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A Heuristic Attack Method to PRH-Based
Audio Copy Detectors
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Abstract—Often copyrighted multimedia files are uploaded and
shared online. To avoid the unregulated spread of such material
many copy detectors have been developed in order to deny the pos-
sibility to upload, and consequently make available, copies of copy-
righted contents. A widely referenced fingerprint method for con-
tent-based audio identification is the Philips Robust Hash (PRH)
[1]. This paper introduces a simple but effective attack technique
capable to defeat a PRH fingerprint-based audio copy detector
without significantly affecting the signal quality. It is a heuristic
method that adds a suitable distortion to the original audio signal,
so that the modified signal is not detected as a copy of the original
one but is perceptively very similar to it. The quality of the mod-
ified signal has been evaluated in terms of a distortion measure
based on a mathematical model of the human auditory system and
of the Peak Signal-to-Noise Ratio (PSNR). The attack method has
shown a promising success rate.

Index Terms—Adversarial signal processing, audio fingerprint,
copy detection attack, copyright protection.

I. INTRODUCTION

R ECENTLY, the availability of multimedia contents has
had an exponential growth, facilitated by web services

which allow the users to upload and share multimedia contents.
User-uploaded contents are often copyrighted material which
cannot be spread in unregulated ways. To prevent the uncon-
trolled diffusion of such material, many content-based copy de-
tection methods have been developed with the aim of checking,
every time a new content is uploaded, if it is a copy of a copy-
righted content. The most used content-based audio copy detec-
tion methods are based on intrinsic characteristics of the audio
signal, called audio fingerprint. They are used for different pur-
poses such as: i) identifying a song from a short noisy recording
[2]; ii) clustering recordings according to genre, rhythm, etc…
[3]; iii) recognizing the live TV channel a user is watching
through a short noisy recording of the TV audio [4]; iv) iden-
tifying copies of the same audio file in a large database [1], [5].
PRH [1] is an important audio fingerprint-based copy detector
exploiting the audio signal energy distribution. It is widely ref-
erenced and represents a foundation for a set of currently used
energy-based copy detectors such as [6], [7].
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The aim of this paper is to exploit the weaknesses of
PRH-based detector to design an iterative procedure able to
deceive them. To do so, we add to the original audio signal a
distortion signal that does not significantly affect the perceived
audio quality but makes the copy identification system fail. In
recent years, much interest has been gathered by the adver-
sarial approach (see [8] for a general framework) applied to
forensic detectors, especially by methods aimed at deceiving
tampered images detectors. The approaches described in the
literature may be classified as: i) targeted methods, such as
[9] and [10], histogram based; [11], SIFT-based; and [12],
BoW-based; ii) universal methods, such as [13], [14] (both
histogram-based), and [15]. Being based on PRH weaknesses,
the targeted attack method introduced here may not be able to
tackle other audio fingerprint systems, such as [2], [5], [16].
Actually, this paper is the first step of a wider research aimed at
tackling the adversarial problem by defining optimal strategies
for attacker and defender. Detailing the features of PRH and
evidencing how PRH can be deceived without significantly
affecting audio quality can help define both possible counter-
measures able to protect the signal and more robust fingerprints
suitable to shield the detector from the attach. These important
activities are object of ongoing research.

II. PHILIPS ROBUST HASH (PRH) COPY DETECTOR

PRH computes the audio fingerprint of an audio signal by di-
viding it in partially overlapped frames of approximately s.
Each frame is shaped by a Hanning window. The overlap factor
is 31/32. The Fourier Transform of each frame is divided into
33 non-overlapped bands equally spaced on a logarithmic scale,
and, for each band, the energy of the signal is computed, leading
to the energymatrix representation , where is the time
frame index and is the index of the frequency bin. Defining

as:

(1)

the computation of the fingerprint is done by coding
with one bit the sign of as specified in (2):

(2)

Usually copy detection methods work on large databases
(e.g. hundreds of thousands of songs), thus making the brute
force search (i.e., comparing the input audio with all the
database songs) unfeasible. For this reason, in [1] a more
efficient search algorithm is proposed, that selects a group of
candidates with high probability of being the best matching
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fingerprint in the database through a Look Up Table (LUT)
that speeds up the search algorithm. Being the audio
signal stored in the database and its fingerprint,
a generic copy and its fingerprint, this LUT-based
search method selects those fingerprints in the database, which
have at least one row, indexed with , equal to the corre-
sponding row of . Denoting such row with , where

, the condition can be
written as or, equivalently, in terms of Hamming
distance, . It has been proven [1] that
this condition holds if is only a “mild” degradation of

. Alternatively, this condition can be relaxed by imposing
that the closest (in terms of Hamming distance) corresponding
rows, indexed with , have Hamming distance below a given
threshold :

(3)

After getting the list of the best candidates’ fingerprints, the
copy detection system decides that is the copy of one of the
candidates if their fingerprints are similar. The similarity mea-
sure employed in [1] is the Bit Error Rate ( ), defined as
the number of bits for which the two fingerprints differ divided
by the total number of bits:

(4)

with

(5)

with indicating the – operator, the number of
rows and the number of columns of the fingerprints. If the

value is below a pre-determined threshold ,

(6)

the system identifies the two audio recordings as copies.

III. DEFINITION OF THE ATTACK

The proposed attack method relies on the assumption that the
used fingerprint based identification system is PRH [1]. There
are two possible cases in which this detector fails:
a) when the LUT-based search does not retrieve in the
candidate list;

b) when the LUT-based search retrieves in the candidate
list but the is higher than the threshold .

Both cases can be exploited as weaknesses by an attacker to
deceive the system. Case a), called Fingerprint Not Retrieved
(FNR), happens if, for each row , has Hamming dis-
tance from above ( when “mild” degradations
are assumed), i.e., . Case b),
called BER Above Threshold (BAT), happens when the Ham-
ming distance (and consequently the ) between the finger-
prints is higher than a threshold, i.e., . The
attack problem can be phrased as finding the distortion signal

, within a suitably defined set, such that is clas-
sified as different from by the copy identification system
while they are perceptively very similar. Denoting with
an objective measure of the perceived distance between two

audio signals and , and a distance mea-
sure between their fingerprints and , the problem can be
expressed as:

(7)

In the FNR case and the distance measure
is the Hamming distance between the closest (already denoted
with the index ) corresponding fingerprint rows:

(8)

where

(9)

In the BAT case and the distance measure is the
between the two fingerprints defined in (4).

(10)

The idea is acting iteratively as specified in the next Section, so
to modify the signal at each iteration through the distortion
signal until (FNR attack) or
until (BAT attack). The two inequalities
are the stopping criteria of the two different attacks. In practice,
the FNR attack modifies the signal at the source, so that
the PRH receiving cannot find in the candidate list
deriving from the LUT-based search; the BAT attack modifies
the signal so that the PRH, even if it may retrieve in
the candidate list, does not identify any candidate as a copy. It
is important to remark that, even if the PRH checks the BER
only after retrieving in the candidate list, when the BAT
attack is performed it is not known in advance whether or not
the LUT-based search of the PRH receiving the modified signal
will retrieve in the candidate list. This does not impact the
performance because, also in the BAT case, if is not in the
candidate list, the PRH is deceived.
It is worth noting how the ratio affects the possible

mutual implications between FNR and BAT. Specifically,
if then : being and

, it is true that
. Vice versa,

if then
, thus . If then

, thus .
The condition not necessarily implies .
For the sake of generality, we describe the two attacks
separately.

IV. THE ITERATIVE ATTACK METHOD

The following description refers to the attack through BAT.
The aim is to find a solution method of the problem in (7), such
that a closed form expression of the functional is not
required. A heuristic solution is proposed based on the following
iterative method: at the -th iteration, a minimum energy distor-
tion component is added to , such that at least one fin-
gerprint bit change is produced, i.e., .
The rationale under this heuristic procedure is that the minimum
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energy distortion signal found by the attack method is ex-
pected to introduce a small perceived distortion. Modelling and
explicitly minimizing the perceptual distortion are
deferred to further research advances. The distortion signal is
the sum of all distortion components:

(11)

The -th iteration starts by finding the fingerprint bit requiring
the minimum energy to be changed, i.e., by solving:

where

(12)

and are (1) and (2) computed at
the -th iteration on the signal , and ,
computed at step , is the set of all pairs corresponding to
the positions of the fingerprint bits already changed in previous
steps up to .
The distortion component is a superposition of sinusoidal

signals suitably selected to modify the four energy matrix
elements involved in the computation of the fingerprint bit

: , , , and
. The aim of each added sinusoid is to increase

the signal energy in order to change the sign of
and, consequently, the value of . Assuming

(the extension to the case
is trivial), so that , attacking the PRH-based
detector requires to flip the value of this bit.
implies, from (1), that:

(13)

To invert the sign of requires increasing
and , i.e., the energy of the

signal in the -th frequency bin of the -th
time frame and in the -th frequency bin of the -th frame,
respectively. Two consecutive overlapped time frames ( and

) and two adjacent frequency bins are involved in the
computation of . In PRH [1], both frames are mul-
tiplied by a Hanning window that causes the central samples
of the frames to be less attenuated than the peripheral ones.
Calling the length of each frame, the overlap factor,
ranging from 0 (no overlap) to 1 (total overlap), between two
consecutive frames and the -long Hanning window,
Fig. 1 shows: ; its copy shifted by ,
which is the distance between two consecutive frames; and

that illustrates how each
sample contributes to the computation of the difference of

Fig. 1. Effects of the overlap of consecutive Hanning windows.

consecutive time frames. In Fig. 1 the two Hanning functions
are scaled by a 10 factor to better fit into the picture. The
positions of maximum and minimum of the difference function
are identified with and :

(14)

Denoting with the first sample of the -th frame, the ad-
ditive sinusoidal signal must lay across and

to increase the energy of the -th and -th frames,
respectively. Letting be the duration of this windowed sinu-
soid, its Fourier Transform is a with main lobe of width

. Since the widths of the frequency bins follow a logarithmic
scale and each sinusoid must have a bandwidth not exceeding
that of the bin, the sinusoidal components have different band-
width and duration. For the -th bin the sinusoid duration is
set to , where is the width of the bin, and
its frequency is , the center frequency of the bin. In terms
of samples, the duration of the sinusoid is , where

is the rounding operator and the sampling frequency.
The additive signal is made of two sinusoidal components
to modify the -th and -th frames. The signal that mod-
ifies the first frame affects the samples contained in the interval
, while the signal that impacts on the second frame lays in
. and are defined at the bottom of the page in (15). At

the -th iteration the distortion component is:

(16)

where is a scale factor decided at each -th iteration as fol-
lows: its initial value is set to ; its ef-
fect on the fingerprint bit is checked: if the bit is changed, this
value is kept, otherwise it is doubled until the bit is changed.

Once this happens, the iteration starts. The iterations stop
when (stopping criterion for the BAT

(15)
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TABLE I
OVERALL SUCCESS RATE OF FNR AND BAT ATTACKS

Fig. 2. for each track, BAT attack, .

attack). The extension to FNR case is easily carried out by ap-
plying the iterative procedure described above to each finger-
print row, , until (stopping
criterion for the attack through FNR).

V. RESULTS

To evaluate the performance of the proposed attack method,
a test set of 1225 mp3 music tracks (also called songs) has been
employed, suitably chosen to cover a wide variety of genres.
The dimension of the test set assures a high level of confidence
of the obtained results, as specified below. Each track has a
sample rate of 44.1 kHz. The bit rate of the used tracks ranges
from 128 to 320 kbps; the average value is 239.5 kbps. A 3 s seg-
ment has been extracted from each track to perform the tests. All
segments are modified by using the procedure described in the
previous Section up until (BAT)
or (FNR). The perceived distor-
tion is measured through two metrics: the Perceived Distance

[17], which exploits an auditory model to mea-
sure the perceptual difference between the original signal and
the modified one, and the Peak Signal to Noise Ratio (PSNR),
as in [18]. In [17] the masking threshold, i.e. the maximum level
of such that is not detectable if is listened
to, has been set to 1. Therefore, we consider successful (as far as
the audio quality is concerned) any attack that assures .
Table I shows the success rate and the confidence intervals at
95% and 99.73% of the attack both in FNR and BAT cases. Al-
though the proposed method does not take into account the user
perception when it chooses but carries out the choice on
a minimum energy basis, the performance is quite satisfactory.
The higher rate of the FNR attack is due to the fact that it mod-
ifies less fingerprint bits than the BAT case attack. Fig. 2 shows
the Perceived Distance values for each track of the test data-
base for BAT attack. A strictly similar behaviour is obtained
for the FNR case. Fig. 3 shows the PSNR achieved in case of
BAT attack and the corresponding energy of the inserted for
each song. The more energy is inserted, the lower the PSNR.
Indeed, may be considered as a sort of “controlled” noise.
A test on the robustness of the attack with respect to indepen-
dent noise has been performed by evaluating the associated
with the perceived signal . Such , assumed AWGN,

Fig. 3. Energy of the inserted distortion signal and resulting PSNR for each
track in BAT attack.

Fig. 4. Percentage of songs with vs. SNR, in presence of AWGN, in
case of FNR and BAT attacks, and no attack.

may model a purposely inserted noise aimed at decreasing the
perceived quality of the received signal and, consequently, the
success rate of the attack. Fig. 4 reports the percentage of music
tracks with vs. signal-to-noise ratio (SNR) computed
between and , in FNR and BAT attacks (where such a per-
centage coincides with the success rate) and in case of “no at-
tack” ( ). The “no attack” curve shows the impact of the
noise on the signal perceived quality and, in practice, it evalu-
ates the human perception for audio signals when is disturbed
by : when SNR is below dB, the signal perceived quality is
unacceptable; if SNR stays in the range [30–35] dB the quality
improves; above dB it is excellent. It is worth noting that the
success rate of FNR and BAT attacks follows the same trend: it
is not affected when SNR dB, it begins decreasing in the
range [30–35] dB, and it is about 30% when dB. In
short: the attack is successful (i.e., has a satisfactory
perceived quality) until the signal has a satisfactory per-
ceived quality. The success rate obviously decreases when is
relevant, but exactly as the perceived quality of decreases.
In this view, the attack may be considered robust: its effective-
ness as a function of the noise is substantially independent of
the signal , ruling the attack.

VI. CONCLUSIONS

A heuristic iterative energy-based method has been pre-
sented, able to deceive a fingerprint based PRH copy detector
by suitably modifying the input audio signal. The results ob-
tained on 1225 music tracks are satisfactory, being the success
rates (in terms of perceived quality of the purposely distorted
signal that has defeated the detection system) around 50% and
70% depending on the kind of attack. The approach can be
considered promising and can be improved by associating a
suitable perceptive metric to the employed purely energetic
criterion.
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