separately for a small number of consecutive events, events can be processed

simultaneously. The latter allows to feed data continuously to each cell, because cells are not receiving

the same number of hits for every event.

Another important feature is the total system bandwidth: the bandwidth increases significantly

during the hit distribution, because multiple copies of the same hit can be produced, but shrinks down

when only the information about local maxima is kept in the last step. The larger bandwidth can be

physically managed only because it is limited to one stage of the system. Curiously, a similar behavior

of the bandwidth is found in the first stage of mammal vision as well.

3 Architecture of the track processing unit

The implementation of the retina algorithm on a real device is called track processing unit (TPU).

The first step of the algorithm is achieved using a switching network able to redirect hits from the

readout module to any engine of the system. The network increases the global bandwidth making

multiple copies of hits, but it never sends a hit to all the engines, reducing the input bandwidth for

them. The network is assembled using basic 2-way dispatchers (2d) with two inputs and two outputs:

data on any input can be redirected to any output using two splitters and two mergers, as shown in

Figure 3a. To implement a dispatcher with 2n inputs/outputs, shown in Figs. 3b and 3c, we need N
2-way dispatchers connected together, where

N(n) = 2N(n − 1) + 2n−1.

The dispatchers work as a pipeline and the latency is proportional to n. The space parameters grid is

divided into matrices of engines that fit inside a single device. Maxima can be found on any cell of

the grid keeping a one-cell overlap between the matrices. The switching network can be easily scaled

adding enough inputs to receive data from the readout modules and outputs to transfer data to all the

devices used for the engines.

The best device to implement a prototype of the TPU system is FPGA, due to their high flexi-

bility, and shorter time for designing and test compared to standard ASIC devices. Moreover, FPGA

performances are still increasing at a steady pace, taking advantage of new silicon technology (14-16

nm), increasing the number of logic elements (up to 5.5 millions), and including faster connection

technology (up to 30 Gbit/s on a single serial link). After testing the system performances on FPGA,

the firmware can be always transferred on ASIC devices for mass production. Preliminary studies

shows that a TPU system for a modern detector can be implemented using 128 FPGA devices [9], and

detailed numbers for the estimated resources and cost are reported on Table 1. All the required devices

are already available on the market, and devices available in few years can improve the performances

by a factor ten.
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Figure 3: Schemes of dispatchers with 2, 4, and 8 inputs/outputs.

4 First prototype design

4.1 Geometry details and simulation studies

To validate the algorithm and measure its performances, a TPU prototype was designed to reconstruct

tracks in a small tracker. A telescope with six single-coordinate layers (50 cm long, 20 cm wide) and

no magnetic field [10], shown in Figure 4, was used as model. Any track going through the telescope

has been parametrized with two variables: the x coordinates on the first and last layer, below referred

to as u and v. The GEANT4 simulation of the tracker [10] shows that real tracks are likely to be along

z-axis, corresponding to the region around the diagonal in the u-v-plane.

Fundamental design parameters of the system are: the minimum number of cells needed to cover

the space parameters and to obtain track resolution; the size and inter-connectivity of the system. The

retina algorithm for the telescope was simulated using a C++ emulator [9], showing that resolution

and efficiency similar to offline tracking systems can be achieved using only 3,000 cells to cover the

diagonal region mentioned above. The emulator was also used to compute the switching network

configuration, and as debugging tool, providing data at different stages of processing. The prototype
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Table 1: Estimation of resources and cost for a track processing unit that can reconstruct tracks in a

modern HEP detector at LHC.

crossing frequency 40 MHz HL-LHC design

# of layers 10 2 in fringe B field

number of hits per layer per crossing 300 Lumi = 1033-1034cm−2s−1

number of bits per hit 40 bits 2D pixels + time

total hit bandwidth 5 Tbit/s (readout)

number of engines 50k 1/20 of precalculated patterns used by CDF

engines per FPGA 800

number of FPGAs (1M logic elements) 64+64 switch + engine boards

links per FPGA 64 @10 Gbit/s (standard)

max total bandwidth 40 Tbit/s max 8 copies per hit

clock speed 500 MHz

cycles to process one event 150+350 switching + engine steps

latency 1μs

number of events in pipeline 16

cost 1 Me 5 ke switch FPGA, 10 ke engine FPGA

z

x

u

v

Figure 4: Sketch of the 6-layer telescope used for the prototype, showing also the two parameters u
and v used to represent a track.

was designed to be implemented on a currently-available electronic board (see description below) that

includes several large and high-bandwidth FPGA devices. The diagonal region in the u-v-plane was

covered using matrices of cells, each one of them fitting inside a single device of the chosen board.

The matrices in different devices overlap by one cell to be able to find local maxima in all the cells.
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Figure 5: Architecture of the first prototype using Tel62 boards.

4.2 Board details

The board Tel62, developed by INFN Pisa for the NA62 experiment [11], was chosen to implement

the TPU prototype because it carries multiple large and high-bandwidth FPGA chips and provides

fast interconnection between them. The board includes four Stratix III chip for data processing, each

with approximately 200k logic elements. Each chip is connected through a high-speed link (10 Gbit/s)

to a master chip (another Stratix III) that collects the processed data and controls the other FPGAs.

The main clock is 40 MHz, while the processing internal to the FPGAs is done at 160 MHz. Each

processing chip is connected to a 2 Gbyte DDR2 RAM through a high-speed bus (40 Gbit/s), to a

mezzanine connector that can host various interface cards for I/O (5 Gbit/s), and to the neighbouring

FPGAs (2.5 Gbit/s). The master FPGA is also connected to a mezzanine card with four Ethernet ports

(2.5 Gbit/s). Implemented on an embedded PC that sits on the board, a slow-control interface can be

used to monitor all the devices and to perform various standalone tests.

4.3 Algorithm implementation

The Tel62 board is designed for a standard DAQ system, where bandwidth typically reduces following

the data-flow (only selected data move to the next step) and data streams do not have many connec-

tions between all of them. In any TPU system, however, the bandwidth increases in the first step

and data have to be exchanged also laterally within the switching network. Therefore, two boards

were connected together: the data-flow was reversed in the first one, where the switching network

was implemented (switch board), and a newly designed interface card was used to connect a second

board, where the processing engines were implemented (Engine board), as shown in Figure 5. This

configuration is fully consistent with the implementation of the system proposed in Ref. [9], so the

prototype results are meaningful for future applications to real detectors.

The processing engine is implemented in a fully pipelined mode, so each engine can receive one

hit for each clock cycle [12]. All the engines in a chip receive the same hit sequence and, after a special

end-event (EE) hit is received, engine values are copied to the following stage where the search for

local maxima starts, while the next hit sequence enters. The latency between the input of EE hit and

the output of maximum data is fixed. As explained in more detail below, we fit approximately 200
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engines on each Stratix III device (EP3SL200F1152), therefore 16 chips, corresponding to four pairs

of Tel62 boards, are enough to implement the whole system.

4.4 Hardware development details

The firmware for the different FPGA chips on the boards was developed using the software “HDL

Designer” by Mentor Graphics and the Altera specific software “Quartus II”. Most of the firmware is

written in VHDL using generic components configurable through parameters, so they can easily be

reused for systems on larger devices. The same firmware is loaded into all the four chips on the boards,

so specific values for engine receptors and switching network LUT’s have to be loaded through the

slow control and stored on internal RAM’s.

The firmware for the switch board chips is based on a 4d dispatcher block with four inputs and

four outputs already described above. Each splitter in the basic 2d dispatcher copies the input data

to zero, one, or both outputs, according to a 2-bit LUT value based on the hit coordinate and layer.

Additional logic is also required to implement the correct propagation of EE hits: generated by the

readout, they arrive separately on each input, and, after the switching step, hit sequences on each

output have to contain all the appropriate hits from the event, tailed by a single EE hit. Each of the

four switching block outputs corresponds to a different chip on the engine board. Because each engine

chip is connected only to one switch chip, all the switch outputs between chips are properly redirected,

using the lateral connections or through the master chip. Then, the data streams are merged from the

redirected switch outputs and transferred to the engine board through the interface card, as shown in

Figure 5.

The firmware for the processing chips of the engine boards is based on a matrix of engines. Each

engine completely surrounded by other ones has additional logic to check if the accumulated value is

greater than the first neighbors one. The maximum search requires a large number of interconnections

between engines, limiting the number of engines that can be fit in our Stratix III FPGA to a 16x15

matrix1. A priority encoder manages the serial transfer of resulting maxima to a single output FIFO.

Due to the reduced bandwidth achieved at this stage, maxima from all the processing chips are moved

to the master chip, and then sent out to a PC through the Ethernet connectors.

5 First results

The prototype is an advanced stage of development and some tests were already performed on a

switch board connected to an engine board. The basic firmware for all the system devices has been

written and the logic behavior verified using the “ModelSim” software by Mentor Graphics. Simple

hit sequences were loaded on internal FIFO’s of the switch board chips, and the hits were correctly

dispatched to the proper output channels, together with the EE flags. During these tests, all the logic

for the switching, internal and between chips, was running properly at the maximum clock rate of the

board (160 MHz). The data transmission between the switch and engine boards was successfully run

at 80 MHz, using two data channels for each interface card pair. Hit sequences were also loaded on

the input FIFO of the engine chip: the hits were processed and the correct maxima data were received

by the readout PC through Ethernet connection. Also here the internal logic for the engine is running

properly at 160 MHz clock rate. Because the engine input latency is proportional to the number of

hits in the sequence and having hit sequences for realistic events with an average of 70 hits per layer,

the maximum rate sustainable by the engine board is 1.8 MHz with a latency smaller than 1μs. The

final integration and tests of the firmware are currently ongoing.

1The place and route tools from Quartus II report 90% of resources used on our specific device.
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6 Future plans

After validating the algorithm and measuring its performances for a small tracker with available

boards, another prototype will be built in the next months to test the TPU performances with data

from a 3D tracker partially inserted in a magnetic field. For this geometry the algorithm requires three

additional parameters to describe a track, but considering a parameter space with five dimensions will

increase too much the number of cells. If variations for some parameters can be approximated to small

perturbations, we can factorize the parameter space into the product of two subspaces [9]. Therefore

we perform the full pattern recognition using only a two-dimensional grid for two parameters, and

then extract the other ones using lateral cells (six of them for each cell of the main grid) that represent

a track with the same values for the first two parameters and slightly different ones for the remaining

three. The lateral cells and the computation of 3D distances require additional logic, so the engine

implementation has to be extended and the maximum number of engines fitting in one chip has to be

updated. The fundamental parameters of the prototype are the minimum clock speed to reconstruct

tracks at LHC Run3 rate, and the size and throughput of the FPGA device needed to implement the

system. The prototype will consist only of a basic unit of the system implemented on an ASIC proto-

typing board with two very large and very high-bandwidth FPGA’s. Multiple connections between the

two devices will allow to test different configurations, e.g. a standalone switching network connected

to a standalone engine matrix, both receiving data at full speed prepared using the algorithm emulator.

7 Conclusions

Computing and storage available for future experiments at high-luminosity LHC will not be able to

cope with the increase of data rate, therefore more processing will have to be performed “online” to

reduce event rate and size. The methods already employed for data triggering may not scale well and

alternative advanced solutions should be explored, like the “artificial retina” algorithm, that exploits

higher degrees of parallelization and provides analog response. The INFN-Retina project aims to

demonstrate the feasibility at reasonable cost of a system based on this algorithm able to reconstruct

tracks at rates expected for LHC Run3. A first, sizable hardware prototype of a retina tracking system

with 3,000 patterns is under advanced development, based on already existing FPGA readout boards.

First results show the track-processing system based on our algorithm is feasible, and essential steps

are successfully implemented on the real board at the nominal clock speed. The system is capable

of reconstructing tracks at a 1.8 MHz event rate, using boards that had originally been designed for

1 MHz readout-only functionality. Moreover, the requested additional hardware to implement the

tracking functionality is also comparable with respect to what is needed for the readout-only function.

Performances mentioned above are expected to be easily scalable to higher speeds, as much larger and

faster FPGA devices are already available today on the commercial market, and another prototype to

perform speed test is expected to be built in the next months. Further developments and synergies

with fast and smart tracking detector may lead to future experiments with detector-embedded data

reconstruction.
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