Robotics and Autonomous Systems 56 (2008) 915-926

Contents lists available at ScienceDirect — |Robotics sad | |

|Autonomous Systems

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Towards semantic maps for mobile robots

Andreas Niichter *, Joachim Hertzberg
University of Osnabriick, Institute of Computer Science, Knowledge-Based Systems Research Group, Albrechtstr. 28, D-49069 Osnabriick, Germany

ARTICLE INFO ABSTRACT
Arti;le hiStOli)/_.' Intelligent autonomous action in ordinary environments calls for maps. 3D geometry is generally required
Available online 15 August 2008 for avoiding collision with complex obstacles and to self-localize in six degrees of freedom (6 DoF) (x, y, z

positions, roll, yaw, and pitch angles). Meaning, in addition to geometry, becomes inevitable if the robot is

Keywords: supposed to interact with its environment in a goal-directed way. A semantic stance enables the robot to
3D mapping R

6D SLAM reason about objects; it helps disambiguate or round off sensor data; and the robot knowledge becomes
Scene interpretation reviewable and communicable.

Object detection The paper describes an approach and an integrated robot system for semantic mapping. The prime
Semantic mapping sensor is a 3D laser scanner. Individual scans are registered into a coherent 3D geometry map by 6D

SLAM. Coarse scene features (e.g., walls, floors in a building) are determined by semantic labeling.
More delicate objects are then detected by a trained classifier and localized. In the end, the semantic
maps can be visualized for human inspection. We sketch the overall architecture of the approach,
explain the respective steps and their underlying algorithms, give examples based on a working robot
implementation, and discuss the findings.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction in any suitable knowledge representation format [4], as needed for
the type or types of reasoning to be associated with the entities
1.1. What is a semantic map? in the map. Given that such knowledge is typically independent

of space, it is not strictly part of the map; however, we require
Ifit is agreed that semantic knowledge can help an autonomous that it exists for entities represented in the semantic map. In brief,

robot act goal-directedly, then, consequently, part of this knowl- then:

edge has to be about objects, functionalities, events, or relations A semantic map for a mobile robot is a map that contains,
in the robot’s environment. The data structure holding the space- in addition to spatial information about the environment,
related information about this environment is the map. Typical assignments of mapped features to entities of known classes.
state-of-the-art robot maps represent the environment geometry Further knowledge about these entities, independent of the
- often in 2D, sometimes in 3D, sometimes topologically - and, map contents, is available for reasoning in some knowledge
maybe, additional sensor-relevant information such as specific fea- base with an associated reasoning engine.

tures, or texture [5]. This typical map content is in harmony with
today’s typical purpose of maps for mobile robots, namely, nav-
igation. A semantic map augments that by information about en-
tities, i.e., objects, functionalities, or events, that are located in
space.

We assume that the main purpose, or family of purposes, for a
semantic stance in map contents is some type of reasoning based
on individual entities in the map and/or their classes; examples for
such reasoning are planning, explanation, prediction, and sensor
data interpretation. To enable this reasoning, some background
knowledge about entities is required, an informal example being a
rule like A chair typically rests on the floor. The knowledge may come

In the technical part of this paper, we will use special instances of
sensor configuration, map type, and reasoning. Note, however, that
we understand semantic maps as being a more general concept
than what we have experimented with and that we will describe
below. We will get back to this in the discussion part of this paper.

1.2. System and paper architecture

Our approach uses 3D laser range and reflectance data for
environment mapping and for perceiving 3D objects on an
autonomous mobile robot. Starting from an empty map, multiple
3D scans, acquired by the robot in a stop-scan-go fashion,
are registered consistently by 6D SLAM, i.e. by a version of
Simultaneous Localization and Mapping that allows for using 6DoF

* Corresponding author. Tel.: +49 541 969 2623. robot poses (x, y, z positions; yaw, pitch and roll angles). Then, the

E-mail address: andreas.nuechter@uos.de (A. Niichter). coarse structure of the resulting 3D scene is interpreted using plane

0921-8890/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2008.08.001

http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:andreas.nuechter@uos.de
http://dx.doi.org/10.1016/j.robot.2008.08.001

916 A. Niichter, J. Hertzberg / Robotics and Autonomous Systems 56 (2008) 915-926

6D SLAM Scene Interpretation

Object Detection Map Presentation

e N

D ' ﬁ iy
point)

cloud |

I

Fig. 1. System overview: From left to right: 6D SLAM acquires and registers a point cloud consisting of multiple 3D scans; scene interpretation labels the basic elements in
the scene; object detection locates previously learned objects in 6 DoF; finally, the semantic map is presented to the user.

extraction and labeling, thereby exploiting background knowledge
represented in a constraint network [34]. After that, the 3D range
and reflectance data are transformed into 2D images by off-
screen rendering, and they are used in this form for detecting
and localizing objects by two alternative approaches [35,42]; the
object localization is then transformed back into the 3D data.
Finally, the semantic map is presented using tools from computer
graphics. Fig. 1 gives a system overview. Our system contains the
classical architecture to derive symbols from sensor data [22].
While these building blocks in isolation have been described
in previous publications, we present in this paper for the first
time how these components have been put together to build
semantic maps according to our definition. Note that the simple
cascade-style architecture just described is only an initial point
for building semantic maps: In general, one would use feed-back,
e.g., from object detection to scene interpretation. The matter will
be discussed below.

The paper presents our work in terms of the building blocks
in Fig. 1. We emphasize scene interpretation and object detection,
and the feed-back control loop beyond the simple cascade in Fig. 1.
So after finishing this introduction by remarks on related work,
Section 2 summarizes some technical background concerning
the 6D SLAM algorithm used. Section 3 describes the process
of bottom-up interpretation of gross scene features. These are
augmented by recognized objects, as presented in Section 4.
Section 5 wraps up the process and provides example results.
Section 6 discusses our own results and puts them into perspective
with semantic mapping in general. We conclude the paper in
Section 7.

1.3. Related work

Robotic mapping. In the considerable body of literature about robot
maps and mapping, maps are metrical in most cases, and less
frequently, topological. As in regular language, a map contains
space-related information about the environment, i.e., not all that
a robot may know or learn about its world need go into the map.
Metric maps are supposed to represent the environment geometry
quantitatively correctly, up to discretization errors. We will use
the term geometry map henceforth to refer to maps that represent
(metrically more or less truthfully) the environment geometry.
[41, Ch. 5] gives a general introduction into the topics of maps
and mapping; [46] covers probabilistic approaches in particular.
Both textbooks also give introductions to SLAM, i.e., the process
of building a map based on imprecise sensor data and on the
imprecise robot motion model.

Most robot maps in the literature are given in 2D, usually
upright projections of the scene. Since the early 2000s, some
groups have been using pitching or rotating laser scanners for
acquiring 3D data, e.g.,[43,48,50]. As these data are much richer in
information than the 2D scans mostly used in 2D mapping, slightly
different algorithms are used for 3D. Based on consistent 3D scans
of the environment, scan matching variants are often applied for
constructing a 3D map [13,18,26,30,36,40,44].[33] summarizes the
state of the art in 3D mapping.

Only few groups in robotics have been working on variants
of semantic mapping. [21] presents a robot control architecture

that fuses mapping and object detection, resulting in a labeled
map. [20] presents a mapping system that reconstructs 3D models
assuming 3 DoF, i.e., planar, robot motion in RoboCup Rescue. In
the same context, [9] uses labeled maps for automatic behavior
activation. [1] and [3] also present mapping approaches that
include object detection. They repeatedly map environments and
identify changing occupancy of grid cells using difference maps,
focusing on representing uncertain object knowledge in such
occupancy object maps. [25] describes a probabilistic approach
for inserting in the map hierarchical environment structures and
spatial relations, all based on 2D data. [12] is a study, also based on
2D data, to combine metric, topological, and semantic aspects in a
map. It uses the semantic level for reasoning (“This room contains
no sink, it cannot be the kitchen!”).

Scene understanding. To understand understanding has been a topic
in Al from its early days on. The problem could be described as [39,
pg. 791]

We are given a set of ambiguous inputs, and from them we have
to work backwards to decide what state of the world could have
created these inputs.

Prominent lines of research in Al include language/speech
understanding, image understanding, and scene understanding —
all in the sense just quoted. More recent Al research mostly avoids
the term due to its generality, imprecision, and metaphorical
overloadedness. Yet, it describes nicely what is needed for building
semantic maps. Recent work in computer vision uses the term
Cognitive Vision, cf. [7]. We will come back to the approach by
Neumann and Mbller [29]: They use a description logic domain
theory and a representation of perceived environment objects
and processes for aggregating bottom-up scene information from
camera images and for hypothesizing top-down features to look
for in the given image stream. That is clearly an important
ingredient of building semantic maps. A point is typically lacking in
scene understanding work that semantic mapping in closed-loop
robot control should include: Physical robot action in sensor data
acquisition, as by changing the pose or even physical interaction
with the environment.

Symbol grounding. Object anchoring [8] is a line of robotics-
related research that aims at building up and maintaining the
links between symbolic representations of objects (as in a logic-
based knowledge representation formalism) and their images in
the sensor data stream. This is clearly related to semantic mapping;
it is also more ambitious than the latter, as anchoring assumes
projecting the development of anchored objects into the time-
space future, which semantic mapping, as considered here, does
not necessarily involve. On the same line, a semantic map is related
to solving the symbol grounding problem [16]. Note, however,
that semantic mapping deals only with a small fraction of symbol
grounding in general.

2. Technical prolegomena: 6D SLAM

For building a semantic 3D map, we start with building some
version of geometric 3D map of the environment first. In the
cascade architecture of Fig. 1, this prior map even needs to have

A. Niichter,]. Hertzberg / Robotics and Autonomous Systems 56 (2008) 915-926 917

Fig. 2. Left: The mobile robot Kurt3D. Right: The 3D laser scanner.

some degree of completeness, as the interpretation processes
coming later do not add or correct data. In our work, we have used a
6D SLAM method and software that we have described previously
(e.g., [33]). The way how the initial 3D geometry map of the
environment is obtained from original sensor data, is unimportant
for the subsequent interpretation process. (However, note that
subsequent steps do require that the data consist of surface points
in space, as delivered by laser scan data!) Therefore, we include a
sketch of the 6D SLAM part in this paper to make it self-contained;
but we keep it short, and refer to [33] for details.

To start with, the robot used here is a Kurt3D (Fig. 2). The 3D
laser scanner is built on the basis of a 2D SICK scanner, extended
by a mount and a standard servo motor for controlled pitch
motion [43].

The 6D SLAM method is supposed to take 3D scans of the
complete environment and register them into a globally consistent
and correct 3D map. Registration has to compensate the fact
that every single scan pose is given in 6 DoF, i.e., registration
has to consider three translation and three rotation dimensions,
too. In our algorithm, individual scans are registered by the
Iterative Closest Points (ICP) algorithm [2]. ICP calculates point
correspondences iteratively. In each iteration, it selects the closest
points as corresponding and calculates the transformation (R, t) for
minimizing the equation

Nm Ny

E(R,t)zzzwi,j ||mi—(Rdj+t)”2’ (1)

i=1 j=1

where N, and Ny, are the numbers of 3D points in the model
set M and the data set D, respectively. w;; are the weights for a
point match. They are assigned like: w;; = 1, if m; is closest to
d; within a close limit; w;; = 0 otherwise. The transformation
is calculated by the quaternion-based method by Horn [19]. The
point correspondences are assumed correct when E (R, t) has fallen
below a given threshold.

However, ICP alone is not enough for practical 6D SLAM, since
errors do accumulate. We have extended it in the following ways
for enhancing flexibility and speed [33]:

(1) Extrapolate the odometry to all six DoF of the robot pose.

(2) Calculate heuristic initial estimations for ICP scan matching
based on this extrapolation.

(3) Register the 3D scans into a common coordinate system using
ICP.

(4) If applicable (a previous scan of the same region like the most
recent one exists), close the loop and distribute the error.

(5) After all scans are taken, refine the model by global relaxation.

These five steps come at different computational costs. In
our experiments, we would usually take 3D scans with 20,000
up to 300,000 3D points. While the first step is computed
instantaneously, the heuristic in step two, which is based on an
octree reduction of the scans, would need up to two seconds, if
applied naively, for calculating the two octrees and then roughly
aligning the scans. Since octrees are usually computed fast, the

influence of larger data sets is negligible here. The loop closing step
is of similar cost, since we use the octree heuristic again [33]. The
most computation time is needed in the scan matching step and
in the model refinement step five. While the model can easily be
refined offline, i.e., after the robot has finished the data acquisition,
the scan matching is an essential part of the online mapping
procedure. We have a number of methods to reduce significantly
the run time, namely, point reduction, k-d trees, approximate k-d
trees, and cached k-d trees [33]. By these means, an online, on-
board variant of the ICP algorithm is constructed and has been
demonstrated to work reliably in a large suite of experiments.

3. Scene interpretation

We now assume a 3D geometry model of the scene is given
— in our case, in terms of a cloud of surface points. Note that,
depending on scan resolution and scene size, the model would
normally include millions of points. Each and every one of them
is subject to slight measurement and registration errors.

By Scene Interpretation, we refer to the process of labeling large
meaningful structures in the 3D geometry model. Such structures
would typically be represented by points in the model, and of a
large number of them at that; examples are walls, the floor, and
the ceiling inside a building. Walls, e.g., are normally characterized
by a shape (flat) and an orientation (perpendicular). This need
not be true for all interesting structures, however. In an outdoor
scenario, say, a park, a sand path to follow is often neither flat nor
horizontal, yet it is utterly relevant for a mobile robot and should be
identified. Interesting structures may not be defined by data points
exclusively; the absence of 3D points may also be of interest. Take as
an example the structure navigable surface, which could be defined
by sufficiently smooth ground and free volume the size of the robot
bounding box directly above.

Scene interpretation differs notably from object recognition,
which is described later (Section 4). We assume objects are
compact and segmentable. The structures to be identified in scene
interpretation, in contrast, need have no clear or perceivable
boundaries (where exactly does a sand path end?), and are
typically spread out over a larger area of the scene. Interpretable
structures may be defined directly or locally on the sensor data (the
3D points in our case), or on features previously detected in these
data. We will give examples for both.

We describe next our approach to plane (i.e., feature) extraction
and labeling from point clouds. This instance of scene interpreta-
tion is of obvious interest for indoor robot applications. In the fi-
nal part of this section, we describe a different algorithmic method
for identifying drivable surface based directly on the data points,
which may even run online on single 3D scans; for this approach,
we present data from an outdoor area.

3.1. Plane extraction and labeling

Given a 3D point model of a scene, identifying planes is first
and foremost an algorithmic problem, for which quite a number
of solutions are known. RANSAC (Random Sample Consensus) [38]
is a well known algorithm for plane extraction from point sets.
It is used in [6]. RANSAC is suited for fitting models robustly in
the presence of many data outliers. It first selects N data items
randomly and uses them to estimate the parameters of the plane.
Next, the number of data points fitting the model is computed,
regarding a user-given tolerance. RANSAC accepts the fit if the
computed number of points exceeds a certain limit. Otherwise it
iterates with another random sample [38].

In our work, a combination of RANSAC and ICP has performed
best, providing fast plane extraction for a point cloud. No prior
meshing algorithms need be applied. A plane p is defined by three

918 A. Niichter, J. Hertzberg / Robotics and Autonomous Systems 56 (2008) 915-926

mmm Wall mam Ceiling mmm Wall mam Door mmm Wall mem Floor
mm Wall Wall mmm Wall Door mm Wall mem Wall

Fig. 3. Left: Point cloud. Middle, right: Extracted planes with interpretations.

parallel or othogonal

O not paralle!
Wall Door
- not parallel

under

orthogonal

No Feature

orthogonal, under

orthogonal

parallel, above

Ceiling

parallel, equal height

Fig. 4. Constraint network for coarse scene interpretation.

parallel, under

parallel, equal height

3D points (p;, P,, P; € R3) or by one 3D point and the surface
normal (p;, n with |n|| = 1, p;, n € R®). To detect a surface, the
algorithm randomly selects a point and estimates a plane through
two neighboring data points. Now those data points x € R? are
calculated which fulfill:

|(x—=py)-n| <e. (2)

If this set of points exceeds a limit, e.g., 50 points, an ICP-based
optimization is started. All data points satisfying Eq. (2) form the
model set M and are projected on the plane to form the data set D
for each iteration of ICP. It takes only a few iterations to minimize
the ICP error function (1) by transforming the plane with this point-
to-plane metric. The time-consuming search is replaced by direct
calculation of the closest point and the transformation (R, t) is
calculated efficiently [19]. Given the best fit, all plane points are
marked and subtracted from the original data set. The algorithm
terminates after all points have been tested according to Eq. (2).

The extracted 3D planes are unbounded in size. Surfaces are
finally extracted from the points by mapping them onto the planes.
A quadtree-based method generates the surfaces. Fig. 3 shows an
example with 7 extracted planes of a single 3D scan containing
58,680 range data points.

We now turn to labeling, i.e., interpreting the planes. To this
end, we use a bit of common-sense knowledge about buildings. A
generic model of an indoor scene is implemented as a constraint
network based on [15], which is also used in [6].

Nodes of a constraint network here represent different plane
types in a building. Relations among them are encoded using
different connections. Possible labels of the nodes are L =
{Wall, Floor, Ceiling, Door, No Feature}. Door represents a
door ajar (i.e., not parallel to the wall that surrounds it). R =
{parallel, orthogonal, equalheight} are the inter-feature
relations. The spatial relations above and under relate to their
planes and are therefore not commutative. Fig. 4 shows the entities
and their relations. The constraint network can easily be extended,
but additional entities would have to be accompanied by matching
feature detectors.

Prolog is used to implement the constraint network solver,
encoding the network by definite clauses. The nodes of the network
are arguments, and the arcs define relations on the nodes. Next, all
facts for the relation parallel are shown:

parallel(floor,floor) .
parallel(ceiling,floor).
parallel(ceiling,ceiling).
parallel(floor,ceiling).
parallel(wall,wall).
parallel(X,_) :- X == nofeature.
parallel(_,X) :- X == nofeature.

Similarly, the other relations are encoded:

orthogonal (¢ceiling,door).
orthogonal (ceiling,wall).

equalheight (floor,floor).
equalheight ce111n§,ce111ng).
equalheight (door,_J.

For encoding the label nofeature, a condition is used. This pre-
vents Prolog’s unification algorithm from assigning planes with the
label nofeature, as long as different assignments appear possi-
ble. In addition to the representation of the constraint network, a
clause of the following form is compiled from the analysis of the
planes: Each plane of the set of planes found by the extraction is
represented by a variable PO, P1, etc. Then the relations between
the individual planes are computed from the scan data in a data-
driven fashion using thresholds. Finally, Prolog clauses are gener-
ated automatically, describing the consisting labels for all planes
found; assuming 4 planes were found, we would generate, e.g.:

labeling(PO,P1,P2,P3) :-
parallel(PO,P1) ,under(P0O,P1),
orthogonal (PO,P2) ,under (PO,P2),
orthogonal (PO,P3) ,under (PO,P3), ---

Prolog’s unification and backtracking are used to label the planes
consistently.

consistent_labeling(PO,P1,P2,P3) :-
labeling(PO,P1,P2,P3).

The label nofeature is considered, iff the unification fails. In
this case, an additional Horn clause is used to generate a con-
sistent labeling that unifies exactly one variable with nofea-
ture. All combinations are computed to unify the variable:

consistent_labeling(P0,P1,P2,P3) :-
comb([PO,P1,P2,P3], [nofeature]),
labeling(PO,P1,P2,P3).

The comb predicate generates all combinations of the planes Pi
with one of them assigned nofeature. In case of failure of con-
sistent_labeling with one plane assigned nofeature, the
process is continued with assigning to two nofeature values, and

A. Niichter,]. Hertzberg / Robotics and Autonomous Systems 56 (2008) 915-926 919

)

ceiling points

®| floor points
ee® %y 3

zZ

Fig. 5. Left: Scan points are transformed into a vertical cylindrical coordinate system and swept vertically. Right: Interpretation schema in one vertical sweep plane.

Fig. 6. Left: A single outdoor 3D scan of a gravel path in Osnabriick’s Botanical Garden (cf. Fig. 2, left). Note that the path is uneven. Middle: Areas (triangles) between
neighboring surface points all labeled drivable are grouped into a solid surface (triangulated). Note that there are some disconnected patches of surface points in and behind
the path shoulder. Right : View into the model from the same virtual view point as before, but with the next scans along the path registered. Sufficiently large areas sufficiently

dense with drivable surface points are filled up.

so on, until success is achieved. Finally the following query is sub-
mitted:
?7- consistent_labeling(P0,P1,P2,P3).

and the automatic generated Prolog program starts, computing
the solution. This simple algorithm is of course exponential in
terms of planes to label. Yet, we did not consider that worth op-
timizing, as we had run times that are negligible for an offline
process (e.g., 314 ms for labeling 13 planes, Pentium IV-2400, SWI-
Prolog [45]). As a footnote for the historically minded, the method
used here for consistent labeling is local constraint propagation
like classical Waltz labeling [49] used in one of the earliest ap-
proaches to scene understanding.

3.2. Labeling points drivable

Scene interpretation as a part of semantic mapping may come
in many forms. To show that other approaches than feature-based
labeling as just described make sense, we sketch a method for
labeling areas drivable directly based on the point data. Similar
approaches have been presented, e.g., in [37]. To keep it short, we
describe this for single 3D scans; the transfer to registered point
maps is straightforward. For details, cf. [31].

Our algorithm uses the approach in [50], which allows
“flatness” of the ground to be determined efficiently by the local
gradient between data points in a vertical cylindrical coordinate
system (cf. Fig. 5 middle, vertical system). Let p;; = (¢, Vi, Zij)
be the jth data point in the vertical sweep plane at the angle ¢;.
(Assume the point cloud is swept vertically from bottom to top at
a cylinder angle ¢; + €.) The gradient between point j and its kth
neighbor in sweep order is then given by

Zij — Zij—k
a;j = arctan (%

Yij — Yij—k
with =37 < &;; < 27.In comparison with a fixed threshold

(here: T = 20°), each 3D point is assigned to one of the following

three groups, which has proved to be robust against uneven and
tilting ground:

1. Qij < T:

2. TLoj<m—T1:
3. -1 <aj

p;j is a ground point
p; j is an object point
p; j is a ceiling point.

A result of the ground segmentation is displayed in Fig. 6. Note
that the classification of a scan point as “ground” is based on
its neighborhood, rather than on comparing estimated absolute
elevation. This irons out uncertainty in the absolute pitch and
roll angles in the robot pose. Absolute height values of points do
come into play when nearby drivable surface points are aggregated
into one large drivable area. Our point classification scheme leaves
the possibility open that two nearby points are both correctly
labeled ground, but differ significantly in absolute height, such as
on the two horizontal sides of a sharp pothole edge. This needs to
be checked when neighboring ground points are aggregated into
drivable surfaces.

4. Object detection and interpretation in 3D data

Following the sensor data flow bottom-up (cf. Fig. 1), the next
stage in semantic mapping is object detection. We have divided this
block into five steps (Fig. 7), which we will address in turn. We will
present two different methods for classification, to give another
example for the potential variety of approaches that we envision
at work behind semantic mapping.

Detecting objects of known rigid shapes in 3D scene models
could be seen as a problem of 3D geometry matching. We have
chosen a different route, which allows methods and algorithms
from 2D image interpretation to be reused: We generate object
hypotheses from 2D renderings of our 3D data, use the projection
of a detected 2D object image back into the 3D data for narrowing
down the possible position of the 3D object, and then attempt 3D
model matching of the object class hypothesis only in this narrow
3D data subset.

So after scanning, the 3D data points are first projected by an
off-screen OpenGL-based rendering module onto a 2D image plane.
The virtual camera for this projection is located in the scanner
origin. The following subsections include various example images.

920 A. Niichter, J. Hertzberg / Robotics and Autonomous Systems 56 (2008) 915-926

OffScreen D . . .
rendering Classification Ray Tracing Model Matching Evaluation
contour extrac
tion (Fig. 8)
H comparing
subsampled
3D models

refl. >.~‘\

main

N %

W),

L‘ o database

Fig.7. After acquiring 3D scans, depth and reflection images are generated. In these images, objects are detected using a learned representation from a database. Ray tracing
selects the points corresponding to the 2D projection of the object. A 3D model is matched into these points, followed by an evaluation step.

?;"‘f FI; J

Fig. 8. Cascade for contour extraction. From left to right: (1) Scanned scene as point cloud. (2) Point cloud with removed floor points. (3) Generated range image without
interpolation at jump edges. (4) Binarized image using adaptive thresholding. (5) Morphological opening of the image. (6) Final contour representation.

4.1. Classification using contour data

Our first approach to object classification works on the 2D
rendering of distance data, with distances encoded by grey values.
It is based on recognizing known contours in this representation.
Fig. 8 summarizes the steps to getting from the laser data to the
contour representation.

Imagine segmenting objects in a 2D range image. The feet of a
human standing on the floor, say, will equal exactly the floor area
around in grey value, as they have the same distance: The feet form
only a crease edge with the floor, no jump edge. To handle this,
we use the scene interpretation results from the previous step:
scan points belonging to interpreted scene structures are taken off
the 3D point model prior to rendering. So the human standing on
the floor will “float in nothingness” (represented as black) in the
corresponding 2D image. Fig. 9 shows an example for removing the
floor.

This solves object segmentation against the scene structures
detected earlier. To enhance segmentation of objects against the
rest of their background, we simply do not interpolate the range
image, if the range difference between two neighboring points
exceeds a fixed threshold. This method yields without further
effort a range image with each object sufficiently distant from the
rest of the scene enclosed by a black contour. Fig. 9 (right) shows
the result.

The actual contour extraction is done after applying a binariza-
tion filter with an adaptive threshold and convolving the result
with a non-linear filter for “morphological opening”, cf. Fig. 8(4,
5). The details are out of the scope of this paper, so we refer to [42].

Finally, contours are extracted from the binarized image using
a contour following algorithm, see Fig. 8(6). We use the Eigen-CSS
feature extraction method to describe a contour [42], improving
the original CSS method by Mokhtarian [10,28]. In particular, our
method is robust against contour rotation, as inspired by the work
by Drew, Lee and Rova [10].

We have used Support Vector Machines (SVM) for classifying
objects based on their contour representations. In the training

Fig. 9. Left: Range image generated with all 3D scan points. Right: Range image
with removed ground points and without grey-value interpolation at range jumps.

phase, test scans are taken from each object and three range images
generated from each scan under different views. Then every range
image is segmented, and stored as a positive example in case
of correct segmentation. Each classifier was trained using 200
positive and 700 negative examples. Fig. 10 presents results of the
complete classification system. In the experiments on test data
(different from the training data), we have achieved an accuracy
0f 0.989 and an AUC value of 0.986 [42].

4.2. Object detection using range and reflectance data

Our second approach to object classification works with
features extracted from rendered depth and reflectance images.
Feature-based systems operate usually much faster than pixel-
based systems [47]. The features used here are also used in [24,47].
Fig. 11 shows the eleven basis features, i.e., edge, line, diagonal,
and center surround features. Since they are compositions of
rectangles, they are computed with several look-ups in an integral
image or rotated integral image and subtractions weighted with
the area of the black and white rectangles. An integral image I
is an intermediate representation for the image N containing the
sum of grey-scale pixel valuesI(x, y) = Y v _o Z§,20 N(x',y).The
integral image is computed recursively in linear time [47]. Rotated
feature values can be computed in rotated integral images [24].

A. Niichter,]. Hertzberg / Robotics and Autonomous Systems 56 (2008) 915-926

921

Fig. 10. Example scenes with detected objects (human & robot Kurt3D). The 4th picture shows a false detection of a wrongly recognized human above the table.

™ - "

VN

Fig. 11. Edge, line, diagonal and center surround features are used for classification.

— thr. = 0.002739 = thr. = 0.001204
| =054 Df(x) >= 0| W] T 069
B =0.8265 @) B =0.7981 2)
— thr. =—-0.01696 g thr.=0.0004609
o=0.7638 o=—0.9303
I B =-0.8637 B=0.3219
— thr. = 0.006924
* o = —0.9508
I B =0.4335
Z fy <0 (D) — thr.=0.001098
o =—-0.9702
W B-03573
evaluated feature: I

— thr. = 0.005539 thr. = 0.0002671 thr. = 0.006586 |
| o=-09578 o =-0.9654 o=-1
B=0.5776 B=0.2295 B=0.407 2)
— thr.=0.002012 ° thr.=0.0003417 == thr. =0.0004443 >
a=-0.9197 a=-0.8917 o =-0.8958
| F=02383 B=0.02169 B=0.3519
— thr.=-0.001132 thr. = 0.0001828 thr. = —0.000917
=0.3423 o=-0.9729 s | 0=0562
1 B=-0.9655 B =0.3067 B =-0.8982
T thr. = 0.0008072 thr. =-5.471e-05
a=-0.9142 o=0.3093
B=0.1969 B=-0.7876

O depending on

f(x) =
B the threshold

‘L (1

+ (D

Fig. 12. The first three stages of a cascade of classifiers to detect an office chair in depth data. Every stage contains several simple classifiers that use Haar-like features with

a threshold and return values «, S.

The base resolution of the object detector is, e.g., 30 x 30 pixels,
thus, the set of possible features in this area is very large (642,592
features, see [24] for calculation details). The set of rectangle
features is not minimal.

To detect a feature over an image area, a threshold is required
for comparing the sum of pixel values of the classifier’s feature
regions. This threshold is determined automatically during a
fitting process, such that a minimal number of examples are
misclassified. Furthermore, the return values («, 8) of the feature
are determined, such that the error on the examples is minimized.
The examples are given in a set of images to be classified as positive
or negative. The set is also used in the learning phase that is
sketched next.

Learning a classifier. The Gentle Adaptive Boost Algorithm (Ada
Boost)is a variant of the powerful boosting learning technique [11].
It is used to select a set of simple features to achieve a given
detection and error rate. According to [23], it is the most successful
learning procedure tested for face detection applications. The
result of AdaBoost learning is a single classifier that consists of an
accumulation of feature classifiers, with a given detection rate.

The performance of a single classifier is not suitable for object
classification, since it produces a high hit rate, e.g., 0.999, but
also a high error rate, e.g., 0.5. Nevertheless, the hit rate is
significantly higher than the error rate. To construct an overall
good classifier, several classifiers are arranged in a cascade, i.e., a
degenerated decision tree. In every stage of the cascade, a decision
is made whether the image contains the object or not. The number
of feature classifiers used in each classifier may increase with
additional stages. Fig. 12 shows part of a learned cascade for the
object office chair in depth data.

Applying the cascades. The detection starts with the smallest
classifier size, e.g., 16 x 40 pixels for the human classifier, 23 x 30
for the robot classifier. The image is searched from top left to
bottom right by applications of the cascade. To detect objects on
larger scales, the detector is rescaled. An advantage of the used
features is that they are easily scalable. Each feature requires only
a fixed number of look-ups in the integral image, independent
of the scale. Time-consuming picture scales are not necessary
to achieve scale invariance. Fig. 15 shows examples of the
detection.

To decrease the false detection rate, we combine the cascades of
the depth and reflectance images. There are two possible ways for
combining: Either the two cascades run interleaved or serial and
represent a logical “and” [32,35]. The joint cascade decreases the
false detection rate close to zero. To avoid the reduction of the hit
rate, several different off-screen rendered images are used, where
the virtual camera is rotated and the apex angle is changed [35].

Efficient classifier learning. Learning needs multiple positive and
negative examples to construct a classifier. Negative examples are
supplied by using arbitrary grey-scale images. To make training
efficient, we developed a strategy to generate many positive
training images. After the object that has to be learned was
scanned once, the 3D data points belonging to the object are
manually extracted. Afterwards, different backgrounds, i.e., grey-
scale images, are placed behind the object using a 3D rendering
tool. Finally, the object is virtually rotated in 3D and views are
saved using off-screen drawing mode. Fig. 13 shows the object
printer in front of two backgrounds. Using just one 3D scan to learn
an object does not erode the quality of object detection.

922 A. Niichter, J. Hertzberg / Robotics and Autonomous Systems 56 (2008) 915-926

Fig. 13. The object printer in front of two different backgrounds.

4.3. Object point estimation

After detecting an object, or rather, an object hypothesis, in
the 2D projection, we next retrieve the corresponding 3D points
using ray tracing. All 3D points that have been projected into
the classified 2D area are back-projected into 3D using a special
OpenGL projection matrix. Fig. 14 (right) shows a rendering of ray
traced 3D points.

4.4. Model matching and evaluation

After the 3D points (set £) that contain the object is found,
a given 3D model from the object database is matched into the
point cloud. The model M is contained in the object database
as a 3D point cloud. ICP (cf. Section 2, Eq. (1)) is used again
for matching. After that, the matching result is evaluated using
normalized subsampling. Fig. 15 shows results of the 3D object
detection.

5. Semantic 3D maps

In this section, we integrate the previously described algo-
rithms into a complete system for semantic 3D mapping. Prior to
the mapping, the object database needs to be initialized and filled
with object descriptions both for the 2D and 3D representations, in
our case. Positive examples for the respective training procedures
mentioned earlier are generated by scanning the objects (in the
extreme case, scanning each of it just once), and generating many
different views from them, as far as needed for working with 2D
renderings. Moreover, the knowledge base or bases coming to-
gether with the semantic map have to be set up. In the current state
of our work, this part is sparsely covered, basically consisting of the
constraint network for coarse scene interpretation (Fig. 4), which
gets used in plane interpretation, as described. We will get back to
this issue in the discussion.

We start this section with recapitulating the bottom-up data
processing cascade that is depicted in Fig. 1 and that we have used
for describing our approach until here in this paper. After that, we
will briefly describe an example of top-down influence among the
processing modules of Fig. 1.

5.1. Bottom-up processing of 3D scan data

Semantic mapping in our system, as described until here, is
done by the following steps (cf. Fig. 1):

(1) 6D SLAM. 3D scans of the environment are acquired (in tele-
operation). They are registered globally in 6DoF.

(2) Scene interpretation. 3D surfaces are extracted and labeled
using their orientation.

(3) Object detection. Instances of known object classes are identi-
fied in each single 3D scan based on 2D renderings (possibly
with interpreted surfaces removed). The 6D object poses are
estimated.

(4) Visualization of the semantic map.

Due to the 3D nature of the semantic map, it needs to be rendered
for visualization. In the full 3D map, the following information is
available:

e Object information, i.e., the label of the selected object is
visualized. Note: In the current implementation, labels are
attached in 3D to 3D objects, so that a label might be viewed
from the back, e.g., Fig. 16, bottom row. In addition, the 6D
object pose is available as (x, y, z, 6y, 0y, 6,).

e The global 3D coordinates, i.e., (x, y, z) € R® of all scan points.

e For each scan point, the information whether it is part of some
scene structure or detected object, and, if so, which one.

e Distances between all pairs of 3D points and to the current view
pose.

e Information about the robot poses at which a 3D scan was
acquired and (estimated) trajectory data.

With the following data set, we demonstrate by example,
how the previously described method yields a semantic map.
The data set was taken in our institute building. A corridor
and some offices have been mapped. In the initialization phase,
we added 12 objects (different chairs, printers, plants, and a
human standing upright) to the database. After scanning the
area, the 3D model contained 32 3D scans with a total of
about 2.5 million points. The total map postprocessing time was
4.5 minutes. 82% of all 3D points were labeled and since we
had one object detection failure, namely, one false negative of
a fire extinguisher, ~0.1% of the labels were wrong. Fig. 16
visualizes the results. An animation of the scene is available
at www.informatik.uni-osnabrueck.de/nuechter/videos.html. The
complete scan data set (distance and remission values) is avail-
able at http://kos.informatik.uni-osnabrueck.de/3Dscans/ (Univ.
Osnabriick data set).

5.2. Top-down data flow in semantic mapping

One of the intended uses of the semantic stance in semantic
maps is to help in the mapping process itself by providing in a top-
down direction hypotheses or constraints for processing the sensor
data on lower processing levels. This would add feed-back loops to
the straightforward processing cascade in Fig. 1 Our current work,
as exemplified on the office building data set includes a case of that

Fig. 14. Object point estimation by ray tracing. Left: All points inside a detection area are extracted. Next: 3D views of the scan points taken from different virtual view
poses. 3D points inside the detector area (viewing cone) are drawn in lighter shade (red).

http://www.informatik.uni-osnabrueck.de/nuechter/videos.html
http://kos.informatik.uni-osnabrueck.de/3Dscans/

A. Niichter,]. Hertzberg / Robotics and Autonomous Systems 56 (2008) 915-926 923

Fig. 15. Examples of object detection and localization. Top: Kurt robot; middle: human; bottom: human and Volksbot robot. Columns from left to right: (1) Detection using
a single cascade of classifiers in reflection and depth images. (2) Detection using the combined cascade. (3) The respective matched 3D models are superimposed to the
depth images. (4) Detected objects in the raw scanner data, i.e., in the point representation.

kind, which we will present here. The issue in more generality will
be discussed in the following Section 6.

Our current physical 3D scanner (Fig. 2) would produce a
more or less systematic measuring error, due to a synchronization
problem in controlling the tilt servo: Each single scan of a deep
area, like a corridor, will map the true environment into the 3D
point cloud with a slight warp. For example, a scan straight into
a long corridor, visualized from the side, will generate a slightly
banana shape. Fig. 17, top right, gives an impression of this effect,
presenting a side view of registered scans. Registering several
banana scans of a straight corridor all with a like curvature will
produce a banana model of the corridor, if registered optimally
using ICP, as described in Section 2: The complete model will in all
likelihood show the average warp of the single scans, like in Fig. 17,
top right.

Fig. 17, bottom right presents a fix of that problem, based on
exactly the same individual scans. Here is how it was done: The
warp in every single scan is sufficiently little so that the floor
plane is correctly detected and interpreted, using the procedure
in Section 3.1 So when registering two subsequent scans, the
individual floor planes of the two scans can be forced to match.
The model from constrained registration in Fig. 17 has defined the
floor plane of the first (leftmost) scan as the global one; all others
are registered by fixing their individual floor planes on this one,
and by registering, after that, all other points are according to ICP
optimally, subject to the floor plane constraint. The bottom of the
registered 3D map, as shown in Fig. 17, is still uneven, because the
measured scan points of every single scan are unchanged, so the
floor points of every single scan keep their positions around (rather
than on) the floor plane.

So why is this interesting in terms of semantic mapping? We see
an example here of top-down influence of higher-level information
(coarse scene interpretation) to lower-level processing (scan
registration). Normally in semantic mapping one would expect

such a feed-back to work aided by reasoning in the background
knowledge — that is, supported by some suitable extension of
the constraint network for plane labeling, in our example. Our
current implementation has in fact achieved the effect in a
different way, namely, by a targeted addition to the registration
module. This leads to discussing how far our own current version
of semantic mapping has advanced, and what this tells about
semantic mapping in general.

6. Discussion and outlook

To quote from the introduction, we have stated:

A semantic map for a mobile robot is a map that contains,
in addition to spatial information about the environment,
assignments of mapped features to entities of known classes.
Further knowledge about these entities, independent of the
map contents, is available for reasoning in some knowledge
base with an associated reasoning engine.

Having presented our results, let us discuss how far we have
advanced towards semantic maps, what remains to be done, and
what are plausible ideas from the literature about how to proceed
from here.

We have clearly specialized semantic maps in the sense that
the sensor for mapped data is a 3D laser scanner. There are good
reasons for using this sensor: it yields precise, rich, and even
bimodal (distance, reflection) data in a fused form. However, there
is no claim that using a 3D scanner is required for semantic
mapping. Regular 2D laser distance scans alone may be of help;
on the other hand, high-resolution color texture information as by
a camera would be of obvious value, too. The concept of semantic
mapping in itself is independent of the sensor configuration used.
In fact, our future plans include working with different such
configurations.

924 A. Niichter, . Hertzberg / Robotics and Autonomous Systems 56 (2008) 915-926

Fig. 16. Renderings of a 3D semantic map of an office building (AVZ, University of Osnabriick). Labels derived by coarse scene interpretation are black, whereas lighter labels
result from object localization. Left: 3D point cloud with just objects labeled. Middle: Coarse scene interpretation. Right: Reflectance values.

4

Fig. 17. Left: Map, top view. Right, top: The unconstrained 3D mapping shows a banana-shaped form. Right, bottom: The horizontal justification and the constrained mapping
lead to qualitatively correct maps.

To have a semantic map rather than a map including features requires that the map be connected with background knowledge
labeled with tags, the informal definition from the introduction that can be used for reasoning about objects or object classes

A. Niichter,]. Hertzberg / Robotics and Autonomous Systems 56 (2008) 915-926 925

present in the map. In this respect, we have only scratched the
surface here. As described, we have used the constraint network
for interpreting planes in the scene; the constraint solver is
implemented by Prolog backtracking, and the representation of
concrete planes in a scene in terms of Prolog facts is generated
automatically from the scan data. So this is clearly a form of
inference in terms of a KR language (constraints), but it is
specialized and limited. For the future, we are planning to use
two more formalisms and corresponding inference formats in the
context of semantic maps, namely, Description Logics [4, Ch. 9] and
HTN plans [14, Ch. 11].

Our intended use of DL in reasoning about semantic maps is
inspired by [29]. The point is to reason about aggregates of basic
objects based on sensor data taken in the scene, which may be
noisy and incomplete; the example in [29] is to discover and
classify covers on a table, based on camera data. The issue in
that type of reasoning is to match two strands of information,
namely: (1) bottom-up classifications of data from the scene like
detected pieces of silverware, which come from a processing
cascade in analogy to the one used in this paper, and (2) top-
level expectations about the scene, which are generated from
interpreting detected basic objects as components of complex
aggregates, from which the presence of other, yet to be detected
components is hypothesized.

The intended purpose of HTN planning is to provide a plan-
based layer in robot control [27]. A semantic map is required,
as generating HTN plans online needs information in symbolic
form about recent facts. We have proposed a way to extract this
efficiently from a DL domain model [17], thereby allowing DL to
be the sole KR formalism to accompany the semantic map. Details
are out of scope here. However, a point to note is that the KR
and reasoning aspect of the work presented here need improving
so that the semantic information contained in our maps can be
brought to bear. This is another topic for future work.

The DL-based reasoning in [29] gives another example how
bottom-up sensor data processing can profit from top-down
information — in this case by using top-down hypotheses about
basic objects and their positions in the scene to expect. We
have given an example how top-down reasoning can help correct
erroneous sensor data; the expectation-driven interpretation
in [29] strongly suggests that correcting other mundane sensor
data deficits like occlusion could also profit from using top-down
semantic information.

This leads to the last issue to mention here: uses of semantic
maps. We take for granted that many applications of mobile robots
could benefit from a semantic stance in their maps, seen from an
application or user perspective; in particular robot planning on
a symbolic level is impossible without such a map. We want to
emphasize that, in addition to that, the map building and domain
model maintenance processes would profit from the availability
of a semantic map, and they would profit in particular from the
possibility of including top-down information in their work. Seen
from the perspective of robot control design, the first and foremost
profiteer from the availability of a semantic map on a mobile robot
appears to be the robot itself.

7. Coda

A semantic map integrates spatial information about some
environment and the locations of structures and objects of known
classes. If an autonomous robot is supposed to reason on a
symbolic level about its environment and about its own action,
then it needs some form of semantic map. The robotics mapping
literature has mostly dealt with metric and geometric information
— for the perfect reason that geometry comes first for a mobile
robot supposed to avoid collision and localize itself. The robotics

literature includes a few examples of a semantic stance in mapping.
Most of them work bottom-up, i.e., part of the given sensor data
(mostly camera and/or laser scanner) are interpreted in semantic
terms. Only a small fraction of these approaches includes top-
down aspects, i.e., a change or completion of the very sensor data
as triggered by reasoning on the semantic level. We have argued
that only the combination of both directions would bring the full
potential of semantic mapping to bear.

We have presented a comprehensive study in bottom-up
semantic mapping based on 3D laser scan data. We have left
unaddressed quite a number of issues, such as the integration of
camera data, the role and potential of learning, and formal and
technical details concerning each and every one of the modules
described. Some of these issues (definitely technical details) had
to be skipped here — more about it is available in the respective
references. Our purpose here has been to present comprehensively
semantic mapping and the sort of semantic maps that can be built.

The top-down direction in semantic mapping is mostly
unexplored. So in addition to presenting one implemented
example, we could only sketch our understanding of its purpose
and potential. Extending our study by integrating selected top-
down control strands will be a main direction of the work ahead.

References

[1] D. Anguelov, R. Biswas, D. Koller, B. Limketkai, S. Sanner, S. Thrun, Learning
hierarchical object maps of non-stationary environments with mobile robots,
in: Proc. 18th Conf. Uncertainty in Al, UAI '02, Edmonton, Alberta, Canada,
August 2002.

[2] P. Besl, N. McKay, A method for registration of 3-D shapes, IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI) 14 (2) (1992) 239-256.

[3] R. Biswas, B. Limketkai, S. Sanner, S. Thrun, Towards object mapping in
dynamic environments with mobile robots, in: Proc. Conf. Intelligent Robots
and Systems, IROS 02, Lausanne, Switzerland, September 2002.

[4] R.Brachman, H. Levesque, Knowledge Representation and Reasoning, Morgan
Kaufmann, 2004.

[5] W. Burgard, M. Hebert, World modeling, in: Springer Handbook of Robotics,
Springer, 2008.

[6] H. Cantzler, R.B. Fisher, M. Devy, Quality enhancement of reconstructed 3D
models using coplanarity and constraints, in: Proc. annual Symp. for Pattern
Recognition, DAGM ’02, Ziirich, Switzerland, September 2002, pp. 34-41.

[7] H. Christensen, H.-H. Nagel (Eds.), Cognitive Vision Systems - Sampling the
Spectrum of Approaches, in: Lecture Notes in Computer Science (LNCS), vol.
3948, Springer Verlag, Berlin, 2006.

[8] S. Coradeschi, A. Saffiotti, An introduction to the anchoring problem,
in: Perceptual Anchoring, Robotics and Autonomous Systems 43 (2-3) (2003)
85-96. (Special issue). Online at http://www.aass.oru.se/Agora/RAS02/.

[9] C. Dornhege, A. Kleiner, Behavior maps for online planning of obstacle
negotiation and climbing on rough terrain, in: Proc. IEEE/RS] Int. Conf. on
Intelligent Robots and Systems, IROS 07, San Diego, CA, USA, 2007.

[10] M. Drew, T. Lee, A. Rova, Shape Retrieval with Eigen-CSS Search. Technical
report, School of Computing Science, Simon Fraser University, Vancouver, B.C.,
Canada V5A 156, 2 2005.

[11] Y. Freund, RE. Schapire, Experiments with a new boosting algorithm, in:
Machine Learning: Proc. 13th Intl. Conf., 1996, pp. 148-156.

[12] C. Galindo, A. Saffiotti, S. Coradeschi, P. Buschka,]. Fernandez-Madrigal,
J. Gonzalez, Multi-hierarchical semantic maps for mobile robotics, in: Proc.
IEEE/RS] Intl. Conf. Intelligent Robots and Systems, IROS ’'05, Edmonton,
Canada, 2005, pp. 3492-3497.

[13] A. Georgiev, P.K. Allen, Localization methods for a mobile robot in urban
environments, IEEE Transactions on Robotics and Automation (TRO) 20 (5)
(2004) 851-864.

[14] M. Ghallab, D. Nau, P. Traverso, Automated Planning: Theory and Practice,
Morgan Kaufmann, 2004.

[15] O. Grau, A scene analysis system for the generation of 3-D models, in:
Proceedings IEEE Intl. Conf. Recent Advances in 3D Digital Imaging and
Modeling, 3DIM '97, Ottawa, Canada, May 1997, pp. 221-228.

[16] S.Harnad, The symbol grounding problem, Physica D 42 (1990) 335-346.

[17] R.Hartanto, J. Hertzberg, Fusing DL reasoning with HTN planning, in: KI 2008:
Advances in Artificial Intelligence. 31st Annual German Conference on Al,
Proceedings, 2008, September, Kaiserslautern, Germany, in: LNAI, vol. 5243,
Springer, pp. 62-69.

[18] M. Hebert, M. Deans, D. Huber, B. Nabbe, N. Vandapel, Progress in 3-D mapping
and localization, in: Proc. 9th Intl. Symp. Intelligent Robotic Systems, SIRS '01,
Toulouse, France, July 2001.

[19] B.K.P. Horn, Closed-form solution of absolute orientation using unit quater-
nions, Journal of Optical Society of America A 4 (4) (1987) 629-642.

http://www.aass.oru.se/Agora/RAS02/
http://www.aass.oru.se/Agora/RAS02/
http://www.aass.oru.se/Agora/RAS02/
http://www.aass.oru.se/Agora/RAS02/
http://www.aass.oru.se/Agora/RAS02/
http://www.aass.oru.se/Agora/RAS02/
http://www.aass.oru.se/Agora/RAS02/

926 A. Niichter, J. Hertzberg / Robotics and Autonomous Systems 56 (2008) 915-926

[20] L. Iocchi, S. Pellegrini, Building 3d maps with semantic elements integrating
2d laser, stereo vision and imu on a mobile robot, in: Proc. 2nd ISPRS Intl.
Workshop 3D-ARCH 2007: 3D Virtual Reconstruction and Visualization of
Complex Architectures, Zurich, Switzerland, July 2007.

[21] H.A. Kestler, S. Sablatndg, S. Simon, S. Enderle, A. Baune, G.K. Kraetzschmar,
F. Schwenker, G. Palm, Concurrent object identification and localization for a
mobile robot, KI - Kiinstliche Intelligenz (2000) 23-29.

[22] B. Kuipers, Y. Byun, A robot exploration and mapping strategy based on a
semantic hierarchy of spatial representations, in: Toward Learning Robots,
1993.

[23] R.Lienhart, A. Kuranov, V. Pisarevsky, Empirical analysis of detection cascades
of boosted classifiers for rapid object detection, in: Proc. German 25th
Pattern Recognition Symp., DAGM '03, Magdeburg, Germany, September
2003.

[24] R. Lienhart,]. Maydt, An extended set of haar-like features for rapid object
detection, in: Proc. IEEE Conf. Image Processing, ICIP '02, New York, USA,
September 2002, pp. 155-162.

[25] B.Limketkai, L. Liao, D. Fox, Relational object maps for mobile robots, in: Proc.
19th Intl. J. Conf. Artificial Intelligence, IJCAI '05, Edinburgh, Scotland, 2005.

[26] M. Magnusson, T. Ducket, A Comparison of 3D Registration Algorithms for
Autonomous Underground Mining Vehicles, in: Proc. Second Eur. Conf. Mobile
Robotics, ECMR '05, Ancona, Italy, September 2005, pp. 86-91.

[27] D. McDermott, Robot planning, Al Magazine 13 (2) (1992) 55-79.

[28] F.Mokhtarian, Silhouette-based isolated object recognition through curvature
scale space, IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI) 17 (1995) 539-544.

[29] B. Neumann, R. Médller, On scene interpretation with description logics,
in: H. Christensen, H.-H. Nagel (Eds.), Cognitive Vision Systems — Sampling the
Spectrum of Approaches, in: Lecture Notes in Computer Science (LNCS), vol.
3948, Springer Verlag, 2006.

[30] P. Newman, D. Cole, K. Ho, Outdoor SLAM using visual appearance and laser
ranging, in: Proc. IEEE Intl. Conf. Robotics and Automation, ICRA 06, Florida,
2006.

[31] A.Niichter, K. Lingemann, J. Hertzberg, Extracting drivable surfaces in outdoor
6D SLAM, in: Proc. 37rd Intl. Symp. on Robotics, ISR '06 and Robotik 2006,
Munich, Germany, May 2006.

[32] A. Niichter, K. Lingemann,]. Hertzberg, H. Surmann, Accurate object
localization in 3D laser range scans, in: Proc. 12th Intl. Conf. Advanced
Robotics, ICAR '05, July 2005, pp. 665-672.

[33] A. Niichter, K. Lingemann, J. Hertzberg, H. Surmann, 6D SLAM - 3D Mapping
Outdoor Environments, in: Quantitative Performance Evaluation of Robotic
and Intelligent Systems, Journal of Field Robotics (JFR) 24 (8/9) (2007)
699-722. (Special Issue).

[34] A. Niichter, H. Surmann, J. Hertzberg, Automatic model refinement for 3D
reconstruction with mobile robots, in: Proc. 4th IEEE Intl. Conf. Recent
Advances in 3D Digital Imaging and Modeling, 3DIM '03, Banff, Canada,
October 2003, pp. 394-401.

[35] A. Niichter, H. Surmann, J. Hertzberg, Automatic classification of objects in 3d
laser range scans, in: Proc. 8th Conf. Intelligent Autonomous Systems, IAS 04,
Amsterdam, The Netherlands, March 2004, pp. 963-970.

[36] P. Pfaff, R. Triebel, W. Burgard, An efficient extension to elevation maps for
outdoor terrain mapping and loop closing, International Journal of Robotics
Research (IJRR) (February) (2007).

[37] L Posner, D. Schroeter, P. Newman, Describing composite urban workspaces,
in: Proc. IEEE Intl. Conf. Robotics and Automation, ICRA '06, Rome, May 2007,
pp. 4962-4968.

[38] The RANSAC (random sample consensus) algorithm, 2003 http://www.dai.ed.
ac.uk/CVonline/LOCAL_COPIES/FISHER/RANSAC]/.

[39] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2nd Edition,
Prentice Hall, Englewood Cliffs, NJ, 2003.

[40] V. Sequeira, K. Ng, E. Wolfart,]. Goncalves, D. Hogg, Automated 3D
reconstruction of interiors with multiple scan-views, in: Proc. SPIE, Electronic
Imaging '99, SPIE’s 11th Annual Symp., San Jose, CA, January 1999.

[41] R. Siegwart, I. Nourbakhsh, Introduction to Autonomous Mobile Robots, MIT
Press, Cambridge, MA, 2004.

[42] S. Stiene, K. Lingemann, A. Niichter,]J. Hertzberg, Contour-based object
detection in range images, in: Proc. 3rd IEEE Intl. Symp. on 3D Data Processing,
Visualization and Transmission, 3DPVT '06, June 2006.

[43] H.Surmann, K. Lingemann, A. Niichter, . Hertzberg, A 3D laser range finder for
autonomous mobile robots, in: Proc. 32nd Intl. Symp. Robotics, ISR '01, Seoul,
April 2001, pp. 153-158.

[44] H. Surmann, A. Niichter, K. Lingemann, J. Hertzberg, 6D SLAM A preliminary
report on closing the loop in six dimensions, in: Proc. 5th IFAC Symp. on
Intelligent Autonomous Vehicles, IAV '04, Lisbon, July 2004.

[45] SWI Prolog, 2003. http://www.swi-prolog.org/.

[46] S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics, MIT Press, 2005.

[47] P. Viola, MJ. Jones, Robust real-time face detection, International Journal of
Computer Vision 57 (2) (2004) 137-154.

[48] A. Walthelm, R. Kluthe, A. Mamlouk, Ein 3D Weltmodell zur teilaktiven Po-
sitionsverfolgung in komplexen dynamischen Umgebungen, in: Proceedings
AMS, 1999, pp. 272-281.

[49] D.L. Waltz, Understanding Line Drawings of Scenes with Shadows, McGraw-
Hill, New York, U.S.A, 1975.

[50] O. Wulf, K.O. Arras, H.I. Christensen, B.A. Wagner, 2D mapping of cluttered
indoor environments by means of 3D perception, in: Proc. IEEE Intl. Conf.
Robotics and Automation, ICRA '04, New Orleans, USA, April 2004, pp.
4204-4209.

Andreas Niichter is a research associate at the University
of Osnabrueck. His past affiliations were with the Fraun-
hofer Institute for Autonomous Intelligent Systems (AIS,
Sankt Augustin) and University of Bonn, from where he
received the diploma degree in computer science in 2002
(best paper award by the German society of informatics
(GI) for his thesis). He holds a doctorate degree (Dr. rer.
nat) from the University of Bonn. His research interests in-
clude reliable robot control, 3D environment mapping, 3D
vision, and laser scanning technologies, resulting in fast
3D scan matching algorithms that enable robots to map
their environment in 3D using 6 degrees of freedom poses. The capabilities of these
robotic SLAM approaches were demonstrated at RoboCup Rescue competitions, EL-
ROB and several other events. He is a member of the GI and the IEEE.

Joachim Hertzberg is a full professor for computer science
at the University of Osnabriick, where he is heading the
Knowledge-Based Systems lab and is currently the Dean
of the school of Mathematics/Computer Science. He has
graduated in Computer Science (U. Bonn, 1982; Dr.rer.nat.
1986, U. Bonn; habilitation 1995, U. Hamburg). His former
affiliations were with GMD and with Fraunhofer AIS
in Sankt Augustin. His areas of scientific interest are
Artificial Intelligence and Mobile Robotics, where he has
contributed to action planning, robot localization and
mapping, plan-based robot control, active sensing, robot
control architectures, temporal reasoning, logical reasoning about action and
change, constraint-based reasoning, and applications of these. In these areas, he
has written or edited 6 books and published over 90 refereed or invited papers in
books, journals or conferences.

http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/FISHER/RANSAC/
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/FISHER/RANSAC/
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/FISHER/RANSAC/
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/FISHER/RANSAC/
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/FISHER/RANSAC/
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/FISHER/RANSAC/
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/FISHER/RANSAC/
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/FISHER/RANSAC/
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/FISHER/RANSAC/
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/FISHER/RANSAC/
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/FISHER/RANSAC/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/

	Towards semantic maps for mobile robots
	Introduction
	What is a semantic map?
	System and paper architecture
	Related work

	Technical prolegomena: 6D SLAM
	Scene interpretation
	Plane extraction and labeling
	Labeling points drivable

	Object detection and interpretation in 3D data
	Classification using contour data
	Object detection using range and reflectance data
	Object point estimation
	Model matching and evaluation

	Semantic 3D maps
	Bottom-up processing of 3D scan data
	Top-down data flow in semantic mapping

	Discussion and outlook
	Coda
	References

