
1

Hello everyone. My name is Kundan Singh and today I will describe a project we did at Avaya Labs.



Let me start by saying that people often forget the importance of separating data from the 
application logic. Social websites often manage and control the user’s data such as his 
connections. Even though the data belongs to the user, it is often difficult for him to use it on 
another website. Who really owns your friends? 

If another application needs to access the user data controlled by the first application, it must 
follow the custom API provided by the first application, as shown in the second diagram. An 
obvious solution shown in the third diagram is to let the data be controlled by the user, who 
gives permission to individual applications to access the data on his behalf. Many people have 
tried to create such socially aware cloud storage to be shared by websites.

2



Such trend by social websites poses several problems as shown here. For example, user often leaves 
obsolete data around because modifying redundant information at many different social websites is 
cumbersome. Typically, the big website that has most number of users, dictates what web applications 
their user can use, even if a better or more feature rich application exists elsewhere. In an enterprise 
network, the IT would like to keep the social data and interactions private within the organization – some 
way to bind the social website to a private enterprise database while the user accesses the website from 
the enterprise network. Finally, the lifetime of the data gets tied to the application. For example, when 
many people moved from friendster or myspace to facebook, they had to pretty much recreate their social 
graph and profile.

3



These problems are aggravated when dealing with communicating applications – those that 
allow you to interact with others in real-time (and sometimes asynchronously). For example, one
would like to be able to reuse their social connections to call out from different websites. 

With the emergence of web-based communication technologies such as WebRTC (or web real-
time communications) it has become relatively easier for anyone to create communicating web 
applications – but the problem is every website wants to define its own way of call control and 
session establishment, creating islands of non-interoperable web applications.

4



In this presentation, I will describe the our project that aims to solve these problems. This is a 
brief agenda for the talk.

5



Let us take a quick look at the background of web applications. With the feature rich HTML5 
browsers both on desktop and mobile, many applications are moving their logic from the 
backend webserver to the browser. The concept of rich internet apps is not novel, but can be 
taken to the extreme in the resource-based application model. 

6



The main principle in resource based application model is as followed: all application logic runs 
in the client (i.e., the browser), whereas the server is just a simple and generic data access and 
event system. Since the server does not run complex or heavy application logic, it is easy to 
make it robust and scalable.

The resource service can be explained in five points. First, resources are pieces of data, 
organized hierarchically, similar to a file system. For example /users/bob/presence could be 
Bob’s presence resource and /room/1234 could be a chat room’s members list.

The client application running in the browser connects to the server, typically over a persistent 
WebSocket, and exchanges messages. The message format is in JavaScript Object Notation 
(JSON). The resource server defines generic set of data access and event messages, inspired 
by REST methods.

The resource server is essentially a web and WebSocket server, with a backend database to 
actually store the resources. Finally the JavaScript library contains the SDK and widgets used 
for creating communicating applications. I will describe the widgets later.

7



Let us look at one example of how a contact list with presence is implemented. Say, one user 
opens the webpage in his browser. The application logic in JavaScript on the page fetches the 
contacts list resource of this user, and for each contact it fetches and subscribes to the 
presence resource for that contact. 

When a particular contact comes online, her application logic writes the presence resource with 
the status as “available”. Since the first user has subscribed for this presence resource, it gets 
notified, and updates the status icon of this contact in the contact list.

8



To further assist in creating different kinds of applications, we have created a developer platform 
called aRtisy. Let me show a quick demonstration video of the application builder in aRtisy.

9



What really happened behind the scenes? Each of the widget implemented a single application 
scenario, for example a button to join a conference, or layout of videos in a conference. We 
have many different kinds of widgets both telephony and web style. 

These widgets mash up at the data level, e.g., the text chat widget uses the conference 
resource and local participant identifier from the conference, without knowing that videos widget 
is also attached to the conference.

10



We have built many more real applications using the resource-based application model and the 
widgets. This is just a list of applications and some screenshots, but the paper describes these 
applications in more details. 

The public chat service is a simple cloud based multiparty video conference with text chat. The 
entire communicator functions such as contact list, presence, IM, file sharing, emoticons, video 
call, voice call, offline messages are implemented in our communicator, entirely using HTML5 
and resource model, without any legacy Jabber or SIP systems. We have also built social 
network applications with profile, wall post and video presence.

Some points to remember about these applications: the application logic is written with HTML 
and JavaScript, using some HTML5 technologies such as WebSocket and WebRTC for real-
time media. These applications are usually very small – few hundred to few thousand lines of 
source code.

11



There are several challenges discussed in the paper. Particularly, for cloud deployment of the 
resource server, the security and robustness is very important, whereas for on-premise 
enterprise use case, interoperability with existing communication systems is useful.

12



So what should you take home from this presentation? First, socially aware cloud storage which 
separates the data from the application logic of the social website solves many problems found 
in existing social and cloud applications. 

The resource model contains a resource server with a very generic data access and event 
message. The resource server can be deployed on premise within an enterprise, and can 
potentially be bound from public social websites. aRtisy is a web and cloud based developer 
platform to create such communicating web applications.

Finally, many complex communicating applications can be built in the resource model, where 
the application logic runs entirely in the client (browser), and mashes up at the data level. It 
solves the four problems we discussed in the beginning – redundancy, application lock-in, rigid 
data boundary and tied lifetime of the data.

In summary, our experiment presents a new way of cloud application development that involves 
real-time, social and web.

13


