
1

Internet video communication: past, present and future

Hello 1 2 3, can you hear me now?

© 2011, Kundan Singh, http://kundansingh.com

Kundan Singh, PhD

Nov 2011

seeseeseesee

Abstract:

Modern video communication systems have roots in several technologies:
transporting video over phone lines, using multicast on Internet2's Mbone,
adding video to voice-over-IP (VoIP), and adding interactivity in existing
streaming applications. Although the Internet telephony and multimedia
communication protocols have matured over the last fifteen years, they are
largely being used for interconnectivity among closed networks of telecom
services. Recently, the world wide web has evolved as a popular platform for

everything we do on the Internet including email, text chat, voice calls,
discussions, enterprise applications and multi-party collaboration.
Unfortunately, there is a disconnect between the web and traditional Internet
telephony protocols as they have ignored the constraints and requirements of
each other. Consequently, Adobe's Flash Player is being used as a web
browser plugin by many developers for voice and video calls over the web.

Learning from the mistakes of the past and knowing where we stand at
present will help us build the Internet video communication systems of the
future. I present my point of view on the evolution, challenges and mistakes of

the past, and, moving forward, describe the challenges in bridging the gap
between web and VoIP. I highlight my contributions at various stages in the

journey of Internet audio/video communication protocols.

2

Topics

Video over phone lines

IP multicast

Voice (+video) over IP

(interactive) video streaming

Web + VoIP

past future

+ challenges; my contributions

In this presentation, I will talk about five main topics on what influenced the
evolution of Internet audio and video communication protocols. It started with
transporting pictures or video over phone lines. The then existing telephony
protocols were modified to carry video bits. With the innovations in the Internet
Protocol (IP) such as multicast, researchers started building audio and video
conferencing tools for IP multicast. To facilitate user lookup and discovery in
an Internet oriented way, voice-over-IP (VoIP) protocol names the Session
Initiation Protocol (SIP) evolved. Video was yet another media to carry without
having to modify the core of SIP. At the same time innovations in Internet

related to video streaming and web exploded the video consumption on the
Internet via web sites like YouTube and web browser plugins such as Adobe
Flash Player. Adding interactivity to Flash Player allowed building video

conferencing on the web. However, closed nature of the plugin forced the
standards bodies to look in to bringing standards for real-time communication
to web.

Different origins of the evolution solved different problems and contributed to
different challenges. I have had the opportunity to work in many of these areas

and during my presentation I will highlight my contributions on these topics. I
will focus more on my recent work on the last two topics related to web-based

video communication.

3

1997 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Unde
rgrad

@Ind
ia

MS

@col
umb

ia

PhD
@cs

.colu
mbia

@Mo
torola

H
.3
2
3
 vid

e
o
 clie

n
t

g
a
te
w
a
y

S
IP
-H
.3
2
3
 tra

n
sla
to
r

S
IP
-R
T
S
P
 vo
ice
 m
a
il

S
IP
 co
n
fe
re
n
cin
g

Lib
sip
+
+
 (S
IP
 lib
ra
ry)

P
2
P
 V
o
IP
u
sin
g
 S
IP

S
IP
 F
a
ilo
ver/lo

a
d
 sh
a
rin
g

E
n
te
rp
rise

 V
o
IP
in
fra
stru

ctu
re

In
te
ra
ctive

 vo
ice
 re
sp
o
n
se

C
IN
E
M
A
 u
se
r in

te
rfa
ce

M
u
ltim

e
d
ia
 co
lla
b
o
ra
tio
n

M
o
b
ile
 N
A
T

Relia
bility

 & s
cala

bility

VoIP
infra

stru
ctur

e
M
u
ltip
a
rty co

n
fe
re
n
ce
 p
e
rfo
rm
a
n
ce

My Background

Indu
stry

Adob
e, To

kbox
, 6C

onne
x,

Twil
io, a

nd O
pen

Sour
ce

A
d
d
 S
IP
 to
 F
la
sh
 P
la
ye
r

P
u
b
ic F

la
sh
 vid

e
o
 co
n
fe
re
n
ce

E
n
te
rp
rise

 vid
e
o
 co
n
fe
re
n
ce

C
lo
u
d
 te
le
p
h
o
n
y

W
e
b
 vid

e
o
 co
m
m
u
n
ica
tio
n

One of the first project I did was building an H.323 video phone for LAN.
During my time at Columbia University with Prof. Henning Schulzrinne, I
contributed to several systems projects on SIP-based applications such as
translating between SIP and H.323, doing multiparty conferencing and
collaboration, enabling server-less SIP network using peer-to-peer algorithms.
In the last five years I have focused mostly on web-based audio and video
communication systems in various industry projects as well as in my open
source projects.

4

What is Internet video communication?

…

…

The

Internet

“Devil is in the details”
echo cancellation, video layout, bandwidth reservation, error concealment, …
protocol for transfer, scalability, robustness, session negotiation, …

Before jumping on to the topics let us look at what Internet video
communication really is? It is essentially capturing audio and video from one
host, digitizing them, transporting the real-time data from one IP address to
another over the Internet, and playing the media on the other host. However
there are a number of details that go behind the scene to make this simple
flow really work well in practice. For instance various audio quality processing
that improve the clarity of speech, reduce the bit rate needed on the network,
reduce the effect of noise and echo from surroundings, efficiently handle
packet losses and variable delay on the Internet while maintaining real time

nature of the flow, multiplexing or synchronization of various media,
robustness against failures of intermediate network elements, negotiation of
audio and video configuration parameters so that both ends can understand

each other and determine that they can use the best possible configuration
under the given practical scenario, laying out or mixing media from multiple
participants in a conference, and so on.

My past focus has been in the signaling and network side of the system, but
there are a number of other media related things that are equally important.

5

Video over Phone Lines

IP and lower layers

TCP UDP

TPKT

Q.931 H.245
RAS RTCP

RTP

Codecs

Terminal Control/Devices

Q.931 SETUP

Q.931 CONNECT

Terminal Capabilities

Terminal Capabilities

Open Logical Channel

Open Logical Channel

H.323

Too complex

Telecom DNA

My first video telephony project

Audio video communication is not new. As early as 1960's we had picture phones as they were
called. And today we have dozens of brands of video phone equipments to choose from. Many
of these early video phone systems worked on the philosophy of carrying encoded video bits
over phone lines, or some connected circuit. ITU-T created recommendations for video
terminals over ISDN and modem connections. The H.320 multimedia systems are still popular
for room based video conferencing. The same of set of signaling and session negotiation
protocol is applied to packet switched network as well. For example, ITU-T H.323 started out
as the video communication protocol for local area network but many of the crucial pieces such
as Q.931 and H.264 were borrowed from the previous circuit switched network based
protocols.

Although the H.323 protocol has evolved over the years, the first version defined pretty
complete but complex set of primitives for establishing the call, negotiating the terminal
capabilities, and creating the media channels for audio, video and text. First the terminals
would discover each other via a registration, admission and status to an entity called the
gatekeeper. Then they send some telephone call signaling messages over TCP to establish a
call. This is followed by negotiating terminal capabilities and establishing individual logical
channels for audio, video and data as needed.

The main problem it tried to solve was to enable existing video terminals over yet another
network while keeping backward compatibility with existing networks like ISDN, so reusing the
existing primitives made sense. However, since Internet engineers had already felt the
success of Internet application protocols such as HTTP for web, SMTP for email and FTP for
file transfer, this new protocol was too complex to digest. It inherited many of the telecom stuff
without adding value over the Internet, and the Internet part was just a small dot in the system,
e.g., use of RTP and RTCP for transport of media.

6

Once you have the hammer, everything looks like a nail

H.323 suffered from the hammer-and-nail syndrome. The ITU-T already had
the complex video communication specification, and they saw the Internet’s
packet switched network as yet another nail to be nailed. They could not see
the real Internet problems and philosophy such as openness and simplicity of
the Internet application protocols. It was more like using a sledge hammer, too
bulky and too complex, to fix a screw.

7

IP Multicast

Encoded

Audio/Video

RTP Header

UDP header

IP header

With the popularity of Internet Protocol and innovations such as IP multicast,
researchers started experimenting with desktop video conferences over
multicast test bed, Mbone, on Internet2, a network of research and academic
institutes. Tools such as robust audio tool (rat) and video conferencing tool
(vic) allowed very simple multiparty audio and video conferences. Application
level transport protocol, RTP, was invented to carry sequence and timing
information that are needed to correctly playback real-time media, for
occasional feedback of the quality of service, and time synchronization of
multiple media.

8

Reality check:
no multicast; plagued with middle foxesboxesboxesboxesboxes

Although these multicast-based applications embraced very simple text based
session description protocol for describing the multicast sessions, they could
not be used on general Internet where multicast was not available. Presence
of middle boxes such as NATs and firewalls, and lack of global multicast broke
the premises on which these multicast video conferencing tools were built. I
wouldn’t call these attempts as failed attempts for video communication
because they inspired subsequent Internet engineers to create better protocols
while keeping the core benefits of the simple real-time transport protocol and
simple text based signaling protocol.

It was clear that text based simple session protocols were going to stay… and
would work hand-in-hand with other Internet application protocols like HTTP
and email.

9

Voice over IP

� Internet engineers

vs telecom DNA

� Embrace HTTP,
email

+ Video

⁁

� SIP is simple

� Built many apps

was
back then

One of the problems in simple RTP based multicast conferencing was how to
discover the other participants to ask them to join. While H.323 was available,
it required huge telecom investment to work on H.323. If you were not already
a telecom player with an existing telecom stack, it was very difficult for you to
nail that screw I talked about earlier. So SIP evolved as a very simple
replacement to H.323 to solve two problems: (1) how to discover other parties
and invite them to a session, and (2) how to negotiate any session
parameters. It re-used existing session description protocol and existing
Internet technologies such as DNS, stateless core, robustness against failures,

etc.

When I first started working on SIP, I was very thrilled because compared to
H.323 where any minor feature needed planning for several weeks or months,
the complete SIP/RTP stack could be prototyped in a class assignment. It was
that simple.

Being second, SIP had to face many hurdles from the telecom mindset but
eventually it survived. While video was always there, it was sidelined in real

implementations. Video was considered as yet another extension in the end-

point that can be easily added without modifying the protocol.

The main advantages of SIP are (1) its simplicity and (2) how quickly one

could build many different types of applications. I also got the opportunity to
work on several SIP based systems.

10

“SIP has become the SS8 of PSTN trunking”

-- Jiri Kuthan

Real Internet Problems

NAT traversal

End-to-end services
Security

Asserted identity

GRUU

Authenticated identity management
Reliability of early media

Update session for early media

PINT service protocol

Non-adjacent contacts

SPIRITS call waiting

INFO for ISUP SIP to ISUP

SIP to QSIG

ISUP overlapped signaling in SIP

Service discovery on Path

Request history of network

Call transfer

Join-Replaces

Publish state
Conditional event notification

Presence event package

1.Session initiation vs application logic

2.Telecom apps sidelined Internet apps
3.New “managed” services appeared

4.Business interest overshadowed research

SIP was designed to solve two problems – discover other users or devices and negotiate parameters to
connect them in a session. The focus should have been real Internet problems such as security, end-to-
end services, traversal across middle boxes.

The fact that SIP needed to prove itself as working in all the previous telecom use cases rather than the
emerging Internet applications, and the fact that it was so simple to implement and extend, it started an
infestation of SIP related extensions, Internet drafts and RFCs. Many of these extensions were just to
please a closed walled garden network of a carrier, or to carry a unique parameter between two telecom
equipments that decided to use SIP and IP in the middle. Looking back over the last 5-10 years, these
bullets summarize the reason for the undue complexity that resulted due to the specification explosion in
my opinion.

The core protocol didn’t have a clear separation between the session initiation aspect and the application
logic. This meant that any changes in the application logic resulted in yet another extension even if the
core remained the same. One of my friend recently commented that SIP has become the SS8 of PSTN
trunking – not necessarily something we are proud of but that is the reality. With more telecom
involvement and the need to build closed walled garden, the complexity became too overwhelming for
many. The original philosophy and original principles behind the design were thrown out of the window. It
became so complex that the original problem it was meant to solve was no longer solved easily, e.g.,
security and traversal. With this SBC (session border controller) became the new buzzword which could
potentially solve every problem without caring about end-to-end philosophy behind the origin of SIP.

In summary, SIP got misused to solve problems that it was not supposed to solve, or the problems that
were not really the core problems on the Internet but more of the business problems of the telecom
world. Back to back user agents and SBCs are just the opposite of what SIP stands for in principle.

Today many vendors and carriers use SIP but in a way that prevents you from directly talking to them
over SIP. For example, comcast has SIP based voice platform, Apple’s Facetime uses tweaked SIP, but
they don’t allow a direct SIP connectivity from your SIP phone to the service. It has yet to come to the
Internet people…

11

P

P

P

P

P

RFC 5638

Simple SIP usage
scenario for
applications in the
endpoints

Breaking Free

By 2004, I had done a lot of work on SIP based systems, I started seeing the
prevalence of “managed” SIP services and closed walled garden. And I
wanted to break free of such closed systems. In line with the original
motivation of end-to-end services, we started a peer-to-peer initiative using
SIP. I did a few prototype implementations to demonstrate the technology,
wrote a few papers to show the point, and eventually a P2PSIP working group
was formed to further the standardization of the effort. The idea was to get rid
of the servers and be able to discover each other on a peer-to-peer network. If
there are no servers then there will be no “managed” service and there will be

no walled garden of services.

With the growing number of SIP specifications, and more than 100 RFCs in
the family, the original end-to-end goal started getting lost in the wild. I co-
authored an RFC to itemize the core set of a dozen or so RFCs that are
needed for SIP services in the end-points that do not worry about telecom

extensions, features or interoperability. This was an attempt to tell the Internet
folks that it is not as complex as it seems for your applications.

12

Video StreamingInteractiveInteractiveInteractiveInteractive

With the emergence of IP multicast, the idea of Internet radio and TV
emerged. Even though Internet multicast never became available, the idea
persisted. Eventually, video viewing and streaming via web became so popular
that it gave rise to an entirely new industry. In the process, the Adobe’s Flash
Player plugin became the most popular mechanism to deliver video to the end
user.

Since Flash Player was already capable of doing video streaming, it was just a
minor step to add interactive communication where Flash Player could also

publish the video to others.

13

Why is this approach promising?

Let us review what makes Flash Player a approach promising, and makes it
different from other approaches.

14

almost

⁁

Available to everyone

Easy for developersImmersive experience

No download needed
additional

⁁

The most important reason is that the Flash Player plugin is available to almost everyone with

a PC and Internet. It is ubiquitous, more than a specific brand of browser. Anyone with an

internet connection and a browser can generally use Flash-based applications. Recently, web

has evolved as a popular platform for everything we do on Internet including email, text chat,

voice calls, discussions, enterprise applications and collaboration. And Flash Player fixes your

web browser to do things that it is not already capable of, e.g., device capture and media

transport.

The second reason is that developers find it very easy to work on Flash platform. Its cross

browser platform support is amazing. Unlike a few hundred VoIP companies, there are millions

of web developers. The programming language (ActionScript/MXML) used by Flash Player are

similar to the web application languages such as JavaScript and HTML. The learning curve is

quick, the development tools are awesome, and the community support is excellent!

Thirdly, the end user sees the whole rich internet application experience as embedded and

immersive in to what he is doing. For example, when browsing Facebook, you can chat with

other friends within the Facebook web page.

Finally, there is no additional download needed to install and configure, but it is just there. This

is huge plus for some use cases, e.g., in cyber-café or secure machines, where you do not

have the luxury to install and configure Skype, Adium, Yahoo, MSN, etc, you can still do Flash-

based video conference.

15

What did we learn?
�“just works” = happy users

�“quick/simple” = happy developers

�There is no third rule

These are the reasons for the popularity of Flash based video communication
web sites in recent years. It is too easy and quick for you to get started -- both
from developers and users point of view. In technology, it is not always the big
that wins, but the fast one does. And Flash Player gives the necessary tools to
quickly add web video communication to your software product, service or
platform.

What we learn from this are two important lessons: if the system “just works”
without much installation, configuration, how-tos, then users are happy, which

makes them use your system again and again, and helps your business. If the
system is quick and simple to build, then developers are happy and motivated
to add more functions, learn quickly, and innovate! This moves your business
quickly from idea to production, instead of having to make big investments.
There is no third rule to success in your video communication business!

16

alice bob

Let us look at how a simple two party video call works with Flash Player.
Suppose Alice and Bob want to do a video call using the Flash media service.
The media service provides abstract named streams which Alice can publish
and Bob can play, and vice-versa. From the software point of view each side
has two Video components, one configured to publish and other to play, to
build such as video call application.

17

NetConnection

Camera

Microphone

Video

VideoDisplay

NetStream

preview

publish(“mine”)

play(“yours”)

create

From the implementation point of view, Flash Player provides four components
of classes or abstractions related to video communication application.

The network connection, NetConnection, represents the association between
the client Flash application and the media service, which is necessary to
create a media stream.

The camera and microphone abstractions provide a platform independent
device input. The Flash application does not deal with raw or encoded media
stream, but just connects the camera and microphone to either video
rendering object or the media stream.

Typically your application will attach the camera to the local video display, and

also to the published stream name. And play the stream name of the remote
side to the video display.

18

Flash-VideoIO
<object id="video1"

width="320" height="240“ ...>

<param name="movie" value="VideoIO.swf" />

...

<param name="flashVars" value="..." />

<embed src="VideoIO.swf"

width="320" height="240"

name="video1"

flashVars="..."

...>

</embed>

</object>

<script>

getFlashMovie("video1").setProperty("src",

"rtmp://server/path/123?publish=alice");

</script>

NetConnection

Camera

Microphone

Video

VideoDisplay

NetStream

flashVars=“controls=true”

19

Flash-VideoIO
<object id="video1"

width="320" height="240“ ...>

<param name="movie" value="VideoIO.swf" />

...

<param name="flashVars" value="..." />

<embed src="VideoIO.swf"

width="320" height="240"

name="video1"

flashVars="..."

...>

</embed>

</object>

<script>

getFlashMovie("video1").setProperty("src",

"rtmp://server/path/123?publish=alice");

</script> flashVars=“controls=true”

My VideoIO project combines all these abstractions into a single easy to use
Flash application with extensive JavaScript API. This example shows how the
"src" property can set the VideoIO component to a video publish mode. As
mentioned before with two such video components and some form of
negotiation for media stream names, you can build a video call application.

In the last few years I have had the opportunity to explore this area in detail
and to contribute in both industry and various open source projects. The Flash
VideoIO is one of my interesting projects that brings the power of Flash Player

plugin to regular web developers for video communication and messaging
related application. There are several examples of how to use this in various
use cases. You can visit the project web site at http://code.google.com/p/flash-
videoio/ for more information.

20

It defines a simple but extensive web API to enable various use cases related
to web video communication and messaging. You can explore the various API
properties and calls from its test page.

21

Multi-party audio/video
conference

http://public-chat.appspot.com/
< 1000 lines of code

I have built several sample applications using VideoIO such as chat roulette
type random chat system, multi-party video conferencing. This is built on
Google App Engine, using standard web application techniques such as AJAX,
and asynchronous channel API-based IM and presence.

22

siprtmp.py in action

It is possible to interoperate between Flash Player and standard SIP terminals.
For example, siprtmp is one such project that I have been involved with. The
gateway allows a Flash application embedded in a web page to register to SIP
server and make or receive SIP calls. The translation mechanism and source
code of the gateway is at
http://code.google.com/p/rtmplite/source/browse/trunk/siprtmp.py and I have
co-authored a technical report describing the translation as well.

While the gateway can allow you to translate signaling and voice, the video

stream is more involved because the proprietary/patented Sorenson codec
used by Flash Player. Recent version of Flash Player allows H.264 capture
from the browser and enables interoperability with other H.264 supporting SIP
devices.

You can use the gateway to implement several web telephony use cases such

as PC-to-phone dialing, allowing a phone user to dial into a web conference, or
integrating your web application with existing VoIP infrastructure.

Moreover, I am working on a project to integrate siprtmp with P2P-SIP adaptor
to enable downloadable external application that converts your web

applications to SIP phones.

23

“All that glitters is not gold”

Now that we have seen the power and ease of Flash based audio video
communication, let us look at some limitations.

24

Latency in media pathRTMP

End to end media RTMFP

media

proprietarynot always

The origin of Flash Player’s interactivity comes from video streaming use case
which is typically client server in nature. This diagram shows the high level
client-server architecture for Flash video communication. RTMP (real-time
messaging protocol) runs over TCP and allows you to create named streams
at the media server, and publish or play media over it. This works well for one-
to-many streaming application where provider can install multiple servers and
do load balancing. It also works well for NAT and firewall traversal because of
the client-server nature of the TCP connection, and both the media and
signaling paths are same.

But the latency in media path can become huge, and is not desirable for
interactive video calls. Luckily Adobe has added another protocol, RTMFP
(Real-time media flow protocol), which enables end-to-end media over UDP
and significantly reduces the latency in the media path.

It works, but has two problems. First it is proprietary, and second, it cannot
always do end-to-end media because of certain firewalls and NAT restrictions.
Because it is proprietary, third-party cannot build scalable and distributed

media relays, similar to super-node architecture of Skype. Thus, for a robust

service, the provider needs to invest in service infrastructure or fall-back to
client-server RTMP. There has been some effort in reverse engineering
RTMFP, e.g., the openRTMFP’s cumulus project.

25

Echo cancellation

High quality encoder

missingmissingmissingmissing

not integratednot integratednot integratednot integrated

Until last year Flash Player did not have good echo cancellation and until
recently it did not have high quality video encoder. This was the reason for
many problems and customer dissatisfaction when I built my first global Flash
based video communication services.

Unfortunately what this means is that developers are always tied to what the
plugin vendor provides and dependent on the vendor to provide new features
and security fixes. For example, the recent addition of H.264 in Flash Player
11.0 has a bug that prevents playing live H.264 streams where a single frame

is split into multiple slices and sent as one NALU per slice. This prevents many
existing SIP systems to interoperate with Flash via my siprtmp gateway.

Other missing features are full support for general purpose UDP socket and
access to encoded media data to the application so that the application can
use alternative transport mechanism.

26

Separate islands of innovations

VoIP

Web

Flash Player is just one of the several ways to do web-based video
communication. The core problem is something else – web has had
tremendous growth recently and existing VoIP protocols fail to deliver
the promise for web users. Web and VoIP have evolved as separate
islands of innovations. There is a very strong motivation to bridge the
gap to enable the millions of web developers to include communications
on web pages. Seamless integration of web and communications will
result in many more innovative applications. Due to separate islands of
innovations, there are different protocols, programming language APIs,

developer tools, and developer communities.

Web companies are fast paced, with quick turnaround, and build easy
to use applications whereas VoIP is traditionally linked to complex
protocol machinery which is difficult to get right across different
equipments. Critical programming primitives are also missing in a web

browser: UDP transport, listening socket, native device access. While
Flash Player solves some of these problems, its closed implementation
does not give a generic application level UDP socket or access to

encoded media packets to the application, restricting the hands of the
developers.

27

� Provider and user perspective

� Trust model, session negotiation, …

From VoIP to Web

Moving from traditional VoIP to Web communications requires a lot of
changes. Firstly the provider’s perspective changes. Typically a web site
owner wants to own the content and customer interactions, unlike a VoIP
provider who should provide connectivity to other VoIP networks as well. From
user’s perspective, unlike a software rendition of a phone or a phone book,
web allows communication to be part of the existing web browsing experience.
For example, embedded click to call, auto-conference among current visitors
on a page, etc. Trust model is different on the web. The way session is
negotiated is different because unlike offer/answer model of VoIP here the

publisher may advertise the session and anyone visiting a web page
automatically joins instead of explicit answer.

28

Minimum Protocol Requirements

HTTP

signaling and
control

UDP

media transport

Although there are many different protocols for multimedia communications,
you just need two protocols on the web: HTTP for signaling/control such as
discovering other people on the web page and sending invitation to connect,
and UDP to do low latency real-time media transport. All other services,
protocols and mechanisms are outside in the application space. This was the
main motivation to start my project in collaboration with other researchers on
“voice and video communications on web”.

I have an initial prototype of a web video conferencing and slide sharing

system along with a published paper in a recent conference.

Understanding the minimum requirements is useful in designing the solution. It
helps in keeping unwanted “fat” outside the scope.

29

Modify browser
Extend web protocols/languages
1. Include SIP/RTP stack
2. Add device access, codecs and

e2e transport (IETF, W3C)

Use existing plugin
Most existing web communication
systems use Flash Player

HTTP

UDP

proprietary

proprietary
over UDP

Web
server

server

HTML HTML

HTML HTML

FP FP

Build new plugin
Just handles missing pieces
(device access, codec, transport)

HTTP

UDP

Web
server

HTML HTML

pluginplugin

Use separate app
Runs as a separate process/service

HTTP

UDP

Web
server

HTML

App App

HTML
HTML

Available Options

At the high level there are four alternatives to enable voice and video
communications in the browser: (1) modify the browser to use new protocols
and programming API, (2) use an existing plugin that provides end-to-end
media path and device access, (3) build a new plugin to provide the missing
pieces in the browser such as device access, codec, transport, and finally (4)
use a separate application that runs on user’s computer, and allows the web
browser as well as other applications to enable end-to-end media path and
device access.

In the first option, you can either include a complete SIP/RTP stack in a
browser or add only the missing pieces. The new working groups at IETF and
W3C are focused on this effort. Including a full SIP/RTP stack is possible but
presents difficult challenges in terms of agreeing on common API and
interoperability among multiple implementations. The signaling is better left to
HTTP and web protocols instead of trying to use SIP in this context.

Existing web-based communication systems have largely built upon Flash
Player (or Silverlight) browser plugin. Flash Player allows end-to-end media

path using a proprietary protocol (RTMFP) over UDP.

30

Modify browser

No other dependencies
Eventually a standard
Numerous web developers

Reluctance to change
Portable device access/sharing
Time to ubiquitous availability

Use existing plugin

Ubiquitous availability
Browser agnostic
Rich developer tools and experience
One-to-one as well as group

Transport is not enough (for SIP/RTP)
Cannot install new codecs
Depends on vendor for updates

Comparison Use separate app

Browser and app agnostic
Any transport, language, codecs.
Persistent/long lived state
Yet another install, slow adoption
Security and access control
Video display needs plugin

Available Options

1. With existing technologies
2. Emerging standard protocols
3. Allow walled garden
4. Require new install
5. App dies on page close
6. Re-use web security means

This slide compares the various options. The green lines are advantages and red ones disadvantages.
Modifying the browser to adopt the emerging standards is the ideal solution in the long run. It doesn’t
have additional dependencies on plugins or other applications. However, typically changing the browser
for new standards takes time, and much more time before the feature is ubiquitously available to many
common browsers.

Traditionally, plugins such as Flash Player and silverlight have filled the lack of real-time support in the
browser. The main advantage of Flash Player is that it is already available on most PCs and thus do not
require additional installation. Moreover availability of rich developer tools and user interface experience
makes it a good choice. Same application code works on all browsers, instead of having to write a lot of
browser dependent hacks. The main problem is that developers and users are dependent on plugin
vendor for updates such as for security or new features. Secondly the existing programming primitives in
Flash do not allow implementing a full SIP/RTP stack or installing new codecs. Building a separate plugin
solves some of these problems but the challenges of portability across all platforms and all browsers
makes it a tough answer to the problem.

Using a separate application is not only browser agnostic but can also be used by other host
applications. Unlike plugins or web page’s DOM states, a separate application can keep persistent and
long lived states. For example, existing solutions such as Host Identity Protocol for NAT traversal,
mobility and multihoming can be easily incorporated. NAT ports can be pre-detected to speed up
connection setup. Going from one web page to another within the same domain can easily preserve
sessions. The main problem is that a new installation slows the adoption among end users. Allowing
access some multiple competing web pages or browsers require careful security and access control
mechanism. Finally video display needs some plugin presence in the browser for immersive experience.

These options can also be compared with criteria such as it can built using existing technologies (no,
yes, yes), whether it can use emerging standards protocols (yes, no, yes), whether building a walled
garden is easy (no, yes, no), whether a new installation is required (no, yes, yes), whether session dies
on page close (yes, yes, no) and whether existing web security can be reused (yes, yes, no).

31

Voice and Video on Web

DB

Apache web server,
PHP websocket server,
MySQL database

(1) Signaling API
Resource-based, SDP=>XML/JSON,
subscribe/notify, long-lived connection,
persistent vs transient data, access control

(2) Communication Widgets
Click to call, contact list,
conference object

(3) Media Application API
Transport, auth and media objects

Project: http://sites.google.com/site/vvowproject/
Source: http://code.google.com/p/vvowproject/
Demo: http://gardo1.rice.iit.edu/webconf/

Applications >> Protocols

Our project has three parts: (1) signaling, (2) communication widgets, and (3) media
application API. This applies to other web communication applications as well. The signaling
API defines how people discover each other and how session is negotiated. Essentially this is
a web version of SIP/SDP. As discussed earlier, the idea is to use web oriented protocol such
as HTTP. All client server interaction happens over HTTP. The various data model inspired by
SIP systems such as online users, and call state, are maintained as resources.

The resource-oriented (unlike service oriented) API allows for more scalable system with
complex logic inside the client. For example, list of logged in users are at /login, so doing a
PUT or POST under that URL will allow an end-user to login, and be discovered by others. The
session parameters are represented using web oriented formats such as XML and JSON.
Finally, to receive events from other users or from web server, a subscribe/notify mechanism is
implemented on top of long-lived websocket connection. The way it works is that a client can
subscribe to changes in a particular resource, say /call/call123 and be notified whenever this
resource or its immediate children change. We have implemented a generic resource-oriented
client-server API with these features so that the application can define its own resources for
web communication.

The second part contains the commonly used communication widgets. When the browser
comes up it uses a communication widget (group of HTML, Javascript, Flash files) that
implement a particular application. The widget connects to the signaling server to enable
rendezvous as well as connects, detects, installs local separate application to handle media
path.

The third part is the separate application with some media application API that receives
commands from the web pages, and performs device access, media transport and codecs. In
our preliminary implementation we have used Flash Player as an intermediate solution until we
implement the separate application.

It should be noted that the different parts can be used independent of each other, e.g., the
media part can first detect if WebRTC extensions are available natively in the browser, and if
not fall back to plugin or separate application approach.

32

Summary

Video over phone lines

IP multicast

Voice (+video) over IP

(interactive) video streaming

Web + VoIP

past future

In summary, we have talked about the various origins that have contributed to
and shaped the Internet video communication technology we see today. We
talked about the challenges various approaches tried to solve, and the
drawbacks they suffered from.

We have seen some important lessons from the past about what works and
what does not. And finally we have seen a number of intricacies of web based
video communication platform with or without Flash Player.

33

Moving Forward

� Stay technical; R&D

� Web RTC, but more on tech demos

� Global cloud-based SIP services

� Mobile and custom video devices

http://myprojectguide.org

One of the things that intrigues me about Internet video communication is that
we are never satisfied with what we have. There is always a need to improve,
and this I feel is a good thing for research. In near term future I would like to
continue exploring the space from the technical angle.

I will continue to follow the web RTC work but more importantly I like to
contribute to more technology demonstrations and system implementations
that solve the problems rather than contribute in writing pages of specifications
that create more problems.

One interesting project I wish to do is to create a global cloud-based SIP
service that could be used by anyone on the Internet or web without being
controlled by a single entity or “managed” service provider.

Finally, I feel that mobile and custom video devices will form the core of our
future. While web provides convenience for many, a custom and affordable
video conferencing device is what is needed. So I wish to work on some of
these aspects of the area too.

Some of these projects as well as many other interesting projects are listed on
my web site that I built for student projects.

