
Developing WebRTC-based Team Apps with a
Cross-Platform Mobile Framework

Kundan Singh
Avaya Labs Research
Santa Clara, CA, USA
singh173@avaya.com

John Buford
Avaya Labs Research

Basking Ridge, NJ, USA
buford@avaya.com

Abstract—We present lessons learned in developing cross
platform multi-party team applications. Our apps include a
range of communication and collaboration scenarios: document
and content sharing in a team space, an agent-based meeting
helper, phone number dialer via a voice-over-IP (VoIP) gateway,
and multi-party call in peer-to-peer or client-server mode. We
use web real-time communication (WebRTC) to enable the audio
and video media paths in the apps. We use frameworks such as
Chrome Apps and Apache Cordova to create apps that can be
accessed from a browser, or installed on a desktop, mobile
device, or wearable. The challenges and techniques described in
our paper related to audio, video, network, power conservation
and security are important to other developers building cross-
platform apps involving WebRTC, VoIP and cloud services.

Keywords—HTML5, Apache Cordova, Chrome Apps, WebRTC,
Mobile, Cloud, Wearable

I. INTRODUCTION
Team apps have features that require multi-way media

streaming, multipoint notifications, resource sharing, use of
cloud services, security, and operation on a range of devices.
Underlying technologies used to implement these features such
as WebRTC and client-side certificates have inconsistent
support, particularly across mobile platforms. The capabilities
are also important for mobile app developers in categories
including gaming, social networking, healthcare and education.

Due to the plethora of devices, app developers prefer cross-
platform development with a write-once run-anywhere model.
Prior studies have shown that cross-platform development tools
for mobile offer the economies of write-once run anywhere but
are challenging in terms of creating a native user experience
(UX) or using device specific capabilities and advanced
browser-specific features. However, prior work does not cover
the technologies important to team collaboration apps.

We have developed a set of cross-platform applications
using the Apache Cordova (PhoneGap) [1] hybrid app
development framework. These applications are implemented
in HTML5 and typically use cloud services from our self-
service cloud portal [2][3], including WebRTC (web real-time
communication) [4] and WebSocket [5][6].

In this paper we discuss challenges and lessons for cross-
platform development relevant to classes of apps that involve
real-time communication and cloud-based services. The apps
that we describe have important requirements beyond those

described in other studies for: real-time multi-party streaming
of video using WebRTC, real-time notifications, e.g., using
WebSocket, secure access to cloud services, and apps
interoperability with browser-based and desktop versions. We
address challenges including and beyond these requirements.

These apps include: (1) a team collaboration app for
persistent sharing of content with escalation to real-time voice,
video or app sharing, (2) a web-based video call/conference
service that runs all the app logic in the endpoint, (3) a meeting
helper agent which joins the conference bridge during a
meeting, automatically creates the meeting summary at the
end, and sends it to the participants, (4) three softphones using
Voice-over IP (VoIP) services for small or large businesses,
and (5) a serverless video phone using local network multicast.

Our work answers these questions important to those who
are developing with or evaluating tools for cross-platform
mobile app development: (1) how to best realize write-once-
run-anywhere for apps that leverage features common to team
apps, and (2) what are important takeaways from our range of
apps’ development experience to help existing and new app
developers. We list several challenges and techniques related to
audio, video, network, power conservation and security.

Remainder of this paper is organized as follows. Section II
contains related work on hybrid apps and WebRTC. Section III
describes the apps under consideration. Sections IV and V
describe the cross platform development process including for
wearable. Sections VI to VIII have our lessons learned on
HTML5, WebRTC and mobile apps. Section IX describes
power conservation and security of notifications. Section X has
our conclusions and future work.

II. RELATED WORK AND BACKGROUND
The leading mobile application stores, Google Play and

iOS App Store, each have more than 1M mobile apps [7].
Powerful cross-platform mobile app development frameworks
[8] have emerged so that developers can produce hybrid native
applications from HTML5 – PhoneGap (Apache Cordova) and
Sencha Touch – or cross-platform tools and SDKs, such as
Adobe AIR, MoSync, Appcelerator, and Corona.

Malavolta et al. [9] study user perception of cross-platform
mobile apps by mining 3M reviews of 11,917 free apps from
the Google Play Store. Of the 11K apps, about 500 were
developed with cross-platform mobile frameworks, and more
than 50% of these with Apache Cordova [1]. Their results

Copyright © IEEE, 2016. This is the author's copy of a paper that appears in an IEEE conference proceeding. Please cite as follows:
K. Singh and J. Buford, "Developing WebRTC-based team apps with a cross-platform mobile framework", In proceedings of IEEE Consumer
Communications and Networking Conference (CCNC), Las Vegas, NV, USA, Jan 2016.

show that cross-platform development is most frequently used
for data intensive apps and least used for apps with platform
interaction, e.g., games and audio. They conclude that hybrid
development frameworks are perceived as better suited for
data-intensive mobile apps than for dealing with low-level,
platform-specific features, and in some categories, native apps
are viewed better due to performance and less bugs.

Heitkötter et al. [10] found that Appcelerator based mobile
apps appear more native, whereas PhoneGap apps are like web
sites. Angulo and Ferre [11] evaluated the user experience
comparing natively developed app with an equivalent app built
using a cross-platform tool. A native iOS UX is more difficult
to obtain using cross-platform tools compared to Android apps.

Several studies have shown the feasibility of cross-platform
mobile app development, e.g., RSS reader using Appcelerator
[12], geolocation and map APIs using PhoneGap [13][14], or
WebSocket with PhoneGap [15]. Cross-platform apps using
device features such as accelerometers and multi-touch gesture
could be comparable to native versions of the same apps [16].

Unlike previous studies, we focus on real-time
communication and collaboration, and the strength of our work
is in the recommendations about developer practices, the
experience with WebRTC, and the number of apps.

WebRTC [4] refers to the ongoing efforts by W3C, IETF
and browser vendors to enable web pages to exchange real-
time media streams. A page can capture from local mic and/or
camera using getUserMedia as a local media stream abstraction,
create RTCPeerConnection, a peer-to-peer abstraction between
browser instances, and send a media stream from one browser
to another (Fig.1). RTCPeerConnection emits certain signaling
data such as session description and transport addresses, which
must be sent and applied to the RTCPeerConnection at the other
browser to establish a media path. Web pages typically use
WebSocket [5] or Ajax over HTTPS between the browser and
the web server to do such session negotiations. Browsers can
use the web page supplied STUN or TURN servers [4] to
discover server reflexive and/or relayed addresses for the
media paths that cross network boundaries.

III. MULTI-PARTY TEAM APPS
Team apps involve both active or synchronous modes such

as video or teleconference, as well as passive or asynchronous
modes such as SharePoint or a wiki. A collaboration app often
supports both, e.g., a video call app that can send video mail, or
a document sharing app that allows chat with other viewers.

A. Sample Team Collaboration Apps
We have built several team apps listed below and shown in

Fig.2 with both active and passive modes. We use WebRTC
for the peer-to-peer as well as client-server media paths, and
typically use Ajax and/or WebSocket on the signaling paths.

1) Engagement Dialer: It allows dialing out a phone number
using the enterprise or cloud VoIP service of Avaya’s
Engagement Development Platform (EDP) and Aura software
suite (Fig.2a). A customer subscribes to the service, distributes
this dialer app to its users, and provisions user credentials in
the auth-service. The auth-service authenticates the app user, and
returns a token that is used by EDP to initiate a phone call

using the SIP proxy and gateway. Separating the app user’s
authentication from the EDP token simplifies billing to that
customer, instead of its individual app users.

2) IP office phone: Avaya IP office is a communication system
for small and midsize businesses, which we host on cloud for
customer trial. The IP office phone is a client to connect to this
VoIP system to make or receive voice or video calls. It uses
client-server media path anchored at the server (Fig.2b). This is
not uncommon in cloud telephony, e.g., for media services of
recording, interactive voice response or telephony gateway.

3) Vclick: This is a pure web-based multi-party client to enable
video call, conferencing, video presence, text chat, shared
white-board, notepad and screen sharing [17]. It does not
depend on legacy VoIP systems or browser plugins. It works as
a collection of loosely coupled apps that mash up at the data
level instead of pair-wise app permissions, e.g., white-board
app can be joined from a separate device in an existing desktop
video call (Fig.2c). The cross-platform version is created as a
single app, with reduced functions of voice, video and text
chat, but no other sharing apps. Unlike traditional server-side
web apps, Vclick runs all the app logic in the client, and uses a
“thin” resource server [6] that enables data storage and pub/sub
events, e.g., a client subscribed to a resource gets notified when
it changes. A persistent client-server connection enables shared
data access and incoming events such as call invite. It creates
peer-to-peer (full-mesh) media paths during a call.

4) Connected Spaces: This is a team collaboration system for
persistent sharing of content, e.g., documents, meeting notes,
wiki or calendar [18]. Long lived distributed groups can
organize their work in spaces, e.g., a space for “Third Floor
Construction” project contains all the relevant content of that
project. Users can create persistent annotations on shared
content (Fig.2d) or start impromptu audio, video and/or text
chat among the viewers of a document in a space. We have
separate web apps for desktop and mobile. The mobile version
adjusts to portrait or landscape orientation. It uses HTTPS for
all passive collaboration, and secure WebSocket for signaling
of active collaboration and real-time notes. It uses Vclick’s
resource server for such events and data storage, and its
WebRTC conversation app for chat. In our cloud deployment,
we share the STUN and TURN servers [4] among various
WebRTC projects: Vclick, IP office and Connected Spaces.

5) Suki App: Suki meeting helper agent joins the conference
bridge during a meeting, automatically creates the meeting
summary at the end, and sends it to the participants. The
meeting summaries are then available from the Suki app.
Although the Suki agent joins the conference in active mode,
the client app is passive – for viewing past meeting summaries.
The app gets the user’s calendar to show the meetings (Fig.2e).

RTCPeer
Connection

<audio/>

Publish

Play
RTCPeer
Connection

Peer-to-peer media path

<video/>

Microphone

#1 #1

#2 #2 Publish

Play

Fig. 1. WebRTC conceptual elements and client server system

Web
Server

STUN/
TURN

Camera Mi
getUserMedia

getUserMedia

6) SIP in JavaScript: Unlike Engagement Dialer or IP office
phone that run the signaling protocol in the server, SIP-JS [19]
can run SIP in the browser, connect using WebSocket to a SIP
proxy, and send peer-to-peer WebRTC media path to the other
endpoint or gateway. However, this requires a SIP server that
supports the WebSocket transport. We have modified this web
app to run as a native desktop or mobile app, by using the
native socket interface for sending SIP over UDP or TCP. Such
softphones can use third-party VoIP services such as iptel.org,
while keeping the media paths peer-to-peer (Fig.2f).

7) LAN video phone: This is a serverless native app (not in
browser) that uses multicast to discover other app users in the
local area network, and allows establishing a point-to-point
video call with another user over WebRTC. It demonstrates the
native socket interface including multicast that is available to
native desktop and mobile apps. Unlike this, web apps must
use only WebSocket or Ajax. The serverless nature of this app
makes it useful for situations where set up is difficult or ad hoc
interaction is desired, e.g., during emergency or in conferences.

B. Similarities and differences
These independent apps have separate target users and

requirements. Table I summarizes the high level similarities
and differences in the context of this paper. To compare their
relative complexities, it also shows source lines of code of
combined HTML, JavaScript and CSS of the cross-platform
client apps, not counting any third-party libraries or server side
software. The cross-platform versions of Connected Spaces
and Vclick have fewer features, and hence, are smaller than
their original web app versions. Two common themes relate all
these apps: (a) use of WebRTC when needed to establish a
media path, and (b) use of common set of cross-platform tools
to write-once run-anywhere. We present the lessons learned on
these topics based on our development experience.

IV. CROSS PLATFORM DEVELOPMENT PROCESS
Our apps can work in a web page running inside a browser

(as web app) on both desktop and mobile platforms, and as an
installed app (native app) on desktop and mobile. This results
in four types of cross platform scenarios shown in Table II.

EDP

auth
service

Aura

SIP
proxy

phone

VoIP phone

gateway

(a) Engagement Dialer screenshot and backend architecture

STUN/TURN

IPO
phone

IPO web
app

(b) IP office phone screenshot and IP office server

STUN/
TURN

WebRTC

Vclick
Mobile

app
Vclick
 web
app

(c) Vclick screenshots (desktop, mobile, multi-party and
white board) and service architecture

(d) Connected spaces screenshots (mobile and desktop), portrait and
landscape orientation, annotations, and system architecture

(e) Suki app screenshots and Suki meeting helper system

Mobile, landscape (an example space) Desktop (an example space roster)

Mobile, portrait
(space docs)

Mobile (annotations
on a shared doc)

Resource
Server

Web
Server

Suki
Meeting
Helper

Conf
Bridge

Mail
Proxy

Mail
Exchange
Server

Ajax

(f) SIP-in-JavaScript over UDP: screenshot and architecture (g) Serverless LAN video phone screenshots and architecture

SIP
proxy

SIP/UDP

STUN

Fig. 2. Screenshots and client-server architectures of various apps discussed in this paper

Semantic
Media
Server

Content
Manager

Resource
Server

IP office

TABLE I. ATTIBUTES OF OUR CROSS PLATFORM APPS

Cross platform Apps and their
requirements

 En
gm

t D
ia

lr
V

cl
ic

k
IP

 o
ff.

 p
h.

C

on
n

Sp
ac

es

Su
ki

 a
pp

SI

P-
JS

 a
pp

LA

N
 v

id
.p

h

Work as a web app in a browser? 9 9 9 9 9 9 8
Work as a native mobile or desktop app? 9 9 9 9 9 9 9

Use our cloud hosted service? 9 9 9 9 9 8 8
Active/a, passive/p or both/ap modes? a a a ap p a a

Use WebRTC for media path? 9 9 9 9 8 9 9
Use WebSocket for signaling path? 8 9 9 9 8 9 8
Use Ajax for signaling or control? 9 8 8 9 9 8 8

Use native socket interface for control? 8 8 8 8 8 9 9
Use client certificate? 8 8 8 9 9 8 8
Have real-time audio? 9 9 9 9 8 9 9
Have real-time video? 8 9 9 9 8 9 9

Load or save files to/from the local disk? 8 9 8 9 8 8 8
Use local storage for configuration? 8 9 9 9 9 8 9

Capture image or record audio/video? 8 9 8 8 8 8 8
Have user notifications (e.g., call invite)? 8 9 9 8 8 9 9

Use iframe-based components? 9 9 8 9 9 8 8
Use touch interface (e.g., drawing)? 8 9 8 9 8 8 8

Register protocol handler (e.g., tel:)? 9 9 8 8 8 9 8
Requires keep-alives with service? 8 9 9 8 8 9 8
App logic is in client/c or server/s? s c s cs s cs c

Layout fixed/f, stretch/s, zoom/z, adjust/a z az z as as fs as
Source lines of code (x1000, kilo-) 2.6 5.3 1.6 9.9 2.6 5.6 0.8

TABLE II. FEATURES/CONSTRAINTS OF PLATFORM SCENARIOS

We want to
simplify the cross
platform development,
and highlight cross-
platform differences.
We use the Chrome
App and Apache
Cordova frameworks
and tools [20][1] to
write the app once in
HTML, JavaScript and
CSS, and run in the
four cross platform

scenarios. Although some apps can run on other browsers, e.g.,
Firefox or Safari, and other platforms, e.g., iOS, we will only
discuss the use of one browser, Google Chrome, and one
mobile platform, Android, in this paper. The desktop platform
can be Windows, Mac OS X or Chromebooks.

Creating a cross-platform app is a three step process: (1)
create the web app using HTML5 technologies following our
cross platform guidelines, (2) convert it to a ChromeApp that
runs and behaves as a native app on desktops, and (3) convert it
to a native app, e.g., Android .apk, using Apache Cordova [20].

For WebRTC-base app development we start with a local
development environment to create and test the web pages
loaded from a localhost web server in the different tabs of the
same browser. Once login or configuration is implemented
using browser’s local storage, separate browser user profiles
are used on the same machine. Next, loading the web app from
different machines in the same network requires opening up the

firewall. As we progress towards more distributed and/or
restricted network, such as Internet or across VPNs, external
STUN and TURN servers are incorporated for media. Once the
point-to-point media flow works, additional features such as
multi-party follow the same process – test first on multiple tabs
of the same browser, and incrementally spread across
networks. We present our lessons learned and guidelines in
creating cross platform HTML5 web apps in Section VI.

Next, we convert the web app to a ChromeApp [20]. It is a
package of HTML, JavaScript and CSS files that runs as native
app, but uses the browser’s rendering engine and its Native
Client plugin. It can be distributed on the Chrome Web Store.
It runs as a standalone app and unlike a browser extension,
cannot interact with or modify the visited web pages. Such
apps and extensions are the only ways to install an app on
Google Chromebook currently. Software in a ChromeApp
differs from web pages: it can use browser specific JavaScript
APIs to access local storage, file system, attached USB, power
settings or raw socket interface; but cannot use certain features,
e.g., document.cookie, blocking alert or prompt, form submits,
HTML5 localStorage or history, inline scripts, or images and
resources from external sites – all must be packaged in.

To convert, we change, among other things, the web files to
move all inline scripts to a separate script file, e.g., use
addEventListener instead of inline onclick; change form submit or
external image load to Ajax instead of setting src; and
replace any restricted API to its alternative, e.g., create UI
instead of built-in alert. To load third-party shared websites in
an iframe, an intermediate sandboxed iframe can be used, which
isolates the content security of the third-party page from the
app. The alternative of webview, instead of iframe, is not
portable to Cordova yet. Plugins such as Flash Player or PDF
are not readily available in mobile app. In Connected Spaces,
we open third-party content in a new browser tab for viewer
interactions. The app also has a manifest file for its metadata,
e.g., app permissions to capture audio, video or desktop, show
notifications, or use cloud messaging, full screen, device’s
location, client or server storage, or detect when the app is idle,
i.e., not receiving user focus. The manifest file also contains
target URL patterns to which Ajax is allowed from this app.

In the last step, Cordova Chrome Apps (cca) tools are used
to compile a packaged app to a native mobile app for the target
platform, e.g., Android and iOS. A packaged app usually
converts seamlessly to mobile app, e.g., app permissions are
converted to appropriate features and plugins of the Android
manifest file. Some features such as for file transfer or account
contacts require manually adding those plugins. We selectively
enable some or all of these plugins: webintent, audiotoggle,
contacts, file, file-transfer, geolocation, media-capture, audiocapture,
gcm, idle, notifications, storage and videocapture. We describe
specific lessons learned in cross platform app development
across browser, desktop and mobile in Sections VII and VIII.

WebSocket on Android is supported without a plugin.
However, developers should disable “Don’t keep activities”
under developer options to keep the connection active when the
app goes to background. The Crosswalk webview [21] used in
Cordova includes support for WebRTC on Android. The
camera and its auto-focus features must be manually changed

Features/Constraints
Web Native

Requires Chrome 8 8 9 8
Blocking alert 9 9 8 8
Inline scripts 9 9 8 8
HTML5 localStorage 9 9 8 8
Local files’ access 8 8 9 9
Client certificate 9 9 9 89
Screen share 8 8 9 8
Built-in file dialogs 9 9 9 8
Media recorder 8 8 9 9
Useful Ajax CORS 9 9 98 8
Useful keep-alives 9 98 9 8
Native socket intf. 8 8 9 9

Fig. 3. Screenshot: (left) video from laptop
camera to Google Glass viewfinder and (right)
from Glass camera to laptop; and architecture.

WebRTC

Resource
Server

Fig. 4. Screenshots of
Connected Spaces themes.

main window
(index.html)

embeds

iframe
(videos.html)

iframe
(remote video.html)

iframe
(local
video.
html)

getUserMedia window.top.postMessage

event.source.postMessage result:sid
pc.addStream(sid) window.top.postMessage

Fig. 5. Proxy WebRTC APIs from embedded
iframes to the top-level window in an iOS app.

getUserMedia => result:stream

pc.addStream(stream
)

to optional in Android manifest and plugins config so that the
app works on tablet devices with only user facing camera, but
no rear facing. Instead of using the built-in and shared Android
webview that lacks WebRTC on older versions, packing the
external Crosswalk webview with each app increases the apk
size by about 20MB. The tool can launch the app in an
emulator or on the connected device. Emulator is slow, and
causes some plugins to misbehave, so we use a connected
device during development, and the host’s browser to debug
the target app. Once ready, the generated apk files for arm and
x86 should both be uploaded to the Google Play Store.

Cordova [1] can create apps for other platforms, e.g., iOS,
Blackberry, or Windows Phone, but cca [20] only supports
Android and iOS yet. WebRTC is not natively available for
iOS in Cordova. Third-party plugins, e.g., cordova-plugin-iosrtc
and -webrtc, are emerging, and aim to provide standard
WebRTC APIs. The <video> element of Safari webkit cannot
be modified; hence they create an overlay for display or control
of WebRTC video. Using DOM observers, the overlay adjusts
to the changes in the underlying element. Since, the overlay is
on top of everything else, it is not trivial to draw on it, or do
CSS z-order or crop, or handle click on the video element.

V. WEBRTC ON A VIDEO-ENABLED WEARABLE
Using the Glass Development Kit (GDK), one can create

apps for the Google Glass, a head mounted wearable device
that includes a camera and view finder. This type of wearable
provides a see-what-I-see communication experience, and has
applications in healthcare, manufacturing and energy [22][23].
The viewfinder is a low-resolution ocular display that can be
controlled with voice commands as well as by touching and
swiping the touchpad on the side of the glass. Due to the
nature of the glass UI, the apps described in section III are too
complex for presentation on the viewfinder. However, the
glass is an important type of video endpoint for a participant in
the team apps. Consequently, we built and tested a glass app to
connect as a WebRTC endpoint (Fig.3). We used Google Glass
Explorer Edition, version XE22. The app is written in HTML5
using Vclick’s video component, and an apk is generated using
the same process and tools described earlier. Reducing the
capture dimension and frame rate reduces the video lag and
improves the user experience.

VI. GUIDELINES FOR CROSS PLATFORM HTML5
1) Avoid SPA frameworks: We use JavaScript without external
frameworks, e.g., jQuery or AngularJS, that are often designed
for single page applications (SPA) [24] unsuitable for long

lived mobile apps because they cause bulky script injection or
memory leak buildup over time.

2) Componentize the user interface: Separating source files
into components helps testing and maintenance. Iframes are the
most widely-deployed form of web componentization [25].
Firstly, iframes to host separate components prevents leaking
document, scripts or styles of one component into another.
Each video box or text chat in Vclick (Fig.2c) runs in an iframe,
with its own URL, and can be independently launched, e.g., to
move a participant video in new tab or to open the conversation
app from Connected Spaces. Secondly, the browser implicitly
cleans up any residual state of an iframe component on unload.
In Connected Spaces and Suki, the individual pages are loaded
and unloaded on menu navigation, while still using a shared
data model. Engagement Dialer loads a headless JavaScript
library in an iframe, so that any per call dangling references are
cleaned up when the call ends with no long term effect. On
iOS, cordova-plugin-iosrtc must be invoked in the top window,
not an iframe. To solve this, we proxy the API calls (Fig.5).

3) Select the right UX layout: One rigid layout does not work
well cross-platform, and we optimize used space via fixed,
stretched, zoomed and/or adjusting layouts. Connected Spaces
(Fig.2d) and Suki adjust in landscape or portrait orientation
with persistent or auto-hide menu, respectively. Vclick (Fig.2c)
adjusts and zooms-in video boxes to reduce the empty space
and/or to maximize the presenter’s video. IP office phone and
Engagement dialer are locked to portrait mode in native apps,
and zoomed-in to fit the display size. No single UX can satisfy
all users. In Connected Spaces we use customizable styles, so
that a user can pick. Both themes in Fig.4 have same HTML
and JavaScript, and differ only in CSS.

5) Use CSS for animation: Animation using CSS transition and
key-frames styles is powerful, versatile and fast, compared to
JavaScript. Vclick animates size and position of videos when
participants join or leave. Connected Spaces and IP office glide
the menu or tab on user interaction. We use the opacity style for
a fade-in-out effect to indicate background activity so that the
user interface contr ols can remain active and clickable.

6) Prefer intuition over instructions: Intuitive design with
continuous user feedback is important [24]. Connected Spaces
allows in-line edit of user profile via contentEditable instead of a
separate form. IP office phone animates the answer and decline
buttons on an incoming call. Engagement Dialer and IP Office
Phone always show the current call state in the app.

7) Select the programming model: JavaScript is asynchronous,
with exceptions, e.g.,
alert, localStorage. We
use asynchronous
wrapper around these,
e.g., to change to
server side storage in
future or to move to
native app where
storage is via platform
specific asynchronous
function. There are
many ways to do

asynchronous

JavaScript [26]. We use callbacks for APIs and libraries, and
combination of events, messaging and state machines when
creating standalone components.

VII. LESSONS LEARNED IN CROSS PLATFORM WEBRTC
1) Media capture and playback: Unlike tablets or laptops,
smart phones have two cameras (front, rear) and two speakers
(speakerphone, earpiece). In a multimedia call, user should be
able to select the right device, e.g., earpiece in audio call and
speakerphone in video. If an incoming native phone call
corrupts the audio settings in the app, it should revert to user
defined ones when the app regains focus. Mobile browsers (not
apps) restrict automatic playback of media files loaded from
web without user click, causing problem in ringer sound. For
mobile web apps, we pre-load the media file or embed the
media content as data URL in the source code. To avoid local
sound loopback, we mute the <video> tag to which WebRTC
local media stream is attached for preview. This also applies
when WebRTC and Web Audio APIs are used to record voice
by attaching a local media stream containing microphone to an
audio context. Full screen mode to maximize video is useful
for desktop and mobile. Android camera capture is squarer in
portrait and standard or HD in landscape device orientation.
WebRTC allows capture size constraint, but not on active local
stream. Differences in capture and display size are handled by
zooming in to the center of the video (see Fig.2b/c/f/g).

2) Network connectivity: Selecting the right network interface
saves cost and improves call quality. Cost or security of Wifi
vs. 4G vs. VPN is not used in WebRTC address selection yet.
However, an app can ask the user to pick the right interface,
and apply that to the onicecandidate callbacks. An app can also
accommodate network change, e.g., by reconnect of signaling
or media path. Low bandwidth constraints on mobile devices
can be used to negotiate low framerate or capture dimension in
a call. A STUN server is enough for most residential users. A
cloud hosted TURN server often achieves relayed media path
for restricted enterprises and VPNs. More restricted enterprises
require opening up firewall ports to such TURN servers.

3) Interoperability: Our apps can call between web and native
versions. Different WebRTC code in browser vs. Crosswalk
webview or plugin can sometimes break interoperability, e.g.,
when Google Chrome added the useinbandfec=1 SDP attribute
which was not understood by webview. We solved this by
intercepting WebRTC APIs and removing this attribute. Cross
app interoperability or with server-side WebRTC, e.g., in IP
office phone and Engagement Dialer, is a different problem,
and is often caused by differences in WebRTC stacks including
ICE and STUN/TURN. WebRTC refines many SDP attributes
[4][19] breaking interop with existing VoIP systems.

4) Multi-way call: There are three ways to do multi-party: full
mesh (Vclick) is like multiple two-way calls [17]; centralized
mixing uses client-server media with server side video
compositing or switching; and server forwarding uses one
upstream and N-1 downstream media paths. System scalability
is governed by the number and bandwidth of media streams at
the endpoint or server. Full mesh congests the user’s uplink
with only a few participants. Other ways have server scalability
issues. Native apps on desktop or mobile can use native socket
interface to realize a fourth way of efficient multicast, at least

on local network. Our LAN video phone uses multicast for
discovery. However, using multicast for media requires using a
custom media stack instead of peer-to-peer WebRTC flows.

VIII. OTHER CROSS PLATFORM DEVELOPMENT TECHNIQUES
1) User input: On mobile, the HTML <input> tag with type of
microphone, camcorder or camera can launch the native capture
application. There is no built-in file-selector or save-as dialog
in Cordova, and the file plugin’s API is incompatible with
HTML5’s. We built own UI to save text chat or to select a file
to share in mobile Vclick app. Connected Spaces and white-
board of Vclick allow a user to draw via touch input. The
keypress event instead of keyup/down works better with virtual
keyboards of mobile. The back buttons available on some
Android devices trigger the in-app back button behaviors in
Connected Spaces and Suki.

2) Cross origin (CORS): A ChromeApp has origin of chrome-
extension://{ext-id} and a Cordova window or iframe has origin of
file://, gopher:// or chrome-extension:// (no path). A website that
enables white-listed origins should consider such wild-card
values. We use nginx to terminate request, do out-of-band
authentication, and then proxy to the website. Same origin
components of different iframes can do seamless function and
variable access; or use postMessage for cross origin.

3) App in endpoint: WebRTC is a client-side technology. Many
of our apps run most of the app logic in the client’s JavaScript.
This promotes scalability, robustness and reusability. Client
apps such as Vclick widgets are reused without complex server
side interactions. We use HTML5 registerProtocolHandler and
Android web-intent to launch an app when the browser opens,
say, a “tel:” URL. A known issue in Chrome prevents auto-
loading of external app without a page refresh in JavaScript.
Opening web+vclick:user@domain dials-out, and web+vclick:call:
call-id joins the call via Vclick. Connected Spaces can launch
Vclick with call-id as MD5(doc-url:spacename) to isolate the
interaction on a document of one space from that on the same
document shared in another. Such loosely coupled interactions
enable app innovations, e.g., a new app can replace Vclick
without changing Connected Spaces, or a “facetime:” URL can
reach Vclick from an iOS device via a gateway in the future.

IX. REAL-TIME NOTIFICATIONS: POWER AND SECURITY

A. Power management with notification channel
Some apps may work offline, but others require network

connectivity. Persistent WebSocket channel is useful on web
pages and desktop apps to receive asynchronous events such as
call invite. Periodic keep-alives keep the connection active.
When it fails, reconnection is attempted. Vclick does automatic
failover to the secondary server when the primary fails.

To conserve power, long running native mobile apps
should not keep persistent WebSocket connection. Keep-alives
or unbounded reconnection attempts are resource intensive,
and should be reduced, e.g., Vclick Android app stops the
keep-alives when device goes to sleep or is not in foreground,
uses exponential back-off timer with a cap to attempt
reconnections, and stops them if the failure persists for some
time. When the device becomes active again, it does a one-time
check to detect connectivity and to reconnect if needed.

Without persistent WebSocket connection on native mobile
apps, user presence and app’s ability to receive asynchronous
events are not trivial. Vclick uses low power shared Google
Cloud Messaging (GCM) that can receive events even when
the device is asleep. When received, it then wakes up if
needed, and connects to the server to fetch further call data.
The caller publishes the outgoing call event to both the server
and GCM, in case the receiver device is asleep or not
connected to the server. Similarly, the server should inform all
the devices after recovery from a failure, so that the devices
that had stopped their reconnection attempts can now connect.

To receive network events during sleep, an app should
either use cloud messaging or, on native mobile app, mark the
native socket as persistent, so that it is kept active even when
the app is unloaded, and can be reused when the app is loaded
back. Other platforms have alternatives to GCM, and are
particularly useful on iOS where the browser terminates
WebSocket when the device goes to sleep.

B. Security: cloud connectivity and hosting
The challenges and techniques in creating our multi-tenant

cloud portal are described in [3]. We use combination of secure
TLS transport, client certificate, authentication, cross-origin
restrictions and nginx to securely access the cloud services.
Client certificates work on web apps and native desktop apps.
For native mobile apps, support in Android and Crosswalk
webview was recently added. We created a Cordova plugin to
set the client certificate from web page. It works for Ajax
requests. We discovered other issues: the default download
manager does not honor client certificate; WebSocket fails if
the server requests a client certificate, unless a previous Ajax to
the same server caused the certificate to be cached. We use
nginx to provide an alternate path from native mobile apps to
such services; the app connects to the proxy without client
certificate but with an auth-token, and the proxy connects to the
cloud service with the correct client certificate.

X. CONCLUSIONS AND FUTURE WORK
We have described seven different cross platform apps built

using ChromeApp and Apache Cordova frameworks and tools.
These apps use WebRTC for real-time streaming audio and
video, and typically interact with cloud servers on HTTPS. The
code is written in HTML5 and is portable and interoperable
across in-browser, desktop and mobile app versions. Platform
specific differences related to collaboration apps are discussed.
We have developed many possible collaboration scenarios, and
have presented challenges and techniques to solve some
difficult problems to help other cross-platform developers.

We are porting our apps to other platforms (iOS), using an
external WebRTC plugin in Cordova. We plan to re-create one
app using multiple hybrid frameworks to compare them against
Cordova. Impact of software based VP8 codec vs. native H.264
on battery consumption is for further study.

ACKNOWLEDGMENTS
Thiru Arjunan, Jaydeep Bhalerao, Biswajyoti Pal and Ajita

John helped in getting started with Avaya IP Office, EDP and
Suki. Venkatesh Krishnaswamy supported our research and
development.

REFERENCES
[1] Apache Cordova, https://cordova.apache.org/, retrieved Jul 2015.
[2] ALICE: Avaya Labs Innovations Cloud Engagement,

https://alice.avayalabs.com, retrieved Jul 2015.
[3] J. Buford, K. Singh, and V. Krishnaswamy, “ALICE: Avaya Labs

Innovations Cloud Engagement,” Principles, Systems and Applications
of IP Telecommunications (IPTcomm), Chicago, IL, USA, Oct 2015.

[4] A. Johnston and D. Burnett, WebRTC: APIs and Protocols of the Real-
Time Web, third edition, Digital Codex, 2014, ISBN 978-0985978860

[5] The WebSocket API, W3C candidate recommendation, Sep 2012,
http://www.w3.org/TR/websockets/

[6] K. Singh and V. Krishnaswamy, “Building communicating web
applications leveraging endpoints and cloud resource service,” IEEE Intl
Conf on cloud computing (IEEE Cloud), Santa Clara, CA, USA, 2013.

[7] K. Bell, http://mashable.com/2015/01/15/google-play-more-apps-than-
ios, Web page, retrieved Jul 2015.

[8] J. Raj, 2014, http://www.sitepoint.com/top-7-hybrid-mobile-app-
frameworks, Web page, retreived Jul 2015.

[9] I. Malavolta et al. "End Users’ Perception of Hybrid Mobile Apps in the
Google Play Store." 4th IEEE International Conference on Mobile
Services, New York, USA, Jun-Jul 2015.

[10] H. Heitkötter, S. Hanschke, and T. A. Majchrzak. “Evaluating cross-
platform development approaches for mobile applications,” Web
information systems and technologies, Springer Berlin Heidelberg,
2013, pp.120-138.

[11] E. Angulo and X. Ferre, “A Case Study on Cross-Platform Development
Frameworks for Mobile Applications and UX”, in Proceedings of the
XV International Conference on Human Computer Interaction
(Interacción '14), ACM, New York, NY, USA, 2014,

[12] S. Xanthopoulos and S. Xinogalos. “A comparative analysis of cross-
platform development approaches for mobile applications,” Proceedings
of the 6th Balkan Conference in Informatics, ACM, 2013.

[13] N. J. Pierre et al., “Cross-Platform Mobile Geolocation Applications
Based on PhoneGap,” Lecture Notes on Soft. Engg. 3.2 (2015): 78.

[14] S. Amatya and A. Kurti, “Cross-platform mobile development:
challenges and opportunities,” ICT Innovations 2013, Springer
International Publishing, 2014, pp.219-229.

[15] R. Kazi, X. Zhang and R. Deters, “Supporting apps in the personal
cloud: using WebSockets within hybrid apps.” Second Symposium on.
Network Cloud Computing and Applications (NCCA), 2012.

[16] S. R. Humayoun, S. Ehrhart, and A. Ebert, “Developing mobile apps
using cross-platform frameworks: a case study.” Human-Computer
Interaction. Human-Centred Design Approaches, Methods, Tools, and
Environments, Springer Berlin Heidelberg, 2013, pp.371-380.

[17] K. Singh and J. Yoakum, “Vclick: endpoint driven enterprise
WebRTC”, (to appear in) IEEE International Symposium on Multimedia
(IEEE ISM), Miami, FL, USA, Dec 2015.

[18] J. Buford, K. Mahajan and V. Krishnaswamy, “Federated Enterprise and
Cloud-based Collaboration Services,” IEEE Intl Conf on multimedia
system architectures and applications, IMSAA, Bangalore, India, 2011.

[19] K. Singh and V. Krishnaswamy, “A case for SIP in JavaScript”, IEEE
communications magazine, Vol. 51, No. 4, April 2013.

[20] Run Chrome Apps on mobile using Apache Cordova,
https://developer.chrome.com/apps/chrome_apps_on_mobile, Jul 2015.

[21] Crosswalk project, https://crosswalk-project.org, retrieved Jul 2015.
[22] Glass at Work, https://developers.google.com/glass/distribute/glass-at-

work, retrieved Jul, 2015.
[23] A. Barr, “Google Quietly Distributes New Version of Glass Aimed at

Workplaces”, The Wall Street Journal, Jul 30, 2015.
[24] S. Porto, 2014, Lessons learnt by building single page applications,

https://reinteractive.net/posts/186, retrieved Jul 2015.
[25] T. Leithead and A. Eicholz, “Bringing componentization to the web”,

http://windowsforum.com/threads/211241, retrieved Jul 2015.
[26] Online article, http://tech.pro/blog/1402/five-patterns-to-help-you-tame-

asynchronous-javascript, accessed Jul 2015.

