
Creating a Shared Understanding of
Testing Culture on a Social Coding Site

Raphael Pham∗, Leif Singer∗, Olga Liskin∗, Fernando Figueira Filho†, and Kurt Schneider∗
∗ Leibniz Universität Hannover

Hannover, Germany
{firstname.lastname}@inf.uni-hannover.de

† Universidade Federal do Rio Grande do Norte
Natal, Brazil

fernando@dimap.ufrn.br

Abstract—Many software development projects struggle with
creating and communicating a testing culture that is appropriate
for the project’s needs. This may degrade software quality by
leaving defects undiscovered. Previous research suggests that
social coding sites such as GitHub provide a collaborative
environment with a high degree of social transparency. This
makes developers’ actions and interactions more visible and
traceable.

We conducted interviews with 33 active users of GitHub to
investigate how the increased transparency found on GitHub in-
fluences developers’ testing behaviors. Subsequently, we validated
our findings with an online questionnaire that was answered
by 569 members of GitHub. We found several strategies that
software developers and managers can use to positively influence
the testing behavior in their projects. However, project owners on
GitHub may not be aware of them. We report on the challenges
and risks caused by this and suggest guidelines for promoting a
sustainable testing culture in software development projects.

I. INTRODUCTION

In recent years, social media have changed how software is
developed. Software engineers connect with, provide help to,
collaborate with, and learn from one another with unprece-
dented ease [1]. Blogs and Q&A sites like Stack Overflow
foster collaborative learning, covering substantial amounts of
official API documentation [2]. Social coding sites like GitHub
act as version control repositories with a Web interface, as well
as a social network site [3]. Finally, developer profile aggrega-
tors like Masterbranch and Coderwall combine the activities of
developers to generate unified profiles of software developers
that help them discover new contacts and technologies [4].

Many social media sites — both general and those specifi-
cally created for software developers — provide a high degree
of social transparency [5]. Members are able to easily find out
who they are interacting with, whom everyone else is inter-
acting with, and who has interacted with which artifacts. This
transparency influences the behavior of software developers,
as documented by Dabbish et al. for GitHub [3]. For example,
developers assess each other using social media and are aware
of the publicity of their own activities, therefore taking care
of how they behave. One of the topics mentioned by Dabbish
et al. is software testing.

This paper investigates how testing behavior is influenced by
the peculiarities of social coding sites like GitHub. Different

testing practices may influence software quality, maintainabil-
ity, and development times. For example, in some cases test-
driven development (TDD) has been shown to significantly
lower the defect rate of software products [6].

If social coding sites can influence the testing behavior of
developers, they might also have an impact on the progress
of software development projects and their resulting products.
Understanding these influences better might enable individual
developers and software development organizations to posi-
tively influence their own teams’ testing practices.

As we were not able to find previous work on this topic,
we conducted an exploratory study of testing on GitHub to
find out how social coding sites influence testing behavior,
which challenges this creates, and how developers cope with
these challenges. With our approach based on Grounded
Theory [7], we conducted interviews with 33 active members
of the GitHub social coding site. We answered our research
questions by analyzing these interviews and validating our
results with an online questionnaire that was answered by 569
active GitHub users.

Our results suggest that there are several strategies that soft-
ware developers and managers can use to positively influence
the testing behavior in their projects, but that project owners
on GitHub may not be aware of them. For example, some
participants of our study reported that existing tests in a project
would influence them to include tests in their commits —
however, the developers receiving such contributions saw no
such connection.

This paper is structured as follows. Following this introduc-
tion, we provide a short overview of the terminologies of Git
and GitHub. In section IV, we document our study design;
we report our findings in the following two sections. Section
VII provides a discussion of our findings, while section VIII
lists the limitations of our work. Section III discusses related
work. Section IX concludes this paper and gives an outlook
to future research.

II. GIT AND GITHUB

This section provides a short introduction to Git and GitHub,
and introduces some of the terminology used in the remainder
of this paper.

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

112



Git1 is a distributed version control system (DVCS). Each
contributor may clone a remote repository to create a local
copy of the whole repository and may then commit changes
to this local repository. Changes can be pushed or pulled to and
from remote repositories. Often, there is one remote repository
combining the participants’ commits.

To avoid having to grant every contributor full commit
rights to that central repository, developers often use a process
coined forking. Contributors create clones of the central repos-
itory and, eventually, if they want a commit to be included in
the central repository, they issue a pull request: a notification to
the project owner — the manager(s) of the central repository
— that new commits are available on the developer’s fork.
The project owner may then decide themselves whether to pull
those changes to the main repository. This decouples outside
contributors from the central repository. For simplicity, we will
refer to the project owner in the singular form, even though
several developers might have that role for a project.

The social coding site GitHub2 provides hosting of remote
Git repositories and supports the repository interactions in
a Web-based user interface. Pull requests can directly be
commented on, thus facilitating discussions. GitHub integrates
tools that are often used in software projects, such as an issue
tracker or a wiki. Because of this easy accessibility and a
streamlined contributing process, projects hosted on GitHub
are accessible to a large number of potential collaborators.

Each member maintains a profile site, may follow the
activities of other members, and may view the contact lists
of other members — making GitHub a social network site as
defined by Boyd and Ellison [8]. Thus, project owners and
contributing team members are easily reachable for potential
external contributors.

III. RELATED WORK

This section gives an overview of research regarding open
source (OSS) software development, related testing activities
and social coding sites.

Testing Practices in Development Communities: Several
surveys report on testing practices found in different commu-
nities. For example, Greiler et al. [9] investigate the testing
practices in the Eclipse Plug-In community. Michlmayr et
al. [10] report on a study that investigated the quality-related
practices in a diverse set of open source projects and associated
problems. To the best of our knowledge, testing practices on
social coding sites have not been examined before. Regarding
testing on GitHub, we present a first understanding of the
interactions and motivation when contributing to a project or
maintaining it.

Social coding sites with their high degree of social trans-
parency have recently gotten into the focus of research.
Dabbish et al. [3] investigate the influence transparency has on
the behavior of participants of GitHub. Stuart et al. [5] provide
a framework for thinking about social transparency and its

1http://git-scm.org
2http://github.com

effects. Singer et al. [4] examine developer profile aggregators
that combine developers’ activities from social coding sites
and other social media. They find that this social programmer
ecosystem, as they call it, helps developers connect, collabo-
rate, and discover new technologies. However, none of these
studies has examined the effects increased social transparency
might have on testing practices in projects. Besides com-
plementing to further understanding the dynamics in social
coding sites, we also provide suggestions for guidelines on
how to communicate testing requirements when collaborating
on GitHub.

Open Source Software Development: Some of the phenom-
ena observed on GitHub are typical for open source software
development, where a lot of research has been conducted. For
example, Mockus et al. [11] characterize OSS development
and describe its development process based on the Apache
Web Server project. Bonaccorsi and Rossi [12] as well as Kr-
ishnamurthy [13] investigate the motivations of individuals and
software companies that participate in open source software
development.

Further, there is substantial research on coordination in
open source projects. Bird [14] investigates how developers
coordinate in large OSS projects. Crowston et al. [15]–[17]
investigate coordination, task assignment and communication
in different case studies. One of their findings is that the
most prominent mechanism is self-assignment of tasks. In one
study, Crowston and Scozzi [18] explicitly study bug fixing
practices in OSS development. Stewart and Gosain [19] show
how ideology in an OSS project influences its effectiveness.
Dagenais et al. [20] investigate the creation and maintenance
of developer documentation and how developers use it to learn
in open source environments. Sowe et al. [21] describe how
knowledge is shared and used via mailing lists.

While these studies report on phenomena that we also found
in our work, our contribution adds to them by discovering
influences up to now only found in our study. We believe
that this is due to peculiarities of social coding sites, such
as the high degree of social transparency, remarkably low
barriers, and a high centralization and integration of tools and
interfaces.

Coordination and awareness within teams are the subject
of some CSCW research focused on software development.
For example, Begel and Zimmermann [22] report on a news-
feed system that increases project awareness. DeSouza and
Redmiles [23] investigate which actions should be presented
to whom in such feeds. GitHub also uses mechanisms like
newsfeeds, increasing social transparency. However, whether
and how such mechanisms influence testing behavior had not
yet been examined in this field.

IV. STUDY DESIGN

We used an approach based on Grounded Theory (GT) [7]
to explore how testing is carried out on social coding sites
and how an increased social transparency impacts the testing
behavior of software developers engaged in those projects.
For the purposes of this paper, we focused on two groups

113



of people: (1) project owners, who receive pull requests and
(2) contributors who send them.

A. Research Questions

We designed a set of research questions to better understand
how testing practices evolve based on the interaction between
contributors and project owners on social coding sites. First,
we focused on identifying the main steps and variations of the
contribution process and how decisions are made with regard
to testing. This leads to our first research question:

RQ1: What is the contribution process with regard to
testing on social coding sites?

While investigating the contribution process on GitHub,
it became clear that contributions were assessed by project
owners. Furthermore, we found different motivations for im-
plementing quality assurance measures specific to interaction
on social coding sites. We refined our first research question
into two sub questions to accommodate this.

RQ1.1: How do project owners assess incoming contribu-
tions from contributors?
RQ1.2: What are the internal and external motivations for
engaging in testing efforts on social coding sites?

As reported by Stuart et al. [5], social transparency may
have hard to anticipate second order effects in addition to the
possibly intended first order effects. In our study, we wanted
to find out more about the issues that might arise as a result
of those effects. As such, our second research question is:

RQ2: What challenges and risks related to testing arise
from engaging in projects on social coding sites?

In face of such challenges and risks, project owners and
contributors might have to evolve and adapt their contribution
process. For example, project owners might have to advise
contributors on how to conform to project guidelines. Our third
research question focuses on the actions taken by each group
of actors for overcoming such issues:

RQ3: How do developers cope with those challenges and
risks related to testing?

Finally, the increased social transparency on social coding
sites creates distinct modes of interaction between project
collaborators. Understanding these modes of interaction can
help guiding practitioners as to which kind of interactions
to support and which to avoid in the purpose of improving
the existing testing practices. This leads to our last research
question:

RQ4: What impact does the participation on social coding
projects have on testing practices?

B. Procedure

Grounded Theory [7] emphasizes a continuous data collec-
tion process interlaced with periodic pauses for analysis. As
such, we conducted our study in three phases.

First, we focused on understanding which testing-related
norms and conventions exist on GitHub. For our investigation,
we obtained 16,000 email addresses of recently active users

by querying the GitHub Archive3. From this pool, we invited
50 users to semi-structured interviews and another 50 users
by randomly choosing a member from each of the 50 most
successful GitHub teams as listed on the Coderwall4 leader-
board. This sampling strategy resulted in a diverse population:
highly experienced as well as regular users of GitHub.

Of these 100 users, 10 from the former sample and 3 from
the latter sample enrolled. Each participant was interviewed
by a member of our research team via voice call. Interviews
lasted approximately 20 minutes and the audio was recorded.
We asked the participants to outline the testing process in one
of their public projects on GitHub. Preliminary findings indi-
cated that projects featuring extensive collaboration between
developers would demand more elaborate testing approaches.
We also learned that most decisions regarding testing were
made when pull requests were sent and received, i.e., when
people had to coordinate and negotiate their cooperation.

In the second phase of our research, we defined our target
population to be active users who used the collaboration
features of GitHub. From our address pool, we invited 1,000
GitHub users at random to take our first questionnaire (Q1):
500 at first and again 500 after 6 days. In total, 158 users
responded, of which 74 left usable contact information. The
questionnaire responses allowed us to distinguish between
users that had been collaboratively active — they had either
sent a pull request or forked a project — and their approaches
for testing contributions. We invited all 62 of those 74 who
matched our criteria for another round of semi-structured
interviews. 20 users enrolled.

In these interviews, we inquired about participants’ testing
practices and values. We had prior answers to these questions
from questionnaire Q1 and used the interviews to explore
such situations in detail, allowing us to better understand
the contribution process with a focus on testing behavior
and practices. For example, we asked interviewees how they
handled incoming pull requests and whether they had any kind
of quality assurance measures related to this process. Then, we
inquired about their motivations for assuring quality and the
challenges they face when contributing to other projects. As
a result of our second phase, we were able to identify five
themes that stood out.

1) The fork and pull request mechanisms, social network
features, and integration of numerous tools result in
a GitHub-specific process for sending and receiving
contributions.

2) GitHub makes it easier to access a public repository,
start working on it, handle contributions, and discuss
them with contributors. GitHub tools and social features
lower the barriers for engagement in software projects.

3) Public projects and profiles on GitHub have high expo-
sure to many potential contributors and users. This helps
with, for example, discovering edge cases.

4) GitHub integrates many tools into the project con-

3http://www.githubarchive.org
4http://coderwall.com

114



text and centralizes many interactions and notifications
among project participants.

5) GitHub provides increased social transparency that al-
lows its users to see the identity, actions, and com-
munications between users, a phenomenon that was
previously reported on by Dabbish et al. [3].

In the last phase, a final questionnaire (Q2) was sent to
4,000 random GitHub users for quantitative validation of our
findings. Of these users, 569 responded. The results of this
phase can be found in section VI.

C. Data Analysis

We alternated periods of data collection with analysis in
order to build up our theory. At the end of each data collection
phase, we transcribed the recorded interviews and open coded
them. This resulted in 172 codes. At the end of our second
phase, we engaged in axial coding our codes in order to find
higher level conceptual themes that would help us in answering
our research questions. In the last phase of our research,
core themes of our theory were formed into statements and
validated through a final questionnaire (cf. section VI). Partic-
ipants were asked to agree or disagree with statements using
a Likert-type scale. For each question, the mean value for the
given set of answers was calculated, as well as its variance
and the number of given answers to that question in total. For
questions that required the participant to choose an answer
in a set of pre-given answers, the count for each answer was
calculated and related to the total number of answers to that
question.

D. Participants

Overall, we interviewed 33 people, among them software
developers, testers, and software architects. Nearly half of
them were using GitHub for professional work (19); the other
half (14) used GitHub for private projects. Our population
comprised of developers employed in a software company
(24), self-employed (3), and unemployed developers (2). 4 in-
terviewees were affiliated with universities and mostly engaged
in noncommercial projects. 20 participants of our second
interview phase estimated the number of total contributors
to their projects. Numbers of contributors were diverse: 12
projects with up to ten contributors, two projects with up to one
hundred contributors and six projects with over one hundred
contributors. We denote these interviewees with FI. Randomly
chosen interviewees from the first interview round are denoted
with R, Coderwall leaderboard members are denoted with L.

V. FINDINGS

A. Interaction on GitHub with Regard to Testing

This section reports on our findings regarding the contribu-
tion process on GitHub and how project owners assess pull
requests from contributors (RQ 1.1).

In the course of our interviews, several steps of the con-
tribution process on GitHub emerged. After receiving a pull
request, the first step that project owners conducted was to
manually review the contribution and assess it by different

aspects. After this review, they merged the pull request into
a testing branch and resolved conflicts manually. Superficial
adjustments like code style corrections or comments were
added based on preference. If a test suite existed, project
owners ran it to check whether or not this contribution passed
tests. This increased confidence in the contribution. Finally, the
contribution was merged into the main branch of the project.

We found many factors that were taken into consideration
by project owners when assessing contributions. For instance,
project owners reported to treat incoming pull requests dif-
ferently depending on whether they trusted the contributing
developer. Pull requests from unknown developers would
undergo a more thorough assessment, while contributions
from trusted developers would be merged right away. “if it’s
someone I trust, who’s worked on the project a lot, then I
don’t do that. [...] if it’s someone who hasn’t spent a lot of
time on the project, I’ll try and do that.” [L48]

The perceived size of the changes highly influenced the
project owner’s need for tests. If the project owner believed to
have quickly understood the changes’ impact, they demanded
no tests from the contributor. This was often the case when
only some lines of code had been changed.

Additionally, project owners distinguished between two
types of contributions: contributions that introduced a new
feature or contributions that changed existing code, such as
bug fixes. The former were requested to include tests, while
the latter caused project owners to check whether or not the
changed code was already covered by existing tests. If so, no
further tests were demanded. “if you really write a new feature,
then it makes more sense to add tests for that, but if you just
do a little change in a code chunk that is already there then
I don’t expect that the person writes the test for that.” [FI19]

The target of the changes was considered as well. Changes
to core functionality caused a demand for tests. However, if
the estimated effort for creating automated tests was regarded
as infeasible, this demand was waived. Often, such tests would
require a cumbersome setup of test environments (such as
different operating systems). Project owners were aware that
contributors acted voluntarily and were unfunded in most
cases.

B. Motivations for Demanding and Delivering Tests

This section presents our findings regarding project owners’
motivations for demanding tests and contributors’ motivations
for providing them (RQ 1.2).

Project owners’ reasons for demanding tested contributions
were manifold. Maintaining clean and well documented code
reduced the subsequent support effort, according to one
project owner. Some project owners perceived tests as a form
of documentation of how to use the contributed feature.
Another project owner requested contributors to provide test
cases of how they needed the software to behave, so he could
merge these into the existing test suite for future regression
testing. In this case, tests were used for communicating
requirements.

115



An external motivator was the impression of acting as a role
model when working on a testing-related project. Several users
reported to feel obliged to perform proper quality assurance
for projects with a domain related to testing — e.g. a testing
framework or a continuous integration server.

In interviews with contributors, different motivations for
including tests in a pull request on one’s own initiative
emerged. Some interviewees said they explicitly added tests
that highlight the value of their contribution to the project
owner: these tests failed with the old version of the software
in question, but passed when the contribution was applied.

The existence and prominent placement of tests gave
contributors the impression of informal project guidelines; thus
they felt obligated to add their own tests. “[There were no
guidelines set up], not so much formally, but it was pretty
clear how it was supposed to be tested and there was already
an existing spec file [...] with a pretty substantial list of
tests” [FI17]

Similar to a project owner perceiving oneself as a role model
when working on a testing-related project, contributors felt
an implicit demand for tested pull requests in such domains.
In other instances, this obligation also resulted from customs
rooted in the community of the technology used. Often, Ruby
developers tested their contribution by default.

C. Challenges and Risks

This section discusses the challenges and risks we found to
arise when engaging with projects on GitHub (RQ 2).

Interviewees saw an urgent need for automatic tests in their
projects. This need was felt very strongly, as there are a lot
of contributors on GitHub which are often only marginally
engaged, i.e., there is a large group of developers in the
periphery. Therefore, a lot of contributions need to be managed
which interviewees reported could not be done using manual
tests — simply for reasons of scale. “a lot of people are
contributing to [the project] and quality control is becoming
more and more important to us. Automated testing is the
only way to get that” [FI7] To achieve automated testing,
project owners were in many cases looking for tests when
they received pull requests from contributors (cf. the previous
section).

Because there is a constant flux of contributors, and
developers new to a project are not yet accustomed to its
testing culture, they have to learn it anew. This takes time
and effort. If a project fails to communicate testing culture
efficiently and effectively, or sets barriers that are too high for
first-time contributors, it can struggle to create such a culture.
For example, if new contributors cannot easily find existing
tests in a project, they will not be able to write any of their
own for their contributions. “When I first started contributing
to [the project], they did not actually have a test suite which
made shipping them tests fairly difficult” [FI20]

Several project owners reported that their projects were
struggling with creating the required testing culture. The
pull requests they received would often not include any tests
by default. One issue they saw was the voluntary nature of

open source contributions: they could not simply require well-
tested contributions. Developers who had sent a valuable pull
request might be alienated if project owners rejected their
contributions due to a lack of tests. “We have a project,
where we don’t have the culture, it is difficult and people are
volunteers, we can’t just enforce it on the project. You have
to try to incubate it into the project.” [FI7]

Another reason why creating a robust testing culture is so
difficult could be the lack of experience on the side of the
contributors. “We have a lot of people ramping up to the team
every time. So, we have a big rotation. So new people don’t
understand what is a quick build, what is the regression, what
is isolated, ... and they don’t understand how to write tests for
each of those suites.” [L4]

Two of GitHub’s greatest strengths — low barriers to con-
tribution, combined with tight integration of related tools and
services — are related to another challenge that interviewees
mentioned. In terms of testing, there are no integrated tools
provided by GitHub that might lower some testing-related
barriers, e.g. for setting up a server for continuous integration.
Even though this is starting to be supported by Travis CI5,
this was not yet commonly used amongst the interviewed
population. One interviewee even mentioned that “github its
such an easy-to-use-tool that it makes writing unit tests seem
like extra time for most people.” [R16]

D. Coping with Challenges

In this section, we report how interviewees coped with the
testing-related challenges on GitHub (RQ 3).

As described in the previous section, scalability reasons
drive project owners towards automated tests. However, man-
ually merging each pull request into a testing branch and
running regression tests with a test suite of automated tests
remained a tedious task. Some interviewees resorted to an
automated continuous integration (CI) service, such as Travis
CI or Jenkins. Such a service frees the project owner of
several manual steps: when a pull request is received, a
program merges the contribution into a testing branch, runs
the existing test suite, and notifies the project owner as well
as the contributor of the results.

Project owners developed different strategies to establish a
common understanding of testing requirements and handling
untested pull requests. Due to the voluntary nature of GitHub
(c.f. previous section), some project owners simply resorted to
writing tests themselves or thankfully requesting — instead
of demanding — further tests, as this leaves the contributor
the option to decline.

Lowering the barriers and making it easier to provide tests
was another strategy, for example by introducing a testing
framework with a suitable explanation of its usage. Other
project owners provided easy access to learning resources
and actively supported contributors who showed difficulties
in writing tests: pointing contributors to tutorials, suitable
examples in an existing test suite, or actively teaching them.

5http://travis-ci.org

116



This was beneficial as contributors were convinced of the need
for tests and included tests on their own in subsequent pull
requests. “[...] I can point them to one of the existing tests.
«Check this one, it is really similar to what you need», and in
most cases it’s enough. Sometimes, [...] I do Skype conferences
with screen sharing where I can explain, show.” [FI4]

A passive strategy for communication testing requirements
was to make it more obvious that testing was indeed desired
by giving the impression that testing was a customary in
one’s project. Some interviewees said that they tried to lead
by example and tried to make testing visible in the project,
hoping to engage contributors in testing. Another strategy was
to display testing signals. For example, every project using
Travis CI may add a badge to its profile page. This informs
a potential contributor that continuous integration is regularly
performed. “if you see that image, it immediately rings the
bell that there is continuous integration in this project, and as
such, there is some kind of automated testing.” [FI6]

E. Impact of Social Coding Sites on Testing Practices

This section investigates the impact of engaging with a
social coding site on testing practices (RQ 4).

During our research, we encountered different levels of
lowering the effort for testing. One interviewee suggested that
in his perception, projects using behavior driven development
(BDD) and concentrating on testing primarily the main use
cases provided these low barriers to entry. This allowed
those projects to deliver results very fast, which impressed
other developers. Those projects were also very good at
communicating their culture in social media, e.g. via blog
posts advocating their testing culture. This combination, the
interviewee said, would lead to the described behavior being
adopted at a fast rate and thus spreading through GitHub. He
saw this development critically however, as possibly important
edge cases were ignored until they became apparent.

A more extreme case of lowering the barrier for contribu-
tions was simply to defer testing to a later stage of the project.
An interviewee said that in his experience, younger projects
needed to gain traction in the present. Obtaining external
contributions was regarded to be more important than quality
assurance measures. However, such projects would need to
pay back this accumulated technical debt in the future.

Interviewees told us that effectively communicating a
project’s testing culture would lead to contributors adopting
that culture more rapidly and in greater numbers. We spoke to
several developers who had experiences in multiple projects
with different communication strategies. According to them,
better communication of testing culture leads to more pull
requests containing tests, and therefore to projects that were
tested better. Testing guidelines and actively communicating
to contributors what kind of tests were required helped getting
more contributors to provide tests with their pull requests.
Providing guidelines on contributing or providing dedicated
testing tutorials removed uncertainties in contributors about
how to participate correctly. This way, the barrier of having to
ask was removed. One interviewee expressed that knowing

a project’s testing culture and adhering to it would make
him and his peers feel proud, further helping the project’s
testing culture to be adopted. However, the reverse was also
mentioned: if a project did not communicate anything about
its norms and requirements regarding testing, new contributors
would simply assume that no tests had to be written and
consequently submit pull requests not containing any.

Some interviewees mentioned that testing culture — and
communicating it — could even be ingrained not only in
a single project, but in a whole infrastructure community
(c.f. section V-B). According to these interviewees, in the
Ruby community it was taken for granted that blog posts,
screen casts, and tweets from popular developers often talked
about testing practices that were regarded as proper in that
community. This is a form of communicating a testing culture
— in this case however, in a much larger realm than that of
one or more GitHub projects.

Interviewees reported several examples where direct ex-
changes on GitHub helped diffusing testing culture. For
example, one project owner reported that his project started
using the Travis CI service when it received a pull request
that added a Travis CI configuration file. “I received a Travis
CI config [in a pull request]. I did not know this service before
and someone send me a config for Travis and this is how I
came to use it” [FI19]

Travis CI, in turn, also arranges for low barriers and easy
communication of testing culture. As described in section
V-D, the Travis CI badge is perceived as a signal that com-
municates the use of certain practices.

However, employing a continuous integration service with
an extensive test suite may create a false sense of security:
one interviewee reported to use the positive result of running
his existing test suite as a sufficient confirmation of a con-
tribution’s correctness. He usually simply merged such pull
requests without requesting any additional tests specific to
these contributions.

A key instrument for project owners wishing to create and
nurture their project’s testing culture was to provide existing
tests and a testing infrastructure that was easy to set up (c.f.
section V-D). Interviewees reported this to lower the barrier to
accommodate to the project’s culture. They would just need
to fork the project, execute a shell command, and have the
existing tests running. Interviewees took this as an opportunity
to run regression tests, thus trying to make sure that their
contribution did not break anything. This increased their
confidence in the correctness of their own code and lowered
the barrier of contributing. Some interviewees also said that
just having a test suite would communicate certain values
regarding testing, helping them understand the project’s testing
culture, norms, and conventions. Providing publicly available
tests brought by another advantage: contributors heavily used
existing tests as a source for education and examples for their
own test cases. “there were some tests surrounding some quite
similar functionality in the source, so I basically copied and
modified these tests to test the functionality that I added.”
[FI20]

117



One recurring theme was that communicating of testing
culture better and lowering barriers in a project promote explo-
ration and experimentation for new contributors. Interviewees
claimed that this, in turn, often leads to developers becoming
more familiar with a project’s testing culture, making it easier
for them to provide their own tests. For example, a project
with a CI server that provided fast feedback on tests was said
to support experimentation — after all, problems would be
easily visible, giving experimenting developers more confi-
dence. Some interviewees mentioned that experimentation was
supported not only by a project’s deliberate efforts, but also by
the chosen programming language and the available libraries.

Interviewees claimed that the number of volunteer contri-
butions increased since moving their projects to GitHub. They
attributed this to the low barriers to entry and the resulting
exposure to a larger number of developers. An employee of a
company that develops open and closed source projects told
us that many GitHub contributors find bugs, provide tests, and
send them bug fixes. This, he claimed, enabled the company’s
paid developers to concentrate on larger issues, such as
creating new features.

To a greater extent, interviewees reported that the public na-
ture of software development on GitHub leads to an improve-
ment of testing practices. Some of them were companies that
used the exemplary testing practices in their public projects
as an advertisement for the high quality of their development
services. Indeed, one employee of such a company confided
that testing was less important in the company’s internal
projects, as they did not serve as such advertisements.

We heard similar reports from open source projects not
backed by companies. Core members of such projects were
concerned about the project’s reputation — how the project
was perceived by the community. They believed that proper
testing would lead to higher quality code, which in turn
would be received better by others. “we need to have a more
substantial testing framework because it’s [...] a significant
indicator of code quality in the community. If you don’t have
good tests then people start to suspect that your code may not
be any good either.” [FI17]

On the side of the contributors, one interviewee reported
that having contributed to a high-profile project in which tests
are mandatory would help him find work. Indeed, that was his
only reason for contributing.

Our findings show that several mechanisms and processes
used on GitHub may help projects become better tested.
Project owners help new contributors get acquainted with a
project’s culture and make it easy for them to get up and
running technically. However, this does not only affect regular
contributors that can be productive faster. Drive-by commits
— as an interviewee called them — are small changes that
do not require a prolonged engagement with a project, yet
provide some value for it. Developers providing such changes
would not always be actively interested in a project, but might
have stumbled upon it when browsing GitHub. Then, when
they had found, for example, a spelling error or a missing
translation, they would make a quick correction and forget the

project again. GitHub’s integration and low barriers seemingly
streamline this process and might lead to GitHub having a very
long tail of many small contributions.

VI. VALIDATION OF OUR FINDINGS

In section V, we presented findings gathered by conducting
33 interviews with GitHub users. This section presents the
most striking results of our final questionnaire (Q2) that we
used to validate core statements of our findings. Of 4,000
random GitHub users, 569 filled out this questionnaire. Our
results are summarized in Table I. PO denotes statements about
project owners, C about contributors. For each question, we
presented the participant with a Likert scale of five items
ranging from “I do not agree at all” to “I strongly agree.”.
These Likert items are represented in the diagrams on the X-
axis with disagreement being on the left and agreement being
on the right hand-side. The middle bar represents the neutral
item. The number of answers accumulated for each Likert item
is marked on the Y-axis. The grey bar is the median.

The questionnaire required the participant to take both the
perspective of a project owner and a contributor. 39% of our
participants would receive pull requests at least a few times per
week (daily: 16%) and 27% send pull requests at least a few
times per week (daily: 6%). Even though several interviewees
mentioned voluntarism as a hindering factor, the questionnaire
did not validate this (PO1). Personal traits such as modesty
and humility of the requester as well as value given to the
contribution may be influencing factors. Similarly, most of
the participants did not agree to feel a need for automation
(PO2). However, as some interviewees mentioned, this need
may depend on the size and popularity of the project in
question. As popularity grows, the amount of incoming pull
requests increases. As both samples were randomly invited,
but ultimately self-selected, variations in populations might
attribute for this dissonance.

Project owners agree that providing tests in one’s project
lowers the support effort regarding testing by contributors
(PO3). Appropriately, contributors heavily rely on existing test
cases when creating their own. They use these to learn how
testing is done in a specific project (C3) and, lastly, even copy
existing tests and use them as a basis for new tests (C4). With
tests in place, contributors feel obligated to add their own tests
and seem to comply with this implicit demand (C2).

VII. DISCUSSION

This section relates our work to previous research and
discusses its potential impact on the software development
industry, open source development, and research. We connect
our findings with research in Communities of Practice and the
diffusion of innovations. In doing so, we distinguish between
processes occurring inside of projects — intra-project — and
those spanning multiple projects, i.e., inter-project processes.

A. Creating a Shared Understanding
Lave and Wenger [24] coined the term Community of

Practice (CoP) for groups of individuals that work on sim-
ilar problems and exchange knowledge about good practices,

118



TABLE I
RESULTS OF THE FINAL QUESTIONNAIRE (Q2).

Statement and Question Results

PO1:Voluntarism hinders demand of tests.
I have the feeling that I am not in position to
demand tests from a contributor as he or she is
contributing on a voluntary basis. (464 answers)

200

0

100

PO2: Amount of incoming pull requests demands for
automation.
The amount of incoming pull requests is so big that
I can only assure their quality by using automated
tests. (453 answers)

200

0

100

PO3: Existing tests support contributors in writing
their own tests.
When I have tests in my project, contributors need
less help in writing tests. (457 answers)

200

0

100

PO4: Existing tests facilitate more incoming pull
requests that are tested.
As a consequence of providing tests in my project,
more pull requests include tests. (452 answers)

150

0

C1: Low barrier commit mechanism facilitates
Drive-By-Commits.
Since it is so easy to send a pull request, I
contribute more changes that I would not have
engaged in otherwise. (496 answers)

200

0

100

C2: Existing tests make contributor feel obligated to
add tests.
When I see that there are tests in a project, I will
also include tests in my pull request. (499 answers)

200

0

100

C3: Existing tests are a source of education for
contributors.
Existing tests help me in understanding how to test
in a specific project. (495 answers)

350

0

C4: Contributors use existing tests as a basis for
new tests.
I use existing tests as a basis for my own tests: I
copy and paste them and adjust them accordingly.
(496 answers)

200

0

100

proven solutions, etc. with each other. They mention legiti-
mate peripheral participation as a central phenomenon when
describing how new members of the CoP join and, through
learning the community’s norms, become more and more
involved with it. Initially, novices merely observe practices
passively before starting to take on simple and increasingly
complex tasks. New members are said to be situated in the
community’s periphery, while established members are part of
the core. As shown by Crowston et al. [16], these processes
can apply to open source software development as well.

1) Intra-project Processes: Inside of individual projects,
we found that new contributors start off with first observing
how pull requests are handled and discussed, and what good
commits and tests look like. This is supported by the high
social transparency found on GitHub.

When they are ready to submit their own pull requests,
they have already learned quite a lot about the project’s
testing culture. However, they are often assisted further by
the low barriers many projects on GitHub strive to provide

to potential contributors. Examples for this are existing tests
that can be simply copied and modified and the fact that
several project owners told us that they strive to provide testing
infrastructure that is easy to set up. This is again supported by
test automation integrated with GitHub itself, such as Travis
CI.

This increased level of support for peripheral contributors
seemingly creates very large peripheries of contributors for
projects, as touched upon in some of our interviews. Con-
sequently, some of the mechanisms we found may be used
solely for managing peripheries of this greater size. Because
of the exploratory nature of this work, we were not yet able
to gain deeper insights about the properties of such projects.
Future research will need to investigate the problems created
by projects with such compositions and how project members
manage these challenges.

Drive-by commits — simple commits that leave their cre-
ators rather uninvolved with the project and that can be created
with very little project-specific knowledge — are a departure
from the model of the peripheral member that gradually
gets more involved with a community. We believe that more
research is needed to help us understand the motivations and
processes surrounding this phenomenon better.

2) Inter-project Processes: In addition to these phenomena
related to individual projects, some interviewees told us about
how the testing culture of communities works that span
multiple disconnected projects. Most of the time, these would
use the same programming language and the same frameworks
for development.

For example, the Ruby community seems to have a dis-
tinguished testing culture that many interviewees were aware
of. Core members of the community create the frameworks
that more peripheral members will use, and also publish
learning resources such as blog posts and screen casts. In these
frameworks and documents, they advocate a certain testing
culture: e.g., behavior-driven development (BDD), supported
by BDD testing frameworks, and characterized by a focus on
testing primarily the happy path — the intended behavior,
ignoring edge cases for a large part.

As one interviewer opined, frameworks and the respective
testing culture allow such projects to move very fast and to
produce impressive results more easily. He argued that this
was part of why the testing culture gets easily adopted by
novice community members.

B. Diffusion of Testing Practices

GitHub does not only help Communities of Practice create
a shared understanding of their respective testing culture in
peripheral and novice contributors. It also facilitates the dif-
fusion of these practices among developers inside and outside
of individual communities.

Research on the diffusion of innovations investigates how
and why tools, practices, ideas, or technologies perceived as
new — innovations — are adopted by individuals and groups.
Rogers [25] documents properties of innovations that were

119



discovered to support their adoption across many different
scenarios.

• Relative Advantage: adoption is more likely if the in-
novation has a clear advantage with regard to known
alternatives.

• Compatibility: the more compatible an innovation is to a
person’s existing practices, the more likely it is that she
will adopt it.

• Complexity: the more complex an innovation is perceived
to be, the less likely it will be adopted.

• Observability: an innovation will be more likely to be
adopted the easier it is to observe existing adopters.

• Trialability: the easier it is to try out an innovation before
deciding to adopt it, the more likely it is to be adopted.

We now relate these properties to the phenomena we found
in our work.

1) Intra-project Processes: Positive results of testing prac-
tices, such as adding features fast or badges with passing
test results, demonstrate the relative advantage of those prac-
tices. As project owners strive to make it easy for new
contributors to get started with their project and its test suite,
they actively improve their project’s technical compatibility
with developers’ existing practices. In the same vein, by
communicating desired testing behavior and aligning it with
the values promoted by thought leaders, they improve their
project’s cultural compatibility. By lowering the barriers to
entry — e.g., by providing existing tests, examples, and a
working infrastructure for automated tests — project owners
reduce the perceived complexity of their project’s testing
practices. Several integration and user interface features of
GitHub support this, such as the built-in ticket system, external
services like Travis CI, or the comfort with which code can
be inspected using a Web browser.

Lowering barriers also increases the trialability of testing
practices. If developers want to try a project out themselves,
all they have to do is clone the repository to their local machine
using a single command. For certain communities, one more
command will install all dependencies and run the project’s
tests: one interviewee noted how the Ruby community makes
this process especially easy.

Finally, the social transparency on GitHub makes testing
practices more observable. By looking at commits, issues,
pull requests, and the respective discussions surrounding those
items, developers on GitHub are able to observe the testing
culture in a project without needing to become involved much.

2) Inter-project Processes: As reported by several intervie-
wees, they also use GitHub to discover new projects, and to
learn more about those they already know about. Being able
to follow the activity of developers and to browse projects
by technological niche support this discovery. In this regard,
the aforementioned properties of GitHub apply not only to
individual projects, but also to the diffusion of testing practices
across projects. For example, one interviewee told us that
he uses GitHub to learn how other projects use the testing
framework that his work project uses (L4). This shows how
these mechanisms are even able to diffuse practices into

organizations not necessarily hosting their projects on GitHub
(which was the case for L4).

C. Impact

By connecting our results with established theoretical mod-
els, we document the context of our research and thus make
it more accessible to individual software developers, software
development organizations, and researchers. This section out-
lines how our results could be built upon by them.

1) Software Developers and Organizations: We discovered
several mechanisms that help creating a shared understanding
of a project’s testing culture and diffuse testing practices
to other individuals and groups. Because of the exploratory
nature of our research, we have not yet discovered best
practices, but candidates for such. From these mechanisms,
we can derive several preliminary guidelines.

Companies and core members of software projects should
strive to lower the barriers to testing by providing testing
guidelines, test examples, an easy to set up testing infras-
tructure, and integrated automatic testing. This should support
cultivating a project culture that embraces appropriate testing
practices, ideally leading to higher quality software. Project
participants learning these practices will be able to apply their
testing knowledge in future projects, which would support
diffusing these practices in organizations.

Projects should visibly communicate their testing culture by
providing a high degree of social transparency. Showing that
the normative behavior in a project is to provide certain kinds
of tests should help developers adopt these practices more
easily. Testing culture can be picked up by new developers if
they can observe the discussions surrounding changes, making
it easier to understand the requirements of a project and the
rationales behind them. This may be supported by clearly
communicating what the testing status of a project is, e.g.
by displaying a badge or by providing a project dashboard.

Similar to the study by Singer et al. [4], our results indicate
that software developers value recognition by peers. Such
effects can be applied systematically to improve development
processes in organizations [26].

2) Software Engineering Research: Researchers may use
our results as a starting point for more focused investigations
in detail areas that we discovered. For example, drive-by
commits are exemplary for social media — they are very
small contributions that are easy to make — similar to a Like
on Facebook. The usefulness of such contributions may be
questionable, but their pervasive adoption cannot be denied.
Researchers might want to investigate the conditions under
which such contributions can be useful, and whether these
can be created in closed software development organizations.

Our preliminary guidelines could be the first steps of a more
exhaustive and validated social testing framework. This might
support companies in creating their own tailored project guide-
lines that prescribe how testing culture is to be communicated
in their projects. Companies struggling with high employee
turnover might especially profit from knowing how new hires
can learn about a project’s testing culture most efficiently.

120



VIII. LIMITATIONS

Our research is a first, exploratory investigation into the
effects that the characteristics of social coding sites like
GitHub may have on testing practices. Therefore, we chose
an approach based on Grounded Theory. While we achieved
saturation in our interviews, it is likely that we did not reach
all possible perspectives on GitHub use. While we sent out
interview invitations to active but random users of GitHub, the
final interview participants were all self-selected volunteers.

Similarly, the participants of our questionnaire were again
chosen randomly, but ultimately were self-selected. The quan-
titative validation of our results therefore is again only applica-
ble to the volunteering sub-population. The general population
of GitHub might have different characteristics and opinions.

Apart from the questionnaire, we cannot provide quantifi-
able results. We cannot judge the strength or pervasiveness of
any of the presented processes, mechanisms, or effects.

Finally, our results are not generalizable. We provide a view
of testing on GitHub as seen by a self-selected population.

Yet, our research identified current challenges and solutions
that are used in commercial and hobbyist open source software
development. These can now be investigated in more detail
with regard to their efficiency, effectiveness, and generaliz-
ability. Software developers and software development orga-
nizations may use them as inspiration for their own measures
that they would need to validate independently.

IX. CONCLUSIONS & OUTLOOK

When hosting a project on a social coding site such as
GitHub, project owners interact with external contributors with
varying knowledge and values regarding testing. Communi-
cating a project’s testing culture to such a population is an
important, yet difficult task.

Our study reports on the influences of GitHub’s peculiarities
on testing practices — especially its high degree of social
transparency, low barriers, and high degrees of integration
and centralization. We present insights about the contribution
process on GitHub and show how project owners assess pull
requests with regard to testing. We found several testing-
related challenges that members of GitHub face — and the
strategies they have developed to cope with them, helping them
create a shared understanding of a project’s testing culture.

Developers on social coding sites can use our findings to
gain insights into issues contributors may face and the strate-
gies that can be used to handle them. Software development
organizations may take our contributions as inspiration for
basing their own testing-related communication strategies on.

This research is an exploratory first step to gain an under-
standing of the testing norms, challenges, and strategies on
social coding sites. It is a starting point for informed, in-depth
investigations into several of the issues raised in our study.

REFERENCES

[1] M. Storey, C. Treude, A. van Deursen, and L. Cheng, “The impact of
social media on software engineering practices and tools,” ACM, pp.
359–364, 2010.

[2] C. Parnin and C. Treude, “Measuring api documentation on the web,”
New York, NY, USA, pp. 25–30, 2011.

[3] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in github:
transparency and collaboration in an open software repository,” ACM,
pp. 1277–1286, 2012.

[4] L. Singer, F. Figueira Filho, B. Cleary, C. Treude, M.-A. Storey, and
K. Schneider, “Mutual Assessment in the Social Programmer Ecosystem:
An Empirical Investigation of Developer Profile Aggregators,” Univer-
sity of Victoria, Tech. Rep. Technical Report DCS-347-IR, 2012.

[5] H. C. Stuart, L. Dabbish, S. Kiesler, P. Kinnaird, and R. Kang, “Social
transparency in networked information exchange: a theoretical frame-
work,” New York, NY, USA, pp. 451–460, 2012.

[6] N. Nagappan, E. Maximilien, T. Bhat, and L. Williams, “Realizing
quality improvement through test driven development: results and ex-
periences of four industrial teams,” Empirical Software Engineering,
vol. 13, pp. 289–302, 2008, 10.1007/s10664-008-9062-z.

[7] A. Strauss and J. Corbin, Grounded Theory in Practice. SAGE
Publications, 1997.

[8] danah m. boyd and N. B. Ellison, “Social network sites: Definition, his-
tory, and scholarship,” Journal of Computer-Mediated Communication,
vol. 13, no. 1, pp. 210–230, 2007.

[9] M. Greiler, A. v. Deursen, and M.-A. Storey, “Test confessions: a study
of testing practices for plug-in systems,” Piscataway, NJ, USA, pp. 244–
254, 2012.

[10] M. Michlmayr, F. Hunt, and D. Probert, “Quality Practices and Problems
in Free Software Projects,” pp. 24–28, 2005.

[11] A. Mockus, R. Fielding, and J. Herbsleb, “A case study of open source
software development: the apache server,” pp. 263 –272, 2000.

[12] A. Bonaccorsi and C. Rossi, “Comparing motivations of individual
programmers and firms to take part in the open source movement: From
community to business,” Knowledge, Technology and Policy, vol. 18,
pp. 40–64, 2006.

[13] S. Krishnamurthy, “On the intrinsic and extrinsic motivation of
free/libre/open source (floss) developers,” Knowledge, Technology and
Policy, vol. 18, pp. 17–39, 2006.

[14] C. Bird, “Sociotechnical coordination and collaboration in open source
software,” pp. 568 –573, sept. 2011.

[15] K. Crowston, K. Wei, Q. Li, U. Y. Eseryel, and J. Howison, “Coordina-
tion of free/libre and open source software development,” p. Paper 490,
2005.

[16] K. Crowston, K. Wei, Q. Li, and J. Howison, “Core and periphery in
free/libre and open source software team communications,” p. Paper 489,
2006.

[17] K. Crowston, Q. Li, K. Wei, U. Y. Eseryel, and J. Howison, “Self-
organization of teams for free/libre open source software development,”
Information and Software Technology, vol. 49, no. 6, pp. 564 – 575,
2007.

[18] K. Crowston and B. Scozzi, “Bug fixing practices within free/libre open
source software development teams,” Journal of Database Management,
vol. 19, no. 2, pp. 1 – 30, 2008.

[19] K. J. Stewart and S. Gosain, “The impact of ideology on effectiveness
in open source software development teams,” MIS Quarterly, vol. 30,
pp. 291–314, 2006.

[20] B. Dagenais and M. P. Robillard, “Creating and evolving developer doc-
umentation: understanding the decisions of open source contributors,”
New York, NY, USA, pp. 127–136, 2010.

[21] S. K. Sowe, I. Stamelos, and L. Angelis, “Understanding knowledge
sharing activities in free/open source software projects: An empirical
study,” Journal of Systems and Software, vol. 81, no. 3, pp. 431 – 446,
2008.

[22] A. Begel and T. Zimmermann, “Keeping up with your friends: function
foo, library bar.dll, and work item 24,” New York, NY, USA, pp. 20–23,
2010.

[23] C. Souza and D. Redmiles, “The awareness network: To whom should
i display my actions? and, whose actions should i monitor?” in ECSCW
2007, L. Bannon, I. Wagner, C. Gutwin, R. Harper, and K. Schmidt,
Eds. Springer London, 2007, pp. 99–117.

[24] J. Lave and E. Wenger, Situated learning: Legitimate peripheral partic-
ipation. Cambridge University Press, 1991.

[25] E. M. Rogers, Diffusion of Innovations, 5th ed. Free Press, 2003.
[26] L. Singer, “Improving the Adoption of Software Engineering Practices

Through Persuasive Interventions,” Ph.D. dissertation, Gottfried Wil-
helm Leibniz Universität Hannover, 2013.

121


