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Abstract—As a useful formal tool, graph grammar provides a 
rigorous but intuitive way for defining graphical languages and 
analyzing graphs. This paper presents a new context-sensitive 
graph grammar formalism called Edge-based Graph Grammar 
or EGG, in which a new methodology is proposed to tackle issues, 
such as the embedding problem, the membership problem and 
the parsing algorithm. It presents the formal definitions of EGG 
and its language with a proof of its decidability. Then, a new 
parsing algorithm with an analyses of its computational 
complexity is given for checking the structural correctness or 
validity of a given host graph. The paper finally describes the 
development of an EGG support system with friendly GUI. 
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I.  INTRODUCTION  
With the development of human-computer interaction 

techniques, graphical languages have been applied to various 
application domains, such as modeling visual interaction 
processes [1, 2], designing graphical user interface in 
multimedia applications [3], visual queries to databases [4], and 
defining the layout of a GUI in multimedia applications [3]. 
Conceptually, objects described by graphical languages can be 
abstracted as graphs consisting of nodes and edges. For the 
specification and analysis of these types of graphs, graph 
grammars [5, 6] are an ideal formal and intuitive tool. 

    It is well-known that formal string grammar lays a solid 
theoretical foundation for the definition and parsing of 
programming languages. For the same reason, graphical 
languages also need the corresponding formal graph grammars. 
Compared with string grammar, graph grammars set a 
theoretical basis to visual languages [7]. However, the 
implementation of a graphical language is usually not as easy 
as implementing string languages [8]. This is mostly due to the 
fact that the extension from one-dimensional string grammars 
to two-dimensional graph grammars raises new issues [9] such 
as the embedding problem, the membership problem, high 
parsing complexity. 

There have been a number of graph grammars and their 
applications in the literature [10-27]. According to the type of 
grammatical productions, graph grammars could be mainly 
divided into two categories: context-free and context-sensitive. 
The main differences between the two are the production 
formation and the expressive power. On the one hand, a 
context-free grammar requires that only a single non-terminal 
node be allowed on the left-hand side of a production [16]. In 
early years, many context-free grammars were proposed [17-
21]. Since the productions of these graph grammars are quite 
simple, their expressive power is limited, which hinders the 
scope of their applications. On the other hand, in response to 
the increasing demands of intricate graph-oriented applications, 
researchers have developed several context-sensitive graph 
grammars, such as PLC (picture layout grammar) [21], CMG 
(constrain multiset grammar) [22], LGG (layered graph 
grammar) [23], RGG (reserved graph grammar) [8], SGG 
(spatial graph grammar) [24, 25]. These context-sensitive graph 
grammars allow the left-hand side of a production to be a graph 
rather than a node, so bring more expressive power. LGG and 
RGG are the most representatives of context-sensitive graph 
grammars. 

Rekers and Schürr [23] proposed a context-sensitive graph 
grammar formalism called Layered Graph Grammar (LGG) 
for defining and parsing graphical visual languages. First, 
productions in LGG differ widely from others by introducing 
context nodes that are not replaced in a derivation or reduction 
operation. Second, to solve the embedding problem, LGG puts 
a restriction on the definition of a redex in a host graph by 
requiring its nodes that are isomorphic to non-context nodes in 
productions can only link to other nodes in the host graph that 
are isomorphic to the context nodes in the productions. This 
restriction ensures no creation of dangling edges when a redex 
in a host graph is replaced. Third, a very intricate layer 
decomposition constraint is introduced to solve the 
membership problem. 

    Based and improved on LGG, Zhang et al. [8] proposed 
another context-sensitive grammar called Reserved Graph 



	
	

Grammar (RGG), which defines the structure of graphs by 
introducing a two-level structure for each node as a super-
vertex containing sub-vertices connected with edges. In 
addition, RGG introduces a marking mechanism to tackle the 
embedding problem, in which a unique label is used to identify 
all context elements. Further, with the introduction of selection-
free productions to graph grammars, a Selection-Free Parsing 
Algorithm (SFPA) is designed for a selection-free RGG, which 
only needs to consider one parsing path and thus can efficiently 
parse graphs with polynomial time complexity [8]. Later on, 
Kong et al. [24, 25] extended RGG by introducing spatial 
notations and mechanisms. The spatial specifications of the 
extended RGG, called Spatial Graph Grammar (SGG), can 
qualitatively express the spatial relationships among objects 
and reduce the parsing complexity using the spatial 
information. 
    Both LGG and RGG have been applied widely to the 
definition, analysis and transformation of visual languages [28-
37], such as Visual XML Schemas [29, 30], Design Pattern 
Evolution and Verification [32, 33], Generic Visual Language 
Generation Environments [28]. However, they still have 
deficiencies. For example, the LGG’s context nodes and layer 
decomposition constraint make productions difficult to design. 
RGG’s two-level node structure and marking mechanism are 
not intuitive and make them difficult to apply to general 
graphs. 
    This paper presents our work on the improvements over the 
existing graph grammars with the following contributions.  

• A new context-sensitive graph grammar formalism 
called EGG, which uses edges instead of nodes to 
concisely express the context in productions for simply 
and efficiently solving the embedding problem.  

• A size-increasing constraint applied to the structure of 
productions for solving the membership problem, 
easing the design of productions. 

• A new general parsing algorithm for checking the 
structural correctness and validity of given host graphs; 
and the implementation of an EGG graph grammar 
support system, which provides friendly GUI for end 
users to design and apply graph grammars. 

    The rest of the paper is organized as follows. Section 2 
presents graphical and grammatical preliminaries, introducing 
new terms used in Section 3, which gives the formal definitions 
of EGG and its language with a proof of its decidability. 
Section 4 presents a parsing algorithm and its complexity 
analysis. Section 5 describes the developed EGG support 
system. Finally, Section 6 concludes the paper. 

II. Graphical and Grammatical Preliminaries 
    In node-edge graphs, a node typically represents an abstract 
object and an edge represents some kind of relationship 
between two connected nodes. Each node 𝑛 in a node set 𝑁 can 
be connected with none or more edges, and each edge e in an 
edge set 𝐸 is only connected with two nodes. An edge can be 
directed or undirected depending on whether it has a direction 
between the two connected nodes. Because an undirected edge 
can be treated as two directed edges with reverse directions, 

without loss of generality this paper only considers directed 
edges. 
    In string grammars, labels play an important role as 
identifiers, and so do labels in graph grammars. Let 𝐿 be a 
finite set of labels. Depending on the usage of a label, 𝐿 can 
further be divided into terminal label set 𝐿% , nonterminal label 
set 𝐿&% , and mark label set 𝐿', namely	𝐿 = 𝐿% ∪ 𝐿&% ∪ 𝐿' , 
𝐿% ∩ 𝐿&% = 𝛷, and 𝐿' ∩ (𝐿% ∪ 𝐿&%) = 𝛷. 
    By combining the techniques of both graph theory and 
formal language, we introduce a series of new definitions and 
notations here. 
Definition 2.1 n = (l) is a node with label l  in a given finite 
label set L. 
 Definition 2.2 e = (n3, n5) is a directed edge, where  

• n3 is the start node of the directed edge; 
• n5 is the end node of the directed edge. 

    Based on the above definitions of node and directed edge, 
we further introduce the following notations: 

• E3 is a set of directed edges starting from a node; 
• E5 is a set of directed edges ending to a node; 
• d(n) is the degree indicating the number of directed 

edges connected to  n, i.e. d(n) = |E3 ∪ E5|; 
• d3(n)  is the out-degree indicating the number of 

directed edges starting from n, i.e. d3(n) = |E3|; 
• d5(n)  is the in-degree indicating the number of 

directed edges ending to n, i.e. d5(n) = |E5|. 
    Obviously, 𝑑(𝑛) = 𝑑:(𝑛) + 𝑑<(𝑛). For simplicity, notations 
like 𝑛. 𝑙  and 𝑛. 𝐸:  express the corresponding components of 
node n, and are applicable to other definitions throughout this 
paper. 
    Unlike an undirected edge, a directed edge needs to 
distinguish start node and end node. Besides, an edge may also 
carry a label for clear identification. 
Definition 2.3 G = (N, E) is a graph on given label set L, where  

• N is a node set that is associated with a two-way 
partition into NA  and NBA , the elements of NA  are 
called terminal nodes and the elements of NBA  are 
called non-terminal nodes; 

• E is a directed edge set with E ⊆ N× N. 
    We then have the following mappings for mathematically 
expressing grammatical items. 

• fBF: N → L, a mapping from node n to label l ∈ L, i.e., 
fBF(n) = n. l; 

• fJBK: E → N, a mapping from directed edge e to its 
start node, i.e., fJBK(e) = e. n3; 

• fJBL: E → N, a mapping from directed edge e to its 
end node, i.e., fJBL(e) = e. n5. 

    In EGG, dangling edge set 𝐸̇  is introduced to represent 
contexts, in which each edge is connected with only one node 
being either a start or end node, namely 𝐸̇ = 𝐸̇: ∪ 𝐸̇< with 𝐸̇: =
{𝑒̇:|𝑒̇: = 	 (𝑛:, ∅)}	 , 𝐸̇< = {𝑒̇<|𝑒̇< = 	 (∅, 𝑛<)}  and 𝐸̇: ∩ 𝐸̇< = 𝛷 . 
In addition to dangling edges, a marking mechanism is also 
introduced to mark dangling edges. The concepts of dangling 
edge and marking mechanism solves the embedding problem in 
EGG. Fig. 1 illustrates a graph including dangling edges with 



	
	

𝐸̇ = {1,2,3}. The graph is called a dangling edge graph and 
can be defined as follows. 
Definition 2.4 GU = (N, EU,M) is a dangling edge graph on given 
label set L, in which, 

• N is a node set; 
• EU is an edge set including dangling edges, which is 

associated with a two-way partition into E and Ė; 
• M ⊆ LW is a mark set for marking dangling edges to 

distinguish different contexts. 
    Essentially, GU is an extension of G by introducing dangling 
edge and G can be regarded as a special case of GU. Similarly, 
there is an extra mapping as follows. 

• fJW: Ė → M, an injective mapping from dangling edge 
ė to its mark m, i.e., fJW(ė) = m. 

    Note that dangling edge set Ė may be empty, which leads to 
the empty corresponding mark set M and mapping 𝑓Z' . Based 
on the above defined dangling edge graph, a grammatical 
production can be defined as follows. 
Definition 2.5 A production 	p  is the expression GUF ≔ GU] , 
which consists of a left dangling edge graph GUF  and right 
dangling edge graph GU] satisfying GUF.M = GU].M. 
    In a production, dangling edges represent contexts and each 
pair of corresponding dangling edges between the left and 
right graphs are labeled by a unique mark to maintain their 
corresponding relationship. Using dangling edges and their 
corresponding marks, the replacement of a redex by either a 
left or right graph in a production can be done without 
ambiguity. In some special cases, a wildcard dangling edge is 
needed to represent an arbitrary number of edges, e.g., one 
entity may be connected with any number of attributes in an 
entity relationship diagram. For simplicity and without 
generality, the concept of wildcard edge is not discussed here. 
Fig. 2 is an example of a set of EGG productions specifying a 
process flow diagram with 
{begin, assign, fork, join, send, receive, if, endif} ⊆ LA	 and 
{stat} ⊆ LBA. 
    The function of a production is to transform a graph to 
another graph. However, the transformation needs to satisfy 
some conditions in which isomorphism is fundamental. 
Definition 2.6 Graphs G and Q are isomorphic, denoted as G ≈
Q, fBF and fBF

lare two mappings for G and Q respectively, if 
and only if there exist two bijective mappings fBB: G.N ↔ Q.N 
and fJJ:G. E ↔ Q. E, and the following are satisfied: 

• ∀n(((n ∈ G.N)⋁(n ∈ Q.N)) → (fBF(n) =
fBF

l(fBB(n)))); 
• ∀e(((e ∈ G. E)⋁(e ∈ Q. E)) → (fBB(fJBK(e)) =

fJBK(fJJ(e)))⋀(fBB(fJBL(e)) = fJBL(fJJ(e)))). 
An isomorphism between two graphs means that their 

corresponding nodes have the same label, and the same out-
degree and in-degree. In addition, the corresponding edges 
have the same start and end nodes. 

 
Figure 1. A dangling edge graph 

 
Definition 2.7 Graph Q is the sub-graph of G, denoted as Q ∈
Sub(G), if and only if the following are satisfied: 

• (Q.N ⊆ G.N)⋀(Q. E ⊆ G. E). 
    Graph Q is a sub-graph of G means that Q is part of G. 
Definition 2.8 Graph Q is the core graph of GU, denoted as Q =
Cor(GU), if and only if the following is satisfied: 

• (Q.N = GU.N)⋀tQ.E = (GU. EU − GU. Ė)v⋀(Q. L = GU. L). 
Core graph Q is the sub-graph of graph GU	obtained by 

removing all dangling edges from graph GU and keeping all the 
nodes and non-dangling edges of graph GU. The graph in Fig. 3 
is the core graph of that in Fig. 1. 
Definition 2.9 If graph Q is a sub-graph of graph G and may 
include dangling edges, and GUF|] is a graph being left or right 
side of a production, Q is a redex of G with respect to GUF|], 
denoted as Q ∈ Redex(G,GUF|]) , if and only if there exits 
bijective mappings fBB:	Q. N ↔ GUF|]. N  and fJJ:Q. E ↔
GUF|]. E, and the following are satisfied: 

• Cor(Q) ≈ Cor(GUF|]); 
• ∀n((n ∈ Q) → (d3(n) = d3(fBB(n))) ∧ (d5(n) =

d5(fBB(n)))). 
To explain the above definition, we provide an example in 

the following three figures. Fig. 4 is graph GUF|], and Fig. 5 is a 
given host graph G. Obviously, graph Q in Fig. 6 is the sub-
graph of G. According to Definition 2.9, Q is a redex of G with 
respect to GUF|].  

In host graph G, if there is sub-graph Q being the redex of G 
with respect to GUF|] that is a left or right side graph of a 
production, then one could use the right or left side graph of 
the production to replace Q in G. This process is called graph 
transformation or replacement, as formally defined below. 
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Figure 2. A set of EGG productions 

 
Figure 3. The core graph of the graph in Figure 1 

 
Definition 2.10 An L-application to graph G is a transformation 
that generates graph Gl using production p:	GUF ≔ GU], denoted 
as Gl = Tr(G,Q, GUF, GU]) , where Q ∈ Redex(G, GUF) , and 
Cor(GU]) is used to replace Q in G. The L-application is also 
called derivation operation and denoted as G →{ Gl. 
    If a sequence of L-applications for graph G is: 
G →{| G}l,	G}l →{~ G�l, … ,		G��}l →{� G�l, then G →∗ G�l 
can be used to concisely express this process. 
Definition 2.11 An R-application to graph G is a transformation 
that generates graph Gll using production p:	GUF ≔ GU], denoted 
as Gll = Tr(G,Q, GU], GUF) , where Q ∈ Redex(G, GU]) , and 
Cor(GUF) is used to replace Q in G. The R-application is also 
called reduction operation and denoted as G ↦{ Gll. 
    Similar to L-applications, a sequence of R-applications, 
which is G ↦{| G}ll , 	G}ll ↦{~ G�ll , … , 	G��}ll ↦{� G�ll , 
can be expressed as G ↦∗ G�ll. 

Fig. 7 shows a derivation process from an initial graph 
using the productions in Fig. 2. 

 
Figure 4. A graph GUF|] with dangling edges 

 
Figure 5. A host graph G 

 
Figure 6. The sub-graph Q is a redex of G with respect to GUF|] 

 
Figure 7. A graph L-application process using EGG 

productions 
 

The formal definition of EGG and its language are 
discussed below. 

III. AN Edge-based Graph Grammar Formalism 
To solve the embedding and membership problems, EGG 
employs edges rather than nodes in the two sides of a 
production to directly express contexts and introduces a size-
increasing constraint to ensure the decidability of EGG.  
3.1 Definition of EGG and its language 
    Based on the definitions in Section 2.1, an edge-based 
context-sensitive graph grammar formalism and its language 
can be defined as follows. 
Definition 3.1 An EGG is a 3-tuple（λ, L, P), where: 

• λ is an initial graph; 
• L is a label set containing terminal and non-terminal 

labels, i.e., L = LA⋃LBA； 
• P is a set of productions, and each production p ∈ P in 

the form of GUF ≔ GU]  must satisfy the following 
constraints: 

(1) λ must be a left graph of a production; 
(2) GU] must be nonempty; 
(3) The size of left graph must be no more than 

that of right graph, i.e., |GUF.N| ≤ |GU].N|. If 
they are equal, the number of terminal nodes in 
left graph must be less than that of right graph, 
i.e., |GUF.NA| < |GU].NA|. 

Similar to string grammars, graph grammars with arbitrary 
graphs on the left and right sides of productions may face the 
membership problem, that is, their languages are not decidable 
in general. EGG introduces a size-increasing constraint for 
each production to solve the membership problem. The 
constraint ensures that any given host graphs can be parsed 
with EGG productions within a finite number of R-

a e

b

dc

c f

d

e

c f

d

e

g

a

b

c f

d

e

stat

begin

stat

end

p1 p3

begin

end

fork

join

stat stat

p4&p6

begin

end

2

fork

join

stat

stat

 
  

if

stat

endif

p5
stat

begin

end

2

fork

join

stat

reveive

 
  

if

send

endif

 

p2
stat

begin

end

2

fork

join

assign

reveive

 
  

if

send

endif

 

l



	
	

applications. Also, the constraint is weak with little impact on 
the flexibility of context-sensitive grammars and easier to 
implement than that of LGG and RGG for grammar designers. 

Theoretically, a graph grammar is a formal tool for 
rigorously defining a graph language, which is a set of graphs 
that can be derived from the initial graph. Below is the formal 
definition of a graph language. 
Definition 3.2 Let egg = (λ, L, P) be a grammar of EGG, its 
language Γ(egg)  can be formally defined as Γ(egg) =
{G|(λ →∗ G)⋀(fBF(G.N) ⊆ LA)}. 

Practically, a graph grammar is a useful tool for 
automatically analyzing graphs’ validity. If a given graph can 
be reduced to the initial graph with a finite series of R-
applications of a graph grammar, this graph is regarded as 
belonging to the grammar’s language. Otherwise, the graph 
does not belong to the graph language or the graph grammar 
is not decidable. 
3.2 Decidability of EGG 
    When an EGG is given, its language is determined. It is 
decidable whether an arbitrarily given graph is in the language 
or not because of the support of the following theorem. 
Theorem 1. For EGG egg = (λ, L, P) and arbitrary nonempty 
graph G, it is decidable whether or not G is in Γ(egg). 

Proof: For arbitrarily given graph G with a finite number of 
terminal nodes, a sequence of graphs can be generated in an 
R-application process starting from G. Because of the size-
increasing constraint and the number of nodes in the graph G 
being finite, the R-application process cannot execute 
circularly and must stop in finite steps, namely, G ↦∗ G� and 
G�  being unable to reduce any more by R-application. 
Further, the number of such sequences without a loop is also 
finite. Thus it is feasible to enumerate all such sequences and 
check whether G ↦∗ G� and G� = λ are held for at least one 
of the sequences. If there exists one, then G ∈ Γ(egg) , 
otherwise G ∉ Γ(egg).  
    In the proof, the size-increasing constraint on the 
productions of EGG guarantees the decidability of EGG 
because the constraint requires that each R-application should 
at least either remove a node or change a terminal node to a 
non-terminal node in the reduced graph. Therefore, R-
application can only be applied finite times to any host graph 
of a given size. 

IV. PARSING ALGORITHM OF EGG 
    Generally, a graph grammar needs to be equipped with a 
parsing mechanism for automatically checking whether a given 
graph, called host graph, is structurally correct or valid with 
respect to the graph language defined by the grammar. Having 
proved that the membership problem is decidable for EGG in 
the previous section, this section presents a parsing algorithm, 
which checks if a host graph can be reduced to the initial graph 
by applying the EGG grammar’s productions to perform a 
series of R-applications. A parsing algorithm usually needs to 
incorporate the following three interrelated actions:  

• Search in the host graph for the redexes of a 
production’s right graph;  

• Perform an R-application with a found redex to 
generate a new host graph from the current host graph; 
and  

• Trace all the R-application paths by applying in turn 
the above two actions until a path leading to the initial 
graph is found or all possible paths have been 
exhausted. 

In the following, the above three actions are discussed in 
more detail. The first is the searching. The second is the R-
application. Finally, the tracing combines the two to perform a 
parsing. 
4.1 Search for redexes 

A procedure for searching all redexes is given below, which 
takes host graph G and right graph GU] as input and returns a set 
of redexes found. 
FindRedexForRight(Graph G, Graph GU]) 
{ 
    RedexSet = Φ; 
    G-Nodes = OrderNodeSequence(G); 
    GU]-Nodes = OrderNodeSequence(GU]); 
    CandidateNodeSet = FindCandidateSet(G-Nodes, GU]-Nodes); 
    for each Candidate Î CandidateNodeSet 

    RedexSet = RedexSet ∪  GenerateRedex(Candidate, G, GU]); 
    return(RedexSet); 
} 

In the procedure, function OrderNodeSequence sequences 
the nodes in host graph G  and right graph GU]  separately 
according to their labels’ alphabetical order. Function 
FindCandidateSet finds all possible node sequences from G-
Nodes as candidates under the condition that all nodes in a 
candidate have the corresponding nodes in the GU]-Nodes of the 
same degree. Function GenerateRedex generates all possible 
redexes derived from a candidate. Note that a candidate with all 
nodes plus their connected edges including dangling edges, 
notated as C�, only has the same structure as GU], and may 
generate more than one redex. This is because a node in GU] 
may have more than one dangling edge in the same direction 
and different matches of the dangling edges between C� and GU] 
may generate different redexes. Fig. 8 illustrates a case that 
uses the marking mechanism, where Fig. 8(a) is host graph G 
containing C� in a dotted box, and Fig. 8(b) is a production 
containing the corresponding right graph GU]. Since the node 
labelled ‘b’ in GU] is connected with two outgoing dangling 
edges, there are two ways of assigning the marks numbered ‘1’ 
and ‘ 2 ’ to C�. Ė , and thus two redexes are generated 
accordingly as illustrated in Fig. 8(c) and Fig. 8(d). Fig. 8(e) 
and Fig. 8(f) demonstrate that the two redexes are different and 
can reduce graph G to two different graphs. 
4.2 R-application 

A procedure for performing an R-application is given 
below, which takes host graph 𝐺, redex 𝑄, and production p 
relevant to 𝑄 as inputs and generates a reduced graph. 

RightApplication(Graph G, redex Q, Production p) 
{ 

AddMark(p. GU], G); 
InsertLeftGraph(p. GUF, G);  



	
	

DeleteRedex(G,	Q); 
Gl=ClearMark(G); 
return(Gl) 

} 

 
Figure 8. Reductions with two different redexes generated 

from a C�  
 

In R-application, function AddMark adds all the dangling 
edges’ marks of p. GU]  to G  according to the edge mapping 
between them. Function InsertLeftGraph inserts p. GUF into G by 
connecting all dangling edges of p. GUF to the corresponding 
nodes in G according to the marks added previously. Function 
DeleteRedex deletes redex Q  from G . Finally, function 
ClearMark clears all added marks in G to generate reduced 
graph Gl. 
4.3 Parsing 

Based on the above discussions, it is now feasible to trace 
all possible R-application paths starting from a given host 
graph to check if there exists one path that leads to the initial 
graph. The tracing needs to maintain a mapping between a 
redex and its host graph for performing the corresponding R-
application. As such a mapping is usually many to one, the 
tracing employs two stacks to separately store the redexes 
found and the intermediate host graph yielded, and employs a 
delimiter in the redex stack to delimit a group of redexes that 
correspond to the same host graph. The delimiter makes the 
correspondence manageable by synchronizing the contents in 
the two stacks. The function takes a graph and a set of 
productions as input and returns a definite answer indicating 
whether the graph is valid or not.  
Parsing (Graph G, ProductionSet P) 
{ 
 loop-1: while (G ≠ λ) 

      { 
     DELIMITER → RedexStack;   

     // push 
 loop-2:     for all p ∈ P 

     { 
         RedexSet = FindRedexForRight(G, p. GU]); 

 loop-3:  for all Redex ∈ RedexSet; 
      (Redex, p)→ RedexStack;  

     // push 
      } 

     (Redex,	p) ← RedexStack;   
     // pop 
 loop-4:     while (Redex = DELIMITER) 

     { 
          If (HostStack != NULL ⋀  RedexStack != 

NULL) 
         G← HostStack;    

        // pop 
   (Redex,	p) ← RedexStack; 
   // pop 

         else 
        return(“Invalid”); 
       } 
       HostStack ←G ;    
             // push 
        G = RightApplication(G, Redex, p); 
  } 
  return(“Valid”); 

} 
4.3.1 Time complexity 

This subsection examines the time and space complexities 
of the above parsing algorithm.  
Theorem 2. The time complexity of the parsing algorithm is 

𝑂(��
�!
�
�
(ℎℎ!)�(𝑑! ℎ)��)), where ℎ is the number of nodes in 

the host graph to be parsed, 𝑟 is the maximal number of nodes 
in the right graphs of all productions with 𝑑 being the maximal 
number of dangling edges for each node, and 𝑛 is the number 
of productions in the given EGG grammar. 

Proof: According to the structure of the parsing algorithm, its 
maximal time complexity can be expressed as: 

𝑡 = 𝑂(𝑙}(𝑙�(𝑡} + 𝑙�) + 𝑙� + 𝑡�)), 
where l} is the maximal number of iterations in the outermost 
loop-1, l� is the number of iterations in the first inner loop-2, l� 
is the number of iterations in the innermost loop-3, l� is the 
number of iterations in the second inner loop-4, and t} and t� 
are the worst time complexities of functions FindRedexForRight 
and RightApplication respectively. 

In function FindRedexForRight, since the maximal possible 
number of selecting 𝑟  nodes from ℎ  nodes is A�� = h(h −
1)… (h − r + 1), the worst complexity of searching for all 
candidates of a right graph in a given host graph is O(h�). 
Further, since a candidate may generate more than one redex 
due to different assignments of its dangling edges, the maximal 
possible number of actions to generate redexes from one 
candidate is 𝑟𝐴¤¤ = 𝑟𝑑!. In fact, 𝑟  and 𝑑  can be considered 
constants when an EGG grammar is given. Thus, we have 𝑡} in 
𝑂(𝑟𝑑! ℎ�) = 𝑂(ℎ�).  

In function RightApplication, since each of its sub-functions 
needs at most traversing the host graph once, thus it has t� =
O(h). 

As to the four iterations, l�  needs first to be considered, 
which is in fact the number of productions, i.e., l� = n. l� is the 
number of redexes found in the host graph with respect to the 
right graph of a given production. Since the maximal number 
of candidates with respect to the right graph of a given 
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production is C�� = A�� /r! (by reasonably assuming r ≪ h for 
making sure that C��  is maximal) and each candidate can 
generate at most (d!)� redexes by taking dangling edges into 
consideration, it has l� ≤ (d!)�C�� = O(h�). Since l�l�  is the 
total number of actions on pushing redexes into the redex stack 
and l� is the partial number of actions on popping redexes from 
the redex stack, l� should be no more than l�l�, and thus can be 
ignored. The left is iteration number l}, the worst case is when 
the algorithm’s result is ‘invalid’, and all redexes found during 
parsing enter the stack. Each of the redexes, when popped out 
of the stack, leads to an iteration of the outmost loop. 
Therefore, l} is equal to the number of all redexes found.  

An iteration of the outmost loop generates no more than 
n(d!)�C��  redexes for n  productions and performs one R-
application. According to the size-increasing condition, each R-
application would reduce the size of the derived host graph. 
Since there are at most ℎ R-applications that may not reduce 
the host graph size and an R-application would reduce the host 
graph size by at least 1, the following holds for l}: 
   L} ≤ (n(d!)�C�� )�§}n(d!)�C��}� n(d!)�C���� …n(d!)� 

C��(����})� n(d!)�C��(���)�  
        = (n(d!)�)����§}(C�� )�C��}� C���� …C�§}� C��  
        = (n(d!)�)����§}( �!

(���)!�!
)� (��})!

(��}��)!�!
… (�§})!

}!�!
�!
¨!�!

 

        = (n(d!)�)����§}( �!
(���)!�!

)� ∏ (ª§�)!
�!ª!

����}
ª«}  

        = (�(¬!)­)~®¯­°|

(�!)~®¯­¯|
th(h − 1)…(h − r + 1)v

� ∏ (u +����}
ª«}

																		r)(u + r − 1)…(u + 2)(u + 1) 
        = O((n (¬!)

­

�!
)��h�� ∏ u�����}

ª«} ) 

        = O((n (¬!)
­

�!
)��h��((h − r − 1)!)�) 

        = O((n (¬!)
­

�!
)�th�h!v

�
) 

        = O(��
�!
�
�
(h!)�(d! h)��)               (1) 

Combining all the above discussions, one can finally obtain: 

t = O(��
�!
�
�
(hh!)�(d! h)��). 

4.3.2 Space complexity 
Theorem 3 The space complexity of the parsing algorithm is 
O(h�§}), where ℎ is the number of nodes in the host graph to 
be parsed, r is the maximal number of nodes in all the right 
graphs of productions. 

Proof: The main space-consuming components are the redex 
stack and the host graph stack used in the parsing algorithm. 
We can, therefore, express the maximal space complexity as: 

s = s} + s�, 
where s} is the space used by the redex stack and s� is the one 
by host graph stack. Without loss of generality, we can assume 
that the space taken by a redex is r and that by a host graph is 
h. Different from time complexity, the use of the stack space is 
not always increasing because pop operations would release 
space for reuse. Hence, the worst case is the maximal occupied 
space along with the longest R-application path, and the 
following holds for the redex stack and the host graph stack 
respectively. 

s} ≤ (rhnC�� (d!)� + rnC�� (d!)� + rnC��}� (d!)� + ⋯
+ rnC��(���)� (d!)�) 

       = rn(d!)�(hC�� + C�� + C��}� +⋯+ C��)  
      = rn(d!)�( (�§})!(���)!�!

+ (��})!
(��}��)!�!

+ ⋯+ �!
¨!�!
)  

     = �
(��})!

(d!)�((�§})!(���)!
+ ∑ (ª§�)!

ª!
����}
ª«¨ ) 

               = �
(��})!

(d!)�((h + 1)h(h − 1)…(h − r + 1) +
																								∑ (u + r)(u + r − 1)…(u + 1)����}

ª«¨ ) 
      = O(h�§} + ∑ u�����}

ª«¨ ) 
     = O(h�§}); 
          s� = hh + (h − 1) +⋯+ r 
           = O(h�).           (2) 
Since r ≥ 1, the following can be obtained: 

s = O(h�§}). 
From the above analysis, we notice that the time complexity 

is extremely high while the space complexity is bounded by a 
polynomial factor. We also note that the structure of 
productions plays an important role in determining the 
algorithm’s complexity. For example, if a stronger constraint 
such as |p. GUF.N| < |p. GU].N| is enforced on productions, then 
the first ℎ R-applications that do not reduce the host graph size 
can be removed from (1). In addition, we find that the 
algorithm itself may be further improved to increase its 
efficiency, especially its average time cost. Moreover, like 
RGG, if the condition of Selection-Free [28] is satisfied, the 
Selection-Free Parsing Algorithm with polynomial time 
complexity can be used for EGG. 

V. IMPLEMENTATION OF AN EGG SUPPORT SYSTEM 
    A graph grammar support system is a software platform that 
can be helpful for end users to easily use graph grammars. 
This section briefly describes the architecture and functions of 
an EGG support system, abbreviated as EGGSS. 
    From a user point of view, EGGSS supplies, besides 
normal GUI of Windows, extra graphical and grammatical 
tools to assist the user to draw graphs, design graph 
productions, define graph languages, perform graph 
transformations and parse graphs. They are visualized in a 
friendly fashion explained below. 

• Graph Editor: performs all kinds of graph related 
operations, such as graph drawing, saving, deleting.  

• Production Designer: for designing productions based 
on the Graph Editor, such as production generation 
and modification. 

• Transformer: automatically performs L-application for 
transforming graph from one to another based on a 
given production. 

• Language Definer: specifies labels, marks, etc. for 
defining the graph language via Productions and L-
application. 

• Parser: automatically performs a series of R-
applications for checking the validity of a given graph. 

    Fig. 9 illustrates the end user view of EGGSS. Fig. 10 is an 
example window of EGGSS’s user interface, where the upper 
row is the main menu with all operational items including not 
only graphical and grammatical operations but also other 



	
	

Window GUI operations. On the left, a tree view allows users 
to manage XML files with saving, accessing and deleting 
operations. They can read graphs in XML format from the 
memory and save graph data to an XML file. On the right, the 
upper part shows an edited host graph and the lower part 
shows a designed production. 

 
Figure 9. End user view of EGGSS 

 
    From a system point of view, EGGSS consists of basic 
modules, organized logically in layers to realize the 
system’s grammatical functions explained below. 
• Graph Transformation: automatically completes the 

transformation from one graph to another using 
productions. This module is essentially an L-
application. 

• Graph Parsing: performs grammatical analysis for a 
given host graph by automatically searching for all 
possible graph reduction operations to finally reduce 
to the initial symbol, namely the host graph is 
grammatically valid if and only if it could be reduced 
to the initial symbol. This module is essentially a 
series of R-applications.  

• Graph Matching: finds redexes in a graph according to 
a given production. 

• Graph Substitution: replaces a sub-graph in a given 
graph using the left or right graph of a production. 

• XML Description: transfers graph expressions to 
XML descriptions and vice versa.   

Fig. 11 shows the system architecture with relevant 
modules. In the architecture, three upper layers are 
implemented using C++ in the environment of Visual Studio 
2005, while two lower layers are implemented using the 
existing XML open sources and software tools.  

 

 
Figure 10. A window of EGGSS’s user interface 

 

 
Figure 11. The architecture of EGGSS 

I. CONCLUSIONS 

This paper has proposed a new graph grammar formalism, 
namely EGG, which aims at making the design and 
implementation of a graph grammar simple without weakening 
the expressive power of the grammar. The proposed EGG lays 
a solid foundation for a wide range of applications using graph 
grammars. Specifically, EGG focuses on tackling general graph 
languages and graph transformations with productions as 
simple as possible. First, EGG simplifies the expression of 
productions, in which the context nodes are eliminated and 
only edges linked to context nodes are kept. In this way, the 
structural information of graphs is still kept. Second, using 
dangling edges and their corresponding marks, the replacement 
of a redex by either a left or right graph in a production can be 
easily done without ambiguity. Third, the introduction of size-
increase constraint to productions solves the membership 
problem, making EGG parsing algorithm terminable. 

As a future research, we will attempt to find the way to 
reduce the parsing complexity, to further improve EGGSS to 
be friendlier for end users. 
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