
DOI Reference Number: 10.18293/VLSS-028
	

Edge-based graph grammar: theory and support

system

Xiaoqin Zeng1 Yufeng Liu1 Zhan Shi1 Yingfeng Wang2 Yang Zou1 Jun Kong3 Kang Zhang4
1Institute of Intelligence Science and Technology, Hohai University, Nanjing, Jiangsu, China

2School of Information Technology, Middle Georgia State University, Macon, GA 31206, USA
3Department of Computer Science, North Dakota State University, Fargo, ND 58102, USA

4Department of Computer Science, The University of Texas at Dallas, Richardson, TX 75080, USA

Abstract—As a useful formal tool, graph grammar provides a
rigorous but intuitive way for defining graphical languages and
analyzing graphs. This paper presents a new context-sensitive
graph grammar formalism called Edge-based Graph Grammar
or EGG, in which a new methodology is proposed to tackle issues,
such as the embedding problem, the membership problem and
the parsing algorithm. It presents the formal definitions of EGG
and its language with a proof of its decidability. Then, a new
parsing algorithm with an analyses of its computational
complexity is given for checking the structural correctness or
validity of a given host graph. The paper finally describes the
development of an EGG support system with friendly GUI.

Keywords-component; graph grammar; graphical language;
embedding problem; parsing; production rule

I. INTRODUCTION
With the development of human-computer interaction

techniques, graphical languages have been applied to various
application domains, such as modeling visual interaction
processes [1, 2], designing graphical user interface in
multimedia applications [3], visual queries to databases [4], and
defining the layout of a GUI in multimedia applications [3].
Conceptually, objects described by graphical languages can be
abstracted as graphs consisting of nodes and edges. For the
specification and analysis of these types of graphs, graph
grammars [5, 6] are an ideal formal and intuitive tool.

 It is well-known that formal string grammar lays a solid
theoretical foundation for the definition and parsing of
programming languages. For the same reason, graphical
languages also need the corresponding formal graph grammars.
Compared with string grammar, graph grammars set a
theoretical basis to visual languages [7]. However, the
implementation of a graphical language is usually not as easy
as implementing string languages [8]. This is mostly due to the
fact that the extension from one-dimensional string grammars
to two-dimensional graph grammars raises new issues [9] such
as the embedding problem, the membership problem, high
parsing complexity.

There have been a number of graph grammars and their
applications in the literature [10-27]. According to the type of
grammatical productions, graph grammars could be mainly
divided into two categories: context-free and context-sensitive.
The main differences between the two are the production
formation and the expressive power. On the one hand, a
context-free grammar requires that only a single non-terminal
node be allowed on the left-hand side of a production [16]. In
early years, many context-free grammars were proposed [17-
21]. Since the productions of these graph grammars are quite
simple, their expressive power is limited, which hinders the
scope of their applications. On the other hand, in response to
the increasing demands of intricate graph-oriented applications,
researchers have developed several context-sensitive graph
grammars, such as PLC (picture layout grammar) [21], CMG
(constrain multiset grammar) [22], LGG (layered graph
grammar) [23], RGG (reserved graph grammar) [8], SGG
(spatial graph grammar) [24, 25]. These context-sensitive graph
grammars allow the left-hand side of a production to be a graph
rather than a node, so bring more expressive power. LGG and
RGG are the most representatives of context-sensitive graph
grammars.

Rekers and Schürr [23] proposed a context-sensitive graph
grammar formalism called Layered Graph Grammar (LGG)
for defining and parsing graphical visual languages. First,
productions in LGG differ widely from others by introducing
context nodes that are not replaced in a derivation or reduction
operation. Second, to solve the embedding problem, LGG puts
a restriction on the definition of a redex in a host graph by
requiring its nodes that are isomorphic to non-context nodes in
productions can only link to other nodes in the host graph that
are isomorphic to the context nodes in the productions. This
restriction ensures no creation of dangling edges when a redex
in a host graph is replaced. Third, a very intricate layer
decomposition constraint is introduced to solve the
membership problem.

 Based and improved on LGG, Zhang et al. [8] proposed
another context-sensitive grammar called Reserved Graph

	
	

Grammar (RGG), which defines the structure of graphs by
introducing a two-level structure for each node as a super-
vertex containing sub-vertices connected with edges. In
addition, RGG introduces a marking mechanism to tackle the
embedding problem, in which a unique label is used to identify
all context elements. Further, with the introduction of selection-
free productions to graph grammars, a Selection-Free Parsing
Algorithm (SFPA) is designed for a selection-free RGG, which
only needs to consider one parsing path and thus can efficiently
parse graphs with polynomial time complexity [8]. Later on,
Kong et al. [24, 25] extended RGG by introducing spatial
notations and mechanisms. The spatial specifications of the
extended RGG, called Spatial Graph Grammar (SGG), can
qualitatively express the spatial relationships among objects
and reduce the parsing complexity using the spatial
information.
 Both LGG and RGG have been applied widely to the
definition, analysis and transformation of visual languages [28-
37], such as Visual XML Schemas [29, 30], Design Pattern
Evolution and Verification [32, 33], Generic Visual Language
Generation Environments [28]. However, they still have
deficiencies. For example, the LGG’s context nodes and layer
decomposition constraint make productions difficult to design.
RGG’s two-level node structure and marking mechanism are
not intuitive and make them difficult to apply to general
graphs.
 This paper presents our work on the improvements over the
existing graph grammars with the following contributions.

• A new context-sensitive graph grammar formalism
called EGG, which uses edges instead of nodes to
concisely express the context in productions for simply
and efficiently solving the embedding problem.

• A size-increasing constraint applied to the structure of
productions for solving the membership problem,
easing the design of productions.

• A new general parsing algorithm for checking the
structural correctness and validity of given host graphs;
and the implementation of an EGG graph grammar
support system, which provides friendly GUI for end
users to design and apply graph grammars.

 The rest of the paper is organized as follows. Section 2
presents graphical and grammatical preliminaries, introducing
new terms used in Section 3, which gives the formal definitions
of EGG and its language with a proof of its decidability.
Section 4 presents a parsing algorithm and its complexity
analysis. Section 5 describes the developed EGG support
system. Finally, Section 6 concludes the paper.

II. Graphical and Grammatical Preliminaries
 In node-edge graphs, a node typically represents an abstract
object and an edge represents some kind of relationship
between two connected nodes. Each node 𝑛 in a node set 𝑁 can
be connected with none or more edges, and each edge e in an
edge set 𝐸 is only connected with two nodes. An edge can be
directed or undirected depending on whether it has a direction
between the two connected nodes. Because an undirected edge
can be treated as two directed edges with reverse directions,

without loss of generality this paper only considers directed
edges.
 In string grammars, labels play an important role as
identifiers, and so do labels in graph grammars. Let 𝐿 be a
finite set of labels. Depending on the usage of a label, 𝐿 can
further be divided into terminal label set 𝐿% , nonterminal label
set 𝐿&% , and mark label set 𝐿', namely	𝐿 = 𝐿% ∪ 𝐿&% ∪ 𝐿' ,
𝐿% ∩ 𝐿&% = 𝛷, and 𝐿' ∩ (𝐿% ∪ 𝐿&%) = 𝛷.
 By combining the techniques of both graph theory and
formal language, we introduce a series of new definitions and
notations here.
Definition 2.1 n = (l) is a node with label l in a given finite
label set L.
 Definition 2.2 e = (n3, n5) is a directed edge, where

• n3 is the start node of the directed edge;
• n5 is the end node of the directed edge.

 Based on the above definitions of node and directed edge,
we further introduce the following notations:

• E3 is a set of directed edges starting from a node;
• E5 is a set of directed edges ending to a node;
• d(n) is the degree indicating the number of directed

edges connected to n, i.e. d(n) = |E3 ∪ E5|;
• d3(n) is the out-degree indicating the number of

directed edges starting from n, i.e. d3(n) = |E3|;
• d5(n) is the in-degree indicating the number of

directed edges ending to n, i.e. d5(n) = |E5|.
 Obviously, 𝑑(𝑛) = 𝑑:(𝑛) + 𝑑<(𝑛). For simplicity, notations
like 𝑛. 𝑙 and 𝑛. 𝐸: express the corresponding components of
node n, and are applicable to other definitions throughout this
paper.
 Unlike an undirected edge, a directed edge needs to
distinguish start node and end node. Besides, an edge may also
carry a label for clear identification.
Definition 2.3 G = (N, E) is a graph on given label set L, where

• N is a node set that is associated with a two-way
partition into NA and NBA , the elements of NA are
called terminal nodes and the elements of NBA are
called non-terminal nodes;

• E is a directed edge set with E ⊆ N× N.
 We then have the following mappings for mathematically
expressing grammatical items.

• fBF: N → L, a mapping from node n to label l ∈ L, i.e.,
fBF(n) = n. l;

• fJBK: E → N, a mapping from directed edge e to its
start node, i.e., fJBK(e) = e. n3;

• fJBL: E → N, a mapping from directed edge e to its
end node, i.e., fJBL(e) = e. n5.

 In EGG, dangling edge set 𝐸̇ is introduced to represent
contexts, in which each edge is connected with only one node
being either a start or end node, namely 𝐸̇ = 𝐸̇: ∪ 𝐸̇< with 𝐸̇: =
{𝑒̇:|𝑒̇: = 	 (𝑛:, ∅)}	 , 𝐸̇< = {𝑒̇<|𝑒̇< = 	 (∅, 𝑛<)} and 𝐸̇: ∩ 𝐸̇< = 𝛷 .
In addition to dangling edges, a marking mechanism is also
introduced to mark dangling edges. The concepts of dangling
edge and marking mechanism solves the embedding problem in
EGG. Fig. 1 illustrates a graph including dangling edges with

	
	

𝐸̇ = {1,2,3}. The graph is called a dangling edge graph and
can be defined as follows.
Definition 2.4 GU = (N, EU,M) is a dangling edge graph on given
label set L, in which,

• N is a node set;
• EU is an edge set including dangling edges, which is

associated with a two-way partition into E and Ė;
• M ⊆ LW is a mark set for marking dangling edges to

distinguish different contexts.
 Essentially, GU is an extension of G by introducing dangling
edge and G can be regarded as a special case of GU. Similarly,
there is an extra mapping as follows.

• fJW: Ė → M, an injective mapping from dangling edge
ė to its mark m, i.e., fJW(ė) = m.

 Note that dangling edge set Ė may be empty, which leads to
the empty corresponding mark set M and mapping 𝑓Z' . Based
on the above defined dangling edge graph, a grammatical
production can be defined as follows.
Definition 2.5 A production 	p is the expression GUF ≔ GU] ,
which consists of a left dangling edge graph GUF and right
dangling edge graph GU] satisfying GUF.M = GU].M.
 In a production, dangling edges represent contexts and each
pair of corresponding dangling edges between the left and
right graphs are labeled by a unique mark to maintain their
corresponding relationship. Using dangling edges and their
corresponding marks, the replacement of a redex by either a
left or right graph in a production can be done without
ambiguity. In some special cases, a wildcard dangling edge is
needed to represent an arbitrary number of edges, e.g., one
entity may be connected with any number of attributes in an
entity relationship diagram. For simplicity and without
generality, the concept of wildcard edge is not discussed here.
Fig. 2 is an example of a set of EGG productions specifying a
process flow diagram with
{begin, assign, fork, join, send, receive, if, endif} ⊆ LA	 and
{stat} ⊆ LBA.
 The function of a production is to transform a graph to
another graph. However, the transformation needs to satisfy
some conditions in which isomorphism is fundamental.
Definition 2.6 Graphs G and Q are isomorphic, denoted as G ≈
Q, fBF and fBF

lare two mappings for G and Q respectively, if
and only if there exist two bijective mappings fBB: G.N ↔ Q.N
and fJJ:G. E ↔ Q. E, and the following are satisfied:

• ∀n(((n ∈ G.N)⋁(n ∈ Q.N)) → (fBF(n) =
fBF

l(fBB(n))));
• ∀e(((e ∈ G. E)⋁(e ∈ Q. E)) → (fBB(fJBK(e)) =

fJBK(fJJ(e)))⋀(fBB(fJBL(e)) = fJBL(fJJ(e)))).
An isomorphism between two graphs means that their

corresponding nodes have the same label, and the same out-
degree and in-degree. In addition, the corresponding edges
have the same start and end nodes.

Figure 1. A dangling edge graph

Definition 2.7 Graph Q is the sub-graph of G, denoted as Q ∈
Sub(G), if and only if the following are satisfied:

• (Q.N ⊆ G.N)⋀(Q. E ⊆ G. E).
 Graph Q is a sub-graph of G means that Q is part of G.
Definition 2.8 Graph Q is the core graph of GU, denoted as Q =
Cor(GU), if and only if the following is satisfied:

• (Q.N = GU.N)⋀tQ.E = (GU. EU − GU. Ė)v⋀(Q. L = GU. L).
Core graph Q is the sub-graph of graph GU	obtained by

removing all dangling edges from graph GU and keeping all the
nodes and non-dangling edges of graph GU. The graph in Fig. 3
is the core graph of that in Fig. 1.
Definition 2.9 If graph Q is a sub-graph of graph G and may
include dangling edges, and GUF|] is a graph being left or right
side of a production, Q is a redex of G with respect to GUF|],
denoted as Q ∈ Redex(G,GUF|]) , if and only if there exits
bijective mappings fBB:	Q. N ↔ GUF|]. N and fJJ:Q. E ↔
GUF|]. E, and the following are satisfied:

• Cor(Q) ≈ Cor(GUF|]);
• ∀n((n ∈ Q) → (d3(n) = d3(fBB(n))) ∧ (d5(n) =

d5(fBB(n)))).
To explain the above definition, we provide an example in

the following three figures. Fig. 4 is graph GUF|], and Fig. 5 is a
given host graph G. Obviously, graph Q in Fig. 6 is the sub-
graph of G. According to Definition 2.9, Q is a redex of G with
respect to GUF|].

In host graph G, if there is sub-graph Q being the redex of G
with respect to GUF|] that is a left or right side graph of a
production, then one could use the right or left side graph of
the production to replace Q in G. This process is called graph
transformation or replacement, as formally defined below.

a e

b

dc

1 2

3Dangling
Edges

Dangling
Edge

(1)

(5)

(4)

(3)

(2)

：=

1 2 ：= 1 2

1 2 ：= n n

n n
1 2

1 2 ：= 1 n 2

1 2

3 4

：=
1 2

3 4

1 2 ：=

1 2(6)

begin stat end

stat assign

stat fork join

stat

stat

stat statstat

stat

stat

receive

send

stat if

stat

stat

endif

l

	
	

Figure 2. A set of EGG productions

Figure 3. The core graph of the graph in Figure 1

Definition 2.10 An L-application to graph G is a transformation
that generates graph Gl using production p:	GUF ≔ GU], denoted
as Gl = Tr(G,Q, GUF, GU]) , where Q ∈ Redex(G, GUF) , and
Cor(GU]) is used to replace Q in G. The L-application is also
called derivation operation and denoted as G →{ Gl.
 If a sequence of L-applications for graph G is:
G →{| G}l,	G}l →{~ G�l, … ,		G��}l →{� G�l, then G →∗ G�l
can be used to concisely express this process.
Definition 2.11 An R-application to graph G is a transformation
that generates graph Gll using production p:	GUF ≔ GU], denoted
as Gll = Tr(G,Q, GU], GUF) , where Q ∈ Redex(G, GU]) , and
Cor(GUF) is used to replace Q in G. The R-application is also
called reduction operation and denoted as G ↦{ Gll.
 Similar to L-applications, a sequence of R-applications,
which is G ↦{| G}ll , 	G}ll ↦{~ G�ll , … , 	G��}ll ↦{� G�ll ,
can be expressed as G ↦∗ G�ll.

Fig. 7 shows a derivation process from an initial graph
using the productions in Fig. 2.

Figure 4. A graph GUF|] with dangling edges

Figure 5. A host graph G

Figure 6. The sub-graph Q is a redex of G with respect to GUF|]

Figure 7. A graph L-application process using EGG

productions

The formal definition of EGG and its language are
discussed below.

III. AN Edge-based Graph Grammar Formalism
To solve the embedding and membership problems, EGG
employs edges rather than nodes in the two sides of a
production to directly express contexts and introduces a size-
increasing constraint to ensure the decidability of EGG.
3.1 Definition of EGG and its language
 Based on the definitions in Section 2.1, an edge-based
context-sensitive graph grammar formalism and its language
can be defined as follows.
Definition 3.1 An EGG is a 3-tuple（λ, L, P), where:

• λ is an initial graph;
• L is a label set containing terminal and non-terminal

labels, i.e., L = LA⋃LBA；
• P is a set of productions, and each production p ∈ P in

the form of GUF ≔ GU] must satisfy the following
constraints:

(1) λ must be a left graph of a production;
(2) GU] must be nonempty;
(3) The size of left graph must be no more than

that of right graph, i.e., |GUF.N| ≤ |GU].N|. If
they are equal, the number of terminal nodes in
left graph must be less than that of right graph,
i.e., |GUF.NA| < |GU].NA|.

Similar to string grammars, graph grammars with arbitrary
graphs on the left and right sides of productions may face the
membership problem, that is, their languages are not decidable
in general. EGG introduces a size-increasing constraint for
each production to solve the membership problem. The
constraint ensures that any given host graphs can be parsed
with EGG productions within a finite number of R-

a e

b

dc

c f

d

e

c f

d

e

g

a

b

c f

d

e

stat

begin

stat

end

p1 p3

begin

end

fork

join

stat stat

p4&p6

begin

end

2

fork

join

stat

stat

if

stat

endif

p5
stat

begin

end

2

fork

join

stat

reveive

if

send

endif

p2
stat

begin

end

2

fork

join

assign

reveive

if

send

endif

l

	
	

applications. Also, the constraint is weak with little impact on
the flexibility of context-sensitive grammars and easier to
implement than that of LGG and RGG for grammar designers.

Theoretically, a graph grammar is a formal tool for
rigorously defining a graph language, which is a set of graphs
that can be derived from the initial graph. Below is the formal
definition of a graph language.
Definition 3.2 Let egg = (λ, L, P) be a grammar of EGG, its
language Γ(egg) can be formally defined as Γ(egg) =
{G|(λ →∗ G)⋀(fBF(G.N) ⊆ LA)}.

Practically, a graph grammar is a useful tool for
automatically analyzing graphs’ validity. If a given graph can
be reduced to the initial graph with a finite series of R-
applications of a graph grammar, this graph is regarded as
belonging to the grammar’s language. Otherwise, the graph
does not belong to the graph language or the graph grammar
is not decidable.
3.2 Decidability of EGG
 When an EGG is given, its language is determined. It is
decidable whether an arbitrarily given graph is in the language
or not because of the support of the following theorem.
Theorem 1. For EGG egg = (λ, L, P) and arbitrary nonempty
graph G, it is decidable whether or not G is in Γ(egg).

Proof: For arbitrarily given graph G with a finite number of
terminal nodes, a sequence of graphs can be generated in an
R-application process starting from G. Because of the size-
increasing constraint and the number of nodes in the graph G
being finite, the R-application process cannot execute
circularly and must stop in finite steps, namely, G ↦∗ G� and
G� being unable to reduce any more by R-application.
Further, the number of such sequences without a loop is also
finite. Thus it is feasible to enumerate all such sequences and
check whether G ↦∗ G� and G� = λ are held for at least one
of the sequences. If there exists one, then G ∈ Γ(egg) ,
otherwise G ∉ Γ(egg).
 In the proof, the size-increasing constraint on the
productions of EGG guarantees the decidability of EGG
because the constraint requires that each R-application should
at least either remove a node or change a terminal node to a
non-terminal node in the reduced graph. Therefore, R-
application can only be applied finite times to any host graph
of a given size.

IV. PARSING ALGORITHM OF EGG
 Generally, a graph grammar needs to be equipped with a
parsing mechanism for automatically checking whether a given
graph, called host graph, is structurally correct or valid with
respect to the graph language defined by the grammar. Having
proved that the membership problem is decidable for EGG in
the previous section, this section presents a parsing algorithm,
which checks if a host graph can be reduced to the initial graph
by applying the EGG grammar’s productions to perform a
series of R-applications. A parsing algorithm usually needs to
incorporate the following three interrelated actions:

• Search in the host graph for the redexes of a
production’s right graph;

• Perform an R-application with a found redex to
generate a new host graph from the current host graph;
and

• Trace all the R-application paths by applying in turn
the above two actions until a path leading to the initial
graph is found or all possible paths have been
exhausted.

In the following, the above three actions are discussed in
more detail. The first is the searching. The second is the R-
application. Finally, the tracing combines the two to perform a
parsing.
4.1 Search for redexes

A procedure for searching all redexes is given below, which
takes host graph G and right graph GU] as input and returns a set
of redexes found.
FindRedexForRight(Graph G, Graph GU])
{
 RedexSet = Φ;
 G-Nodes = OrderNodeSequence(G);
 GU]-Nodes = OrderNodeSequence(GU]);
 CandidateNodeSet = FindCandidateSet(G-Nodes, GU]-Nodes);
 for each Candidate Î CandidateNodeSet

 RedexSet = RedexSet ∪ GenerateRedex(Candidate, G, GU]);
 return(RedexSet);
}

In the procedure, function OrderNodeSequence sequences
the nodes in host graph G and right graph GU] separately
according to their labels’ alphabetical order. Function
FindCandidateSet finds all possible node sequences from G-
Nodes as candidates under the condition that all nodes in a
candidate have the corresponding nodes in the GU]-Nodes of the
same degree. Function GenerateRedex generates all possible
redexes derived from a candidate. Note that a candidate with all
nodes plus their connected edges including dangling edges,
notated as C�, only has the same structure as GU], and may
generate more than one redex. This is because a node in GU]
may have more than one dangling edge in the same direction
and different matches of the dangling edges between C� and GU]
may generate different redexes. Fig. 8 illustrates a case that
uses the marking mechanism, where Fig. 8(a) is host graph G
containing C� in a dotted box, and Fig. 8(b) is a production
containing the corresponding right graph GU]. Since the node
labelled ‘b’ in GU] is connected with two outgoing dangling
edges, there are two ways of assigning the marks numbered ‘1’
and ‘ 2 ’ to C�. Ė , and thus two redexes are generated
accordingly as illustrated in Fig. 8(c) and Fig. 8(d). Fig. 8(e)
and Fig. 8(f) demonstrate that the two redexes are different and
can reduce graph G to two different graphs.
4.2 R-application

A procedure for performing an R-application is given
below, which takes host graph 𝐺, redex 𝑄, and production p
relevant to 𝑄 as inputs and generates a reduced graph.

RightApplication(Graph G, redex Q, Production p)
{

AddMark(p. GU], G);
InsertLeftGraph(p. GUF, G);

	
	

DeleteRedex(G,	Q);
Gl=ClearMark(G);
return(Gl)

}

Figure 8. Reductions with two different redexes generated

from a C�

In R-application, function AddMark adds all the dangling
edges’ marks of p. GU] to G according to the edge mapping
between them. Function InsertLeftGraph inserts p. GUF into G by
connecting all dangling edges of p. GUF to the corresponding
nodes in G according to the marks added previously. Function
DeleteRedex deletes redex Q from G . Finally, function
ClearMark clears all added marks in G to generate reduced
graph Gl.
4.3 Parsing

Based on the above discussions, it is now feasible to trace
all possible R-application paths starting from a given host
graph to check if there exists one path that leads to the initial
graph. The tracing needs to maintain a mapping between a
redex and its host graph for performing the corresponding R-
application. As such a mapping is usually many to one, the
tracing employs two stacks to separately store the redexes
found and the intermediate host graph yielded, and employs a
delimiter in the redex stack to delimit a group of redexes that
correspond to the same host graph. The delimiter makes the
correspondence manageable by synchronizing the contents in
the two stacks. The function takes a graph and a set of
productions as input and returns a definite answer indicating
whether the graph is valid or not.
Parsing (Graph G, ProductionSet P)
{
 loop-1: while (G ≠ λ)

 {
 DELIMITER → RedexStack;

 // push
 loop-2: for all p ∈ P

 {
 RedexSet = FindRedexForRight(G, p. GU]);

 loop-3: for all Redex ∈ RedexSet;
 (Redex, p)→ RedexStack;

 // push
 }

 (Redex,	p) ← RedexStack;
 // pop
 loop-4: while (Redex = DELIMITER)

 {
 If (HostStack != NULL ⋀ RedexStack !=

NULL)
 G← HostStack;

 // pop
 (Redex,	p) ← RedexStack;
 // pop

 else
 return(“Invalid”);
 }
 HostStack ←G ;
 // push
 G = RightApplication(G, Redex, p);
 }
 return(“Valid”);

}
4.3.1 Time complexity

This subsection examines the time and space complexities
of the above parsing algorithm.
Theorem 2. The time complexity of the parsing algorithm is

𝑂(��
�!
�
�
(ℎℎ!)�(𝑑! ℎ)��)), where ℎ is the number of nodes in

the host graph to be parsed, 𝑟 is the maximal number of nodes
in the right graphs of all productions with 𝑑 being the maximal
number of dangling edges for each node, and 𝑛 is the number
of productions in the given EGG grammar.

Proof: According to the structure of the parsing algorithm, its
maximal time complexity can be expressed as:

𝑡 = 𝑂(𝑙}(𝑙�(𝑡} + 𝑙�) + 𝑙� + 𝑡�)),
where l} is the maximal number of iterations in the outermost
loop-1, l� is the number of iterations in the first inner loop-2, l�
is the number of iterations in the innermost loop-3, l� is the
number of iterations in the second inner loop-4, and t} and t�
are the worst time complexities of functions FindRedexForRight
and RightApplication respectively.

In function FindRedexForRight, since the maximal possible
number of selecting 𝑟 nodes from ℎ nodes is A�� = h(h −
1)… (h − r + 1), the worst complexity of searching for all
candidates of a right graph in a given host graph is O(h�).
Further, since a candidate may generate more than one redex
due to different assignments of its dangling edges, the maximal
possible number of actions to generate redexes from one
candidate is 𝑟𝐴¤¤ = 𝑟𝑑!. In fact, 𝑟 and 𝑑 can be considered
constants when an EGG grammar is given. Thus, we have 𝑡} in
𝑂(𝑟𝑑! ℎ�) = 𝑂(ℎ�).

In function RightApplication, since each of its sub-functions
needs at most traversing the host graph once, thus it has t� =
O(h).

As to the four iterations, l� needs first to be considered,
which is in fact the number of productions, i.e., l� = n. l� is the
number of redexes found in the host graph with respect to the
right graph of a given production. Since the maximal number
of candidates with respect to the right graph of a given

(b) Production	p	containing	the	right	graph	GR

bb
c

d
a

(a) Host graph G containing CG 		in	dotted	box

(c) A generated redex from CG

b

(d) Another generated redex from CG

b

aB1 2A :=

a a

(e) A	reduced	graph	with	the	redex	of	(c)

B

(f) A	reduced	graph	with	the	redex	of	(d)

Ac d BAd c

	
	

production is C�� = A�� /r! (by reasonably assuming r ≪ h for
making sure that C�� is maximal) and each candidate can
generate at most (d!)� redexes by taking dangling edges into
consideration, it has l� ≤ (d!)�C�� = O(h�). Since l�l� is the
total number of actions on pushing redexes into the redex stack
and l� is the partial number of actions on popping redexes from
the redex stack, l� should be no more than l�l�, and thus can be
ignored. The left is iteration number l}, the worst case is when
the algorithm’s result is ‘invalid’, and all redexes found during
parsing enter the stack. Each of the redexes, when popped out
of the stack, leads to an iteration of the outmost loop.
Therefore, l} is equal to the number of all redexes found.

An iteration of the outmost loop generates no more than
n(d!)�C�� redexes for n productions and performs one R-
application. According to the size-increasing condition, each R-
application would reduce the size of the derived host graph.
Since there are at most ℎ R-applications that may not reduce
the host graph size and an R-application would reduce the host
graph size by at least 1, the following holds for l}:
 L} ≤ (n(d!)�C��)�§}n(d!)�C��}� n(d!)�C���� …n(d!)�

C��(����})� n(d!)�C��(���)�
 = (n(d!)�)����§}(C��)�C��}� C���� …C�§}� C��
 = (n(d!)�)����§}(�!

(���)!�!
)� (��})!

(��}��)!�!
… (�§})!

}!�!
�!
¨!�!

 = (n(d!)�)����§}(�!
(���)!�!

)� ∏ (ª§�)!
�!ª!

����}
ª«}

 = (�(¬!)­)~®¯­°|

(�!)~®¯­¯|
th(h − 1)…(h − r + 1)v

� ∏ (u +����}
ª«}

																		r)(u + r − 1)…(u + 2)(u + 1)
 = O((n (¬!)

­

�!
)��h�� ∏ u�����}

ª«})

 = O((n (¬!)
­

�!
)��h��((h − r − 1)!)�)

 = O((n (¬!)
­

�!
)�th�h!v

�
)

 = O(��
�!
�
�
(h!)�(d! h)��) (1)

Combining all the above discussions, one can finally obtain:

t = O(��
�!
�
�
(hh!)�(d! h)��).

4.3.2 Space complexity
Theorem 3 The space complexity of the parsing algorithm is
O(h�§}), where ℎ is the number of nodes in the host graph to
be parsed, r is the maximal number of nodes in all the right
graphs of productions.

Proof: The main space-consuming components are the redex
stack and the host graph stack used in the parsing algorithm.
We can, therefore, express the maximal space complexity as:

s = s} + s�,
where s} is the space used by the redex stack and s� is the one
by host graph stack. Without loss of generality, we can assume
that the space taken by a redex is r and that by a host graph is
h. Different from time complexity, the use of the stack space is
not always increasing because pop operations would release
space for reuse. Hence, the worst case is the maximal occupied
space along with the longest R-application path, and the
following holds for the redex stack and the host graph stack
respectively.

s} ≤ (rhnC�� (d!)� + rnC�� (d!)� + rnC��}� (d!)� + ⋯
+ rnC��(���)� (d!)�)

 = rn(d!)�(hC�� + C�� + C��}� +⋯+ C��)
 = rn(d!)�((�§})!(���)!�!

+ (��})!
(��}��)!�!

+ ⋯+ �!
¨!�!
)

 = �
(��})!

(d!)�((�§})!(���)!
+ ∑ (ª§�)!

ª!
����}
ª«¨)

 = �
(��})!

(d!)�((h + 1)h(h − 1)…(h − r + 1) +
																								∑ (u + r)(u + r − 1)…(u + 1)����}

ª«¨)
 = O(h�§} + ∑ u�����}

ª«¨)
 = O(h�§});
 s� = hh + (h − 1) +⋯+ r
 = O(h�). (2)
Since r ≥ 1, the following can be obtained:

s = O(h�§}).
From the above analysis, we notice that the time complexity

is extremely high while the space complexity is bounded by a
polynomial factor. We also note that the structure of
productions plays an important role in determining the
algorithm’s complexity. For example, if a stronger constraint
such as |p. GUF.N| < |p. GU].N| is enforced on productions, then
the first ℎ R-applications that do not reduce the host graph size
can be removed from (1). In addition, we find that the
algorithm itself may be further improved to increase its
efficiency, especially its average time cost. Moreover, like
RGG, if the condition of Selection-Free [28] is satisfied, the
Selection-Free Parsing Algorithm with polynomial time
complexity can be used for EGG.

V. IMPLEMENTATION OF AN EGG SUPPORT SYSTEM
 A graph grammar support system is a software platform that
can be helpful for end users to easily use graph grammars.
This section briefly describes the architecture and functions of
an EGG support system, abbreviated as EGGSS.
 From a user point of view, EGGSS supplies, besides
normal GUI of Windows, extra graphical and grammatical
tools to assist the user to draw graphs, design graph
productions, define graph languages, perform graph
transformations and parse graphs. They are visualized in a
friendly fashion explained below.

• Graph Editor: performs all kinds of graph related
operations, such as graph drawing, saving, deleting.

• Production Designer: for designing productions based
on the Graph Editor, such as production generation
and modification.

• Transformer: automatically performs L-application for
transforming graph from one to another based on a
given production.

• Language Definer: specifies labels, marks, etc. for
defining the graph language via Productions and L-
application.

• Parser: automatically performs a series of R-
applications for checking the validity of a given graph.

 Fig. 9 illustrates the end user view of EGGSS. Fig. 10 is an
example window of EGGSS’s user interface, where the upper
row is the main menu with all operational items including not
only graphical and grammatical operations but also other

	
	

Window GUI operations. On the left, a tree view allows users
to manage XML files with saving, accessing and deleting
operations. They can read graphs in XML format from the
memory and save graph data to an XML file. On the right, the
upper part shows an edited host graph and the lower part
shows a designed production.

Figure 9. End user view of EGGSS

 From a system point of view, EGGSS consists of basic
modules, organized logically in layers to realize the
system’s grammatical functions explained below.
• Graph Transformation: automatically completes the

transformation from one graph to another using
productions. This module is essentially an L-
application.

• Graph Parsing: performs grammatical analysis for a
given host graph by automatically searching for all
possible graph reduction operations to finally reduce
to the initial symbol, namely the host graph is
grammatically valid if and only if it could be reduced
to the initial symbol. This module is essentially a
series of R-applications.

• Graph Matching: finds redexes in a graph according to
a given production.

• Graph Substitution: replaces a sub-graph in a given
graph using the left or right graph of a production.

• XML Description: transfers graph expressions to
XML descriptions and vice versa.

Fig. 11 shows the system architecture with relevant
modules. In the architecture, three upper layers are
implemented using C++ in the environment of Visual Studio
2005, while two lower layers are implemented using the
existing XML open sources and software tools.

Figure 10. A window of EGGSS’s user interface

Figure 11. The architecture of EGGSS

I. CONCLUSIONS

This paper has proposed a new graph grammar formalism,
namely EGG, which aims at making the design and
implementation of a graph grammar simple without weakening
the expressive power of the grammar. The proposed EGG lays
a solid foundation for a wide range of applications using graph
grammars. Specifically, EGG focuses on tackling general graph
languages and graph transformations with productions as
simple as possible. First, EGG simplifies the expression of
productions, in which the context nodes are eliminated and
only edges linked to context nodes are kept. In this way, the
structural information of graphs is still kept. Second, using
dangling edges and their corresponding marks, the replacement
of a redex by either a left or right graph in a production can be
easily done without ambiguity. Third, the introduction of size-
increase constraint to productions solves the membership
problem, making EGG parsing algorithm terminable.

As a future research, we will attempt to find the way to
reduce the parsing complexity, to further improve EGGSS to
be friendlier for end users.

ACKNOWLEDGMENT
This work is supported by the National Natural Science

Foundation of China under grant 61170089.

REFERENCES
[1] P. Bottoni, S. K. Chang, M. F. Costabile, S. Levialdi, P. Mussio. On the

specification of dynamic visual languages, Proc. IEEE Symposium on
Visual Languages, 14-21, 1998.

Graph Editor

Production Designer

Transformer

GUI of Windows...

Language Definer

Parser

End Users

Graph
Transformation

Graph
Parsing

L-application R-application

Graph
Substitution

Graph
 Matching

XML description of graphs and productions

Existing tools and Sofrware of the XML for file access

	
	

[2] P. Bottoni, S. K. Chang, M. F. Costabile, S. Levialdi, P. Mussio.
Modeling visual interactive systems through dynamic visual languages,
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems
and Humans, 32(6): 654-669, 2002.

[3] S. K. Chang. Extending visual languages for multimedia, IEEE
Multimedia, 3(3): 18-26, 1996.

[4] S. K. Chang. A visual language compiler for information retrieval by
visual reasoning, IEEE Transactions on Software Engineering, 16(10):
1136-1149, 1990.

[5] G. Rozenberg, H. Ehrig, Handbook of graph grammars and computing
by graph transformation, Handb. Graph Grammars. 1 (1997) 1–8.

[6] H. Fahmy, D. Blostein, A Survey of Graph Grammars: Theory and
Applications, in: IAPR Int. Conf. Pattern Recognit., 1992: pp. 294–298.

[7] C. Ermel, M. Rudolf, G. Taentzer, The AGG Approach: Language and
Environment, in: Handb. Graph Grammars 2, 1999: pp. 551-603.

[8] D.-Q. Zhang, K. Zhang, J. Cao, A context-sensitive graph grammar
formalism for the specification of visual languages, Comput. J. 44
(2001)

[9] X.-Q Zeng, K. Zhang, J. Kong, G.-L. Song, RGG+: An enhancement to
the reserved graph grammar formalism, in: Proc. 2005 IEEE Symp. Vis.
Lang. Human-Centric Comput., 2005: pp.272–274.

[10] D. Goik, K. Jopek, M. Paszyński, A. Lenharth, D. Nguyen, K. Pingali,
Graph grammar based multi-thread multi-frontal direct solver with
Galois scheduler, in: Procedia Comput. Sci., 2014: pp.960–969.

[11] L. Fürst, M. Mernik, V. Mahnič, Converting metamodels to graph
grammars: doing without advanced graph grammar features, Softw.
Syst. Model 14 (2013) 1297–1317.

[12] J. Heinen, C. Jansen, J.-P. Katoen, T. Noll, Verifying pointer programs
using graph grammars, Sci. Comput. Program. 1 (2013) 7–12.

[13] Z. Shi, X.-Q. Zeng, S. Huang, H. Li, Transformation between BPMN
and BPEL based on graph grammar, in: Proc. 5th Int. Conf. Comput.
Commun. Netw. Technol., 2014: pp.1-6.

[14] F. Hermann, S. Gottmann, N. Nachtigall, H. Ehrig, B. Braatz, G.
Morelli, A. Pierre, T. Engel, C. Ermel, Triple Graph Grammars in the
Large for Translating Satellite Procedures, Theor. Prac. Model
Transforms. 8568 (2014) 122-307.

[15] Y. Ong, K. Streit, M. Henke, W. Kurth, An approach to multiscale
modelling with graph grammars, Ann. Bot. 114 (2014) 813–827.

[16] K. Wittenburg, L. Weitzman, Relational grammars: theory and practice
in a visual language interface for process modeling. Vis. Lang. Theor.
(1998) 193-217.

[17] G. Rozenberg, E. Welzl, Boundary NLC graph grammars-Basic
definitions, normal forms, and complexity, Inf. Control. 69 (1986) 136–
167.

[18] D. Janssens, G. Rozenberg, Graph grammars with neighbourhood-
controlled embedding, Theor. Comput. Sci. 21 (1982) 55–74.

[19] F. Drewes, H.-J. Kreowski, A. Habel, Hyperedge Replacement Graph
Grammars, in: Handb. Graph Grammars 1, 1997: pp.95–162.

[20] K. Wittenburg, Earley-style parsing for relational grammars, Proc. 8th
IEEE Workshop. Vis. Lang., 1992: pp. 192-199.

[21] E. Golin, A Method for the specification and parsing of visual
languages, PhD Thesis, 1991, Department of Computer Science, Brown
University.

[22] K. Marriott, Constraint Multiset Grammars, Proc. IEEE Symp. Vis.
Lang., 1994: pp. 118–125.

[23] J. Rekers, a Schürr, Defining and parsing visual languages with layered
graph grammars, J. Vis. Lang. Comput. 8 (1997) 27–55.

[24] J. Kong, K. Zhang, X.-Q. Zeng, Spatial graph grammars for graphical
user interfaces, ACM Trans. Comput. Interact. 13 (2006) 268–307.

[25] J. Kong, K. Zhang, Parsing Spatial Graph Grammars, Proc. 2004 IEEE
Symp. Vis. Lang. Hum. Centric Comput. (2004) 99–101.

[26] M. Decker, H. Che, A. Oberweis, P. Stürzel, M. Vogel, Modeling
mobile workflows with BPMN, in: ICMB GMR 2010 - 2010 9th Int.
Conf. Mob. Business/2010 9th Glob. Mobil. Roundtable, 2010: pp.272–
279.

[27] C. Kim, M. Ando, Node replacement graph grammars with dynamic
node relabeling, Theor. Comput. Sci. 583 (2015) 40–50.

[28] K. Zhang, D.-Q. Zhang, J. Cao, Design, construction, and application of
a generic visual language generation environment, IEEE Trans. Softw.
Eng. 27 (2001) 289–307.

[29] G. Song, K. Zhang, Visual XML schemas based on reserved graph
grammars, in: Proc. Int. Conf. Inf. Technol. Coding and Computing,
2004: pp. 687-691.

[30] K. Zhang, D.-Q. Zhang, Y. Deng, A Visual Approach to XML
Document Design and Transformation, Proc. IEEE Symp. Human-
Centric Comput. Lang. Environ., 2001: pp.312–319.

[31] K.-B. Zhang, M.A. Orgun, K. Zhang, A prediction-based visual
approach for cluster exploration and cluster validation by HOV3. Lec.
Notes Comput. Sci. 4702 (2007) 336-349.

[32] C. Zhao, J. Kong, K. Zhang, Design pattern evolution and verification
using graph transformation, Proc. 40th Annual Hawaii International
Conference on System Sciences (HICSS’2007), 2007: pp.290a-290a.

[33] C. Zhao, J. Kong, J. Dong, K. Zhang, Pattern-based Design Evolution
Using Graph Transformation, J. Vis. Lang. Comput. 18 (2007) 378–398.

[34] C. Zhao, J. Kong, K. Zhang, Program behavior discovery and
verification: A graph grammar approach, IEEE Trans. Softw. Eng. 36
(2010) 431–448.

[35] K. Zhang, J. Kong, Exploring semantic roles of Web interface
components, Proc. Int. Conf. Mach. Web Intell., 2010: pp.8-14.

[36] K. Zhang, J. Kong, M. Qiu, G. Song, Multimedia layout adaptation
through grammatical specifications, Multimedia Syst. 10 (2005) 245-
260.

[37] J. Kong, K.-L. Ates, K. Zhang, Y. Gu, Adaptive mobile interfaces
through grammar induction, Proc. Int. Conf. Tools with Artif. Intell.
ICTAI, 2008: pp.133–140.

