
A Case for SIP in JavaScript

Kundan Singh

IP Communications Department

Avaya Labs

Santa Clara, USA

singh173@avaya.com

Venkatesh Krishnaswamy

IP Communications Department

Avaya Labs

Basking Ridge, USA

venky@avaya.com

Abstract—This paper presents the challenges and compares the

alternatives to interoperate between the Session Initiation

Protocol (SIP)-based systems and the emerging standards for the

Web Real-Time Communication (WebRTC). We argue for an

end-point and web-focused architecture, and present both sides

of the SIP in JavaScript approach. Until WebRTC has ubiquitous

cross-browser availability, we suggest a fall back strategy for web

developers — detect and use HTML5 if available, otherwise fall

back to a browser plugin.

Keywords- SIP; HTML5; WebRTC; Flash Player; web-based

communication

I. INTRODUCTION

In the past, web developers have resorted to browser
plugins such as Flash Player to do audio and video calls in the
browser and to interoperate with the legacy voice-over-IP
(VoIP) systems from the web. To avoid the third-party plugin
dependency, new standards for web real-time communication
(WebRTC) are emerging to support the devices, codecs and
communication primitives natively in the browser. While the
global voice communications use the Session Initiation
Protocol (SIP) [1] for signaling, the HTML5 standard as part of
the WebRTC effort [2][3][4] keeps the signaling part outside
the scope of the browser.

Traditional voice systems are built around a business model
that requires universal reach hence interoperability among
multiple VoIP vendors and services is crucial. By contrast,
web based services are experimenting with business models
capturing as many users within a single domain as possible.
For instance, a user on a social networking web site is likely to
communicate with others on that web site, but not on another
web site. Thus, every web site can choose its own rendezvous
(or signaling) protocol without worrying about interoperating
with other web sites. We only need interoperability among a
few browser vendors for the media path.

In practice, interoperability with legacy VoIP and telephone
systems is crucial. This is done in either the end-point browser
or a network gateway attached to the web server. In the former
end-point approach, the SIP stack runs in JavaScript in the
browser while using WebRTC for media path to connect with
another SIP device. In the latter approach, if the client-server
signaling is standardized, the same web application or the
gateway can be reused with mix-and-match interoperability on
several web sites. For the endpoint approach, the signaling is
using SIP, whereas for the gateway approach, a custom
protocol maps to SIP in the backend. We argue for the endpoint
approach because it keeps the web developers build

applications independent of the specific SIP extensions
supported in the vendor's gateway.

We observe that decoupled development across services,
tools and applications promotes interoperability. Today, the
web developers can build applications independent of a
particular service (Internet service provider) or vendor tool
(browser, web server). Unfortunately, many existing SIP
systems are closely integrated and have overlap among two or
more of these categories, e.g., access network provider
(service) wants to control voice calling (application), or three
party calling (application) depends on your telephony provider
(service). The main motivation of the endpoint approach (also
known as SIP in JavaScript) is to separate the applications
(various SIP extensions and telephony features) from the
specific tools (browsers or proxies) or VoIP service providers.
In practice, this is not guaranteed because the web site may
restrict the hosted SIP-in-JavaScript application to only connect
to its own proxy server. Moreover, several challenges make
this approach nearly impossible to work in practice.

The paper is organized as follows. Section II gives a
background on related technologies. Section III compares the
two alternatives to interoperate between SIP and WebRTC. We
present an implementation in Section IV. Section V describes
the fall back strategy of using the Flash Player plugin by the
web developers while WebRTC is being incrementally adopted
by the browser vendors. Finally, we present our conclusions in
Section VI.

II. BACKGROUND AND RELATED WORK

 Before describing the interoperability between SIP and
WebRTC, we give a brief background on these systems and
their differences from the interoperability point of view.

A. What is SIP?

SIP [1] is the IETF standard for establishing, managing and
terminating Internet sessions including voice and video calls
and conferences. As shown in Fig.1 (a), a SIP system uses
other standards such as SDP (Session Description Protocol) for
offer/answer of session negotiation, RTP (Real-time Transport
Protocol) for media path transport, RTCP (Real-time Transport
Control Protocol) for feedback and control of media path,
optionally SRTP (secure RTP) with keys negotiated in SDP for
media path security, and optionally ICE (Interactive
Connectivity Establishment) for traversal through intermediate
NATs and firewalls. The dotted red-line separates what is
programmed by the application developer and what is provided
by the platform.

Copyright © IEEE, 2013. This is the author's copy of a paper that appears in IEEE Communications Magazine. Please cite as follows:

K.Singh and V.Krishnaswamy, "A case for SIP in JavaScript", IEEE Communications Magazine, Vol. 51, No. 4, April 2013.

Figure 1. Comparision of typical SIP vs WebRTC application stack

B. What is WebRTC?

WebRTC represents the family of emerging standards
within the WebRTC working group in W3C [3] and the IETF
RTCWEB working group [2] to enable end-to-end browser
communication for real-time media. Please refer to [4] for an
overview of WebRTC. It reuses existing standards such as
mandatory SRTP (Secure RTP) for media transport, and
mandatory ICE (Interactive Connectivity Establishment) for
traversal through NATs and firewalls. The signaling messages
are browser independent and are left to the application
developer who would typically use HTTP (Hyper-Text
Transfer Protocol) and WebSocket (WS) [5] for exchanging
call control and session description information among the
participants. Fig.1 compares the typical SIP and WebRTC
application stack.

The WebRTC API proposal [3] uses SDP, which enables an
application developer to use it as is, or transform it to web-
friendly JSON (JavaScript Object Notation) or XML
(eXtensible Markup Language). Optionally, the application can
include a SIP implementation in JavaScript and reuse all the
features provides by SIP.

C. What is WebSocket?

WebSocket (WS) is an IETF protocol and an HTML5 API
that allows creating a bi-directional client-server connection
from the JavaScript code in the browser to the web server. To
traverse web proxies, it uses HTTP to initiate the first request
and subsequently upgrades to a persistent connection via
additional handshakes. Once the connection is established, it
allows sending any data with packet boundary in either
direction over TCP.

D. Related Work in Interoperability

In the early days of WebRTC, the IETF rejected having SIP
in the browser and left the signaling to the application in
JavaScript. Subsequent attempts to interwork between SIP
systems and WebRTC enabled browsers fall in two categories:
translation at the gateway or implementing SIP in JavaScript.
SIP already supports several underlying transports such as TCP
and UDP, and can be extended to support WebSocket as yet
another transport, if needed [6][7]. This is now available in
popular SIP proxy servers such as Kamailio and OfficeSIP. It
lets developers implement SIP in JavaScript while promoting
end-to-end media path if possible [8][9][10]. Translation at the
gateway requires that both the signaling and media path go
through the gateway [11][12]. This approach is being adopted
by service and application providers to enable yet another way

to connect to the service infrastructure. We compare these two
approaches in the next section.

TABLE I. INTEROPERABILITY DIFFERENCES IN SIP VS WEBRTC. (O)

MEANS OPTIONAL

Property SIP WebRTC

Media transport RTP, SRTP (o) SRTP, new RTP profiles

Session negotiation SDP, offer/answer SDP, trickle

NAT traversal
STUN (o), TURN (o),

ICE (o)

ICE (includes STUN,

TURN)

Media transport

path/connection

Separate: audio/video,

RTP vs RTCP

Same path with all media

and control

Security model
User trusts device and

service provider

User trusts browser but

not web site

Audio codecs
Typically G.711,

G.729, G.722, Speex

Mandatory Opus and

G.711, optionally others

Video codecs
Typically H.261,

H.263, H.264

Undefined yet but likely

VP8 and/or H.264

Even though the media path uses the same set of protocols,
achieving true media path interoperability between a SIP user
agent and a WebRTC capable browser is a challenge. Table I
summarizes the main differences between SIP and WebRTC
for interoperability based on the discussions in the IETF.
WebRTC requires new RTP profiles to send multiple RTP
media streams as well as RTCP control packets multiplexed
over the same transport path (or logical connection) so that the
expensive step of negotiating an end-to-end path across
firewalls is done only once. SIP end-points use a variety of
optional techniques for NAT traversal, whereas WebRTC
makes ICE mandatory. Instead of using the lock-step of SIP
offer-answer, i.e., once an offer is made the end-point must
wait for an answer before issuing another offer, WebRTC
allows trickle or incremental change in the session description
to promote incremental address gathering in ICE.

While there is some overlap in the mandatory audio codecs
of WebRTC and the commonly used codecs in SIP systems, the
working group is still undecided on the choice of mandatory
video codecs. Moreover, the generic data channel proposed in
WebRTC has no clear equivalent in existing SIP systems.

For the media path security, WebRTC requires SRTP. SIP
systems using SRTP, while not ubiquitous, are nonetheless
increasing. The origin-based trust model suggests that the two
browsers must be visiting (or share some content on) the same
web site to establish a WebRTC session. Finally, the end-user
can trust her browser, but not the web site she is visiting.

Several open issues exist and are being debated in the IETF,
e.g., the choice of mandatory codecs and the granularity of the
API whether to give control of the ICE handshake to the
application or not? How the issues are resolved will determine
the future interoperability attempts with legacy systems.

III. INTEROPERATING BETWEEN SIP AND WEBRTC

This section first describes the interoperability deployment
scenarios and then classifies the interoperability approaches to
SIP in gateway versus endpoint.

application

IC
E

R
T

C
P

RTP

SRTP

codecs

SIP

SDP

TCP UDP

application

IC
E

R
T

C
P

RTP

SRTP

WebRTC API

HTTP

WS

TCP UDP

Codecs

S
IP

S
D

P

JSON

XML

(a) Typical SIP end-point

(b) Typical WebRTC end-point

p
la

tf
o

rm
d

ev
el

o
p

er

A. Deployment Scenarios

The gateway for interoperability is commonly hosted by the
VoIP service provider or the web application provider
irrespective of whether SIP is implemented in JavaScript or
not. As shown in Fig.2 (a) and (b), although the gateway
technology is the same, who runs the gateway and what the
core network is differentiates the two scenarios. The first
approach applies to the existing web application and social
network providers who want to interconnect their web users
with phone users. The second approach applies to the existing
VoIP service providers who would like to include web
browsers and mobile devices as additional clients to their
“managed” services network.

Figure 2. SIP-WebRTC deployment alternatives of the gateway

A third, less popular scenario, shown in Fig.2 (c), separates
the gateway from the web site as well as the telephony provider
and allows any web application to use any provider using an
independent third-party gateway. This is an application
obtained from one vendor (website) but connecting to the
services of another vendor (telephony). The signaling
interoperability in (a) and (b) is limited to a single vendor
implementation where the application is tied to the gateway or
service, whereas the third approach has a clear separation of the
application (web pages) from the tool (browser, gateway) and
the service (web site or VoIP provider).

B. SIP in Gateway or Endpoint

The gateway (GW) in Fig.2 translates between web-based
signaling and SIP. In this gateway approach, the web
application relies on the web-signaling API of the gateway and,
unless a standard is defined, prevents true mix-and-match
replacement of applications and tools. Alternatively, SIP itself
is used as the signaling protocol, implemented in JavaScript
and running in the web browser. We call this the endpoint
approach. Instead of a gateway, it uses a SIP proxy server in
the network that supports WebSocket [6]. The two approaches
are further compared below.

Fig.3 compares the implementation complexity in the block
diagrams of (a) a SIP proxy with WebSocket that is needed in
the endpoint approach, and (b) a gateway that translates
between WebRTC and SIP. The former is required as a
network element for a SIP endpoint in JavaScript in the
browser, whereas the latter is a network element that relies on a
custom signaling protocol over WebSocket from the browser.
In particular, assuming that the media path can go end-to-end
between the browser and the SIP device, the SIP proxy does
not deal with the media and session description components,

whereas the gateway initiates and terminates signaling and,
sometimes, media.

Figure 3. Network elements for (a) endpoint approach and (b) gateway

approach. The highlighted parts are different in the two systems.

The gateway approach limits the web developer to the
vendor supplied functions such as for call transfer, multiple
devices in the same call, and other advanced features of a SIP
user agent. On the other hand the endpoint approach allows the
web developer to implement any such SIP extension or feature
in JavaScript. It also means that SIP is used as is from the
browser unlike the gateway that defines custom APIs for
existing and new SIP extensions. Thus, in the endpoint
approach, the web developer can build applications based on
SIP extensions and features independent of the gateway
vendor. The portable SIP stack in JavaScript avoids any
platform related issues. This results in a very thin server (or SIP
proxy) that does not need to maintain the session state, and
thus, creates more scalable and robust network elements with
distributed clients and client-initiated fail-over strategies.

TABLE II. SIP IN GATEWAY VS ENDPOINT

Property Gateway Endpoint

Interoperates with existing (good) Yes No

Dependent on tool vendor (bad) Yes Yes

Dependent on service vendor (bad) Yes No

App developer adds features (good) No Yes

Can hide the source code (good) Yes No

Client complexity (neither good nor bad) Low High

Server complexity (bad) High Low

Table II compares the two approaches. The main advantage
of the endpoint approach is that the (web) application
developer can add features and extensions independent of the
VoIP service provider. In the gateway approach, the vendor
dependency locks the web applications to a single service and
gateway. Vendor independence is likely to create more
applications because there is manifold more number of web
developers writing client JavaScript than the vendors working
on gateways and servers.

Certain drawbacks of the endpoint approach are: due to the
mandatory requirements (see Table I), WebRTC is quite
unlikely to interwork out-of-the-box with existing SIP devices
on the media path. While one can obfuscate the JavaScript
code, it is difficult to hide the source code of the SIP
application against theft from snoopy web users.

Although, the endpoint approach allows interoperability,
every new feature has a dependency on the standards which
could limit the flexibility of adding a new feature, unlike in the
gateway which could add new custom API for non-standard
features. The vendors and service providers with significant

proxy application

SIP

 WS

TCP

UDP

B2BUA application

IC
E

R
T

C
P

RTP

SRTP

UDP

JSON

XML

(a) SIP proxy with websocket

(for endpoint approach)

(b) SIP-WebRTC gateway

(for gateway approach)

 WS

TCP

 SDP

SIP

GW

(b) Hosted by

VoIP provider

GW

(a) Hosted by

web provider

B GW

(c) Neutral gateway Browser

SIP/phone

Web service cloud VoIP provider network

investment in the form of session border controller (SBC) or
back-to-back user agent that terminate SIP in the network and
require an intermediate entity in the signaling and media path,
have no perceived advantage of moving SIP to the browser.
Finally, the battery life of running a full SIP stack instead of a
light weight custom protocol on the mobile phones needs to be
studied.

IV. IMPLEMENTATION

The SIP-JS [8] project has an implementation of SIP and
related standards in JavaScript and a demonstration of a web-
based phone using this stack. The portable SIP/SDP stack is
about 3.5k source lines of code in JavaScript, and the phone
application is about 2.5k lines in JavaScript, HTML and CSS.
The application uses the native WebSocket and WebRTC
extensions in the Google Chrome browser for the signaling and
media path, respectively. It has another mode to use the Flash
Player plugin and a host application for network transport and
device access for those browsers that do not have native
WebSocket and WebRTC capabilities. The SIP-in-JavaScript
stack is reused in both the modes. The web-based phone
implements basic registration and video call using a SIP proxy
that supports WebSocket. Others have also built the SIP stack
in JavaScript, e.g., [9][10].

V. INTEROPERABILITY STRATEGY

Although an implementation of a SIP-stack-in-JavaScript is
independent of HTML5, a SIP endpoint running in the browser
has two basic requirements - a way to transport the SIP
signaling messages to and from the SIP proxy server and a way
to access end user devices to establish the media path for voice
and video communication. These requirements are ideally
filled by WebSocket and WebRTC extensions available in
HTML5.

WebRTC represents a promising next generation
technology. However, this requires significant changes in the
browsers today. In the past, minor incompatibilities among
HTML browsers such as margin or padding have been a
nightmare for developers. Fortunately, HTML5 adoption is
growing rapidly among browser vendors. However, extending
HTML5 with a complex concept such as WebRTC is expected
to cause more interoperability problems. Thus, WebRTC will
take some time before it is consistently available in all the
popular browsers, or it may never happen. In that case, we need
a strategy so that web developers can continue to innovate with
HTML5 if the support is detected in the browser and fall back
to the legacy plugin otherwise.

There are other scenarios such as when WebSocket and
WebRTC are supported by the end user's browser but do not
work in the network due to the enterprise firewalls blocking the
media path or old HTTP proxies not correctly handling the
WebSocket handshake. Such scenarios are for further study.
Here in Fig.4 we only list the possible interoperability
scenarios from the most preferred to the least based on whether
WebRTC and/or WebSocket is available in the browser or
whether the remote SIP endpoint implements WebRTC related
profiles.

A web application that intends to use WebRTC would need
to fall back to an alternative if WebRTC extensions are not

available in the end user’ browser. For a SIP end-point in the
browser, the fall back decision happens at multiple steps. For
example, the signaling over WebSocket and media over
WebRTC is the most optimal configuration. If these HTML5
features are not available, then we could use an efficient
separate application to do the transport and device
implementation that keeps the standard signaling and media
path in the end point without relying on a server to do the
translation. If that fails, we detect and use an in-network
gateway capable of translation. If that fails, we fall back to
using the Flash Player plugin that uses RTMP (Real-Time
Messaging Protocol) for both signaling and media.

Figure 4. Architectures for SIP-WebRTC interworking highlighting the most

preferred (a) to the least preferred (e) configuration.

While browsers have competed against each other for the
market share, the Adobe Flash Player plugin has played a
dominant role in its own domain covering majority of the
Internet connected users. Fortunately, Flash Player can fill both
the end point requirements – provide a transport for SIP
signaling and access devices for media path. Thus, Flash Player
forms a natural fallback strategy for a missing WebRTC or
WebSocket support in the browser. Secondly, certain UDP-
blocking corporate firewalls also block WebRTC traffic. In
such cases, failing over to a traditional Flash Player plugin
based approach that can readily use HTTP tunneling for media
could provide an intermediate solution until appropriate
standards are developed to tunnel WebRTC over HTTP, for
example. The similarity in the WebRTC's JavaScript API and
the Flash Player's communication related ActionScript API
allows us to create a wrapper layer which combines various
elements in to a widget and use it for various communication
use cases such as two-party call, multiparty conferencing and
video messaging.

B

(a) SIP in Javascript over websocket (WS)

UA WebRTC (RTP)

SIP/WS SIP/UDP

B
UARTP

SIP/TCP SIP/UDP

(b) SIP in Javascript over TCP/UDP using a separate application (App)

App

B

(c) Custom protocol over web socket (WS)

UA WebRTC (RTP)

custom/WS SIP/UDP GW

B

(e) Fall back to Flash Player (FP) if no HTML5 detected

UARTP

RTMP/

RTMFP

SIP/UDP GW

FP

B

(d) Practical solution for interoperability using a media gateway

UA WebRTC

custom/WS SIP/UDPGW

MGW RTP

The media codecs inventory available in Flash Player is
different from the proposed WebRTC codecs capabilities. This
poses additional complexity in interoperating when some
participants use WebRTC but others fall back to Flash Player.
In particular, Flash Player is capable of capturing and encoding
media using Nellymoser, Speex and G.711 for audio, and
Sorenson and H.264 for video, whereas WebRTC is likely to
define G.711 and Opus as mandatory audio codecs and VP8
and/or H.264 as mandatory video codec (see Table I). In
addition to the required codecs, the browsers are free to
implement additional codecs. Thus, the web application should
do session negotiation before arriving at the common set of
codecs among the participants.

The RTP profile for WebRTC requires multiplexing
multiple media streams as well as media control messages on a
single port. However, existing SIP devices do not support these
extensions. Hence, either these devices will need to be
upgraded or intermediate media gateways will facilitate
conversion.

VI. CONCLUSIONS

There is a need to interoperate between traditional SIP
systems and emerging WebRTC standards, and we have
presented alternatives to where the interworking is done and
where it gets deployed. Fig.4 shows the message architecture
for some of the alternatives. In particular, option (a) of using
SIP in Javascript with native WebSocket transport for signaling
and interoperable end-to-end media path over WebRTC is ideal
because it allows us to keep the tools, services and applications
separate from each other while potentially improving the
overall scalability and robustness. Option (b) of using a
separate host-resident application to facilitate transport and
device access functions to the browser has similar motivation
but requires an additional download. The custom signaling in
option (c) and (d) fits with the technical and business
requirements of the existing VoIP and web services, but
reduces mix-and-match interoperability among various
applications and tools. If end-to-end media path cannot be
achieved, then an intermediate media gateway is used for re-
packetization and/or transcoding as in option (d). Finally, if
everything else fails then the traditional approach of using a
browser plugin is used as in option (e). We believe that the
success of WebRTC will depend on its adoption by browser
vendors as well as the innovative applications built on it. A
clear separation among the tools, services and applications
promotes decoupled development of client applications from

the services. However, a lot depends on how things evolve in
the near future regarding the business needs and technology
adoption among the competing vendors.

There are several things that that could go wrong in the true
motivation of SIP in JavaScript. It has a dependency on a
consistent and simple WebRTC standard – what if some
browser vendors do not implement WebRTC? Or implement it
differently? What if there are browser backdoors that prevent
creating cross-browser applications? The choice of audio and
video codecs by different browser vendors could force use of
an in-network transcoder or media gateway. Finally, if the
vendors cannot figure out how to make profit – especially with
the risk of opening up the JavaScript source code, and the lack
of control over the endpoint application – they may not adopt
this.

REFERENCES

[1] J. Rosenberg et al., “SIP: Session Initiation Protocol”,
IETF, RFC 3261, June 2002.

[2] Real-Time Communication in WEB-browsers
(RTCWEB) IETF working group,
http://tools.ietf.org/wg/rtcweb

[3] WebRTC 1.0: Real-Time Communication Between
Browsers, W3C Working Draft, Aug 2012,
http://www.w3.org/TR/webrtc/

[4] S.Loreto and S.P.Romano, "Real-Time Communications
in the Web: Issues, Achievements and Ongoing
Standardization Efforts", IEEE Internet Computing,
pp.68-73, Volume 16, Issue 5, Sept-Oct 2012.

[5] The WebSocket API, W3C candidate recommendation,
Sep 2012, http://www.w3.org/TR/websockets/

[6] I.Castillo et al., “The WebSocket Protocol as a Transport
for SIP”, IETF, work in progress, Oct 2012, draft-ietf-
sipcore-sip-websocket

[7] SIP on the web, project website, http://sip-on-the-
web.aliax.net/

[8] SIP-JS: SIP in JavaScript project site,
http://code.google.com/p/sip-js

[9] SIPML5: HTML5 SIP client, project website,
http://sipml5.org

[10] jsSIP: The JavaScript SIP library, project website,
http://jssip.net

[11] SIP audio interworking demo,
http://kapejod.org/webrtc/index-sip.html

[12] WebRTC interworking with traditional telephony
services, Ericsson Labs Blog, Feb 2012,
https://labs.ericsson.com/blog

