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Major brain functions depend on neuronal processes that favor the plasticity of neuronal circuits while at the same time

maintaining their stability. The mechanisms that regulate brain plasticity are complex and engage multiple cascades of mo-

lecular components that modulate synaptic efficacy. Protein kinases (PKs) and phosphatases (PPs) are among the most im-

portant of these components that act as positive and negative regulators of neuronal signaling and plasticity, respectively. In

these cascades, the PP protein phosphatase 2B or calcineurin (CaN) is of particular interest because it is the only Ca2+-ac-

tivated PP in the brain and a major regulator of key proteins essential for synaptic transmission and neuronal excitability.

This review describes the primary properties of CaN and illustrates its functions and modes of action by focusing on several

representative targets, in particular glutamate receptors, striatal enriched protein phosphatase (STEP), and neuromodulin

(GAP43), and their functional significance for synaptic plasticity and memory.

The neural basis of higher-order brain functions has been the sub-
ject of intense research in the neurosciences over the past decades.
This work led to the concept that major brain functions rely on
brain plasticity and involve changes in synaptic efficacy. The
mechanisms that underlie synaptic plasticity in the developing
and adult brain are complex and depend on cascades of molecular
events that engage multiple components. Protein kinases (PKs)
and their counterpart enzymes, protein phosphatases (PPs), are
among the most critical of these components. While PKs general-
ly act as positive regulators of neuronal signaling and as potentia-
tors of synaptic efficacy, PPs generally act as negative regulators
that constrain synaptic efficacy. Although PKs were long consid-
ered to be more important than PPs due to their higher number
(about 500 known PKs for only two dozen PPs), recent research
has established that PKs and PPs are equally important for brain
plasticity and are both essential components of neuronal signal-
ing that underlie complex brain functions.

One of the major PPs in this respect is the Ca2+-dependent
Ser/Thr phosphatase protein phosphatase 2B or calcineurin
(CaN). CaN is one of the most abundant PPs in the nervous system
and acts on multiple substrates in synaptic, cytoplasmic, and nu-
clear compartments in neuronal cells. Dysregulation of CaN in the
diseased brain is one of the major causes of pathological Ca2+ sig-
naling associated with cognitive disorders, and of severe diseases
such as Alzheimer’s disease and Down syndrome (Dineley et al.
2010; Rachidi and Lopes 2010; Berridge 2011; Mohmmad Abdul
et al. 2011). This review describes some of the mechanisms and
biochemical targets by which CaN exerts its actions in synaptic
plasticity and brain functions.

Basic properties of CaN

CaN is a protein Ser/Thr phosphatase composed of a large catalyt-
ic (CaNA) and a small regulatory subunit (CaNB) (Klee et al. 1979).
Its Ca2+ dependence is mediated by CaNB and calmodulin (CaM)

(Klee et al. 1998). Upon Ca2+ binding, CaNB changes conforma-
tion, which induces conformational changes in CaNA and expo-
ses the CaM binding site (Yang and Klee 2000). Ca2+/CaM then
activates CaN by displacing CaNA’s autoinhibitory domain from
the catalytic domain (Shen et al. 2008). CaN has very high affinity
for Ca2+ and is activated by nanomolar concentrations of Ca2+

(Cohen and Klee 1988). It can also be reversibly inactivated after
prolonged Ca2+/CaM exposure (Stemmer et al. 1995; Shen et al.
2008) by, for instance, oxidation of a critical amino acid in the
CaM binding domain of CaNA that blocks Ca2+/CaM binding
and CaN activation (Carruthers and Stemmer 2008).

In the mouse, three distinct genes encode CaNA (a, b, g) and
have different splice variants, while only one gene encodes CaNB
in two different forms (a1, a2) (Kuno et al. 1989; Kincaid et al.
1990; Ueki et al. 1992; Chang et al. 1994). CaN is highly enriched
in the brain (Su et al. 1995), and while several CaNA isoforms are
differentially expressed in different areas (Takaishi et al. 1991;
Kuno et al. 1992; Buttini et al. 1993; Chang et al. 1994), only
CaNBa1 is expressed in the brain (Ueki et al. 1992; Chang et al.
1994). In neurons, CaN protein is present in the perikarya, pro-
cesses, and the nucleus (Sola et al. 1999), and is particularly en-
riched in synaptic terminals (Kuno et al. 1992). Different
binding partners restrict CaN to distinct subcellular compart-
ments, such as NFAT1 in the nucleus (Clipstone and Crabtree
1992; Luo et al. 1996; Beals et al. 1997) and AKAP scaffold proteins
in dendrites (Coghlan et al. 1995; Abrenica et al. 2009). Each of
the CaN subcellular pools exerts different functions and allows
CaN-dependent control of neuronal structure, transcription, or
neurotransmission depending on the substrates in the vicinity
of CaN (for review, see Groth et al. 2003).

CaN in neuronal plasticity and memory

Experimental models of neuronal plasticity
Increased neuronal activity is associated with changes in synaptic
efficacy and neuronal excitability that confer plasticity to neuro-
nal circuits, a property necessary for memory formation. The cel-
lular and molecular mechanisms of neuronal plasticity are
complex and have been experimentally studied in different
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neuronal models. Plasticity is most commonly induced by artifi-
cial electrical stimulation of populations of neurons or axonal
fibers in acute brain sections, for instance, from the hippocampus,
a brain region required for spatial and episodic memory.
Stimulation at high frequency increases synaptic efficacy and in-
duces long-term potentiation (LTP), a strengthening of plasticity.
In contrast, prolonged stimulation at low frequency decreases
synaptic efficacy and results in long-term depression (LTD), a
form of synaptic weakening. Potentiated synapses can be reset
by synaptic depression and by undergoing depotentiation.
Several brain regions can express LTP, LTD, and/or depotentation,
and CaN has been shown to be involved in the underlying mech-
anisms, in particular, in the hippocampus. One of the most prom-
inent actions of CaN is to constrain LTP. LTP is increased when
CaN activity is decreased whether by antisense knockdown of
CaNA (Ikegami et al. 1996), forebrain-restricted expression of a
CaN inhibitor, knockout (KO) of CaNB (a1) in excitatory neurons
(Winder et al. 1998; Malleret et al. 2001; Zeng et al. 2001), or by
pharmacological inhibition (Wang and Stelzer 1994; Wang and
Kelly 1996). Conversely, LTP is impaired when CaN activity is in-
creased by, for instance, expression of an active CaN in forebrain
excitatory neurons (Mansuy et al. 1998b).

CaN is also essential for LTD and depotentiation. LTD
is blocked when CaN is inhibited either pharmacologically
(Mulkey et al. 1994; Hodgkiss and Kelly 1995) or by injection of
a CaN autoinhibitory peptide in postsynaptic neurons (Mulkey
et al. 1994). It is also strongly diminished by CaNB (a1) gene KO
in forebrain excitatory neurons (Zeng et al. 2001). Likewise, depot-
entiation is blocked by CaN inhibition whether achieved pharma-
cologically, by neuron-specific expression of a CaN inhibitor in
forebrain, or by CaNA (a) KO (Zhuo et al. 1999; Jouvenceau
et al. 2003; Kang-Park et al. 2003; Lin et al. 2003a; Jouvenceau
and Dutar 2006).

Further to being essential to plasticity at excitatory synapses,
CaN is also implicated in plasticity at inhibitory synapses. LTD at
inhibitory synapses is blocked by CaN inhibition (Lu et al. 2000).
Because of such a dual role in excitatory and inhibitory synapses,
CaN manipulations that are not cell-type-specific can produce
confounding results. Thus, an alteration in inhibitory synapses
may oppose or interfere with an alteration in excitatory synapses
at the level of a population of neurons, which may explain why
CaNA (a) KO mice have been shown to display normal LTP and
LTD (Zhuo et al. 1999), despite a clear involvement of CaN in
both forms of plasticity. It may also explain why LTP is precluded
if inhibitory neurotransmission is not specifically blocked during
LTP induction (Lu et al. 1996). In contrast, when CaN inhibition is
restricted to excitatory neurons or occurs during LTP induction, it
facilitates LTP and blocks LTD (Hodgkiss and Kelly 1995; Wang
and Kelly 1996; Winder et al. 1998; Malleret et al. 2001; Zeng
et al. 2001; Jouvenceau et al. 2003; Jouvenceau and Dutar 2006).

Experience-dependent plasticity and memory
LTP, LTD, and depotentation are artificial models of neuronal plas-
ticity generally used in vitro, but similar forms of plasticity have
also been observed in vivo (Whitlock et al. 2006; Yoon et al.
2009; Cooke and Bear 2012). In mammals, plasticity can be in-
duced by physiological stimuli that mimic a sensory episode. In
cats and rodents, a popular model of experience-dependent plas-
ticity is ocular dominance shift (OD) resulting from monocular
deprivation (MD). OD occurs in a region of the visual cortex
that receives input from both eyes. Usually, the input from the
contralateral eye is stronger than from the ispilateral eye, but after
occlusion of the contralateral eye during the critical period, this
can be permanently reversed. OD has been shown to involve a
three-step process involving plasticity: (1) the response to the oc-

cluded eye is weakened through LTD-like mechanisms; (2) the
threshold for synaptic activation is decreased, which favors LTP;
(3) the response to the open eye is strengthened via LTP-like
mechanisms (Smith et al. 2009; Yoon et al. 2009). These mecha-
nisms are fully blocked by an increase in CaN (Yang et al. 2005),
suggesting that CaN is likely engaged as a negative regulator of
OD-dependent plasticity.

Experience-dependent plasticity is also a fundamental mech-
anism for learning and memory. LTP-like synaptic enhancement
occurs at thalamo-cortical synapses during perceptual learning
on a visual task (Cooke and Bear 2012) and in the hippocampal
CA1 region during inhibitory avoidance learning (Whitlock
et al. 2006). The molecular requirement for experimental models
of neuronal plasticity, experience-dependent forms of plasticity,
and memory overlap significantly (Izquierdo et al. 2008; Smith
et al. 2009; Ye and Carew 2010; Johansen et al. 2011; Korb and
Finkbeiner 2011), and altering this requirement by molecular
manipulations frequently alters all three processes (Nedivi
1999). Accordingly, CaN inhibition enhances memory, whether
achieved pharmacologically (Christie-Fougere et al. 2009), by ex-
pression of a CaN inhibitor in forebrain excitatory neurons
(Malleret et al. 2001; Baumgartel et al. 2008), or through antisense
oligonucleotide-mediated knockdown, applied pre-training
(Ikegami and Inokuchi 2000) or post-training (Gerdjikov and
Beninger 2005). Pharmacological CaN inhibition in the amygdala
also blocks a specific form of learning, the extinction of associative
fear memory (Lin et al. 2003a, b). In associative fear memory,
mice learn to associate a conditioned stimulus (CS) that is non-
aversive (a tone or context), with an unconditioned stimulus
(US) that is aversive (footshock). Extinction of fear memory is
achieved by repeatedlyexposing the animal to the CS alone, which
weakens the aversive memory trace (CS-US) and strengthens a new
non-aversive memory trace (CS with no US) (Delamater 2004).
Extinction relies on the relearning that a CS no longer predicts a
US. This dependence on learning may explain why it involves
CaN. However, CaN maynot be involved in all forms of extinction,
and, for instance, it was shown that its inhibition in forebrain neu-
rons does not affect extinction of taste aversion, another form of
associative aversive memory (Baumgartel et al. 2008). Another ex-
planation for the discrepancy between the extinction effects in the
two different memory tasks may be the distinct roles of excitatory
or inhibitory cells in extinction (Yee et al. 2004; Jacobson et al.
2006; Jungling et al. 2008; Sangha et al. 2009; Lin et al. 2010,
2011a; Meins et al. 2010). For studies on fear extinction, CaN
was inhibited broadly and in every cell type (using a pharmacolog-
ical inhibitor), while it was inhibited only in forebrain excitatory
neurons in taste aversion studies, again suggesting the importance
of CaN compartimentalization.

CaN and the control of membrane

receptors and channels

The recruitment and activity of membrane receptors and voltage-
gated ion channels in neurons are strongly regulated by protein
phosphorylation, and many receptors and channels are con-
trolled by CaN. The following section describes some of the
most important receptors and channels targeted by CaN, the ef-
fect of their dephosphorylation by CaN, and their contribution
to neuronal plasticity and memory.

CaN regulates synaptic transmission in part

through the AMPA receptor
Most of the fast synaptic transmission at excitatory synapses in
the brain is mediated by the glutamatergic AMPA-(a-amino-3-
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hydroxy-5-methyl-4-isoxazolepropionic acid) receptor (AMPA-R)
(Collingridge et al. 1992). In the adult brain, AMPA-Rs are usually
composed of heterotetramers of GluR1, GluR2, GluR3, or GluR5
subunits. Their composition is highly dynamic (Greger et al.
2007) and greatly influences the electrophysiological features of
the AMPA-R, in particular its permeability to cations, and its inter-
action with postsynaptic partners (for review, see Burnashev and
Rozov 2000). AMPA-R activity and abundance critically affect
the efficacy of glutamatergic synapses. Both activity and traffick-
ing into and out of synapses are modulated by the phosphoryla-
tion state of the AMPA-R (Kessels and Malinow 2009). Several
sites on different GluR subunits are subject to phosphorylation,
but Ser845 on GluR1, a site phosphorylated by the cAMP-depen-
dent protein kinase (PKA) (Price et al. 1999) and dephosphorylat-
ed by CaN (Fig. 1; Beattie et al. 2000), is one of the most important
for AMPA-R regulation. Phosphorylated Ser845 increases AMPA-R
peak response open probability (Banke et al. 2000), AMPA-R cur-
rent (Roche et al. 1996), and insertion into the membrane (Man
et al. 2007), and thereby strengthens synaptic transmission. In
contrast, Ser845 dephosphorylation triggers AMPA-R internaliza-
tion and weakens transmission (Man et al. 2007). It has therefore
been suggested to be a mechanism for LTD (Lee et al. 1998). Since
CaN dephosphorylates Ser845 (Beattie et al. 2000) and CaN
inhibition blocks LTD (Mulkey et al. 1994; Hodgkiss and Kelly
1995; Lu et al. 2000; Zeng et al. 2001), its interaction with the
AMPA-R likely constitutes an important means by which CaN reg-
ulates plasticity. This interaction involves common binding part-
ners that are part of a postsynaptic scaffold. In this scaffold, the
protein AKAP150 (Fig. 1; Gomez et al. 2002; Tavalin et al. 2002;
Jurado et al. 2010) binds the AMPA-R, CaN, and PKA, and the ba-
lanced activity of CaN and PKA determines the phosphorylation
state of Ser845 on GluR1. In this balance, CaN can directly
dephosphorylate Ser845 but can also lead to a decrease in local ki-
nase activity. After NMDA-R activation, it triggers the redistribu-
tion of AKAP150 and PKA from the postsynaptic membrane to
the cytoplasm (Gomez et al. 2002; Smith et al. 2006). Since it re-

mains in its postsynaptic location at the same time (Gomez
et al. 2002; Smith et al. 2006), this further favors dephosphoryla-
tion of GluR1, AMPA-R internalization, and decreased synaptic
efficacy.

CaN regulates dendritic excitability through the

voltage gated A-type K+ channel Kv4.2
A target of CaN that contributes to its ability to regulate neuronal
excitability is the voltage-gated A-type K+ channel Kv4.2 (Fig. 1;
Lin et al. 2011b). Kv4.2 is enriched in dendrites (Jinno et al.
2005) and specifically in postsynaptic terminals (Alonso and
Widmer 1997; Gardoni et al. 2007). It is involved in neuronal re-
polarization after an action potential (AP) (Kim et al. 2005) and
controls the amplitude of back-propagating APs in dendrites
(Hoffman et al. 1997). In hippocampal slice culture, overexpres-
sion of Kv4.2 shortens AP duration and decreases back-propaga-
tion, while overexpression of dominant-negative Kv4.2 increases
AP duration and enhances AP back-propagation (Kim et al.
2005). Consistently, in mice, Kv4.2 overexpression prevents LTP,
while dominant-negative Kv4.2 enhances LTP (Jung et al. 2008),
and Kv4.2 KO increases AP amplitude and lowers the threshold
for LTP (Chen et al. 2006). Kv4.2 KO also results in deficits in
spatial learning (Lockridge and Yuan 2011). Thus, much like
CaN, Kv4.2 acts as a negative regulator of neuronal plasticity.
Further to its direct effects on dendritic excitability, it may also in-
fluence plasticity indirectly. Kv4.2 overexpression reduces relative
synaptic NR2B/NR2A subunit ratios, while Kv4.2 blockade in-
creases synaptic NR2B/NR2A ratios (Jung et al. 2008). An in-
creased NR2B/NR2A ratio has been hypothesized to support
plasticity (Yashiro and Philpot 2008) and/or to function as a
mechanism of metaplasticity (Xu et al. 2009b). In contrast, a
low NR2B/NR2A ratio likely favors CaN, and LTD over LTP
(Yashiro and Philpot 2008).

One of the consequences of Kv4.2 dephosphorylation by
CaN is its stabilization at the membrane, a process that depends

on AKAP150 (Lin et al. 2011b). However,
besides CaN, NMDA-R activation and
Ca2+ influx can also directly control
Kv4.2 and act on its internalization
(Kim et al. 2007; Lei et al. 2008). The dis-
sociation between stabilization and in-
ternalization depends on the spatial
location of NMDA-R activation and
Ca2+ influx. When occurring at synapses,
it favors Kv4.2 phosphorylation and
internalization (Kim et al. 2007; Ham-
mond et al. 2008), while when occurring
at extrasynaptic NMDA-R, dephosphory-
lation and stabilization are increased
(Lei et al. 2008, 2010; Mulholland and
Chandler 2010). Kv4.2 phosphoryla-
tion and internalization co-occur with
AMPA-R insertion in dendritic spines
(Kim et al. 2007). AMPA-R insertion
and Kv4.2 internalization may thus be
mediated by the identical CaN-contain-
ing complexes in response to NMDA-R
activation.

Internalization of Kv4.2 also re-
quires cleavage by calpain (Lei et al.
2010), an enzyme that participates to
the internalization of different mem-
brane receptors and signaling molecules
including NMDA-R (Wu et al. 2005a;
Yuen et al. 2008) and AMPA-R (Wu et al.

Figure 1. CaN has targets both in the pre- and the postsynaptic terminal. In the pre-synaptic termi-
nal, the main target is GAP43. In the postsynaptic terminal, CaN either targets proteins directly or via
STEP. Many proteins are dephosphorylated in an AKAP150-dependent manner. (⊕) Activates protein or
increases its abundance at membrane; (⊖) inhibits protein or decreases its abundance at membrane.
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2005a; Yuen et al. 2008). Calpain-mediated cleavage also contrib-
utes to generate a Ca2+/calmodulin-independent form of CaN
(Tallant et al. 1988; Wang et al. 1989). Furthermore, when activat-
ed after extrasynaptic NMDA-Rs activation, calpain can also cleave
and relocate the striatal-enriched phosphatase (STEP), another
CaN target (see below), from postsynaptic terminals to the cyto-
plasm (Xu et al. 2009a), as well as neuromodulin (GAP43), also a
CaN target (see below) (Zakharov and Mosevitsky 2001).

CaN can further regulate Kv4.2 trafficking by an indirect
mechanism involving the downstream regulatory element antag-
onist modulator (DREAM/KChIP3). DREAM belongs to the potas-
sium channel–interacting protein (KChIP) family and is a direct
target of CaN (Ruiz-Gomez et al. 2007). Its dephosphorylation
by CaN is required for DREAM and Kv4.2 membrane localization
when coexpressed in cell culture (Ruiz-Gomez et al. 2007). The in-
teraction of Kv4.2 and DREAM with the membrane decreases in
the hippocampus after training on a hippocampal-dependent
task in mice (Alexander et al. 2009), an effect associated with low-
er CaN activity (Havekes et al. 2006). While a direct link between
this interaction and memory processes is still unclear, it is inter-
esting to note that DREAM KO, like CaN inhibition, improves
memory performance (Malleret et al. 2001; Alexander et al.
2009; Fontan-Lozano et al. 2009) and enhances LTP (Ikegami
et al. 1996; Wang and Kelly 1996; Malleret et al. 2001; Zeng
et al. 2001; Lilliehook et al. 2003).

Other receptors and channels targeted by CaN

The metabotropic glutamate receptor mGluR5
The metabotropic glutamate receptor mGluR5 is a CaN target that
modulates the responsiveness of neurons to different extracellular
signals. Activation of mGluR5 induces phosphatidylinositol
hydrolysis via phospholipase C, which releases intracellular IP3-
sensitive Ca2+ stores. It further activates ryanodine-sensitive
Ca2+ stores and alters the activity of different voltage-gated
channels (Gerber et al. 1992; Swartz and Bean 1992; Fagni et al.
2000; Sanchez-Prieto et al. 2004; Park et al. 2010; Zheng and
Raman 2011). Additionally, mGluR5 activation enhances gluta-
mate-evoked currents through the NMDA receptor (Fitzjohn
et al. 1996). However, this results in a rapid desensitization of
mGluR5, which is counteracted by CaN. By dephosphorylating
the receptor, CaN can prolong its activity after glutamate release
(Fig. 1; Alagarsamy et al. 2005). This effect of CaN is likely impor-
tant for the induction of LTD, some forms of which rely on
mGluR5 in the hippocampus (Camodeca et al. 1999; Sung et al.
2001; Huang and Hsu 2006; Naie et al. 2007; Neyman and
Manahan-Vaughan 2008). But further, mGluR5 is also involved
in LTP and its inhibition prevents LTP at both, excitatory
(Rodrigues et al. 2002; Neyman and Manahan-Vaughan 2008)
and inhibitory, synapses (Le Vasseur et al. 2008; Le Duigou et al.
2011). These effects on multiple forms of neuronal plasticity are
consistent with the involvement of mGluR5 in experience-
dependent plasticity in visual cortex, which requires both, LTD-
and LTP-like, mechanisms, through mechanisms that remain
unclear (Hensch and Stryker 1996; Daw et al. 1999). mGluR5
also plays an important function in memory. Its activation in
the basolateral amygdala enhances fear conditioning (Rudy and
Matus-Amat 2009), while its inhibition blocks the acquisition
of fear memory (Schulz et al. 2001; Rodrigues et al. 2002).
Furthermore, mGluR5 inhibition in the amygdala blocks the ex-
tinction of CTA memory (Simonyi et al. 2009) similarly to CaN in-
hibition and may also involve LTD-like mechanisms. Together,
these findings suggest that mGluR5 is likely an important media-
tor of CaN’s action in memory regulation, through complex
mechanisms that are still not fully understood.

Some of the mechanisms by which mGluR5 contributes to
LTD involve activation of the vanilloid receptor TrpV1 (Bennion
et al. 2011; Puente et al. 2011). TrpV1 is a non-selective cation
channel highly permeable to Ca2+ and is also a direct target of
CaN. But while mGluR5 prevents TrpV1 desensitization that lim-
its the effects of repeated or persistent TrpV1 activation (Li et al.
2008), CaN favors this desensitization (Fig. 1; Mohapatra and
Nau 2005). On a circuit level, this depends on whether Trpv1 is ac-
tivated in excitatory or inhibitory neurons (Bennion et al. 2011).
Through an indirect mechanism involving LTD at inhibitory syn-
apses, activation of TrpV1 can facilitate LTP (Bennion et al. 2011)
and suppress LTD (Li et al. 2008) in hippocampal networks. This
likely reflects differential action of Trpv1 on excitatory/inhibitory
circuits, reminiscent of that observed for CaN (Lu et al. 2000).
Finally, further to regulating TrpV1 directly, CaN may also act
downstream from this channel since it was shown to be activated
by Ca2+ after TrpV1 stimulation and to regulate the activity of
voltage-gated calcium channels (Wu et al. 2005b) and Kv7.2/3
(Zhang et al. 2011). Further investigation of this pathway will cer-
tainly provide interesting insight into CaN’s contribution to dif-
ferent types of plasticity.

CaN targets membrane receptors at inhibitory synapses
A major property of CaN that makes it an essential regulator of
bidirectional plasticity is its ability to control inhibitory synapses
in addition to excitatory synapses (Jones and Westbrook 1997). It
can bind to and dephosphorylate A-type GABA receptors
(GABAA-R) in an NMDA-R dependent manner (Fig. 1; Chen and
Wong 1995; Robello et al. 1997; Lu et al. 2000). This dephosphor-
ylation suppresses GABAA-R responses (Chen and Wong 1995), re-
duces inhibitory transmission (Jones and Westbrook 1997; Wang
et al. 2003), and mediates LTD at inhibitory synapses (Lu et al.
2000). Reduction of GABAergic drive can disinhibit excitatory
neurotransmission, thus opposing the decrease in neurotransmis-
sion mediated by CaN at excitatory synapses. Depending on the
cellular localization of CaN activation, the net effect may be dif-
ferent. In line with its important role in shaping excitatory trans-
mission, GABAergic inhibition has been strongly implicated in
experience-dependent plasticity (Heimel et al. 2011), as well as
synaptic plasticity and memory (Mohler 2007).

A protein phosphatase cascade involving

CaN and STEP

Phosphorylation is an essential mechanism that allows cells to
integrate information from different extracellular signals. PK
cascades are ubiquitous and have multiple effector functions
in many cell types. Likewise, although not as numerous as
PKs, PPs can act on several sets of substrates and integrate extra-
cellular signals. A major substrate of CaN that plays an important
role in these cascades is STEP (Fig. 1; Paul et al. 2003). STEP is a
tyrosine phosphatase present as at least six different polypeptides
(Lombroso et al. 1993; Sharma and Lombroso 1995). Polypeptides
of 61, 46, 38, and 20 kDa are generated by alternative splicing of
the same transcript (Sharma and Lombroso 1995; Bult et al.
1997), and at least one of the shorter polypeptides (33 kDa) results
from calcium-dependent cleavage of STEP61 by calpain (Nguyen
et al. 1999). STEP61 (Boulanger et al. 1995; Bult et al. 1996),
STEP46 (Oyama et al. 1995), and STEP38 (Bult et al. 1997) are lo-
calized to the membrane, specifically at postsynaptic terminals
and in the endoplasmic reticulum, but the shortest polypeptides
are predominantly in the cytoplasm and lack a catalytic domain
(Boulanger et al. 1995). Cleavage may thus be a mechanism of re-
locating STEP to the cytoplasm and may determine its activity to-
ward specific targets (Braithwaite et al. 2008; Xu et al. 2009a). The
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longest uncleaved splice isoforms, STEP61 and STEP46, are phos-
phorylated by PKA and dephosphorylated by CaN (Paul et al.
2000, 2003).

CaN and STEP are tightly linked; they are coactivated (Yang
et al. 2006) and have comparable effects on LTD, LTP, and memory.
Inhibition of CaN (Wang and Kelly 1996, 1997) or STEP (Pelkey
et al. 2002) in postsynaptic terminals causes synaptic potentiation
and occludes LTP. Conversely, overexpression of CaN or STEP
impairs long-lasting LTP (Mansuy et al. 1998b; Winder et al.
1998; Pelkey et al. 2002; Paul et al. 2007). On a behavioral level,
CaN or STEP inhibition improves memory (Malleret et al. 2001;
Venkitaramani et al. 2011), while their overexpression disrupts
learning and memory consolidation (Mansuy et al. 1998a,b; Paul
et al. 2007). Interestingly, both STEP and CaN have been implicat-
ed in the molecular pathways of Ab toxicity in Alzheimer’s disease
(Abdul et al. 2009; Kurup et al. 2010). These findings suggest that
STEP is likely an important mediator of cross talk between
CaN-dependent pathways and tyrosine phosphorylation.

STEP has multiple substrates, and one of the most important
for synaptic plasticity is the NMDA-R (Pelkey et al. 2002;
Braithwaite et al. 2006). It can directly bind to and dephosphory-
late the receptor and thereby regulate its surface expression and
activity (Pelkey et al. 2002; Braithwaite et al. 2006). STEP can
also modulate the NMDA-R indirectly through the membrane-
bound Src family tyrosine kinase Fyn. STEP binding and dephos-
phorylation of Fyn reduce its kinase activity (Nguyen et al.
2002), which decreases NMDA-R phosphorylation and activity
(Yu et al. 1997). PKA has been suggested to interfere with STEP as-
sociation with Fyn (Yang et al. 2011), suggesting an important bal-
ance between CaN and PKA activity for its regulation. Further to
NMDA-R, STEP is involved in AMPA-R endocytosis after activation
of mGluRs 1 and 5 (group 1) (Zhang et al. 2008). This is interesting
since activation of this mGluR group is sufficient to induce LTD
(Camodeca et al. 1999) and suggests that the involvement of
CaN in AMPA-R endocytosis and LTD induction may be both di-
rect (see above) and indirect via STEP.

CaN regulates presynaptic parameters via GAP43

Neuronal plasticity is not restricted to mechanisms in postsynap-
tic terminals, but also depends on pre-synaptic processes (Powell
2006). Pre-synaptic plasticity primarily shapes the probability
and the amount of neurotransmitter release triggered by a given
AP. This involves synaptic vesicle-, cytoplasmic, or active
zone-associated proteins that regulate vesicle availability, dock-
ing, priming, Ca2+ triggering, and even Ca2+ entry. Pre-synaptic
output changes are mostly transient, and, accordingly, they sup-
port short-term plasticity. Long-term plasticity rather involves
structural changes, by which the size or presence of existing syn-
apses is altered or new synapses are formed (Gogolla et al. 2007).
The growth-associated protein 43 (GAP43, neuromodulin, F1,
B-50, pp46, P-57) is a nervous system–specific protein (Kristjans-
son et al. 1982) that is involved in both short- and long-term pre-
synaptic plasticity. In short-term plasticity, GAP43 may act in at
least two ways. By binding rabaptin-5, an effector of the small
GTPase Rab5 (Neve et al. 1998), GAP43 negatively regulates endo-
somal size and vesicle recycling (Neve et al. 1998). GAP43 only
binds rabaptin-5 at high Ca2+ concentrations (Neve et al. 1998).
At low Ca2+ concentrations, this binding is blocked by CaM
(Alexander et al. 1987; Neve et al. 1998). CaM binding, in turn,
is prevented by GAP43 phosphorylation, and CaM can thus be
rapidly released locally through activation of the respective ki-
nase, PKC (Van Hooff et al. 1988). This CaM release facilitates
Ca2+/CaM-dependent events in the pre-synaptic terminal, such
as regulation of neurotransmitter release (Dekker et al. 1989)

through CaMKII and Rab3A (Wang et al. 2008). CaMKII’s associa-
tion with Ca2+/CaM triggers its autophosphorylation, which per-
sists even after Ca2+ levels fall and Ca2+/CaM dissociates from the
enzyme (Lisman et al. 2002). Since this results in lasting CaMKII
activation, it has been proposed to function as a biochemical
memory trace of previous Ca2+ influx (Lisman et al. 2002). It
may thus potentially serve as a transition between short- and
long-term synaptic changes and/or as a substrate for long-term
plasticity and memory.

GAP43’s main contribution to long-term plasticity, however,
is through regulation of membrane and actin dynamics. GAP43
expression is strongest and most widespread during development
(Jacobson et al. 1986), when the nervous system structure is sub-
ject to extensive changes and rearrangements. Here, GAP43 regu-
lates neurite and growth cone morphology (Aigner and Caroni
1993). GAP43 achieves this by stabilizing long actin filaments
(He et al. 1997). This has been suggested to involve direct mech-
anisms by actin binding as well as binding to PI(4,5)P2 to regu-
late its availability for actin binding proteins that stabilize
filaments and promote growth (Laux et al. 2000). It is not required
for neurite outgrowth or growth cone formation per se but
for neuronal pathfinding at decision points (Strittmatter et al.
1995). Accordingly, expression of a non-phosphorylatable form
of GAP43 causes ectopic axonal growth (Holahan et al. 2010).
This finding suggests that GAP43 function is tightly regulated
by phosphorylation. Indeed, the ability of GAP43 to stabilize actin
filaments depends on its phosphorylation status (He et al. 1997).
When dephosphorylated, GAP43 binds to CaM and is inactive, an
event triggered by dephosphorylation by CaN (Liu and Storm
1989; Seki et al. 1995). This dephosphorylation has been proposed
to underlie the inhibition of neurite outgrowth by Ca2+ waves
(Lautermilch and Spitzer 2000). GAP43 is also targeted to the
membrane through phosphorylation (Kristjansson et al. 1982)
and specifically enriched at pre-synaptic membranes in the adult
nervous system (Sorensen et al. 1981; Gispen et al. 1985).

GAP43 expression declines after synaptogenesis (Jacobson
et al. 1986) except in layer 1 of cortex, the CA1 region of the
hippocampus, nucleus accumbens, the amygdala, and several
subcortical structures (Benowitz et al. 1988), brain regions with
high plasticity. In the hippocampus, GAP43 phosphorylation
is dynamically regulated by synaptic activity. It is increased im-
mediately after LTP induction whether by high-frequency stimu-
lation (Lovinger et al. 1986; Gianotti et al. 1992; Leahy et al. 1993;
Ramakers et al. 1999) or chemical depolarization (Ramakers et al.
2000b). Moreover, the extent of GAP43 phosphorylation corre-
lates with the amount of potentiation (Lovinger et al. 1986).
The increase persists for 60 min if induced in hippocampal slices
(Ramakers et al. 1999) and for several days if induced in vivo
(Routtenberg and Lovinger 1985). This supports the notion that
GAP43 phosphorylation mediates long-term plasticity and mem-
ory and fits nicely with our own observation of a sustained
decrease in CaN activity after learning (Baumgartel et al. 2008).
Overexpression of wild-type GAP43 enhances in vivo LTP in the
perforant path (Routtenberg et al. 2000), but not in the Schaffer
collaterals (Hulo et al. 2002), possibly because GAP43 is still ex-
pressed in the adult CA1 (Benowitz et al. 1988). However, overex-
pression of a pseudophosphorylated GAP43 enhances LTP in
Schaffer Collaterals (Hulo et al. 2002), which shows that GAP43
activity is more important than its level per se. In line with this,
expression of a non-phosporylatable form of GAP43 has no effect
on LTP induction (Routtenberg et al. 2000; Hulo et al. 2002).
Pseudophosphorylated GAP43 also enhances short-term plastici-
ty, in particular paired pulse facilitation and synaptic response
summation during high-frequency stimulation (Hulo et al.
2002), demonstrating again its dual function in short- and long-
term plasticity. In line with the absence of a gross morphological

Calcineurin in synaptic plasticity and memory

www.learnmem.org 379 Learning & Memory

 Cold Spring Harbor Laboratory Press on September 12, 2024 - Published by learnmem.cshlp.orgDownloaded from 

http://learnmem.cshlp.org/
http://www.cshlpress.com


phenotype in the brain of GAP43 KO mice (Strittmatter et al.
1995), LTP in hippocampal slices is normal (Hulo et al. 2002).

Consistent with the effects of LTP, LTD induction transiently
decreases GAP43 phosphorylation in a CaN-dependent manner
in the CA1 region of the hippocampus when achieved by low-
frequency stimulation (Ramakers et al. 1999, 2000a), but not
when achieved by NMDA incubation that will primarily induce
postsynaptic plasticity (van Dam et al. 2002). With respect to nat-
ural forms of plasticity such as ocular dominance plasticity,
there are currently no data implicating GAP43, except the obser-
vation that the level and phosphorylation of membrane-associat-
ed GAP43 are elevated during the critical period in cat visual
cortex (McIntosh et al. 1990; Sheu et al. 1990); GAP43 association
with the membrane is not altered by monocular deprivation
(McIntosh et al. 1990).

However, GAP43 is strongly implicated in memory. GAP43
phosphorylation is increased after training on a memory task in
the hippocampus (Cammarota et al. 1997), which correlates nice-
ly with a reduction in CaN activity (Havekes et al. 2006). GAP43
KO mice do not survive after weaning and thus do not allow
any behavioral analysis of cognitive function (Maier et al. 1999).
However, heterozygous GAP43 mice have deficits in spatial learn-
ing but also have multiple sensorimotor deficits and decreased
sociability, which may bias the results (Rekart et al. 2005;
Zaccaria et al. 2010). Consistently, GAP43 overexpression has
an effect on memory. First, it enhances learning on a working
and spatial memory version of the delayed matching-to-place
task in the radial arm maze (Routtenberg et al. 2000) but not on
purely spatial tasks, such as contextual fear conditioning or the
water maze (Holahan and Routtenberg 2008). However, it favors
the extinction of contextual fear memory and enhances reversal
learning in the radial arm maze (Holahan and Routtenberg
2008). Overexpression of a pseudophosphorylated GAP43 does
not affect spatial learning but enhances contextual fear memory
and blocks its extinction (Holahan and Routtenberg 2008).
Additionally, while it does not affect learning on the radial arm
maze (Routtenberg et al. 2000), it alters its reversal (Holahan
and Routtenberg 2008). Overexpression of a non-phosphory-
latable GAP43 also interferes with spatial learning in the water
maze but not in other forms of learning (Holahan and
Routtenberg 2008). These findings suggest that the phosphoryla-
tion status of GAP43 and the amount of GAP43 protein are equally
important, and both need to be fine-tuned. Dysregulation of
GAP43 (increase) in the hippocampus has been associated with
Alzheimer’s disease (Rekart et al. 2004), a finding that correlates
with the CaN overactivation observed in Alzheimer’s patients
(Berridge 2011; Qian et al. 2011), which may further activate
GAP43 and contribute to memory impairments. In summary,
CaN is an important determinant of presynaptic neurotransmitter
release and restructuring through regulation of GAP43 activity.
GAP43 dephosphorylation provides an important pre-synaptic
mechanism by which membrane-targeted CaN contributes to
plasticity and memory.

Conclusion

CaN is an important regulator of neuronal plasticity in the brain
that targets multiple substrates in distinct subcellular compart-
ments. Each of these targets contributes to the functions of CaN
in plasticity and learning and memory and has multiple and intri-
cate relationships. Manipulations of these targets in vitro and in
vivo have provided some mechanistic insight into their modes
of action. However, some of CaN’s functions still remain poorly
understood, in particular in pathological conditions and diseases,
and will therefore require more work in the future, with the hope
to provide new potential targets for therapeutic treatments.
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