
Enterprise WebRTC Powered by Browser Extensions
Kundan Singh

Avaya Labs Research
Santa Clara, CA, USA

singh173@avaya.com

John Yoakum
Avaya Inc.

Cary, NC, USA

yoakum@avaya.com

Alan Johnston
Avaya Inc.

St Louis, MO, USA

abjohnston@avaya.com

ABSTRACT

We use browser extensions to solve two important issues in

adopting WebRTC (Web Real-Time Communications) in

enterprises: how to integrate WebRTC-centric communication

with existing systems such as corporate directories,

communication infrastructure and intranet websites, and how to

traverse media paths across enterprise firewalls. Vclick is a simple

and easy to use web-based video collaboration application that

enables click-to-call from other webpages. SecureEdge is a

network border traversal system for policy and security

enforcement, and consists of a secure media relay that sits at the

network border or in the cloud. A browser extension in the

enterprise user’s device transparently injects this media relay in

every WebRTC media path needing to traverse the enterprise

network edge to enable authenticated border traversal without

help from the websites hosting the WebRTC pages. We attempt to

generically support WebRTC in enterprises on a variety of

application scenarios instead of creating another fragmented

communication island. The challenges faced and techniques used

in our proof-of-concepts are likely extensible to other enterprise

WebRTC scenarios using the emerging HTML5 technologies.

Categories and Subject Descriptors

H.4.3 [Information Systems Applications]: Communication

Applications – computer conferencing, teleconferencing and

video conferencing.

General Terms

Design, Experimentation, Security

Keywords

WebRTC, enterprise communication, secure edge, browser

extension, VoIP, video call, firewall traversal, media relay.

1. INTRODUCTION
WebRTC (Web Real-Time Communication) consists of the

emerging W3C and IETF standards and the ongoing efforts by

browser vendors to enable plug-in free browser-to-browser

multimedia communications [1][5]. Enterprise adoption of

WebRTC faces several challenges as follows:

Competes with existing communication systems: Enterprise users

who are already familiar with existing voice-over-IP (VoIP)

phones, conference bridges or other web conference systems, are

reluctant to switch to a new technology.

Traversal through enterprise firewalls: Although an enterprise

SBC (session border controller) intercepts VoIP signaling channel

to detect and open media ports in the firewall, it does not

transparently work for peer-to-peer WebRTC media flows where

it cannot intercept the secure signaling channels (carried over

HTTPS) or end-to-end encrypted media paths [7].

Policy enforcement per user’s enterprise identity: Although a

website can identify its user, e.g., account name on Facebook or

Google Plus, the enterprise IT (Information Technology)

department would like to apply policies based on the user’s

enterprise identity which is different from her website identity.

A few illustrative examples of enterprise policies include: limit

bandwidth or duration of a WebRTC flow, disallow information

leakage over WebRTC data channel, disallow internal IP address

information leakage to external users, record all media flows to

and from the enterprise network, or disallow a video stream at

certain hours. Although, a website can do these by modifying the

signaling data generated by the browser, enterprises would like to

enforce these irrespective of which website is used by the user.

We solve these problems by extending the enterprise user’s web

browser to make it easy to communicate internally and to enforce

policies for communications on both intranet and external

websites. A browser extension provides an easy way to extend a

web browser to intercept web pages and to potentially change

them using JavaScript. The benefit is that it can be done without

help from the website and applies to any WebRTC flow

originating or terminating at the user’s browser. Such extensions

may be deployed as part of IT software management process or by

individual user. Such carefully crafted browser extensions allow

enterprise customization of browser capabilities.

We present two proof-of-concepts built using browser extensions:

the first one named Vclick is an easy to use web-based video

collaboration application that enables click-to-call from web

pages such as intranet corporate directories, and the second one

called SecureEdge consists of a media relay that together with a

client-side browser extension enables IT policy and security

enforcement on the WebRTC media path. These proof-of-

concepts are purely browser based using HTML5 technologies [3]

independent of legacy VoIP protocols [8].

We present background on WebRTC and related work on its

enterprise adoption in Section 2. Section 3 and 4 describe how

browser extensions help our Vclick and SecureEdge

implementations, respectively. Section 5 lists example use cases

in which a browser extension can benefit WebRTC applications.

Section 6 has our conclusions and future work.

2. BACKGROUND AND RELATED WORK

2.1 WebRTC notification system
WebRTC enables a web page to establish a peer connection

between two browsers or other entities, and transport captured

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

IPTComm’15, October 6-8, 2015, Chicago, IL, USA.
Copyright 2015 ACM 978-1-4503-3949-0 …$15.00.

Copyright © ACM, 2015. This is the author's copy of a paper that appears in IPTComm’15. See permission on bottom. Please cite as follows:

K. Singh, J. Yoakum and A. Johnston, "Enterprise WebRTC Powered by Browser Extensions", In Proceedings of Principles, Systems and

Applications of IP Telecommunications (IPTComm’15), Chicago, IL, Oct 2015.

doi:10.1109/MCOM.2013.6495760

media from one to other. It needs a notification system to

exchange certain signaling data between the browsers involved. A

typical audio or video call needs signaling data for a) call control,

e.g., invite or answer events, b) session description including list

of media types, codecs and their parameters, and c) transport

addresses for creating a peer-to-peer media path. Unlike SIP

(Session Initiation Protocol) [8] which sends these three pieces of

data in a single request-response, a WebRTC application can send

them in any order.

We use the resource service [2][9] as a data access and

notification system for communicating web applications. This is

one of the many ways to implement the notification system.

Further details are in [9], and are summarized in the five concepts

shown in Fig.1. The system allows storing and exchanging data

and events on target resource paths, e.g., Alice’s browser

subscribes to the presence resource of Bob, /users/bob/presence,

and gets notified whenever the resource is changed by another

client, say Bob’s browser.

2.2 Enterprise firewall and WebRTC
Enterprise firewalls typically allow web traffic but block any

unsolicited peer-to-peer traffic including that of the WebRTC

media path [7], e.g., you cannot always talk to the other person or

there is one way media. Fortunately, WebRTC allows an

intermediate media relay to solve the problem in many cases.

Fig.2 shows a media relay in DMZ (de-militarized zone) that

relays UDP packets across the enterprise boundary in a three party

call with two internal and one external browsers, all talking on a

public website. The pair-wise session negotiation picks the best

media path for each peer connection, e.g., direct on the intranet

and via the relay across the border.

There are two challenges in this architecture: (1) the web server

does not know about the enterprise media relay or its IP address,

but the web page in the browser should know about it to use it,

and (2) the identity of the user on the public website is often

different from her enterprise identity. The second point means that

the IT cannot easily enforce per-user policies on the media path at

the border. WebRTC aggravates the problem because the

signaling data for these media flows are often controlled by third-

party websites, and are unavailable to the intermediate firewalls

due to the encrypted transports.

2.3 Browser extension and communication
Unlike a plugin that renders some content on a page (e.g.,

QuickTime), a browser extension extends the functions of the

browser and can apply to any web page, e.g., to track visited

pages and interact with others on that page. An extension is often

written in JavaScript and has limited sandboxed access to the

underlying system. It can modify visited web pages, or intercept

and change native JavaScript APIs of the browser.

Extensions are browser dependent (different for Google Chrome

and Firefox), and often unavailable on mobile devices. Google

Chrome has different types of extensions [11]; browser action is a

common type that appears as a clickable icon next to the address

bar. Browser’s cross origin policy prevents direct interaction

between the extension script and the visited page, but requires a

non-trivial interaction between the extension script and the

injected content script using the browser specific APIs, and

between the content script and the visited page using events and

shared DOM (document object model) (Fig.3). We use such

interactions in Vclick and SecureEdge.

Using a Vclick-style browser extension for WebRTC-based video

communication is not new [10]. However, our work goes beyond

just a video call because the underlying reusable widgets easily

integrate with a wide range of enterprise applications including

corporate directory, team spaces, video presence, and VoIP. To

the best of our knowledge, use of a browser extension such as our

SecureEdge extension in applying enterprise policies to and media

recording of WebRTC media flows has not been done before.

3. PRESENCE AND CLICK-TO-CALL
Vclick is a web based enterprise collaboration system with

pluggable widgets [9] for audio and video calls, conferencing, text

chat, file and screen sharing, shared whiteboard, etc. It uses email

address as the user’s identity. We have deployed it on our intranet

as well as in the Amazon cloud.

3.1 Role of a browser extension
The application is divided into two parts: the browser extension

and the conversation page. Most widgets such as video call or text

Figure 1. Resource service as a generic lightweight data access

and notification system for WebRTC.

Service Resource
server

(1) Hierarchical resources
(2) WebSocket client-server connection
(3) JSON message format
(4) Web server with database
(5) JavaScript client library

Browser Browser WebRTC

offer
answer

transport addresses

invite
accept

users

alice bob
contacts presence

apps

comm vclick

/ (root)
1

2 3

4

5

Web App

Web App

Figure 2. WebRTC signaling and media path across

enterprise firewall in a three party call via a relay.

Web
Server

Browser

HTTP or HTTPS, WebSocket (long-lived)
UDP (any port) media path, encrypted

Internet DMZ

Browser

Media
Relay

Intranet
Internal
firewall

External
firewall

Web App
Browser

Figure 3. Interaction in Google Chrome.

Extension script

Web page domain1 Web page domain2

Content script Content script

1

2
Web App

Extension

Browser

(1) Extension script interacts with injected content script via extension
API, (2) content script and visited web page share DOM and events but not
execution context, and (x) other cross origin interactions are blocked.

Figure 4. Conversation page in a three-party call with voice,

video and text chat. The extension icon next to the address bar

reflects the user’s presence or call state in that browser tab.

chat run from the

conversation page in

separate browser tabs or

iframes (Fig.4). The

browser extension is

required to serve two

functions: (1) set user’s

presence and exchange

call initiation events, and

(2) modify visited pages to

add click-to-call. The

browser extension runs in background as long as the browser is

running to implement these functions.

The extension runs on Google Chrome on Windows, Mac OS X

and Chromebook. It shows an icon next to the address bar, and

when clicked allows initiating an outbound video call. An

incoming call is notified using desktop notification, and can be

answered or declined, or timed out to indicate a missed call. When

a call is initiated or answered, the extension opens a conversation

page, and keeps track of all active conversations.

Separating call initiation from conversation is not typically found

in existing SIP systems, but it makes our software flexible and

extensible. If a user lands on the conversation page with the right

URL parameters, she joins the conference, irrespective of if the

URL was received via the extension’s call logic or sent out-of-

band on email or other channels. The call initiation does not care

which media types are used in a conversation: audio, video, text,

whiteboard, notepad, etc. The conversation page takes care of

further call control such as participant join or leave, and enables

drag-drop behavior, e.g., for call transfer or sidebar conversation.

3.2 Integration with existing web pages
The extension tracks visited pages to selectively modify them,

e.g., on our corporate directory pages, it detects all mailto:
user@avaya.com URLs and appends click-to-call tags next

to them. When clicked, it initiates a call to the target user. The

image changes to reflect the target user’s presence state.

The browser extension also adds a right-click context menu on the

click-to-call buttons, which allows selecting how to reach the

target (Fig.5). The extension can be configured to work on any

websites beyond just the directory pages, by detecting user

identifiers and making them click-to-call’able.

Ability to initiate web collaboration in whatever a user is doing,

from whatever device he has, and to interoperate (instead of

compete) with existing enterprise communication systems are

important in enterprise adoption of WebRTC.

3.3 Interoperation with telephony gear
Besides adding click-to-call buttons, the extension also detects

phone numbers to make them click-to-call’able via our WebRTC-

to-SIP gateway. For internally hosted Vclick, the media path

remains internal. For cloud hosted deployment, we use a hosted

STUN and TURN server [5] to allow cross border media flows.

4. ENFORCING ENTERPRISE POLICIES
We present the design and implementation of SecureEdge, a

border transversal system that applies enterprise policies to

WebRTC flows irrespective of – and without help from – the

website or web application the user is currently using. The system

consists of (1) a secure media relay through which all UDP traffic

must flow; and (2) a browser extension in the browsers of the

intranet users which intercepts WebRTC to inject the media relay

in all peer connections. The first point is particularly important,

because without such restriction a user may bring-her-own-device

(BYOD) or may use another browser to bypass the policies

regarding WebRTC flows across the enterprise network edge.

4.1 Role of the media relay
The media relay could be in the DMZ or in the cloud. The

enterprise firewall rules must block cross border WebRTC except

with the specific media relay IP addresses. Since encrypted

WebRTC flow is not distinguishable, any UDP traffic above port

1024 is blocked. Both the media relay and the client browser

extension work together in enforcing the enterprise policies, and

hence all UDP traffic not going through the media relay is

blocked to prevent bypassing it to circumvent enterprise policies.

The media relay serves two purposes: (a) enable secure and

authenticated media flows, and (b) act as a man-in-the-middle of

the media flow if needed, e.g., for recording.

4.2 Role of the browser extension
The extension intercepts WebRTC API calls, and delivers the

necessary identity and transport information to the media relay. In

particular, it does the following tasks transparent to any page that

uses the WebRTC APIs in the user’s browser:

1. It changes the definitions of the WebRTC APIs available to

the web pages running in the browser.

2. It inserts user’s enterprise identity in the signaling data.

3. It injects the media relay’s IP address in the peer

connection, in place of or in addition to any other servers

used by the website.

4. It detects any active peer connection, and potentially allows

the user to monitor and control it.

The extension exposes a proxy object for the WebRTC peer

connection which hides the real object, RTCPeerConnection, of the

browser, contains an instance of the real object, and allows

modifying certain session and transport data. It also intercepts the

WebRTC getUserMedia function that is used to get a local media

stream from camera or microphone devices. The web page

running in the browser downloaded from a third-party website

invokes the WebRTC APIs without knowing that the definitions

of those API classes and functions have been replaced. Behind the

scenes these API calls go through our proxy objects or functions.

Fig.6 shows how the extension of the internal user’s browser

interacts with a secure media relay at the edge. Even if only one

side of the peer connection has the extension, it can inject the

media relay in the media path. Fig.7 shows how the extension

intercepts WebRTC APIs on any web page and replaces them

with custom processing. Both newer Promise-based and legacy

callback-based APIs [1] are supported by the extension.

We use a modified open source TURN relay server [4]. The

software maintains per-user long term credentials based on

enterprise identities, and applies policies such as maximum

bandwidth and call logging. These policies are also applied by the

client extension using the intercepted WebRTC APIs.

Figure 5. Click-to-call icon and

right-click context menu injected

by the extension on a visited page.

Web Server

Internet Secure
Media
Relay

Intranet
Web App

Web App

Figure 6. Extension in the intranet browser can inject the

media relay on the peer connection media path.

Extension
Browser Browser

4.3 Customization via configuration
Fig. 8 shows the configuration page to set identity and media relay

data. This can be preset by enterprise IT on users’ browsers. The

configuration is stored in the browser’s local storage associated

with this extension, and is not visible to other web pages or

extensions, and not even to the web server.

Identity: We use email address along with per user certificate

signed by the organization. Its private key is stored in the local

storage, and used for signing requests by this secure identity.

Settings: This is used to filter devices or transport addresses, e.g.,

if camera is disabled, then the getUserMedia function is intercepted

and the "video" capability is removed, or when one or more

relayed addresses are specified, then those addresses are inserted

when constructing an RTCPeerConnection. A value of "any" keeps

the existing list of servers of that type supplied by the web page.

The local interfaces attribute is useful in filtering local IP address

by intercepting onicecandidate, e.g., "10.0.0.0/8" indicates that only

this subnet address is used and other local ICE candidates of type

"host" are dropped. This can prevent leaking IP address

information

such as of VPN.

Connections:

This part shows

a list of active

peer

connections on

any web page

or frame. It also

shows the peer

identity if

available to

which the

connection is

established, and

allows

controlling it to

some extent,

e.g., to abruptly

disconnect it.

4.4 Applying secure identity
The extension fills the gap between the specification and

implementation of secure identity in today’s WebRTC [1]. A web

page specifies the identity provider domain, and tells the browser

to contact it for signing all the signaling data, so that the other end

can verify the identity. However, in an enterprise setting, we

would like to specify the user’s enterprise identity irrespective of

what the web page wants.

The extension can insert signed identity in the signaling data.

First, the user specifies her identity on the configuration page and

creates a secure credential (certificate) issued by the organization.

Then the extension uses the associated private key to securely sign

identity inserted in the offer or answer or any other signaling data

created on any webpage by any peer connection. At the other end,

if an identity exists, the extension automatically verifies that it is

valid with trusted issuer.

4.5 Informing webpage origin to media relay
Existing web browsers restrict cross-origin resource sharing, e.g.,

when a web page on origin https://firstserver.com initiates an Ajax

request to https://secondserver.com, the request is denied unless the

second server explicitly approved the first server. The browser

sends an Origin header containing the first origin in HTTP request

to the second server.

In WebRTC, similar idea can be used to inform the STUN and

TURN servers about the origin of the webpage requesting the

service via a new STUN attribute [6]. This is particularly useful

when the media relay and the website are operated by different

unrelated entities, e.g., a media relay on enterprise edge can apply

policies whether to allow or deny the relay service based on which

website is initiating the conversation.

In the absence of browser support of STUN Origin, a browser

extension can intercept WebRTC API and inform the network

edge either out-of-band or via text encoding in STUN username

attribute about the website origin that is attempting to use the

particular STUN or TURN server.

4.6 Call logging and accounting
Although WebRTC does not have a notion of a call session, we

may use heuristics to co-relate the media streams and peer

connections on the same web page or website to belong to the

same call or conference. This brings a session context to media

streams or flows, e.g., for logging and accounting, which is a very

crucial policy requirement today with respect to VoIP.

Intercepting WebRTC APIs allows us to know when a peer

connection is established or terminated, or a page is closed.

4.7 Call recording and server side media

processing
Server side recording requires injecting a media server as a man-

in-the-middle of the peer-to-peer media flow of WebRTC. The

extension intercepts and modifies the necessary signaling data

without help from the website, which allows recording WebRTC

conversation on any website as described below.

In WebRTC, the peer connection’s fingerprint (i.e., hash of

DTLS’ public key) is exchanged and locked in the signaling data

so that each side can verify that the other end is who it claims to

be. Intercepting this end-to-end encrypted media flow is not

possible unless one has the DTLS private keys. If a media server

is inserted in the middle to terminate and initiate DTLS flows, it

must also change the fingerprints in the signaling data.

Unfortunately, if HTTPS is used to transport the signaling data, a

{"name": "Avaya SecureEdge",

 ...

 "content_scripts": [{

 "matches": ["http://*/*", "https://*/*"],

 "all_frames": true,

 "js": ["secureedge-inject.js"],

 "run_at": "document_start"

 }]

}

1. Extension matches
any page window or
frame and runs a script.

<html>

 <script

 src="chrome:.../secureedge.js">

 </script>

 <script>

 AvayaSecureEdge.config = {

 ... };
 </script>

2. This script inserts
other content scripts
in the visited web
page and its frames.

3. This content script
replaces WebRTC
APIs with proxy
objects and methods.

var origPeerConnection

 = window.RTCPeerConnection;

window.RTCPeerConnection

 = AvayaPeerConnection;

function AvayaPeerConnection {

 this.createOffer = ...;
}

4. When the visited
web page invokes the
APIs, it calls the
content script code.

navigator.getUserMedia({

 audio: true, video: true}, cb);

...

function AvayaGetUserMedia(cap,cb){

 // change cap based on config

 origGetUserMedia(cap, cb);
}

Figure 7. Intercept WebRTC on a webpage by an extension.

Figure 8. SecureEdge configuration page.

web proxy cannot easily change it. Thus, it can only be changed

either by the website, or at the end-point in the browser or

browser extension, but not by an intermediary such as an SBC.

The extension intercepts WebRTC APIs createOffer, createAnswer,
setLocalDescription, setRemoteDescription, onicecandidate and
addIceCandidate (and in future any other relevant functions) to

substitute the fingerprint and transport addresses. This tells the

webpages that the two browsers are talking to each other, but tells

the two browsers to talk to the intermediate media server. In Fig.9,

if the two browsers generate their local sessions as A and B

containing their DTLS fingerprints, the extension changes them so

that the two web pages know there sessions as X and B,

respectively, and the first browser uses local session A and remote

Y, whereas the second browser uses remote session X and local B.

The detailed message flow is described below from the first

browser’s perspective that uses the extension to inject the media

server in the path of an outbound peer connection. A similar flow

for the inbound peer connection by intercepting createAnswer
instead of createOffer is trivial to derive from below.

1. When the webpage invokes createOffer, the extension

intercepts it, gets the local session description from the

browser, say A, but delays returning it to the webpage.

2. The extension sends A to the media server, via an out-of-

band API, to replace the DTLS fingerprint with that of the

external side DTLS port of the media server. It gets the

updated session, X, and external side address, E. It returns X

to the webpage in the response callback of createOffer.
3. The webpage calls setLocalDescription with X. The extension

changes it back to A, so the browser sees its own fingerprint.

4. The webpage sends the offer X to the other endpoint using

the signaling channel.

5. The extension intercepts onicecandidate callbacks on the peer

connection. It replaces the transport addresses, N, with that

of the external side DTLS address, E, of the media server,

and suppresses any more unused callbacks.

6. The extension sends N to the media server, so that the server

can reach this endpoint on media path.

7. Eventually, the webpage sends E to the other endpoint via

the signaling channel. Thus, the other end sees only the

media server’s external address.

8. The other end creates its answer session, B, via createAnswer,
and sends it to this webpage on the signaling channel.

9. When this webpage receives the answer B, it invokes

setRemoteDescription. The extension intercepts it and delays

telling the browser.

10. The extension sends B to the media server to replace the

DTLS fingerprint with that of its internal side DTLS port. It

gets the updated session, Y, and internal side address, I, of

the media server. It then invokes setRemoteDescription with Y

to inform the browser about the remote session as Y.

11. Any received transport addresses, M, from the other

endpoint are passed by the webpage to the peer connection

in addIceCandidate (or similar function).

12. The extension intercepts this and replaces M with the

internal side address, I, of the media server. If the firewall

blocks all UDP transport except to/from the media server,

most of the remote candidates become useless, and only the

path via the media server works.

13. The extension sends M to the media server, so that the server

can reach the other endpoint on the media path.

At the end of these steps, this browser’s peer connection has local

session A and remote Y, and the other browser has local B and

remote X. Note that X and Y contain the DTLS fingerprints of the

media server ports, on external and internal sides, respectively.

Thus the two browsers can establish DTLS media path with the

media server without the application’s knowledge.

Instead of using host transport addresses representing the media

server, one could use TURN relay candidates, where the TURN

server is co-located with the media server. In that case

RTCPeerConnection is intercepted to inject that TURN server and

remove any other application provided STUN/TURN addresses.

Similarly, onicecandidate and addIceCandidate are intercepted to

suppress any other addresses other than this TURN server.

This injected media server in the DTLS flow can decrypt and do

media processing including transcoding, media recording, or

inserting voice prompts or video advertisements in the flow.

In another approach, the extension can record the local camera

and microphone devices every time getUserMedia is invoked by

creating a forked media path to a media server. However, this is

not as robust or as effective as man-in-the-middle recording at the

media server, because the user may not be in a call every time

local camera or microphone is captured, or she may be able to

suppress sending the recorded file to the IT server.

In future, we expect that the client-side media stream recording

and/or appropriate server-side recording hooks in the emerging

WebRTC APIs will avoid the need for such complex

manipulation of the media path. In the meanwhile, a browser

extension can accomplish the desired behavior for enterprises that

want to record all media flowing across their network edges.

4.8 Limit per-user bandwidth
Once WebRTC allows limiting media stream bandwidth, the

extension can apply such policies by modifying the bandwidth

attribute in the WebRTC signaling data, and the media relay can

enforce the upper limit, dropping packets when needed.

5. WHEN IS AN EXTENSION NEEDED?
We have shown how a browser extension can transparently

enforce enterprise policies or insert communication widgets on

any third-party websites. The key is “any third-party websites”,

Web Server

Media
Proxy
Server

Web App
Web App

Figure 9. Recording of WebRTC media flows at the server.

(1) createOffer A=>X
(2) update A=>X, E

(4) offer X

(5) onicecandidate N=>E

(7) transport addresses E
(8) answer B

(10) update B=>Y, I
(9) setRemoteDescription B=>Y

(11) transport addresses M

external internal A B X Y

(3) setLocalDescription X=>A

E I

(12) addIceCandidate M => I

N M

(6) update N

(13) update M

Extension
Browser Browser

e.g., an extension is not needed if the website owner wants to

enforce policy like call recording on a contact center website.

An extension can also facilitate screen and app sharing, preserve

peer connection on page reloads, or enforce specific media or

device constraints as illustrated below:

1. Due to security concerns, WebRTC-enabled browsers such

as Google chrome do not allow screen or app sharing on any

webpage, but require that the request be made from a native

app or a browser extension.

2. Keeping the peer connection state in the extension can

preserve it on page reload or navigation within the same

website avoiding a media path reconnection.

3. It can inject attributes in getUserMedia to take advantage of

user’s high definition (HD) camera or can alter the list of

codecs negotiated in the signaling data, e.g., to prefer G.711

over Opus voice codec.

4. It can display all received video streams and allow drag-

and-drop to external devices or browser tabs, e.g., to display

a video in full size, irrespective of the size constraints

imposed by the web page.

5. It can intercept and disable all WebRTC data channel APIs,

to avoid leaking proprietary information or remove sensitive

IP address or other information from signaling data.

6. It can replace or create APIs on browsers that do not support

WebRTC or have non-standard APIs, e.g., by using plugins

and/or by using server side functions when needed.

An extension’s ability is restricted to the JavaScript APIs exposed

by the browser. Currently, raw or encrypted video data is not

available in JavaScript; hence an extension cannot perform speech

recognition or video frame alteration in a received media stream,

or use text-to-speech to generate outbound media flows.

6. CONCLUSIONS AND FUTURE WORK
We have shown how to use browser extensions to solve problems

in enterprise adoption of WebRTC. Using a network-only element

does not work for applying enterprise policies to WebRTC traffic.

Hence, either the web page or the browser should work in co-

operation with the IT policies. Modifying the browser using an

extension allows us to transparently intercept WebRTC APIs and

apply policies. In the future, browser vendors may include this

feature natively in their browsers, e.g., to let the end user or

enterprise policies inject network elements in the media path of

any WebRTC traffic.

Seamless integration with existing systems will likely promote

WebRTC’s adoption. The Vclick browser extension enables

communication from other pages such as corporate directories

without help from those websites. It allows interoperability with

existing telephony gear. Integration with some other enterprise

systems becomes trivial and has been experimented with, e.g.,

send the call invite via email or instant message with a clickable

link to the conversation page. We have also added support for

screen and app sharing, shared white-board, and notepad with

real-time text updates. We have been using on-premise Vclick

internally in a small group since early 2013, and the cloud hosted

version since early 2014. The underlying reusable widgets of

Vclick have influenced our other research projects on WebRTC

for desktop as well as mobile. We continue to use the Vclick

widgets and components in our emerging research projects.

A browser-to-browser call has minimum load on the server due to

peer-to-peer media path. Although, we have implemented

automatic failover and scalability measures for the signaling

channel, those topics are out-of-scope for this paper as we focus

here on novel ways to use browser extensions. Performance

evaluation of the Vclick extension on quality of service and

formal verification of the SecureEdge message flows from a

security perspective are for further study.

In the absence of browser extension support on mobile devices,

we are exploring alternatives. Our Android version of Vclick uses

HTML5 and Apache Cordova. With the help of Android web-
intents, we can launch it to dial out a target user from click-to-call

on web pages similar to the browser extension’s click-to-call

behavior on desktops. However, transparently intercepting

WebRTC APIs on a mobile browser is challenging, and may be

solved using a custom browser or by use of a web proxy.

We have described our implementations and listed various

challenges. Our future work targets new ways to modify and

utilize WebRTC in enterprises, including on mobile devices, and

keeping up with the progress in standardization and browser

implementations.

7. REFERENCES
[1] Bergkvist, A., Burnett, D.C., Jennings, C. and Narayanan, A.

2015. WebRTC 1.0: Real-Time Communication between

Browsers. Working Draft. W3C. Feb 2015.

http://www.w3.org/TR/webrtc/

[2] Davids, C. et al. 2011. SIP APIs for voice and video

communications on the web. In Proceedings of the 5th

International conference on principles, systems and

applications of IP telecommunications (IPTcomm’11,

Chicago, IL, Aug 2011). DOI:10.1145/2124436.2124439.

[3] Hickson, I. et al. 2014. HTML5: a vocabulary and associated

APIs for HTML. Recommendation. W3C. Oct 2014,

http://www.w3.org/TR/html5/

[4] High performance free open source TURN and STUN server

implementation. Accessed Jul 2015.

https://github.com/coturn/rfc5766-turn-server/

[5] Johnston, A.B. and Burnett, D.C. 2014. WebRTC: APIs and

RTCWEB Protocols of the HTML5 Real-Time Web, third

edition, Digital Codex, ISBN 978-0985978860.

[6] Johnston, A., Uberti, J., Yoakum, J. and Singh, K. 2015. An

origin attribute for the STUN protocol. Internet draft. “Work

in progress”. IETF. Feb 2015.

[7] Johnston, A., Yoakum, J. and Singh, K. 2013. Taking on

WebRTC in an enterprise. IEEE Communications Magazine,

Vol.51, No.4, Apr 2013, doi:10.1109/MCOM.2013.6495760.

[8] Rosenberg, J. et al. 2002. SIP: Session Initiation Protocol.

RFC 3261. IETF. Jun 2002.

[9] Singh, K. and Krishnaswamy, V. 2013. Building

communicating web applications leveraging endpoints and

cloud resource service, In Proceedings of the IEEE 6th

International Conference on Cloud Computing (CLOUD’13,

Santa Clara, CA, Jun-Jul 2013). IEEE Computer Society. pp.

486-493. DOI:10.1109/CLOUD.2013.39.

[10] Twelephone: putting video calling in Twitter feed.

http://blog.twelephone.com. Website. Accessed Jul 2015.

[11] What are extensions? Accessed Jul 2015.

http://developer.chrome.com/extensions. Website

