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1. Introduction

In the Standard Model, SM, transition rates of semileptonic processes such as di → ujℓν,

with di (uj) being a generic down (up) quark, can be computed with high accuracy in terms

of the Fermi coupling GF and the elements Vji of the Cabibbo-Kobayashi Maskawa (CKM)

matrix [1]. Measurements of the transition rates provide therefore precise determinations

of the fundamental SM couplings.

A detailed analysis of semileptonic decays offers also the possibility to set stringent

constraints on new physics scenarios. While within the SM all di → ujℓν transitions are

ruled by the same CKM coupling Vji (satisfying the unitarity condition
∑

k |Vik|2 = 1) and

GF is the same coupling appearing in the muon decay, this is not necessarily true beyond

the SM. Setting bounds on the violations of CKM unitarity, violations of lepton universality,

and deviations from the V −A structure, allows us to put significant constraints on various

new-physics scenarios (or eventually find evidences of new physics).

In the case of leptonic and semileptonic K decays these tests are particularly signifi-

cant given the large amount of data recently collected by several experiments: BNL-E865,

KLOE, KTeV, ISTRA+, and NA48. These data allow to perform very stringent SM tests

which are almost free from hadronic uncertainties (such as the µ/e universality ratio in

Kℓ2 decays). In addition, the high statistical precision and the detailed information on

kinematical distributions have stimulated a substantial progress also on the theory side:

most of the theory-dominated errors associated to hadronic form factors have recently been

reduced below the 1% level.

An illustration of the importance of semileptonic K decays in testing the SM is provided

by the unitarity relation

|Vud|2 + |Vus|2 + |Vub|2 = 1 + ǫNP . (1.1)
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Here the Vji are the CKM elements determined from the various di → uj processes, having

fixed GF from the muon life time: Gµ = 1.166371(6) × 10−5GeV−2 [2]. ǫNP parametrizes

possible deviations from the SM induced by dimension-six operators, contributing either

to the muon decay or to the di → uj transitions. By dimensional arguments we expect

ǫNP ∼ M2
W /Λ2

NP, where ΛNP is the effective scale of new physics. The present accuracy on

|Vus|, which is the dominant source of error in (1.1), allows to set bounds on ǫNP around

0.1% or equivalently to set bounds on the new physics scale well above 1 TeV.

In this note we report on progress in the verification of the relation (1.1) as well as

on many other tests of the SM which can be performed with leptonic and semileptonic

K decays. The note is organized as follows. The phenomenological framework needed to

describe Kℓ3 and Kµ2 decays within and beyond the SM is briefly reviewed in Section 2.

Section3 is dedicated to the combination of the experimental data. The results and the

interpretation are presented in Section 4.

2. Theoretical framework

2.1 Kℓ3 and Kℓ2 rates within the SM

Within the SM the photon-inclusive Kℓ3 and Kℓ2 decay rates are conveniently decomposed

as [3]

Γ(Kℓ3(γ)) =
G2

F m5
K

192π3
CKSew |Vus|2f+(0)2 Iℓ

K(λ+,0)
(

1 + δK
SU(2) + δKℓ

em

)2
, (2.1)

Γ(K±
ℓ2(γ))

Γ(π±
ℓ2(γ))

=

∣

∣

∣

∣

Vus

Vud

∣

∣

∣

∣

2 f2
KmK

f2
πmπ

(

1 − m2
ℓ/m

2
K

1 − m2
ℓ/m

2
π

)2

× (1 + δem) , (2.2)

where CK = 1 (1/2) for the neutral (charged) kaon decays, Iℓ
K(λ+,0) is the phase space

integral that depends on the (experimentally accessible) slopes of the form factors (generi-

cally denoted by λ+, 0), and Sew = 1.0232(3) is the universal short-distance electromagnetic

correction computed in Ref. [4]. The channel-dependent long-distance electromagnetic cor-

rection factors are denoted by δem and δKℓ
em . In the Kℓ2 case δem = −0.0070(35) [5, 6], while

the four δKℓ
em are given in Table 1, together with the isospin-breaking corrections due to

mu 6= md, denoted by δK
SU(2).

The overall normalization of the Kℓ3 rates depends upon f+(0), the K → π vector

form factor at zero momentum transfer [t = (pK − pπ)2 = 0]. By convention, f+(0) is

defined for the K0 → π− matrix element, in the limit mu = md and αem → 0 (keeping

kaon and pion masses to their physical value). Similarly, fK/fπ is the ratio of the kaon

and pion decay constants defined in the mu = md and αem → 0 limit. The values of these

hadronic parameters, which represent the dominant source of theoretical uncertainty, will

be discussed in Sect. 4.2.

The errors for the Kℓ3 electromagnetic corrections, given in Table 1, have been obtained

within ChPT, estimating higher-order corrections by naive dimensional analysis [7, 8].

Higher-order chiral corrections have a minor impact in the breaking of lepton universality.
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δK
SU(2)(%) δKℓ

em (%)

K0
e3 0 +0.57(15)

K+
e3 2.36(22) +0.08(15)

K0
µ3 0 +0.80(15)

K+
µ3 2.36(22) +0.05(15)

Table 1: Summary of the isospin-breaking corrections factors [7, 8]. The electromagnetic correc-

tions factors correspond to the fully-inclusive Kℓ3(γ) rate.

The errors are correlated as given below:










1.0 0.1 0.8 −0.1

1.0 −0.1 0.8

1.0 0.1

1.0











. (2.3)

2.2 Parametrization of Kℓ3 form factors

The hadronic K → π matrix element of the vector current is described by two form factors

(FFs), f+(t) and f0(t), defined by

〈π− (k) |s̄γµu|K0 (p)〉 = (p + k)µf+(t) + (p − k)µf−(t)

f−(t) =
m2

K − m2
π

t

(

f0(t) − f+(t)
)

(2.4)

where t = (p − k)2. By construction, f0(0) = f+(0).

In order to compute the phase space integrals appearing in Eq. (2.1) we need ex-

perimental or theoretical inputs about the t-dependence of f+,0(t). In principle, Chiral

Perturbation Theory (ChPT) and Lattice QCD are useful tools to set theoretical con-

straints. However, in practice the t-dependence of the FFs at present is better determined

by measurements and by combining measurements and dispersion relations.

In the physical region,
(

m2
ℓ < t < (mK − mπ)2

)

, a very good approximation for the

FFs is given by a Taylor expansion up to t2 terms

f̃+,0(t) ≡
f+, 0(t)

f+(0)
= 1 + λ′

+,0

t

m2
π

+
1

2
λ′′

+,0

(

t

m2
π

)2

+ . . . . (2.5)

Note that t = (pK − pπ)2 = m2
K + m2

π − 2mKEπ, therefore the FFs depend only on Eπ.

The FF parameters can thus be obtained from a fit to the pion spectrum which is of the

form g(Eπ) × f̃(Eπ)2. Unfortunately t is maximum for Eπ = 0, where g(Eπ) vanishes.

Still, experimental information about the vector form factor f̃+ measured both from

Ke3 and Kµ3 data are quite accurate and so far superior to theoretical predictions. A

pole parametrization, f̃+(t) = M2
V /(M2

V − t), with MV ∼ 892 MeV corresponding to the

K∗(892) resonance and which predicts λ′′
+ = 2(λ′

+)2, is in good agreement with present data

(see later). Improvements of this parametrization have been proposed in Refs. [9, 10, 11].

For instance, in Ref. [11], a dispersive parametrization for f̃+, which has good analytical

and unitarity properties and a correct threshold behavior, has been built.
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The situation for the scalar form factor f̃0(t) is more complex. For kinematical reasons

f0(t) is only accessible from Kµ3 data and one has to deal with the correlations between

the two form factors. Moreover, for f0(t), the curvature λ′′
0 cannot be determined from the

data and different assumptions for the parametrization of f̃0 such as linear, quadratic or

polar lead to different results for the slope λ′
0 which cannot be discriminated from the data

alone. In turn, these ambiguities induce a systematic uncertainty for Vus, even though data

for partial rates by itself are very accurate. For this reason, the parametrization used has

to rely on theoretical arguments being as model-independent as possible and allowing to

measure at least the slope and the curvature of the form factor.

2.2.1 Dispersive constraints

The vector and scalar form factors f+,0(t) in Eq. (2.4) are analytic functions in the complex

t–plane, except for a cut along the positive real axis, starting at the first physical threshold

tth = (mK + mπ)2, where they develop discontinuities. They are real for t < tth.

Cauchy’s theorem implies that f+,0(t) can be written as a dispersive integral along the

physical cut

f+,0(t) =
1

π

∞
∫

tth

ds′
Imf+,0(s

′)

(s′ − t − i0)
+ subtractions , (2.6)

where all possible on-shell intermediate states contribute to its imaginary part ImFk(s
′). A

number of subtractions is needed to make the integral convergent. Particularly appealing

is an improved dispersion relation recently proposed in Ref. [12] where two subtractions are

performed at t = 0 (where by definition, f̃0(0) ≡ 1) and at the so-called Callan-Treiman

point tCT ≡ (m2
K − m2

π) leading to

f̃0(t) = exp

[

t

tCT

(

ln
(

f̃0(tCT )
)

− G(t)
)

]

(2.7)

with G(t) =
tCT (tCT − t)

π

∫ ∞

tth

ds′

s′
φ(s′)

(s′ − tCT ) (s′ − t − iǫ)
,

assuming that f̃0(t) has no zero. Here φ(x), the phase of f̃0(t), can be identified in the

elastic region with the S-wave, I = 1/2 Kπ scattering phase, δKπ(s), according to Watson

theorem.

A subtraction at tCT has been performed because the Callan-Treiman theorem implies

f̃0(tCT ) =
fK

fπ

1

f+(0)
+ ∆CT , (2.8)

where ∆CT ∼ O(mu,d/4πFπ) is a small quantity. ChPT estimates at NLO in the isospin

limit [15], obtain

∆CT = (−3.5 ± 8) × 10−3 , (2.9)

where the error is a conservative estimate of the high-order corrections to the expansion

in light quark masses [16]. A complete two-loop evaluation of ∆CT , consistent with this

estimate, has been recently presented in Ref. [17].
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Hence, with only one parameter, f̃0(tCT ), one can determine the shape of f̃0 by fitting

the Kµ3 decay distribution with the dispersive representation of f̃0(t), Eq. (2.7). Then, we

can deduce from Eq. (2.7) the three first coefficients of the Taylor expansion, Eq. (2.5), see

Ref. [12]:

λ′
0 =

m2
π

∆Kπ

[

ln
(

f̃0(tCT )
)

− G(0)
]

=
m2

π

∆Kπ

[

ln
(

f̃0(tCT )
)

− 0.0398(40))
]

, (2.10)

λ′′
0 = (λ′

0)
2 − 2 m4

π/tCT G′(0) = (λ′
0)

2 + (4.16 ± 0.50) × 10−4 , (2.11)

λ′′′
0 = (λ′

0)
3 − 6 m4

π/tCT G′(0) λ′
0 − 3m6

π/tCT G′′(0)

= (λ′
0)

3 + 3 (4.16 ± 0.50) × 10−4 λ′
0 + (2.72 ± 0.11) × 10−5. (2.12)

Furthermore, thanks to Eq. (2.8), measuring f̃0(tCT ) provides a significant constraint on

fK/fπ/f+(0) limited only by the small theoretical uncertainty on ∆CT . As we will discuss in

Section 4.2.3, this represents a powerful consistency check of present lattice QCD estimates

of fK/fπ and f+(0).

A similar dispersive parametrization for the vector form factor has been proposed in

Ref. [11] with two subtractions performed at t = 0. This leads to:

f̃+(t) = exp
[ t

m2
π

(Λ+ + H(t))
]

, where H(t) =
m2

πt

π

∫ ∞

tKπ

ds

s2

ϕ(s)

(s − t − iǫ)
. (2.13)

In the elastic region, the phase of the vector form factor, ϕ(s), equals the I = 1/2, P-wave

Kπ scattering phase.

Additional tests can be performed using the expression for the scalar form factor f0(t)

at order p6 in ChPT [18]:

f0(t) = f+(0) + ∆(t) +
(fK/fπ − 1)

m2
K − m2

π

t +
8

f4
π

(2Cr
12 + Cr

34) (m2
K + m2

π)t− 8

f4
π

Cr
12 t2 , (2.14)

where

f+(0) = 1 + ∆(0) − 8

f4
π

(Cr
12 + Cr

34)(m
2
K − m2

π)2 (2.15)

λ′
0 = 8

m2
π

(

m2
π + m2

K

)

f4
π f+(0)

(2Cr
12 + Cr

34) +
m2

π

m2
K − m2

π

(

fK

fπ

1

f+(0)
− 1

f+(0)

)

+ m2
π

∆
′
(0)

f+(0)

λ′′
0 = −16

m4
π

f4
π f+(0)

Cr
12 + m4

π

∆
′′
(0)

f+(0)

Here ∆(t) is a function which receives contributions from order p4 and p6, but like ∆(0) it

is independent of the Cr
i , and the order p4 chiral constants Lr

i only appear at order p6. ∆(t)

and ∆(0) have been evaluated in the physical region in Ref. [18] using for the Lr
i values a

fit to experimental data. An analysis has been presented in ref. [19]. However, the fit has

to be reconsidered in light of the new experimental results as for instance considering the

new Kℓ4 analysis from NA48 and the updated value of fK/fπ.
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2.2.2 Analyticity and improved series expansion

Armed only with the knowledge that the form factor is analytic outside the cut on the real

axis, analyticity provides powerful constraints on the form factor shape without recourse

to model assumptions. In particular, by an appropriate conformal mapping, the series

expansion (2.5) necessarily “resums” into the form

f(t) =
1

φ
(a0 + a1z + a2z

2 + . . .) , (2.16)

where φ is an analytic function and

z(t, t0) =

√
tth − t −√

tth − t0√
tth − t +

√
tth − t0

(2.17)

is the new expansion parameter. In this “z expansion”, the factor z(t, t0) sums an infinite

number of terms, transforming the original series, naively an expansion involving t/t+ .

0.3, into a series with a much smaller expansion parameter. For example, the choice

t0 = tth(1 −
√

1 − (m2
K − m2

π)/tth) minimizes the maximum value of z occurring in the

physical region, and for this choice |z(t, t0)| . 0.047.

The function φ and the number t0 may be regarded as defining a “scheme” for the

expansion. The expansion parameter z and coefficients ak are then “scheme-dependent”

quantities, with the scheme dependence dropping out in physical observables such as f(t).

For the vector form factor, a convenient choice for φ is

φF+(t, t0, Q
2) =

√

1

32π

z(t, 0)

−t

(

z(t,−Q2)

−Q2 − t

)3/2

×
(

z(t, t0)

t0 − t

)−1/2(z(t, t−)

t− − t

)−3/4 t+ − t

(t+ − t0)1/4
. (2.18)

This choice is motivated by arguments of unitarity, whereby the coefficients can be bounded

by calculating an inclusive production rate in perturbation theory [23]. In fact, a much

more stringent bound is obtained by isolating the exclusive Kπ production rate in the

vector channel from τ decay data [22]. This enforces [20]

∞
∑

k=0

a2
k

a2
0

. 170 . (2.19)

With this choice of φ, and Q2 = 2GeV2, a convenient choice for t0 is t0 = 0.39 (mK −mπ)2.

This choice eliminates correlations in shape parameters a1/a0 and a2/a0.

The bound on the expansion coefficients can be used to bound errors on physical

quantities describing the form factor shape, as discussed below in Sect. 3.5. A similar

expansion can be used for the scalar form factor. Note that error estimates based on (2.19)

are conservative—no single coefficient is likely to saturate the bound. Also, this bound is a

maximum taken over different schemes; more stringent bounds for particular schemes can

be found in [20].
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In addition to the direct applications in Kℓ3 decays, it is important for other purposes

to constrain the first few coefficients in (2.16), and check whether the series converges as

expected. Kℓ3 decays provide a unique opportunity to do this. For example, the same

parameterization can be used to constrain the form factor shape in lattice calculations

of f(0), with the threshold tth adjusted to the appropriate value for the simulated quark

masses. Measurements of ak in the kaon system can similarly be used to confirm scaling

arguments that apply also in the charm and bottom systems [21].

2.3 Kℓ3 and Kℓ2 decays beyond the SM

2.3.1 The s → u effective Hamiltonian

On general grounds, assuming only Lorentz invariance and neglecting effective operators

of dimension higher than six, ∆S = 1 charged-current transitions are described by 10

independent operators:

H∆S=1
su = −GF√

2
Vus

[

cV
LL(s̄γµLu)(ν̄γµLℓ) + cV

LR(s̄γµLu)(ν̄γµRℓ)

+ cV
RL(s̄γµRu)(ν̄γµLℓ) + cV

RR(s̄γµRu)(ν̄γµRℓ)

+ cS
LL(s̄Lu)(ν̄Lℓ) + cS

LR(s̄Lu)(ν̄Rℓ)

+ cS
RL(s̄Ru)(ν̄Lℓ) + cS

RR(s̄Ru)(ν̄Rℓ)

+cT
LL(s̄σµνLu)(ν̄σµνLℓ) + cT

RR(s̄σµνRu)(ν̄σµνRℓ)
]

+ h.c. (2.20)

where L = (1− γ5) and R = (1+ γ5). Defining this Hamiltonian at the weak scale, the SM

case corresponds to cV
LL(M2

W ) = 1 and all the other coefficients set to zero. The universal

electromagnetic correction factor Sew appearing in Eq. (2.1) describes the evolution of cV
LL

to hadronic scales: cV
LL(M2

ρ )/cV
LL(M2

W ) = 1+(Sew − 1)/2 ≈ S
1/2
ew . A similar expression can

also be written for the Hamiltonian regulating u → d transitions.

In the case of K → π ℓ ν decays only six independent combinations of these operators

have a non-vanishing tree-level matrix element:

A(K → πℓν) =
GF√

2
Vus

〈

πℓν

∣

∣

∣

∣

cV (s̄γµu)(ν̄γµℓ) + cA(s̄γµu)(ν̄γµγ5ℓ)

+
mℓ

MW
cS(s̄u)(ν̄ℓ) + i

mℓ

MW
cP (s̄u)(ν̄γ5ℓ)

+
msmℓ

M2
W

cT (s̄σµνu)(ν̄σµνℓ) +
msmℓ

M2
W

cT
γ5

(s̄σµνu)(ν̄σµνγ5ℓ) + h.c.

∣

∣

∣

∣

K

〉

(2.21)

where

cV = +(cV
LL + cV

RL + cV
LR + cV

RR) , (2.22)

cA = −(cV
LL + cV

RL − cV
LR − cV

RR) , (2.23)

cS = +(cS
LL + cS

RL + cS
LR + cS

RR)MW /mℓ , (2.24)
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icP = −(cS
LL + cS

RL − cS
LR − cS

RR)MW /mℓ , (2.25)

cT = 2(cT
LL + cT

RR)M2
W /(mℓms) , cT

γ5
= −2(cT

LL − cT
RR)M2

W /(mℓms) . (2.26)

Similarly, in the K → ℓν case the independent structures are

A(K → ℓν) = −GF√
2
Vus

〈

ℓν

∣

∣

∣

∣

kV (s̄γµγ5u)(ν̄γµℓ) + kA(s̄γµγ5u)(ν̄γµγ5ℓ)

+
mℓ

MW
kS(s̄γ5u)(ν̄ℓ) +

mℓ

MW
kP (s̄γ5u)(ν̄γ5ℓ) + h.c.

∣

∣

∣

∣

K

〉 (2.27)

where

kV = −(cV
LL − cV

RL + cV
LR − cV

RR) , (2.28)

kA = +(cV
LL − cV

RL − cV
LR + cV

RR) , (2.29)

kS = −(cS
LL − cS

RL + cS
LR − cS

RR)MW /mℓ , (2.30)

kP = +(cS
LL − cS

RL − cS
LR + cS

RR)MW /mℓ . (2.31)

On general grounds, new degrees of freedom weakly coupled at the scale ΛNP are ex-

pected to generate corrections of O(M2
W /Λ2

NP) to the Wilson coefficients of H∆S=1
su . Focus-

ing on well-motivated new-physics frameworks, the following two scenarios are particularly

interesting:

• In two Higgs doublet models of type-II, such as the Higgs sector of the MSSM,

sizable contributions are potentially generated by charged-Higgs exchange diagrams

(see e.g. Ref. [24, 25, 26]). These are well described by the following set of initial

conditions for s → u transitions,

cV
LL = 1 and cS

LR = − tan2 β

(1 + ǫ0 tan β)

mℓms

m2
H+

, (2.32)

and for u → d transitions,

cV,ud
LL = 1 and cS,ud

LR = − tan2 β

(1 + ǫ0 tan β)

mℓmd

m2
H+

. (2.33)

Here tan β is the ratio of the two Higgs vacuum expectation values and ǫ0 is a loop

function whose detailed expression can be found in Ref. [25]. In presence of sizable

sources of lepton-flavor symmetry breaking, a non-vanishing scalar-current contribu-

tion to the lepton-flavor violating process K → eντ is also present [26]. The latter

can be parametrized by

cS′

LR =
msmτ

m2
H+

∆31
R tan2 β . (2.34)

• In the Higgs-less model of Ref. [12], non-standard right-handed quark currents could

become detectable. These are described by the following set of initial conditions for

both u → s and u → d transitions

cV
LL = (1 + δ) and cV

RL = ǫs , (2.35)

cV,ud
LL = (1 + δ) and cV,ud

RL = ǫns , (2.36)

where εx and δ are free parameters of the model. ǫs can reach a few percents if the

hierarchy of the right-handed mixing matrix is inverted.
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2.3.2 Kℓ2 rates

According to the Hamiltonian of Eq. (2.27), the Kℓ2 rate of Eq. (2.2) can be modified as

Γ(K±
ℓ2(γ))

Γ(π±
ℓ2(γ))

=

∣

∣

∣

∣

Vus

Vud

∣

∣

∣

∣

2 f2
KmK

f2
πmπ

(

1 − m2
ℓ/m

2
K

1 − m2
ℓ/m

2
π

)2

× (1 + δem)

× |kA − m2
K/(msMW )kP |2 + |kV + m2

K/(msMW )kS |2
|kud

A − m2
π/(m̂MW )kud

P |2 + |kud
V + m2

π/(m̂MW )kud
S |2 ,

(2.37)

where m̂ = mu + md and kud
x are defined for the u → d transition. In the MSSM scenario

ΓMSSM(Kℓ2)/Γ
MSSM(πℓ2) = ΓSM(Kℓ2)/Γ

SM(πℓ2) × (1 − rK
H )2 , (2.38)

where

rK
H =

m2
K+

M2
H+

(

1 − md

ms

)

tan2 β

1 + ǫ0 tan β
(2.39)

2.3.3 Kℓ3 rates and kinematical distributions

In the Kℓ3 case the non-standard operators of Eq. (2.21) could in principle modify the

Daliz plot distribution. However, as we will show in the following, this effect turns out to

be hardly detectable for most realistic new-physics scenarios.

The hadronic form factors needed in the general case are the two FFs defined in

Eq. (2.4) plus a tensor FF, whereas f0(t) allow us to parametrize also the scalar-current

matrix element. More specifically, we have

〈π− (k) |(s̄u)|K0 (p)〉 = − m2
K − m2

π

(ms − mu)
f0 (t) , (2.40)

〈π− (k) |(s̄σµνu)|K0 (p)〉 = i
pµkν − pνkµ

mK
BT (t) . (2.41)

The tensor form-factor was studied on the lattice [13], with the result BT (t) ≈ 1.2(1) f+ (0) /(1−
0.3(1)t) at µ ≃ 2GeV in the MS scheme (an earlier order-of-magnitude estimate may be

found in Ref.[14]).

Choosing as independent kinematical variables

z =
2pK · pπ

m2
K

=
m2

K + m2
π − t

m2
K

, y =
2pK · pℓ

m2
K

, rπ,ℓ =
m2

π,ℓ

m2
K

the double differential density can be written as (neglecting long-distance electromagnetic

corrections)

dΓ

dy dz
=

G2
F |Vus|2m5

K

256π3
CKSew

[

A1(y, z)
(

|V |2 + |A|2
)

− A2(y, z)Re (V S∗ − AP ∗)

+ A3(y, z)
(

|S|2 + |P |2
)

]

(2.42)
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whereas

A1(y, z) = 4(z + y − 1)(1 − y) + rℓ(4y + 3z − 3) − 4rπ + rℓ(rπ − rℓ),

A2(y, z) = 2rℓ(3 − 2y − z + rℓ − rπ), A3(y, z) = rℓ(1 + rπ − z − rℓ). (2.43)

Here S, P , V , and A are convenient combinations of hadronic form factors and short-

distance Wilson coefficients:

V (t, y) = f+(t) cV − m2
ℓ

ms

M2
W

cT BT (t)

mK
(2.44)

A(t, y) = f+(t) cA + m2
ℓ

ms

M2
W

cT5BT (t)

mK

S(t, y) = −(fS
0 (t) − f+(t))

m2
K − m2

π

t
cV −

(

m2
ℓ + m2

K (2 − z − 2 y)
) ms

M2
W

cT BT (t)

mK

P (t, y) = (fP
0 (t) − f+(t))

m2
K − m2

π

t
cA −

(

m2
ℓ + m2

K (2 − z − 2 y)
) ms

M2
W

cT5BT (t)

mK
,

where

fS
0 (t) = f0(t)

(

1 +
cS/cV

(ms − mu)MW
t

)

≈ f0(t) exp

(

cS/cV

MW

m2
K − m2

π

ms − mu

)t/tCT

(2.45)

fP
0 (t) = f0(t)

(

1 − i cP /cA

(ms − mu)MW
t

)

≈ f0(t) exp

(−i cP /cA

MW

m2
K − m2

π

ms − mu

)t/tCT

,(2.46)

tCT = (m2
K − m2

π) and we have assumed cS,P /cV,A ≪ 1. The SM case is recovered from

Eq. (2.44) in the limit cV = −cA = 1 and fS,P
0 (t) = f0(t).

After integrating over y, differences to the SM rate of Eq. (2.1) can be summarized as

it follows. Right-handed currents can only rescale the overall rate of Eq. (2.1), namely

Γ(Kℓ3(γ)) → Γ(Kℓ3(γ)) ×
|cV |2 + |cA|2

2
. (2.47)

Scalar and pseudoscalar contributions can be easily encoded in Eq. (2.1) by substituting

f0(t) → fH
0 (t) = f0(t) exp

(

(−i cP c∗A + cSc∗V )

|cV |2 + |cA|2
m2

K − m2
π

MW ms

)t/tCT

. (2.48)

In particular, these new effects are vanishing for t = 0, namely f0(0) in Eq. (2.1) is free

from them. The tensor coupling modify the phase space integral Iℓ
K(λ+,0) of Eq. (2.1) by

Iℓ
K(λ+,0) → Iℓ

K(λ+,0) −
Re(cT c∗V ) − Re(cT

γ5
c∗A)

|cV |2 + |cA|2
Iℓ
T (λT,+,0) (2.49)

In conclusion, the integrated rate including electromagnetic corrections can be written as

Γ(Kℓ3(γ)) =
G2

F m5
K

192π3
CK Sew |Vus|2f+(0)2

(

1 + δK
SU(2) + δKℓ

em

)2
(2.50)

× |cV |2 + |cA|2
2

(

Iℓ
K −

Re(cT c∗V ) − Re(cT
γ5

c∗A)

|cV |2 + |cA|2
Iℓ
T

)
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where

Iℓ
K =

1

m2
Kf+(0)2

∫

dt λ3/2(t)

(

1 +
m2

ℓ

2t

)(

1 − m2
ℓ

t

)2

(2.51)

×
(

f2
+(t) +

3m2
ℓ

(

m2
K − m2

π

)2

(

2t + m2
ℓ

)

m4
Kλ(t)

|fH
0 (t)|2

)

,

Iℓ
T =

1

m2
Kf+(0)2

∫

dt λ3/2(t)
mℓ

4mK

(

1 +
2m2

ℓ

t

)(

1 − m2
ℓ

t

)2

(2.52)

BT (t) ×
(

f+(t) + 6
2m2

ℓ (m
2
K − m2

π)2 − (m4
K − m4

π)t + t2

(t + 2m2
ℓ )m

4
Kλ(t)

f0(t)

)

and λ(t) = 1 − 2r2
π + r4

π − 2t/m2
K − 2r2

πt/m2
K + t2/m4

K .

In most realistic new-physics scenarios the modification of the Kℓ3 scalar form factor

is well below the present experimental and theoretical errors. For instance, in the MSSM

(or two-Higgs doublets) case fH
0 (t) reads

fH
0 (t)

∣

∣

MSSM
= f0(t) exp

(

−rK
H

)t/tCT
(2.53)

where rK
H is the parameter controlling the corrections to the Kℓ2 rate of Eq. (2.38). For

natural values of the free parameters (ǫ0 = 10−2, M2
H+ = 400 GeV and tan β = 40), such

that rK
H = 0.2%, the corresponding modification of the Kℓ3 scalar form factor is

δλ0

λSM
0

≈ 1.0% or
δf0(tCT )

f0(tCT )SM
≈ 0.18% , (2.54)

well below the level of present theoretical and experimental uncertainties.

3. Data Analysis

We perform fits to world data on the BRs and lifetimes for the KL and K±, with the

constraint that BRs add to unity. This is the correct way of using the new measurements.

The fit procedure is described in Appendix A.

3.1 KL leading branching ratios and τL

Numerous measurements of the principal KL BRs, or of various ratios of these BRs, have

been published recently. For the purposes of evaluating |Vus|f+(0), these data can be used

in a PDG-like fit to the KL BRs and lifetime, so all such measurements are interesting. A

detailed description to the fit of the principal KL BRs and τL is given in Appendix B

KTeV has measured five ratios of the six main KL BRs [27]. The six channels in-

volved account for more than 99.9% of the KL width and KTeV combines the five mea-

sured ratios to extract the six BRs. We use the five measured ratios in our analysis:

BR(Kµ3)/BR(Ke3) = 0.6640(26), BR(π+π−π0)/BR(Ke3) = 0.3078(18), BR(π+π−)/BR(Ke3) =

0.004856(28), BR(3π0)/BR(Ke3) = 0.4782(55), and BR(2π0)/BR(3π0) = 0.004446(25).

The errors on these measurements are correlated; this is taken into account in our fit.
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Parameter Value S

BR(Ke3) 0.4056(7) 1.1

BR(Kµ3) 0.2705(7) 1.1

BR(3π0) 0.1951(9) 1.2

BR(π+π−π0) 0.1254(6) 1.1

BR(π+π−) 1.997(7) × 10−3 1.1

BR(2π0) 8.64(4) × 10−4 1.3

BR(γγ) 5.47(4) × 10−4 1.1

τL 51.17(20) ns 1.1

Table 2: Results of fit to KL BRs and lifetime.

NA48 has measured the ratio of the BR for Ke3 decays to the sum of BRs for all

decays to two tracks, giving BR(Ke3)/(1 − BR(3π0)) = 0.4978(35) [28]. From a separate

measurement of BR(KL → 3π0)/BR(KS → 2π0), NA48 obtains BR(3π0)/τL = 3.795(58)

µs−1 [29].

Using φ → KLKS decays in which the KS decays to π+π−, providing normalization,

KLOE has directly measured the BRs for the four main KL decay channels [30]. The

errors on the KLOE BR values are dominated by the uncertainty on the KL lifetime τL;

since the dependence of the geometrical efficiency on τL is known, KLOE can solve for τL

by imposing
∑

x BR(KL → x) = 1 (using previous averages for the minor BRs), thereby

greatly reducing the uncertainties on the BR values obtained. Our fit makes use of the

KLOE BR values before application of this constraint: BR(Ke3) = 0.4049(21), BR(Kµ3) =

0.2726(16), BR(Ke3) = 0.2018(24), and BR(Ke3) = 0.1276(15). The dependence of these

values on τL and the correlations between the errors are taken into account. KLOE has

also measured τL directly, by fitting the proper decay time distribution for KL → 3π0

events, for which the reconstruction efficiency is high and uniform over a fiducial volume

of ∼0.4λL. They obtain τL = 50.92(30) ns [31].

There are also two recent measurements of BR(π+π−)/BR(Kℓ3), in addition to the

KTeV measurement of BR(π+π−)/BR(Ke3) discussed above. The KLOE collaboration ob-

tains BR(π+π−)/BR(Kµ3) = 7.275(68)×10−3 [32], while NA48 obtains BR(π+π−)/BR(Ke3)

= 4.826(27) × 10−3 [33]. All measurements are fully inclusive of inner bremsstrahlung.

The KLOE measurement is fully inclusive of the direct-emission (DE) component, DE

contributes negligibly to the KTeV measurement, and a residual DE contribution of 0.19%

has been subtracted from the NA48 value to obtain the number quoted above. For consis-

tency, in our fit, a DE contribution of 1.52(7)% is added to the KTeV and NA48 values.

Our fit result for BR(π+π−) is then understood to be DE inclusive.

In addition to the 14 recent measurements listed above, our fit for the seven largest

KL BRs and lifetime uses four of the remaining five inputs to the 2006 PDG fit and the

constraint that the seven BRs add to unity. The results are given in Table 2.

The evolution of the average values of the BRs for KLℓ3 decays and for the important

normalization channels is shown in Fig. 2.
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Figure 1: Evolution of average values for main KL BRs.

Our fit gives χ2/ndf = 20.2/11 (4.3%), while the 2006 PDG fit gives χ2/ndf = 14.8/10

(14.0%). The differences between the output values from our fit and the 2006 PDG fit are

minor. The poorer value of χ2/ndf for our fit can be traced to contrast between the KLOE

value for BR(3π0) and the other inputs involving BR(3π0) and BR(π0π0)—in particular,

the PDG ETAFIT value for BR(π0π0/π+π−). The treatment of the correlated KTeV and

KLOE measurements in the 2006 PDG fit gives rise to large scale factors for BR(Ke3) and

BR(3π0); in our fit, the scale factors are more uniform. As a result, our value for BR(Ke3)

has a significantly smaller uncertainty than does the 2006 PDG value.

3.2 KS leading branching ratios and τS

KLOE has published [34] a measurement of BR(KS → πeν) that is precise enough to

contribute meaningfully to the evaluation of |Vus|f+(0). The quantity directly measured

is BR(πeν)/BR(π+π−). Together with the published KLOE value BR(π+π−)/BR(π0π0)

= 2.2459(54), the constraint that the KS BRs must add to unity, and the assumption of

universal lepton couplings, this completely determines the KS BRs for π+π−, π0π0, Ke3,

and Kµ3 decays [35]. In particular, BR(KS → πeν) = 7.046(91) × 10−4.

NA48 has recently measured the ratio Γ(KS → πeν)/Γ(KL → πeν) = 0.993(26)(22)

[36]. The best way to include this measurement in our analysis would be via a combined

fit to KS and KL branching ratio and lifetime measurements. Indeed, such a fit would be

useful in properly accounting for correlations between KS and KL modes introduced with

the preliminary NA48 measurement of Γ(KL → 3π0), and more importantly, via the PDG

ETAFIT result, which we use in the fit to KL branching ratios. At the moment, however,

we fit KS and KL data separately. NA48 quotes BR(KS → πeν) = 7.046(180)(160)×10−4 ;

averaging this with the KLOE result gives BR(KS → πeν) = 7.05(8) × 10−4, improving

the accuracy on this BR by about 10%.

For τKS
we use 0.8958×10−10 s, where this is the non-CPT constrained fit value from

the PDG, and is dominated by the 2002 NA48 and 2003 KTeV measurements.

3.3 K± leading branching ratios and τ±

There are several new results providing information on K±
ℓ3 rates. These results are mostly

preliminary and have not been included in previous averages.
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Parameter Value S

BR(Kµ2) 63.57(11)% 1.1

BR(ππ0) 20.64(8)% 1.1

BR(πππ) 5.595(31)% 1.0

BR(Ke3) 5.078(26)% 1.2

BR(Kµ3) 3.365(27)% 1.7

BR(ππ0π0) 1.750(26)% 1.1

τ± 12.384(19) ns 1.7

Table 3: Results of fit to K± BRs and lifetime.

The NA48/2 collaboration has recently published measurements of the three ratios

BR(Ke3/ππ0), BR(Kµ3/ππ0), and BR(Kµ3/Ke3) [37]. These measurements are not in-

dependent; in our fit, we use the values BR(Ke3/ππ0) = 0.2470(10) and BR(Kµ3/ππ0) =

0.1637(7) and take their correlation into account. ISTRA+ has also updated its preliminary

value for BR(Ke3/ππ0). They now quote BR(Ke3/ππ0) = 0.2449(16)[38].

KLOE has measured the absolute BRs for the Ke3 and Kµ3 decays [39]. In φ → K+K−

events, K+ decays into µν or ππ0 are used to tag a K− beam, and vice versa. KLOE per-

forms four separate measurements for each Kℓ3 BR, corresponding to the different combina-

tions of kaon charge and tagging decay. The final averages are BR(Ke3) = 4.965(53)% and

BR(Kµ3) = 3.233(39)%. Very recently KLOE has also measured the absolute branching

ratio for the ππ0 decay with 0.5% accuracy. The KLOE preliminary result, is BR(ππ0) =

0.20658(112)[41].

Our fit takes into account the correlation between these values, as well as their depen-

dence on the K± lifetime. The world average value for τ± is nominally quite precise; the

2006 PDG quotes τ± = 12.385(25) ns. However, the error is scaled by 2.1; the confidence

level for the average is 0.17%. It is important to confirm the value of τ±. The two new

measurements from KLOE, τ± = 12.367(44)(65) ns and τ± = 12.391(49)(25) ns[42] with

correlation 34%, agree with the PDG average.

Our fit for the six largest K± BRs and lifetime makes use of the results cited above,

plus the data used in the 2006 PDG fit, except for the Chiang ’72 measurements for a total

of 26 measurements. The six BRs are constrained to add to unity. The results are shown

in Table 3.

The fit quality is poor, with χ2/ndf = 42/20 (0.31%). However, when the five older

measurements of τ± are replaced by their PDG average with scaled error, χ2/ndf improves

to 24.3/16 (8.4%), with no significant changes in the results.

Both the significant evolution of the average values of the Kℓ3 BRs and the effect of

the correlations with BR(ππ0) are evident in Fig. 2.

3.4 Measurement of BR(Ke2)/BR(Kµ2)

Experimental knowledge of Ke2/Kµ2 has been poor so far. The current world average of

RK = BR(Ke2)/BR(Kµ2) = (2.45 ± 0.11) × 10−5 dates back to three experiments of the
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Figure 2: Evolution of average values for main K± BRs.

1970s [43] and has a precision of about 5%. Three new preliminary measurements were

reported by NA48/2 and KLOE (see Tab. 4): A preliminary result of NA48/2, based on

about 4000 Ke2 events from the 2003 data set, was presented in 2005 [44]. Another pre-

liminary result, based on also about 4000 events, recorded in a minimum bias run period

in 2004, was shown at KAON07[45]. Both results have independent statistics and are also

independent in the systematic uncertainties, as the systematics are either of statistical na-

ture (as e.g. trigger efficiencies) or determined in an independent way. Another preliminary

result, based on about 8000 Ke2 events, was presented at KAON07 by the KLOE collabo-

ration [46]. Both, the KLOE and the NA48/2 measurements are inclusive with respect to

final state radiation contribution due to bremsstrahlung. The small contribution of Kl2γ

events from direct photon emission from the decay vertex was subtracted by each of the

experiments. Combining these new results with the current PDG value yields a current

world average of

RK = (2.457 ± 0.032) × 10−5, (3.1)

in very good agreement with the SM expectation and, with a relative error of 1.3%, a factor

three more precise than the previous world average.

3.5 Measurements of Kℓ3 slopes

3.5.1 Vector form factor slopes from Kℓ3

For Ke3 decays, recent measurements of the quadratic slope parameters of the vector form

factor (λ′
+, λ′′

+) are available from KTeV [48], KLOE [49], ISTRA+ [50], and NA48 [51].
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RK [10−5]

PDG 2006 [43] 2.45 ± 0.11

NA48/2 prel. (’03) [44] 2.416 ± 0.043 ± 0.024

NA48/2 prel. (’04) [45] 2.455 ± 0.045 ± 0.041

KLOE prel. [46] 2.55 ± 0.05 ± 0.05

SM prediction 2.477 ± 0.001

Table 4: Results and prediction for RK = BR(Ke2)/BR(Kµ2).

We show the results of a fit to the KL and K− data in the first column of Table 5, and

to only the KL data in the second column. With correlations correctly taken into account,

both fits give good values of χ2/ndf. The significance of the quadratic term is 4.2σ from

the fit to all data, and 3.5σ from the fit to KL data only.

KL and K− data KL data only

4 measurements 3 measurements

χ2/ndf = 5.3/6 (51%) χ2/ndf = 4.7/4 (32%)

λ′
+ × 103 25.2 ± 0.9 24.9 ± 1.1

λ′′
+ × 103 1.6 ± 0.4 1.6 ± 0.5

ρ(λ′
+, λ+′′) −0.94 −0.95

I(K0
e3) 0.15465(24) 0.15456(31)

I(K±
e3) 0.15901(24) 0.15891(32)

Table 5: Average of quadratic fit results for Ke3 slopes.

Including or excluding the K− slopes has little impact on the values of λ′
+ and λ′′

+;

in particular, the values of the phase-space integrals change by just 0.07%. The errors on

the phase-space integrals are significantly smaller when the K− data are included in the

average.

KLOE, KTeV, and NA48 also quote the values shown in Table 6 for MV from pole fits

to KL e3 data. The average value of MV from all three experiments is MV = 875 ± 5 MeV

with χ2/ndf = 1.8/2. The three values are quite compatible with each other and reasonably

close to the known value of the K±∗(892) mass (891.66 ± 0.26 MeV). The values for λ′
+

and λ′′
+ from expansion of the pole parametrization are qualitatively in agreement with the

average of the quadratic fit results. More importantly, for the evaluation of the phase-space

integrals, using the average of quadratic or pole fit results gives values of I(K0
e3) that differ

by just 0.03%.

An attempt to estimate the theoretical uncertainties associated to form factor parame-

terization has been pursued by KTeV, analyzing Ke3 decays with the z-expansion 2.2.2 for

the f+(t) form factor [47]. The results are a1/a0 = 1.023 ± 0.040 and a2/a0 = 0.75 ± 2.16.

The second order term is consistent with zero and the higher orders are bounded by the

theory:
∑∞

k=0 a2
k/a

2
o ≤ 170. Using these results the phase space integral is calculated to be
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Experiment MV (MeV) 〈MV 〉 = 875 ± 5 MeV

KLOE 870 ± 6 ± 7 χ2/ndf = 1.8/2

KTeV 881.03 ± 7.11 λ′
+ × 103 = 25.42(31)

NA48 859 ± 18 λ′′
+ = 2 × λ′ 2

+

I(K0
e3) = 0.15470(19)

Table 6: Pole fit results for K0
e3 slopes.

I(K0
e3) = 0.15392±0.00048exp ±0.00006th . The first error corresponds to the KTeV exper-

imental uncertainty and the second error is due to possible effects from higher order terms

in the z-expansion. Compared to the global average using the quadratic parameterization

(Table 5), the KTeV measurement using the z-expansion deviates by about 1.5σexp. This

result is less precise statistically, but it is more conservative as far as the estimate of the

theoretical uncertainty is concerned.

3.5.2 Scalar and Vector form factor slopes from Kℓ3

For Kµ3 decays, recent measurements of the slope parameters (λ′
+, λ′′

+, λ0) are available

from KTeV [48], KLOE [52], ISTRA+ [53], and NA48 [54]. These data are summarized in

Appendix D.

We have studied the statistical sensitivity of the form-factor slope measurements using

Monte Carlo techniques, see Appendix E.. The conclusions of this study are a) that neglect-

ing a quadratic term in the parameterization of the scalar form factor when fitting results

leads to a shift of the value of the linear term by about 3.5 times the value of the quadratic

term; and b) that because of correlations, it is impossible to measure the quadratic slope

parameter from quadratic fits to the data at any plausible level of statistics. The use of

the linear representation of the scalar form factor is thus inherently unsatisfactory.

Figure 3 shows the 1-σ contours from all the experimental results (Ke3 and Kµ3). It is

immediately clear from the figure that the new NA48 results are difficult to accommodate
1. Performing the combination with and without the NA48 results for the Kµ3 form-factor

slopes included we obtain fit probability values of 1 × 10−6 and 22.3% respectively(see

Appendix D for a detailed comparison). The results of the combination are listed in

Table 7.

The value of χ2/ndf for all measurements is terrible; we quote the results with scaled

errors. This leads to errors on the phase-space integrals that are ∼60% larger after inclusion

of the new Kµ3 NA48 data.

We have checked to see if the NA48 Kµ3 data might show good consistency with the

results of some other experiment in a less inclusive average. Fitting to only the Kµ3 results

from KTeV, NA48, and ISTRA+ gives χ2/ndf = 28/6 (0.01%). Fitting to only the KL µ3

results from KTeV, NA48 gives χ2/ndf = 12/3 (0.89%). The consistency of the NA48 data

with these other measurements appears to be poor in any case.

The evaluations of the phase-space integrals for all four modes are listed in each case.

Correlations are fully accounted for, both in the fits and in the evaluation of the integrals.

1It lies out of correlation directions in the [λ′
+, λ′′

+, λ0] space
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Figure 3: 1-σ contours for λ′
+, λ′′

+, λ0 determinations from ISTRA+(pink ellipse), KLOE(blue

ellipse), KTeV(red ellipse), NA48(green ellipse), and world average with(filled yellow ellipse) and
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KL and K− KL only

Measurements 16 11

χ2/ndf 54/13 (7 × 10−7) 33/8 (8 × 10−5)

λ′
+ × 103 24.9 ± 1.1 (S = 1.4) 24.0 ± 1.5 (S = 1.5)

λ′′
+ × 103 1.6 ± 0.5 (S = 1.3) 2.0 ± 0.6 (S = 1.6)

λ0 × 103 13.4 ± 1.2 (S = 1.9) 11.7 ± 1.2 (S = 1.7)

ρ(λ′
+, λ′′

+) −0.94 −0.97

ρ(λ′
+, λ0) +0.33 +0.72

ρ(λ′′
+, λ0) −0.44 −0.70

I(K0
e3) 0.15457(29) 0.1544(4)

I(K±
e3) 0.15892(30) 0.1587(4)

I(K0
µ3) 0.10212(31) 0.1016(4)

I(K±
µ3) 0.10507(32) 0.1046(4)

ρ(Ie3, Iµ3) +0.63 +0.89

Table 7: Averages of quadratic fit results for Ke3 and Kµ3 slopes.

The correlation matrices for the integrals are of the form

+1 +1 ρ ρ

+1 +1 ρ ρ

ρ ρ +1 +1

ρ ρ +1 +1

where the order of the rows and columns is K0
e3, K±

e3, K0
µ3, K±

µ3, and ρ = ρ(Ie3, Iµ3) as
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mode |Vus| × f+(0) % err BR τ ∆ Int

KL → πeν 0.2163(6) 0.28 0.09 0.19 0.15 0.09

KL → πµν 0.2168(7) 0.31 0.10 0.18 0.15 0.15

KS → πeν 0.2154(13) 0.67 0.65 0.03 0.15 0.09

K± → πeν 0.2173(8) 0.39 0.26 0.09 0.26 0.09

K± → πµν 0.2176(11) 0.51 0.40 0.09 0.26 0.15

average 0.2166(5)

Table 8: Summary of |Vus| × f+(0) determination from all channels.

listed in the table.

Adding the Kµ3 data to the fit does not cause drastic changes to the values of the

phase-space integrals for the Ke3 modes: the values for I(K0
e3) and I(K±

e3) in Table 7 are

qualitatively in agreement with those in Table 5. As in the case of the fits to the Ke3 data

only, the significance of the quadratic term in the vector form factor is strong (3.6σ from

the fit to all data).

4. Physics Results

4.1 Determination of |Vus| × f+(0) and |Vus|/|Vud| × fK/fπ

This section describes the results that are independent on the theoretical parameters f+(0)

and fK/fπ.

4.1.1 Determination of |Vus| × f+(0)

The value of |Vus| × f+(0) has been determined from (2.1) using the world average values

reported in section 3 for lifetimes, branching ratios and phase space integrals, and the

radiative and SU(2) breaking corrections discussed in section 2.

The results are given in Table 8, and are shown in Fig. 4 for KL → πeν, KL → πµν,

KS → πeν, K± → πeν, K± → πµν, and for the combination. The average,

|Vus| × f+(0) = 0.21664(48), (4.1)

has an uncertainty of about of 0.2%. The results from the five modes are in good agreement,

the fit probability is 58%. In particular, comparing the values of |Vus| × f+(0) obtained

from K0
ℓ3 and K±

ℓ3 we obtain a value of the SU(2) breaking correction

δK
SU(2)exp.

= 2.9(4)%

in agreement with the CHPT calculation reported in Table 1: δK
SU(2) = 2.36(22)%.2

2 The value of δK
SU(2) has a direct correspondence to the ratio of light quark masses. Recent analyzes [55]

on the so-called violations of Dashen’s theorem in the Kaon electromagnetic mass splitting point to δK
SU(2)

values of about 3% [56].
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Figure 4: Display of |Vus| × f+(0) for all channels.

4.1.2 Determination of |Vus|/|Vud| × fK/fπ

An independent determination of |Vus| is obtained from Kℓ2 decays. The most impor-

tant mode is K+ → µ+ν, which has been recently updated by KLOE reaching a relative

uncertainty of about 0.3%. As shown in Eq. (2.2), hadronic uncertainties are minimized

considering the ratio Γ(K+ → µ+ν)/Γ(π+ → µ+ν).

Using the world average values of BR(K± → µ±ν) and of τ± given in Section 3 and

the value of Γ(π± → µ±ν) = 38.408(7) µs−1 from [43] we obtain:

|Vus|/|Vud| × fK/fπ = 0.2760 ± 0.0006 . (4.2)

4.2 The parameters f+(0) and fK/fπ

The main obstacle in transforming these highly precise determinations of |Vus|×f+(0) and

|Vus|/|Vud| × fK/fπ into a determination of |Vus| at the per-mil level are the theoretical

uncertainties on the hadronic parameters f+(0) and fK/fπ.

4.2.1 Theoretical estimates of f+(0)

By construction, f+(0) is defined in the absence of isospin-breaking effects of both elec-

tromagnetic and quark-mass origin. More explicitly, as discussed in Section 2.1, f+(0) is

defined by the K0 → π+ matrix element of the vector current in the limit mu = md and

αem → 0, keeping kaon and pion masses to their physical values.

This hadronic quantity cannot be computed in perturbative QCD, but it is highly

constrained by SU(3) and chiral symmetry. In the chiral limit and, more generally, in

the SU(3) limit (mu = md = ms) the conservation of the vector current (CVC) implies

f+(0)=1. Expanding around the chiral limit in powers of light quark masses we can write

f+(0) = 1 + f2 + f4 + . . . (4.3)
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where f2 and f4 are the NLO and NNLO corrections in ChPT. The Ademollo–Gatto

theorem implies that [f+(0) − 1] is at least of second order in the breaking of SU(3) or in

the expansion in powers of ms − m̂, where m̂ = (mu + md)/2. This in turn implies that f2

is free from the uncertainties of the O(p4) counterterms in ChPT, and it can be computed

with high accuracy: f2 = −0.023 [57].

The difficulties in estimating f+(0) begin with f4 or at O(p6) in the chiral expansion.

At this order we can write

f4 = ∆(µ) + f4|loc(µ) , (4.4)

where ∆(µ) is the loop contribution, which has been computed in Ref. [18], and f4|loc(µ)

is the O(p6) local contribution, whose knowledge cannot be simply deduced from other

processes. Several analytical approaches to determine f4 have been attempted over the

years [60], essentially confirming the original estimate by Leutwyler and Roos [57] (see

Fig. 5). The benefit of these new results, obtained using more sophisticated techniques,

lies in the fact that a better control over the systematic uncertainties of the calculation

has been obtained. However, the size of the error is still around or above 1%, which is not

comparable to the 0.2% accuracy which has been reached for |Vus| × f+(0).

Recent progress in lattice QCD gives us more optimism in the reduction of the error on

f+(0) below the 1% level [62, 61, 63]. Most of the currently available lattice QCD results

have been obtained with relatively heavy pions and the chiral extrapolation represents the

dominant source of uncertainty. As shown in Figure 5, there is a general trend of lattice

QCD results to be slightly lower than analytical approaches. An important step in the
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reduction of the error associated to the chiral extrapolation has been recently made by the

UKQCD-RBC collaboration [58]. Their preliminary result f+(0) = 0.964(5) is obtained

from the unquenched study with NF = 2 + 1 flavors, with an action that has good chiral

properties on the lattice even at finite lattice spacing (domain-wall quarks). They also

reached pions masses (& 330MeV) much lighter than that used in previous studies of

f+(0). The overall error is estimated to be 0.5%, which is very encouraging. Moreover,

they observe for f+(0) a mass dependence similar to the one of f2. That is something new

with respect to previous lattice studies (this is likely due to the fact that they work with

lighter pions). To assess the chiral uncertainty of f4, polynomial fits (linear and quadratic)

well reproduce the data. However, it would be interesting [61] to have the expression of

∆(µ) in Eq. (4.4) in terms of the quark masses so to directly estimate f4|loc(µ). Moreover,

it should also be stressed that the present study is performed at a single value of the lattice

spacing (a = 0.12 fm) and in a relatively small extension of the fifth dimension of the

lattice.3

In the following phenomenological analysis we will use this result as the present best

estimate of f+(0), although some reservation remains.

3 Even though mπL & 4.5, simulations with a larger fifth dimension, Ls would help too because the

mass of their lightest quark (= 0.005 in lattice units) is very close to the residual mass parameter (= 0.003,

also in lattice units). This may entail some uncontrolled systematics, in particular for fK/fπ

23



4.2.2 Theoretical estimates of fK/fπ

In contrast to the semileptonic vector form factor, the pseudoscalar decay constants are

not protected by the Ademollo–Gatto theorem and receive corrections linear in the quark

masses. Expanding fK/fπ in power of quark masses, in analogy to f+(0),

fK/fπ = 1 + r2 + . . . (4.5)

one finds that the O(p4) contribution r2 is already affected by local contributions and

cannot be unambiguously predicted in ChPT. As a result, in the determination of fK/fπ

lattice QCD [64]-[67] has essentially no competition from purely analytical approaches.

The status of the lattice results for fK/fπ is summarized in Fig. 6. As can be seen,

the present overall accuracy is about 1%. The novelty are the new lattice results with

NF = 2 + 1 dynamical quarks and pions as light as 280 MeV [64, 65], obtained by using

the so-called staggered quarks.4 The analyzes of [64, 65], cover a broad range of lattice

spacings (i.e. a=0.06 and 0.15 fm) and is performed on sufficiently large physical volumes

(mπL & 5.0). It should be stressed, however, that the sensitivity of fK/fπ to lighter pions

is larger than in the computation of f+(0) and that chiral extrapolations are far more

demanding in this case.5 Notice also that at Lattice 2007 preliminary studies with NF =

2+1 clover quarks and pion masses & 200 MeV have been presented from either PACS-CS

Collaboration [70] and ref. [71]. With respect to the results obtained with staggered quarks,

the PACS-CS value of fK/fπ in fig. 6 is restricted to a single lattice spacing (a = 0.09 fm)

and relatively small physical volume (mπL & 2.9). For ref. [71], the final analysis is to

be completed. In the following analysis we will use as reference value the MILC-HPQCD

result fK/fπ = 1.189(7) [65], although some reservation about staggered fermions remains.

4.2.3 A test of lattice calculation: the Callan-Treiman relation

As described in Sect. 2.2 the Callan-Treiman relation fixes the value of scalar form factor

at t = m2
K − m2

π (the so-called Callan-Treiman point) to the ratio (fK/fπ)/f+(0). The

dispersive parametrization for the scalar form factor proposed in [12] and discussed in

4 Staggered fermions come in four tastes on the lattice. In the continuum limit the extra degrees of

freedom decouple from physical predictions. But, at finite lattice spacing, where the data are produced,

the taste symmetry is violated and the extra degrees of freedom are removed by hand, namely by taking

the fourth root of the staggered quark determinant. Theoretically, this procedure has been only confirmed

in perturbation theory and is currently a subject of controversies within the lattice QCD community [68].

Since the staggered dynamical quarks are computationally cheap, they have been largely used. Thanks

to recent progress in algorithm building [69], safer but still computationally competitive alternatives are

becoming available.
5 In some details, effects of chiral logs are not clearly disentangled and analytic terms (NNLO or NNNLO)

are still needed in order to extrapolate from the simulated sea quark masses (such as mπ & 280 MeV) to

the physical point. For example, the two studies of ref. [64] and of ref. [65] with staggered quarks share the

same configurations, but they differ in how to extrapolate to the physical masses. Then, the central values

of fK/fπ between the two analyzes (namely, fK/fπ = 1.1977
13 and fK/fπ = 1.189(7) from ref. [64] and

ref. [65] respectively) differ for 1σ. However, taking into account the complete uncertainty of fK/fπ in [64],

we have fK/fπ = 1.194(10) of [64] for a symmetric error and the values of ref. [64] and ref. [65] look now

in good agreement. The highly improved staggered fermions (HISQ) used in [65] for the valence quarks are

designed to reduce the taste violation effects, which also should reduce the overall systematic uncertainty.
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relation and fK/fπ = 1.189(7). The UKQCD/RBC result f+(0) = 0.964(5) is also shown.

Sect. 2.2 allows to transform the available measurements of the scalar form factor into a

precise information on (fK/fπ)/f+(0), completely independent of the lattice estimates.

Very recently KLOE [52] and NA48 [54] have presented results on the scalar FF slope

using the dispersive parametrization. In these analyzes a dispersive parametrization is used

for both the scalar and the vector form factors. A similar analysis has started for the KTeV

data. We report these preliminary results for the first time. The ISTRA+ measurement of

the scalar form factor slope performed using the first order Taylor expansion parametriza-

tion can be translated in the dispersive parametrization as described in Appendix E. The

results are given in Table 9 for all the four experiments in the case of the pole parametriza-

tion for the vector form factor. The original KLOE and NA48 results are also shown for

comparison as well as the preliminary result of KTeV obtained from the Kµ3 data analysis.

Moreover, a combined Ke3 and Kµ3 data analysis is also in progress and the preliminary

result is: log(C) = 0.191 ± 0.012. The preliminary KTeV results are obtained using the

original MC and data from Ref. [48]. .

Experiment log(C) direct log(C)†

KTeV 0.195(14)∗ 0.203(15)

KLOE 0.207(24) 0.207(23)

NA48 0.144(14) 0.144(13)

ISTRA+ 0.226(13)

† Estimated from λ0 published.∗Preliminary results.

Table 9: Experimental results for log(C).

Figure 7 shows the values for f+(0) determined from the scalar form factor slope mea-
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surements obtained using the Callan-Treiman relation and fK/fπ = 1.189(7). The value of

f+(0) = 0.964(5) from UKQCD/RBC is also shown. As already noticed in Section 3, the

NA48 result is difficult to accommodate. Here one can see that this results is also not con-

sistent with the theoretical estimates of f+(0). In particular, it violates the Fubini-Furlan

bound f+(0) < 1 [72]. For this reason, the NA48 result will be excluded when using the

Callan-Treiman constraint.

The average of the experimental results on the FFs with the pole parametrization for

the vector case and the dispersive parametrization for the scalar FF give:

λc
+ = 0.0256 ± 0.0002 ,

λc
0 = 0.0149 ± 0.0007 ,

(4.6)

with correlation coefficient −0.32. The above results are then combined with the lattice

determinations of fK/fπ = 1.189(7) and f+(0) = 0.964(5) using the constraint given by

the Callan-Treiman relation. The results of the combination are given in Table 10, where

log C = λc
0 tCT/m2

π + 0.0398 ± 0.0041.

λc
+ λc

0 f+(0) fK/fπ

0.02563(19) 0.0146(5) 0.96(4) 1.192(6)

correlation matrix

1. -0.23 0.12 -0.14

1. -0.51 0.61

1. 0.30

1.

Table 10: Results from the form factor fit.

The fit probability is 39%, confirming the agreement between experimental measure-

ments and lattice determination. The accuracy of fK/fπ is also slightly improved, and this

effect can be better seen in the ratio f+(0)/(fK/fπ), directly related to the Callan-Treiman

constraint.

As previously discussed, new physics contributions to the scalar form factor (reab-

sorbed into the value of log C) are generated only by scalar operators. Hence in the case

of right-handed currents log C coincides with the SM value. This imply we can use the

Callan-Treiman improved f+(0)/(fK/fπ) in constraining right-handed currents. On the

other hand, this is not possible in the MSSM scenario, where scalar operators are present.

Here the measured value of log C, following from (2.53), is

log CMSSM ≡ log
∣

∣fH
0 (tCT )/f0(0)

∣

∣ = log CSM − rK
H (4.7)

with the rK
H given in (2.39). By construction, the quantity log CSM depends only on QCD

dynamics and must satisfies the Callan-Treiman relation (2.8). The theoretical calculation

of f0(tCT ) can thus be used to constrain scalar densities. At present, the theoretical

knowledge of log CSM is obtained from Eq. (2.8) and is limited by our knowledge of ∆CT ,
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Figure 8: Results of fits to |Vud|, |Vus|, and |Vus|/|Vud|.

reported in (2.9), and by the lattice QCD results on (fK/fπ)/f+(0). Using this information

we obtain the constraint

rK
H = −0.007 ± 0.012 . (4.8)

To improve this result it would be particularly useful a direct computation of (fK/fπ)/f+(0)

on the lattice (i.e. from the the same set of simulations). Given the advanced status of

staggered results on fK/fπ, it would be interesting to see the effect of a corresponding

analysis f+(0) (which at present is still very preliminary [59]).

4.3 Test of Cabibbo Universality or CKM unitarity

To determine |Vus| and |Vud| we use the value |Vus|×f+(0) = 0.2166(5) reported in Table 8,

the result |Vus|/|Vud|fK/fπ = 0.2760(6) discussed in Sect. 4.1.2, f+(0) = 0.964(5), and

fK/fπ = 1.189(7). From the above we find:

|Vus| = 0.2246 ± 0.0012 [Kℓ3 only] , (4.9)

|Vus|/|Vud| = 0.2321 ± 0.0015 [Kℓ2 only] . (4.10)

These determinations can be used in a fit together with the the recent evaluation of |Vud|
from 0+ → 0+ nuclear beta decays: |Vud|=0.97418± 0.00026 [73]. The global fit gives

|Vud| = 0.97417(26) |Vus| = 0.2253(9) [Kℓ3,ℓ2 + 0+ → 0+] , (4.11)

with χ2/ndf = 0.65/1 (42%). This result does not make use of CKM unitarity. If the

unitarity constraint is included, the fit gives

|Vus| = sin θC = λ = 0.2255(7) [with unitarity] (4.12)
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and χ2/ndf = 0.80/2 (67%). Both results are illustrated in Fig. 8.

As described in the introduction, the test of CKM unitarity can be also interpreted as

a test of universality of the lepton and quark gauge couplings. Using the results of the fit

(without imposing unitarity) we obtain:

GCKM ≡ Gµ

[

|Vud|2 + |Vus|2 + |Vub|2
]1/2

= (1.1662 ± 0.0004) × 10−5 GeV−2 , (4.13)

in perfect agreement with the value obtained from the measurement of the muon lifetime:

Gµ = (1.166371 ± 0.000007) × 10−5 GeV−2 . (4.14)

The current accuracy of the lepton-quark universality sets important constraints on model

building beyond the SM. For example, the presence of a Z ′ (see Fig. 9, left) would affect

the relation between GCKM and Gµ in the following way,

Gµ = GCKM

[

1 − 0.007QeL(QµL − QdL)
2 ln(mZ′/mW )

m2
Z′/m2

W − 1

]

, (4.15)

where QfL are the generic charges of the Z ′ to left-handed leptons (in units of the SM

SU(2)L charge). In case of a Z ′ from SO(10) grand unification theories (QeL = QµL =

−3QdL = 1) we obtain mZ′ > 700 GeV at 95% CL, to be compared with the mZ′ > 720 GeV

bound set through the direct collider searches [43]. In a similar way, the unitarity constraint

also provides useful bounds in various supersymmetry-breaking scenarios [74].

4.3.1 Bounds on helicity-suppressed amplitudes

A particularly interesting test is the comparison of the |Vus| value extracted from the

helicity-suppressed Kℓ2 decays with respect to the value extracted from the helicity-allowed

Kℓ3 modes. To reduce theoretical uncertainties from fK and electromagnetic corrections

in Kℓ2, we exploit the ratio Br(Kℓ2)/Br(πℓ2) and we study the quantity

Rl23 =

∣

∣

∣

∣

Vus(Kℓ2)

Vus(Kℓ3)
× Vud(0

+ → 0+)

Vud(πℓ2)

∣

∣

∣

∣

. (4.16)

Within the SM, Rl23 = 1, while deviation from 1 can be induced by non-vanishing scalar-

or right-handed currents. Notice that in Rl23 the hadronic uncertainties enter through

(fK/fπ)/f+(0).

Following the notation of Section 2.3, effects of scalar currents due to a charged Higgs

(Fig. 9 right) give

Rl23 =

∣

∣

∣

∣

1 − m2
K+

M2
H+

(

1 − md

ms

)

tan2 β

1 + ǫ0 tan β

∣

∣

∣

∣

, (4.17)
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Figure 10: Excluded region in the charged Higgs mass-tanβ plane. The region excluded by

B → τν is also indicated.

whereas for right-handed currents we have

Rl23 = 1 − 2 (ǫs − ǫns) . (4.18)

In the case of scalar densities (MSSM), the unitarity relation between |Vud| extracted

from 0+ → 0+ nuclear beta decays and |Vus| extracted from Kℓ3 remains valid as soon as

form factors are experimentally determined. This constrain together with the experimental

information of log CMSSM can be used in the global fit to improve the accuracy of the

determination of Rl23, which in this scenario turns to be

Rl23|exp
scalar = 1.004 ± 0.007 . (4.19)

Here (fK/fπ)/f+(0) has been fixed from lattice. This ratio is the key quantity to be

improved in order to reduce present uncertainty on Rl23.

The measurement of Rl23 above can be used to set bounds on the charged Higgs mass

and tan β. Figure 10 shows the excluded region at 95% CL in the MH–tan β plane (setting

ǫ0 = 0.01). The measurement of BR(B → τν) [75] can be also used to set a similar bound

in the MH–tan β plane. While B → τν can exclude quite an extensive region of this plane,

there is an uncovered region in the exclusion corresponding to a destructive interference

between the charged-Higgs and the SM amplitude. This region is fully covered by the

K → µν result.

In the case of right-handed currents [12], Rl23 can be obtained from a global fit to

the values of eqs. (4.1) and (4.2). Here log Cexp is free of new physics effects and can be
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also used to constrain (fK/fπ)/f+(0) together with lattice results (namely the values in

tab. 10). The result is

Rl23|exp
RHcurr. = 1.004 ± 0.006 . (4.20)

4.4 Tests of Lepton Flavor Universality

4.4.1 Lepton universality in Kℓ3 decays

The test of Lepton Flavor Universality (LFU) between Ke3 and Kµ3 modes constraints a

possible anomalous lepton-flavor dependence in the leading weak vector current. It can

therefore be compared to similar tests in τ decays, but is different from the LFU tests in

the helicity-suppressed modes πl2 and Kl2.

The results on the parameter rµe = RExp
Kµ3/Ke3

/RSM
Kµ3/Ke3

is

rµe = 1.004 ± 0.004 , (4.21)

in excellent agreement with lepton universality. Furthermore, with a precision of 0.5% the

test in Kl3 decays has now reached the sensitivity of τ decays.

4.4.2 Lepton universality tests in Kℓ2 decays

The ratio RK = Γ(Kµ2)/Γ(Ke2) can be precisely calculated within the Standard Model.

Neglecting radiative corrections, it is given by

R
(0)
K =

m2
e

m2
µ

(m2
K − m2

e)
2

(m2
K − m2

µ)2
= 2.569 × 10−5, (4.22)

and reflects the strong helicity suppression of the electron channel. Radiative corrections

have been computed with effective theories [6], yielding the final SM prediction

RSM
K = R

(0)
K (1 + δRrad.corr.

K )

= 2.569 × 10−5 × (0.9622 ± 0.0004) = (2.477 ± 0.001) × 10−5 . (4.23)

Because of the helicity suppression within then SM, the Ke2 amplitude is a prominent

candidate for possible sizable contributions from physics beyond the SM. Moreover, when

normalizing to the Kµ2 rate, we obtain an extremely precise prediction of the Ke2 width

within the SM. In order to be visible in the Ke2/Kµ2 ratio, the new physics must violate

lepton flavor universality.

Recently it has been pointed out that in a supersymmetric framework sizable viola-

tions of lepton universality can be expected in Kl2 decays [26]. At the tree level, lepton

flavor violating terms are forbidden in the MSSM. However, these appear at the one-loop

level, where an effective H+lντ Yukawa interaction is generated. Following the notation of

Ref. [26] (see also Section 2.3), the non-SM contribution to RK can be written as

RLFV
K ≈ RSM

K

[

1 +

(

m4
K

M4
H±

)(

m2
τ

m2
e

)

|∆13|2 tan6 β

]

. (4.24)

The lepton flavor violating coupling ∆13, being generated at the loop level, could reach

values of O(10−3). For moderately large tan β values, this contribution may therefore
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Figure 11: Exclusion limits at 95% CL on tanβ and the charged Higgs mass MH± from

|Vus|Kℓ2/|Vus|Kℓ3 for different values of ∆13.

enhance RK by up to a few percent. Since the additional term in Eq. 4.24 goes with the

forth power of the meson mass, no similar effect is expected in πl2 decays.

The world average result for RK presented in Section 3 gives strong constraints for

tan β and MH± , as shown in Fig. 11. For values of ∆13 ≈ 5 × 10−4 and tan β > 50 the

charged Higgs masses is pushed above 1000 GeV/c2 at 95% CL.
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A. BRS fit procedure

The fits to KL and K± data are performed with fortran programs. migrad is used for

the minimization; errors are obtained with minos.

Suppose we have N measurements of M quantities, e.g., BRs, ratios of BRs, lifetimes,

or partial widths, where N ≥ M as some quantities are measured by more than one

experiment. Denote the N measurements xi, and the expected value for each as calculated

from the free parameters of the fit x̄i. We also refer to the expected values for quantities

measured by more than one experiment by the index m, i.e., x̄m with m = 1,M .

The errors on the input parameters are denoted σi. All errors on the input parameters

are assumed to be Gaussian. For uncorrelated measurements with statistical and systematic

errors quoted separately, we add the errors in quadrature. In many cases, the results for

different quantities measured by the same experiment have correlated errors. The errors

are then described by the covariance matrix Vij, with Vii = σ2
i and Vij = ρijσiσj . The

expression to be minimized is then

χ2 =

N
∑

i=1

N
∑

j=1

(xi − x̄i)(xj − x̄j)(V)−1
ij . (A.1)

In practice, V is block diagonal and only the relevant sub-matrices are inverted.

The penalty method is used to implement the constraint on the sum of the BRs. In this

method, a term G (1−∑BR)2 is added to the χ2 to be minimized. As G is increased, the

constraint is enforced with greater and greater precision and the result of the fit saturates

(until at some very large value of G, problems related to the precision of the calculation

set in). G is determined by trial and error; its value is 2 × 107 for the KL fit and 1 × 108

for the K± fit. The KL fit is somewhat more sensitive to the value of G, because the KL

BRs entering the fit span three orders of magnitude. As a result, precision problems have

a greater effect on the constraint balance.

Once the fit has been performed, scale factors are calculated and used as described in

the general introduction to the PDG compilation. As above, our N data points consist

of m = 1,M distinct measured quantities, each of which is measured by nm experiments,

indexed by km. (N =
∑

m nm). Here it is useful to adopt the notation xmkm
±σmkm

for the

individual measurements, and the notation x̄m for the expected value for the mth quantity.

After the fit is performed once, the error σ̄m on x̄m is evaluated from the output covariance

matrix for the free fit parameters. Then, the scale factor for the measured quantity m is

calculated as

S2
m =

1

nm

nm
∑

km=1

(xmkm
− x̄m)2

σ2
mkm

− σ̄2
m

. (A.2)

Next, the errors σmkm
are scaled by the greater value of Sm and unity. For subsets of

correlated measurements (all from the same experiment), the index km can be omitted

to write Vmm′ = ρmm′σmσm′ ; the scale factors are applied to σm and σm′ and V and its

inverse are recalculated. Finally, the fit is performed a second time. For each of the fit

parameters, we report the central value from the first fit, and the error (and correlations)
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from the second fit. The scale factors for the errors on the fit parameters are defined as the

ratios of the errors from the second fit to those from the first. The value of χ2 reported is

from the first fit.

For the purposes of comparison, pull values are calculated for each measurement simply

as (xi − x̄i)/σi.

For the BR/lifetime fits, the errors are in general symmetric to within rounding error;

in any case we report the greater of the positive and negative minos errors.

B. Fit for KL BRs and lifetime

The 8 free parameters in the KL fit are BR(Ke3), BR(Kµ3), BR(3π0), BR(π+π−π0),

BR(π+π−), BR(π0π0), BR(γγ), and τKL
. The fit makes use of the 18 measurements

in Table 11. With one constraint, the fit has 11 degrees of freedom.

The differences between our fit and the 2006 PDG fit are as follows:

• In our fit, the intermediate KTeV and KLOE values (i.e., before applying constraints)

are the inputs, and the complete error matrix is used to handle the correlations

between the measurements from each experiment. In the 2006 PDG fit, the final

KTeV and KLOE BR results were used and one measurement involving BR(3π0)

was removed in each case.

• Our fit makes use of the preliminary BR(3π0) [29] and new BR(π+π−)/BR(Ke3) [33]

measurements from NA48.

• Our fit parameter BR(π+π−) is understood to be inclusive of the DE component.

This helps to satisfy the constraint. The input data are treated consistently in this

respect.

• We do not make use of the measurement of BR(γγ)/BR(π0π0) from NA31 (Burkhardt

’87), since both we and the PDG have excluded the other measurements from NA31.

Notes on data in Table 11

1. Direct measurement of τKL
from 3π0 events; independent of other KLOE measure-

ments [31].

2. We make use of the KLOE results for the main KL BRs (#3, #4, #6, and #9)

obtained before applying constraints on the sum of the BRs [30]. The BR values in

Table 11 thus depend on τKL
as follows:

BR =
BR0

1 + 0.0128 ns−1 (τ0
KL

− τKL
)
,

where τ0
KL

= 51.54 ns. The errors listed for these values in Ref. [30] include an explicit

contribution from the uncertainty on the reference value of τKL
. This contribution has

been unfolded from the errors in Table 11. In addition, these four BR measurements
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Point Parameter Value Source Note

1 τKL
50.92(30) ns KLOE ’05 1 [31]

2 τKL
51.54(44) ns Vosburgh ’72 [76]

3 BR(Ke3) 0.4049(21) KLOE ’06 2 [30]

4 BR(Kµ3) 0.2726(16) KLOE ’06 2 [30]

5 BR(Kµ3)/BR(Ke3) 0.6640(26) KTeV ’04 3 [27]

6 BR(3π0) 0.2018(24) KLOE ’06 2 [30]

7 BR(3π0)/τKL
3.795(58) MHz NA48 ’04 4 [29]

8 BR(3π0)/BR(Ke3) 0.4782(55) KTeV ’04 3 [27]

9 BR(π+π−π0) 0.1276(15) KLOE ’06 2 [30]

10 BR(π+π−π0)/BR(Ke3) 0.3078(18) KTeV ’04 3 [27]

11 BR(π+π−)/BR(Ke3) 0.004856(29) KTeV ’04 3,5 [27]

12 BR(π+π−)/BR(Ke3) 0.004826(27) NA48 ’06 5 [33]

13 BR(π+π−)/BR(Kµ3) 0.007275(68) KLOE ’06 5 [32]

14 BR(Ke3)/BR(2 tracks) 0.4978(35) NA48 ’04 6 [28]

15 BR(π0π0)/BR(3π0) 0.004446(25) KTeV ’04 3 [27]

16 BR(π0π0)/BR(π+π−) 0.4391(13) PDG ’06 7 [43]

17 BR(γγ)/BR(3π0) 0.00279(3) KLOE ’03 [77]

18 BR(γγ)/BR(3π0) 0.00281(2) NA48 ’03 [78]

Table 11: Input data used for the fit to KL BRs and lifetime.

are correlated by common systematics as described in KLOE Note 204, although the

full correlation matrix is not given therein. The correlation matrix is as follows:

3 4 6 9

3 1.000 0.091 0.069 0.494

4 1.000 −0.025 0.267

6 1.000 0.074

9 1.000

3. The correlation matrix for the KTeV relative BR measurements (#5, #8, #10, #11,

and #15) is as follows [27]:

5 8 10 11 15

5 1.00 0.14 0.21 0.24 0.09

8 1.00 −0.06 −0.07 0.30

10 1.00 0.49 0.04

11 1.00 0.07

15 1.00

4. This is based on the preliminary NA48 measurement BR(3π0) = 0.1966(34), as re-

ported in Ref. [29]. R. Wanke has confirmed that the 2004 PDG value for τKL
was
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used to obtain this result. The NA48 value for this BR scales directly with the life-

time value used. R. Wanke has supplied the value in the table for the partial width,

with the contribution to the error on the BR from the uncertainty on the KL lifetime

unfolded.

5. The fit value of BR(π+π−) includes the DE component. The KLOE measurement of

BR(π+π−)/BR(Kµ3) [32] (#13) is inclusive of DE. The KTeV and NA48 measure-

ments of BR(π+π−)/BR(Ke3) (#11 and #12, respectively) are treated as follows.

• We use the average values of DE/(DE + IB) from Refs. [79, 80] and [81] together

with BR(π+π−γIB, Eγ > 20 MeV)/BR(π+π−) = 7.00 × 10−3 [82], to calculate

that DE accounts for 1.52(7)% of the inclusive KL → π+π− width. The error

on this correction is negligible for the purposes of the fit.

• The KTeV measurement of BR(π+π−)/BR(Ke3) (#11) excludes DE (in the

sense that Ref. [27] says that DE is not in the generator for the acceptance

calculation). We therefore subtract 1.52% from the fit value of the ratio when

calculating the contribution to χ2 from this KTeV measurement.

• The contribution from DE to the NA48 measurement BR(π+π−)/BR(Ke3) =

4.835(22)(20) × 10−3 is estimated to be 0.19(1)%, which we subtract to obtain

value #12. We then handle the data point in the same way as we do for KTeV.

6. For our fit, BR(2 tracks) has to be calculated from the free fit parameters. Like the

PDG, we use

BR(2 tracks) = BR(Ke3) + BR(Kµ3) + 0.03508BR(3π0)

+ BR(π+π−π0) + BR(π+π−).

7. From the ETAFIT analysis[43].

B.1 Results

The results of the fit are summarized in Table 12. The output correlation matrix is given in

Table 13. The pull values for the input measurements are listed in Table 14. With respect

to the 2006 PDG fit, our fit has a somewhat lower χ2 probability.

When our fit is run without inclusion of points #7 and #12, without DE corrections

for the π+π− channel, and with the measurement of BR(γγ)/BR(π0π0) from NA31, we

reproduce the 2006 PDG fit result. In this configuration, the only difference between our

fit and the 2006 PDG fit is the treatment of the BR and lifetime data from KLOE and

KTeV. We obtain the same values for all 8 fit parameters, with χ2/ndf = 14.9/10. Our

scale factors in this case are more uniform than those obtained in the 2006 PDG fit; in

particular, for BR(Ke3), BR(3π0), and BR(π+π−π0) we have S = 1.2, 1.1, and 1.4, to be

compared with the second column of Table 12.

Excluding the measurement of BR(γγ)/BR(π0π0) from NA31 has a negligible effect on

the fit results, while the number of degrees of freedom is reduced by one, giving χ2/ndf =

14.9/9 (9.4%). Turning on the DE correction degrades the fit quality from χ2/ndf = 14.9/9
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This fit 2006 PDG

18 measurements 17 measurements

χ2/ndf = 19.7/11 (4.9%) χ2/ndf = 14.8/10 (14.0%)

Parameter Result S Result S

BR(Ke3) 0.4058(9) 1.3 0.4053(15) 2.1

BR(Kµ3) 0.2706(8) 1.3 0.2702(7) 1.0

BR(3π0) 0.1943(10) 1.3 0.1956(14) 1.9

BR(π+π−π0) 0.1259(8) 1.5 0.1256(5) 1.0

BR(π+π−) 1.986(7) × 10−3 1.2 1.976(8) × 10−3 1.0

BR(π0π0) 8.60(5) × 10−4 1.5 8.69(4) × 10−4 1.1

BR(γγ) 5.45(4) × 10−4 1.1 5.48(5) × 10−4 1.2

BR(τKL
) 51.15(20) ns 1.1 51.14(21) ns 1.0

Table 12: Results of fit to KL BRs and lifetime, with comparison to 2006 PDG fit.

+1.000 −0.286 −0.422 −0.288 +0.112 −0.282 −0.270 −0.005

+1.000 −0.378 −0.217 −0.046 −0.216 −0.241 +0.183

+1.000 −0.354 −0.029 +0.609 +0.637 −0.036

+1.000 −0.035 −0.205 −0.226 −0.127

+1.000 +0.205 −0.020 −0.033

+1.000 +0.387 −0.029

+1.000 −0.027

+1.000

Table 13: Correlation matrix for output parameters of KL fit.

to 19.6/9 (2.02%). When points #7 and #12 are added, the fit quality is slightly improved

and the result in Table 12 is obtained.

However, the fit quality improves dramatically when the PDG ETAFIT result for

BR(π0π0)/BR(π+π−) (#16) is removed. This is true independently of whether or not the

DE correction and/or the additional results are included. For example, our same fit with

the PDG ETAFIT point removed gives χ2/ndf = 14.8/10 (13.9%), with changes in the fit

values for the BRs at the 1σ level. In all other configurations (DE correction on/off; points

#7, #12, NA31 BR(γγ)/BR(π0π0) included/excluded), the fit gives similar results.

Using the values of BR(π+π−) and BR(π0π0) from our fits including and excluding

the PDG ETAFIT point, we have evaluated Re ǫ′/ǫ from

Re ǫ′/ǫ =
1

6

[

1 − RS
BR(π0π0)

BR(π+π−)

]

with RS ≡ BR(KS → π+π−)/BR(KS → π0π0) = 2.2549(54) [35] as described in Sec. 3.2.

We obtain

Re ǫ′/ǫ = (−25 ± 23) × 10−4 (without ETAFIT);

Re ǫ′/ǫ = (14 ± 11) × 10−4 (with ETAFIT);

40



Point Parameter Source Pull

6 BR(3π0) KLOE ’06 +2.74

2 τKL
Vosburgh ’72 +0.88

15 BR(π0π0)/BR(3π0) KTeV ’04 +0.81

9 BR(π+π−π0) KLOE ’06 +0.71

4 BR(Kµ3) KLOE ’06 +0.41

18 BR(γγ)/BR(3π0) NA48 ’03 +0.31

12 BR(π+π−)/BR(Ke3) NA48 ’06 +0.22

7 BR(3π0)/τKL NA48 ’04 −0.07

8 BR(3π0)/BR(Ke3) KTeV ’04 −0.13

17 BR(γγ)/BR(3π0) KLOE ’03 −0.46

16 BR(π0π0)/BR(π+π−) PDG ’06 −0.57

14 BR(Ke3)/BR(2 tracks) NA48 ’04 −0.71

1 τKL
KLOE ’05 −0.78

13 BR(π+π−)/BR(Kµ3) KLOE ’06 −0.94

5 BR(Kµ3)/BR(Ke3) KTeV ’04 −1.11

11 BR(π+π−)/BR(Ke3) KTeV ’04 −1.32

3 BR(Ke3) KLOE ’06 −1.37

10 BR(π+π−π0)/BR(Ke3) KTeV ’04 −1.39

Table 14: Pull values for input data used in fit to KL BRs and lifetime.

to be compared to the current PDG average, (16.7±2.3)×10−4 . The ETAFIT point is very

precise; when it is included, the fit results for BR(π0π0)/BR(π+π−) are highly constrained.

This pulls down the value of BR(π0π0), and, also of BR(3π0), via the KTeV measurement

of BR(π0π0)/BR(3π0). As seen from Table 14, the measurement with the largest positive

pull on the fit is the KLOE measurement of BR(3π0), which PDG has chosen to eliminate

from the 2006 fit as part of their treatment of the correlated KLOE measurements.

We emphasize that the values of BR(Ke3) and BR(Kµ3) are not affected very much

by these developments. The scale factor, and hence the reported error, on BR(Ke3) is

significantly smaller in our fit, which spreads the pulls somewhat more evenly over the

different measurements than does the PDG fit.

C. Fit for K
± BRs and lifetime

The 7 free parameters in the K± fit are BR(Kµ2), BR(ππ0), BR(πππ), BR(Ke3), BR(Kµ3),

BR(ππ0π0), and τK±. The fit makes use of the 26 measurements in Table 15. With one

constraint, the fit has 24 degrees of freedom.

The principal difference between the fit performed here and the 2006 PDG fit is that

our fit includes the following recent measurements:

• Preliminary τK± from KLOE (#6, #7);

• Preliminary BR(Ke3) and BR(Kµ3) from KLOE (#14, #20);
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Point Parameter Value Source Note

1 τK± 12.451(30) ns Koptev ’95 [83] 1

2 τK± 12.368(41) ns Koptev ’95 [83] 1

3 τK± 12.380(16) ns Ott ’71 [84]

4 τK± 12.272(36) ns Lobkowicz ’69 [85]

5 τK± 12.443(38) ns Fitch ’65 [86]

6 τK± 12.367(78) ns KLOE ’06 [42] 2

7 τK± 12.391(55) ns KLOE ’07 [42] 2

8 BR(Kµ2) 0.6366(17) KLOE ’06 [40]

9 BR(ππ0) 0.2066(11) KLOE ’07 [41]

10 BR(ππ0)/BR(Kµ2) 0.3329(48) Usher ’92 [87]

11 BR(ππ0)/BR(Kµ2) 0.3355(57) Weissenberg ’76[88]

12 BR(ππ0)/BR(Kµ2) 0.3277(65) Auerbach ’67 [89]

13 Γ(πππ) 4.513(24) MHz Ford ’70 [90]

14 BR(Ke3) 0.04965(53) KLOE ’07 [39] 2,4

15 BR(Ke3)/BR(ππ0+ Kµ3 +π2π0) 0.1962(36) Sher ’03 [91]

16 BR(Ke3)/BR(Kµ2 + ππ0) 0.0616(22) Eschstruth ’68[92]

17 BR(Ke3)/BR(Kµ2 + ππ0) 0.0589(21) Cester ’66[93]

18 BR(Ke3)/BR(ππ0) 0.2449(16) ISTRA ’07 [38] 2

19 BR(Ke3)/BR(ππ0) 0.2470(10) NA48 ’07 [37] 5

20 BR(Kµ3) 0.03233(39) KLOE ’07 [39] 2,4

21 BR(Kµ3)/BR(ππ0) 0.1636(7) NA48 ’07 [37] 5

22 BR(Kµ3)/BR(Ke3) 0.671(11) Horie ’01 [94]

23 BR(Kµ3)/BR(Ke3) 0.670(14) Heintze ’77 [95]

24 BR(Kµ3)/BR(Ke3) 0.667(17) Botterill ’68 [96]

25 BR(ππ0π0) 0.01763(26) KLOE ’04 [97]

26 BR(ππ0π0)/BR(πππ) 0.303(9) Bisi ’65 [98]

Table 15: Input data used for the fit to K± BRs and lifetime.

• Preliminary BR(ππ0) from KLOE (#9);

• Preliminary BR(Ke3)/BR(ππ0) from ISTRA+ (#18);

• BR(Ke3)/BR(ππ0) (#19) and BR(Kµ3)/BR(ππ0) from NA48/2 (#21).

These new measurements have a profound impact on the results of the fit. Other differences

are as follows.

• In the 2006 PDG fit, BR(π0π0eν) is a free parameter (but curiously, BR(ππeν), for

which there is a published measurement from E865 with much higher accuracy [99],

is not). The PDG fit therefore uses three measurements involving BR(π0π0eν) and

BR(π0π0eν)/BR(Ke3) that are not used in our fit.
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• We don’t use the six BR measurements from Chiang ’72. Our reading of Chiang

’72 suggests that no attempt was made to implement radiative corrections for the

branching ratio analysis. In addition, the six BR measurements from Chiang ’72 are

constrained to sum to unity. The correlation matrix is not available. PDG omits

BR(πππ).

It would be highly desirable to discard many other old measurements in the K± fit as

2006 PDG has done for the KL fit. Unfortunately, are no recent measurements involving

BR(πππ). As a result, the fit is unstable if only recent measurements are used.

Notes on data in Table 15

1. The only difference between the Koptev measurements is the material used for the

kaon stopper (#1–U, #2–Cu).

2. Preliminary measurement.

3. The dependence of these BRs on the K± lifetime is accounted for in the fit:

BR = BR0 [1 + 0.0405(τK± − τ0
K±)]

where BR0 is evaluated with τK± = 12.360 ns. The uncertainty from the value of

τK± may not have been properly unfolded. In addition, these two measurements

are have a correlation coefficient of 0.627, mainly from the use of common efficiency

corrections.

4. The recent NA48 publication [37] gives values for BR(Ke3)/BR(ππ0),

BR(Kµ3)/BR(ππ0). The value of BR(Ke3)/BR(ππ0) has been updated at KAON07.

C.1 Results

The results of the fit are summarized in Table 16. The output correlation matrix is given

in Table 17. The pull values for the input measurements are listed in Table 18. The poor

fit quality derives from the following sources.

• The fit quality is significantly degraded by the scatter in the five older measurements

of τK±; when these are replaced with their PDG average with scaled error, τK± =

12.385(25) ns, the fit gives χ2/ndf = 24.3/16 (8.4%), with no significant changes in

the results. Note that after this treatment the fit quality is about the same as it is

for the 2006 PDG fit (which, however, includes all of the older τK± measurements

without taking the average).

• There is some conflict among the newer measurements involving BR(Ke3), as seen

from the pulls for the NA48 ’07 (#19), Sher ’03 (#15), ISTRA ’07 (#20), and KLOE

’07 (#14) measurements: +1.04, −0.26, −0.74, and −2.13, respectively.(Table 18).

The evolution of the average values of the BRs for K±
ℓ3 decays and for the important

normalization channels as a result of the introduction of the preliminary measurements is

evident in Fig. 2. The figure dramatically illustrates why experiments that measure ratios

such as BR(Ke3)/BR(ππ0) should always quote the ratio with usable errors, in addition to

the normalized, final value.
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This fit 2006 PDG

26 measurements 26 measurements

χ2/ndf = 42/20 (0.31%) χ2/ndf = 30/19 (5.2%)

Parameter Result S Result S

BR(Kµ2) 63.57(11)% 1.1 63.44(14)% 1.2

BR(ππ0) 20.64(8)% 1.1 20.92(12)% 1.1

BR(πππ) 5.595(31)% 1.0 5.590(31)% 1.1

BR(Ke3) 5.078(25)% 1.2 4.98(7)% 1.3

BR(Kµ3) 3.365(27)% 1.7 3.32(6)% 1.2

BR(ππ0π0) 1.750(24)% 1.1 1.757(24)% 1.1

BR(π0π0eν) Not in fit 2.2(4) × 10−5 1.0

BR(τK±) 12.384(19) ns 1.7 12.385(24) ns 2.1

Table 16: Results of fit to K± BRs and lifetime, with comparison to 2006 PDG fit.

1.000 −0.874 −0.170 −0.725 −0.548 −0.258 −0.045

1.000 −0.121 0.610 0.333 0.031 −0.032

1.000 −0.100 −0.074 0.055 0.273

1.000 0.442 0.009 −0.030

1.000 −0.010 −0.020

1.000 0.010

1.000

Table 17: Correlation matrix for output parameters of K± fit.

D. Averages of form-factor slopes

D.1 Procedure

We work principally with quadratic form-factor slope parametrization. To average the

form-factor slopes, a χ2 fit with correlations is performed. Scale factors for the errors are

calculated as described in section A. For the fit to the form-factor slopes, since there are

no measurements of combinations of the fit parameters, the scale factors can be obtained

directly from Eq. (A.2). Because of the high degree of correlation in the measurements

of λ′ and λ′′, a large scale factor may result in a small change in χ2 from the fits. We

therefore report scaled errors only when the value of χ2/ndf is unsatisfactory.

D.2 Input data

The data used in the fit are summarized in Table 19. The following notes apply to the

table entries.

1. In our combined fits to Ke3 and Kµ3 data, we use the averages quoted by KLOE and

KTeV rather than using their Ke3 and Kµ3 measurements separately. In any event,

our averages of the Ke3 and Kµ3 results from each experiment have good values of
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Point Parameter Source Pull

1 τK± Koptev ’95 +2.25

11 BR(ππ0)/BR(Kµ2) Weissenberg ’76 +1.89

10 BR(ππ0)/BR(Kµ2) Usher ’92 +1.70

5 τK± Fitch ’65 +1.56

21 BR(Kµ3)/BR(ππ0) NA48 ’07 +1.04

19 BR(Ke3)/BR(ππ0) NA48 ’07 +1.03

22 BR(Kµ3)/BR(Ke3) Horie ’01 +0.76

16 BR(Ke3)/BR(Kµ2 + ππ0) Eschstruth ’68 +0.59

8 BR(Kµ2) KLOE ’06 +0.52

23 BR(Kµ3)/BR(Ke3) Heintze ’77 +0.52

25 BR(ππ0π0) KLOE ’04 +0.52

12 BR(ππ0)/BR(Kµ2) Auerbach ’67 +0.46

24 BR(Kµ3)/BR(Ke3) Botterill ’68 +0.26

7 τK± KLOE ’07 +0.14

13 Γ(πππ) Ford ’70 −0.22

6 τK± KLOE ’06 −0.21

3 τK± Ott ’71 −0.22

15 BR(Ke3)/BR(Kµ3 +ππ0 +π2π0) Sher ’03 −0.26

2 τK± Koptev ’95 −0.38

17 BR(Ke3)/BR(Kµ2 + ππ0) Cester ’66 −0.67

20 BR(Ke3)/BR(ππ0) ISTRA ’07 −0.74

26 BR(ππ0π0)/BR(πππ) Bisi ’65 −1.07

14 BR(Ke3) KLOE ’07 −2.13

4 τK± Lobkowicz ’71 −3.10

20 BR(Kµ3) KLOE ’07 −3.41

Table 18: Pull values for input data used in fit to K± BRs and lifetime.

χ2/ndf and confirm the results quoted by the experiments, including the correlation

coefficients.

2. The exact value of ρ(λ′
+, λ′′

+) is not available for the NA48 Ke3 measurement. NA48

and PDG together estimated ρ = −0.88; this value appears in the 2006 PDG listings

[43]. For use with Eq. (2.5), we put λ′′
+ = 2λ

′′(NA48)
+ .

3. An official value of ρ(λ′
+, λ′′

+) is not available for the ISTRA+ Ke3 measurement;

the value in the Table was obtained directly from the collaboration. For use with

Eq. (2.5), we put λ′
+ = C λ

′(ISTRA)
+ and λ′′

+ = 2C2λ
′′(ISTRA)
+ , with C = (mπ+/mπ0)2 =

1.069223.

4. Systematic errors for the ISTRA+ quadratic fit results for Kµ3 are not given in

Ref. [53]; the errors in the table are statistical only. Nor are the correlation coefficients

available; these have been obtained directly from the collaboration. For use with
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Eq. (2.5), λ′
+ and λ′′

+ are converted as above; we also put λ0 = C λ
(ISTRA)
0 . Finally,

we note that no information concerning the treatment of radiative corrections is

given in Ref. [53]. Failure to account for radiative effects could result in a noticeable

systematic shift in the slope results.

For the KLOE and KTeV form-factor slope measurements, the correlation coefficients

apply to the total errors (statistical and systematic). For the ISTRA+ and NA48 Kµ3

slopes, the correlation coefficients appear to apply to the statistical errors. In our fits, we

assume that the correlation coefficients apply to the total errors on the form-factor slopes

(statistical and systematic). This approximation is motivated as follows. In general, the

systematic errors are estimated by varying analysis parameters and refitting. In that case,

the statistical correlations naturally present will also affect the excursions due to systematic

variations, see Appendix E.

D.3 Fit results for Kℓ3 slopes excluding NA48 Kµ3 data

The result of our fit to all data is presented in Table 7. As discussed in Sec. 3.5.2, the

NA48 Kµ3 form-factor slope measurements are in contrast with the results from the other

experiments. As an exercise, we fit all results in Table 19 except the NA48 measurement of

the Kµ3 slopes [54]. The results are shown in Table 20. The first column of the table gives

the results of the fit to all other measurements from KLOE; the second gives the results

of the fit to the KL measurements from KLOE, KTeV, and the KL e3 measurement from

NA48.

The evaluations of the phase-space
KL and K− KL only

Measurements 13 8

χ2/ndf 13/9 (24.9%) 9/5 (12.3%)

λ′
+ × 103 25.0 ± 0.8 24.5 ± 1.1

λ′′
+ × 103 1.6 ± 0.4 1.8 ± 0.4

λ0 × 103 16.0 ± 0.8 14.8 ± 1.1

ρ(λ′
+, λ′′

+) −0.94 −0.95

ρ(λ′
+, λ0) +0.26 +0.28

ρ(λ′′
+, λ0) −0.37 −0.38

I(K0
e3) 0.15459(20) 0.15446(27)

I(K±
e3) 0.15894(21) 0.15881(28)

I(K0
µ3) 0.10268(20) 0.10236(28)

I(K±
µ3) 0.10559(20) 0.10532(29)

ρ(Ie3, Iµ3) +0.59 +0.62

Table 20: Averages of quadratic fit results for Ke3 and

Kµ3 slopes, excluding new Kµ3 data from NA48.

integrals for all four modes are listed

in each case. Correlations are fully ac-

counted for, both in the fits and in the

evaluation of the integrals. The val-

ues of χ2/ndf do not raise any signifi-

cant concerns about the compatibility

of the input data. The fit to all data

gives χ2/ndf = 12.6/10 (25.0%).

The evaluations of the phase-space

integrals for all four modes are listed

in each case. Correlations are fully ac-

counted for, both in the fits and in the

evaluation of the integrals. The val-

ues of χ2/ndf do not raise any signifi-

cant concerns about the compatibility

of the input data. The fit to all data

gives χ2/ndf = 12/9 (22.3%).
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E. Error estimates

It is quite easy to estimate the ideal error in the measurements of a set of parameters

p=(p1, p2, . . . pn) from fitting some distribution function to experimentally determined

spectra. Let F (p, x) be a probability density function, PDF, where p is some parameter

vector, which we want to determine and x is a running variable, like t. The inverse of the

covariance matrix for the maximum likelihood estimate of the parameters is given by [100]:

(G−1)ij = −∂2 ln L

∂pi∂pj

from which, for N events, it trivially follows:

(

G−1
)

ij
= N

∫

1

F

∂F

∂pi

∂F

∂pj
dυ,

with dυ the appropriate volume element. We use in the following the above relation to

estimate the errors on the FF parameters for one and two parameters expression of the FFs

f̃+(t) and f̃0(t). The errors in any realistic experiment will be larger than our estimates,

typically two to three times. The above estimates are useful for the understanding of the

problems in the determination of the parameters in question. The elements of G depend on

the values of the parameters. In the case of the form factors, the errors on the λ parameters

change insignificantly for 10% changes of the parameters. In other words the errors do not

depend on the data being fitted and the correlations apply also to the systematic part of

the errors.

E.1 Ke3 decays

For a quadratic FF, f̃(t) = 1 + λ′
+(t/m2) + (λ′′

+/2)(t/m2)2, the inverse of the covariance

matrix G−1
+ , the covariance matrix G+ and the correlation matrix are:

N

(

5.937 13.867

13.867 36.2405

)

,
1

N

(

1.2582 −0.606

−0.606 0.5092

)

,

(

1 −.945

1

)

The square root of the diagonal elements of G+ gives the errors, which for one million

events are δλ′
+=0.00126, δλ′′

+=0.00051. The correlation is very close to −1, meaning that,

because of statistical fluctuation of the bin counts, a fit will trade λ′
+ for λ′′

+ and that the

errors are enlarged. A fit for a linear FF, f̃(t) = 1 + λ′
+(t/m2) in fact gives λ′

+=0.029

instead of 0.025 and an error smaller by ∼3:

δλ′
+ =

√

G+(1, 1) = 0.0004.

A simple rule of thumb is that ignoring a t2 term, increases λ′
+ by ∼3.5×λ′′

+. For Ke3 decays

the presence of a t2 term in the FF is firmly established. It is however not fully justified

to fit for two parameters connected by the simple relation λ′′
+=2×λ′

+
2. The authors of ref.

[12] explicitly give an error for their estimate of the coefficient of the t2 terms.
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E.2 Kµ3 decays

The scalar FF only contributes to Kµ3 decays. Dealing with these decays is much harder

because: a) - the branching ratio is smaller, resulting in reduced statistics, b) - the Eπ or t

range in the decay is smaller, c) - it is in general harder to obtain an undistorted spectrum

and d) - more parameters are necessary. This is quite well evidenced by the wide range of

answers obtained by different experiments [48, 53, 54, 52]. Assuming that both scalar and

vector FF are given by quadratic polynomials as in Eq. (2.5), ordering the parameters as

λ′
0, λ′′

0, λ′
+ and λ′′

+, the matrices G−1
0& + and G0& +, are:

N













1.64 5.44 1.01 3.90

5.44 18.2 3.01 12.3

1.01 3.01 1.47 4.24

3.90 12.3 4.24 13.8













,
1

N













63.92 −1200 −923 197

−1200 18.82 272 −59

−923 272 14.82 −49

197 −59 −48 3.42













and the correlations, ignoring the diagonal terms, are:







−0.9996 −0.974 0.91

0.978 −0.919

−0.976






. (E.1)

All correlations are very close to −1. In particular the correlations between λ′
0 and λ′′

0 is

−99.96%, reflecting in vary large δλ′
0 and δλ′′

0 errors. We might ask what the error on

λ′
0 and λ′′

0 might be if we had perfect knowledge of λ′
+ and λ′′

+. The inverse covariance

matrix is give by the elements (1,1), (1,2), (2,1) and (2,2) of the G−1
0 &+ matrix above. The

covariance matrix therefore is :

G0(λ
′
0, λ′′

0 for λ′
+, λ′′

+ known) =
1

N

(

8.22 −20

−20 2.42

)

.

For one million events we have δλ′′
0=0.0024, about 4× the expected value of λ′′

0. In other

words λ′′
0 is likely to be never measurable. It is however a mistake to assume a scalar

FF linear in t, because the coefficient of t will absorb the coefficient of a t2 term, again

multiplied by ∼3.5. Thus a real value λ′
0=0.014 is shifted by the fit to 0.017, having used

the parametrization of Ref. [12].

E.3 From the linear to the dispersive parametrization

The results on the FFs obtained with the linear parametrization can be used to determine

the parameter of the dispersive parametrization. As shown in the previous section the

correlation between λ′
0 and λ′′

0 is close to -1 and any fit to λ′
0, λ′′

0 form Kµ3 decays will give

values satisfying the relation:

λ′′
0 = tan φλ′

0 + B; (E.2)

tan φ is independent on the number of events of the experiment

tan 2φ =
2ρ1,2σ2σ1

σ2
2 − σ2

1

with 1 = λ′
0, 2 = λ′′

0 (E.3)
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Figure 12: Linear parametrization extrapolation along correlation line and relation from dispersive

parametrization.

and amounts to -0.3. B can be determined from the experimental results for λ0 obtained

using the linear parametrization ( λ′′
0=0).

Therefore we can translate the results for λ0 in any new parametrization with only one

parameter with almost negligible 3th order term. In particular the dispersive parametriza-

tion gives:

λ′′
0 = λ′

0
2 + (4.16 ± 0.50) × 10−4 (E.4)

the procedure is shown in figure 12 for λ0=(15 ± 1) × 10−3.
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Experiment λ′
+ × 103 λ′′

+ × 103 λ0 × 103 ρ(λ′
+, λ′′

+) ρ(λ′
+, λ0) ρ(λ′′

+, λ0) Analysis Note

KLOE KL e3 [49] 25.5 ± 1.8 1.4 ± 0.8 −0.95 t from KS → π+π−

KLOE KL µ3 [52] 22.3 ± 10.5 4.8 ± 5.2 9.1 ± 6.5 −0.97 +0.81 −0.91 E∗
ν

KLOE KL e3-µ3 [52] 25.6 ± 1.8 1.5 ± 0.8 15.4 ± 2.2 −0.95 +0.29 −0.38 average 1

KTeV KL e3 [48] 21.67 ± 1.99 2.87 ± 0.78 −0.97 tπ⊥
KTeV KL µ3 [48] 17.03 ± 3.65 4.43 ± 1.49 12.81 ± 1.83 −0.96 +0.65 −0.75 (tµ⊥,Mπµ)

KTeV KL e3-µ3 [48] 20.64 ± 1.75 3.20 ± 0.69 13.72 ± 1.31 −0.97 +0.34 −0.44 average 1

NA48 KL e3 [51] 28.0 ± 2.4 0.4 ± 0.9 −0.88∗ (E∗
ν , tlow, thigh) 2

NA48 KL µ3 [54] 20.5 ± 3.3 2.6 ± 1.3 9.5 ± 1.4 −0.96 +0.63 −0.73 (y, z)low
ISTRA+ K− e3 [50] 24.85 ± 1.66 1.92 ± 0.94 −0.95∗ (y, z)2Cfit 3

ISTRA+ K− µ3 [53] 22.99 ± 6.42∗ 2.29 ± 2.29∗ 17.11 ± 2.25∗ −0.82∗ −0.12∗ −0.41∗ (y, z)2Cfit 4

Table 19: Measurements of Kℓ3 form-factor slopes. Values marked with an asterisk involve additional assumptions; see notes in text.
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