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Abstract

The publication of freely available and machine-readable information has in-
creased significantly in the last years. Especially the Linked Data initiative
has been receiving a lot of attention. Linked Data is based on the Resource
Description Framework (RDF) and anybody can simply publish their data in
RDF and link it to other datasets. The structure is similar to the World Wide
Web where individual HTML documents are connected with links. Linked
Data entities are identified by URIls which are dereferenceable to retrieve in-
formation describing the entity. Additionally, so called SPARQL endpoints can
be used to access the data with an algebraic query language (SPARQL) similar
to SQL. By integrating multiple SPARQL endpoints it is possible to create a
federation of distributed RDF data sources which acts like one big data store.

In contrast to the federation of classical relational database systems there
are some differences for federated RDF data. RDF stores are accessed either
via SPARQL endpoints or by resolving URIs. There is no coordination between
RDF data sources and machine-readable meta data about a source’s data
is commonly limited or not available at all. Moreover, there is no common
directory which can be used to discover RDF data sources or ask for sources
which offer specific data.

The federation of distributed and linked RDF data sources has to deal
with various challenges. In order to distribute queries automatically, suitable
data sources have to be selected based on query details and information that
is available about the data sources. Furthermore, the minimization of query
execution time requires optimization techniques that take into account the ex-
ecution cost for query operators and the network communication overhead for
contacting individual data sources. In this thesis, solutions for these problems
are discussed. Moreover, SPLENDID is presented, a new federation infras-
tructure for distributed RDF data sources which uses optimization techniques
based on statistical information.






Zusammenfassung

Die weltweite Vernetzung von semantischen Information schreitet stetig voran
und erfahrt mit der Linked Data Initiative immer mehr Aufmerksamkeit. Bei
Linked Data werden verschiedene Datensatze aus unterschiedlichen Doménen
und von diversen Anbietern in einem einheitlichen Format (RDF) zur Ver-
fiigung gestellt und miteinander verkniipft. Strukturell ist das schnell wach-
sende Linked Data Netzwerk sehr dhnlich zum klassischen World Wide Web
mit seinen verlinkten HTML Seiten. Bei Linked Data handelt es sich jedoch
um URI-referenzierte Entitdten, deren Eigenschaften und Links durch RDF-
Triple ausgedriickt werden. Neben dem Dereferenzieren von URIs besteht mit
SPARQL auch die Moglichkeit, dhnlich wie bei Datenbanken, komplexe alge-
braische Anfragen zu formulieren und tiber sogenannte SPARQL Endpoints auf
einer Datenquelle auswerten zu lassen. Eine SPARQL Anfrage iber mehrere
Linked Data Quellen ist jedoch kompliziert und bedarf einer foderierten In-
frastruktur in der mehrere verteilte Datenquellen integriert werden, so dass
es nach auflen wie eine einzige grofle Datenquelle erscheint.

Die Féderation von Linked Data hat viele Ahnlichkeiten mit verteilten
und foderierten Datenbanken. Es gibt aber wichtige Unterschiede, die eine
direkte Adpation von bestehenden Datenbanktechnologien schwierig machen.
Dazu gehort unter anderem die grofle Anzahl heterogener Datenquellen in
der Linked Data Cloud, Beschrankungen von SPARQL Endpoints, und die
teils starke Korrelation in den RDF Daten. Daher befasst sich die vorliegende
Arbeit primér mit der Optimierung von verteilten SPARQL Anfragen auf
foderierten RDF Datenquellen. Die Grundlage dafiir ist SPLENDID, ein ef-
fizientes Optimierungverfahren fiir die Ausfithrung von verteilten SPARQL An-
fragen in einer skalierbaren und flexiblen Linked Data Fdéderationsinfrastruk-
tur. Zwei Aspekte sind dabei besonders wichtig: die automatische Auswahl
von passenden Datenquellen fiir beliebige SPARQL Anfragen und die Berech-
nung des optimalen Ausfithrungsplans (Join Reihenfolge) basierend auf einem
Kostenmodell. Die dafiir erforderlichen statistischen Information werden mit
Hilfe von VOID-basierten Datenquellenbeschreibungen zur Verfiigung gestellt.
Dartiberhinaus wird auch des Management verteilter statistischer Daten un-
tersucht und eine Benchmark-Methodologie fiir foderierte SPARQL Anfragen
prasentiert.
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Introduction

The amount of information published on the World Wide Web is constantly
increasing. Today’s web search engines employ sophisticated full-text index-
ing and keyword-based search in oder to quickly find relevant documents from
the billions of web sites. But neither are they able to cover information from
the Deep Web, i.e. data stored in databases and hidden behind dynamic web
front-ends, nor can they connect information from different web sources. In
order to master current and future information it is necessary to employ auto-
matic processing and interpretation of machine-readable data. Microformats!,
Schema.org?, and MicroData® are recent examples for expressing structured
content, i.e. resources with specific properties, inside web pages. They are
recognized by the major search engines and allow for better interpretation of
presentation of web resources with specific properties, e.g. consumer prod-
ucts. However, these approaches only provide a specific markup syntax and
fixed interpretation rules. In fact, large amounts of data from the Deep Web
can hardly be exposed through individual microformats. Moreover, the data
aggregation from different sources is not sufficiently supported.

The objective of the Linking Open Data initiative* is to open up data silos
and publish structured data in a machine-readable format with typed links
between related resources. As a result a growing number of various datasets
from different domains are made available which can be freely browsed and
searched to find and extract useful information. The network of interlinked
datasets, i.e. the so called Linked Data Cloud, has a structure similar to the
web itself where web sites are connected by hyperlinks. Each Linked Data

! http://microformats.org/

% http://schema.org/

3 http://www.whatwg.org/specs/web-apps/current-work /multipage/microdata.html
* http://esw.w3.org/Sweol G/ TaskForces/CommunityProjects/LinkingOpenData
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resource is uniquely identified by a URI. The description of resources and the
relationships between resources are expressed with the Resource Description
Framework (RDF) [202].

Basically everybody can publish datasets as Linked (Open) Data. The
linked data principles [27] only require that resource URIs are resolvable, i. e.
a common HTTP GET request on the URI returns useful information about
the resource. In order to improve the quality and benefits of datasets, the
Linked Data guidelines include specific recommendations, like the reuse of
common vocabularies. Moreover, the Linked Data Patterns [69] encouraged
a consistent use of modeling schemes. A five star Linked Data classification
schema?® gives hints on how to stepwise improve the quality and openness of
Linked Data. A good overview about the foundations and related topics of
Linked Open Data is given in [30].

Finding relevant information in the Linked Data cloud is challenging, not
only because of its size but also because of its open nature and the varying
quality of the datasets. There are two orthogonal approaches for consuming
Linked Open Data: (1) keyword-based search for entities, similar to tradi-
tional web search and (2) the evaluation of complex algebraic queries, like in
databases, using the whole Linked Data cloud as a huge information space.
The first case typically occurs when a user is not searching for a specific
piece of information but first wants to learn about different resources in an
area of interest. Keyword-based search and link exploration helps to narrow
down the search space. This essentially leads to an iterative search process
and new information can be discovered while following links and expanding
the search scope. In contrast, when a user has a good understanding of the
actual data schema and vocabularies used, it is possible to formulate complex
queries which describe specific resource properties and relationships between
resources that should be returned as a result.

In order to leverage the full potential of the Linked Data cloud a user needs
to access all the data in a flexible way. Therefore, simple querying of various
data sources and automatic processing of distributed data should be offered
while hiding the complexity of the data aggregation, i.e. the integration of
various data sources and the mapping of vocabulary and data schemas is
fully transparent to the user. However, a common query interface for Linked
Data which fulfills all these requirements is currently not available. Instead,
single data sources can be queried through so called SPARQL endpoints. These
query interfaces evaluate SPARQL queries on the local RDF graph and return
the results to the caller. The integration of many Linked Data sources with
SPARQL endpoints behind a common query interface can be realized through a
federation infrastructure. Linked Data federation has certain advantages over
other data integration approaches (cf. Chap. 3). Therefore, this dissertation
focuses on the challenges for Linked Data federation and distributed query
processing.

® http://www.w3.org/Designlssues/LinkedData.html



1.1 Scenario 3

1.1 Scenario

Getting a general overview of a specific research area is often a tedious task.
It requires, for example, exploring current state-of-the-art, spotting trend-
ing topics, identifying the most important research questions, finding highly
cited scientific publications, and ranking the main conferences in the area.
Moreover, it may be interesting to get an overview about public funding for
research projects and to identify social connections between researchers, e. g.
as derived from joint publications. Finally, filtering and ranking, e. g. based on
number of publications with high impact or visibility, is necessary to provide
a ’'big picture’ of the hot topics and prominent researchers.

Consider a PhD student who is looking for a research topic. It typically
takes a couple of months to get base knowledge about a research area and
to come up with potentially interesting research questions that have not been
solved before. A tool which can aggregate all the information mentioned above
would be extremely useful. It can provide the necessary overview, including
past work in the area, and it would allow for checking whether certain research
questions have already been fully covered. Furthermore, the tool can be used
to observe current activities and new publications.

In fact, all the information is already available on the web, even as Linked
Open Data. There are many different data sources which can be searched
for relevant information, e.g. over 1.3 million publications with information
about authors and conferences can be found in the Digital Bibliography and
Library Project® (DBLP), the Community Research and Development Service
(CORDIS) provides data about EU-funded research projects and the partic-
ipating institutions, DBpedia [15] offers semistructured data for Wikipedia
articles, and profiles of researchers are described with the friend-of-a-friend
(FOAF) vocabulary [37]. Tools like the CS AK Tive Space” project already in-
tegrate some of this information but are usually focused on a specific subset,
i.e. in this case the UK Computer Science research domain. Instead, we need
an infrastructure and a toolset which can provide access to the whole Linked
Open Data cloud. Thus, a query like ’give me all important publications for
distributed query processing on RDF data, ranked by impact’ should return
the top papers along with information about authors, institutions and asso-
ciated research projects, all without the need to define any data sources for
the search. The tool automatically gathers and merges all relevant informa-
tion from the various known data sources and presents a concise overview.
While the results are valuable for the PhD student it might also be useful for
identifying research institutes when looking for a new job or just to rank the
impact or activity of different researchers.

¢ http://dblp.uni-trier.de/
" http://www.aktors.org /technologies/csaktivespace/
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1.2 Research Challenges

It has been mentioned before, that datasets in the Linked Data cloud are very
heterogeneous and of varying quality. There is neither a quality assurance nor
any kind of approval process for deciding if a dataset is acceptable. Linked
Open Data represents basically a grassroot movement where everybody can
just publish their data using RDF and link it to other existing datasets. Hence,
there are various problems when dealing with diverse schemas, sparse meta-
data, and limitations of query interfaces. In this thesis, the focus lies primarily
on the efficient implementation of distributed query processing in a federation
of SPARQL endpoints. Thus, the challenges are similar to those for traditional
query optimization in (federated) database systems and information retrieval
in distributed systems.

A federation system automatically distributes SPARQL queries to remote
SPARQL endpoints and aggregates the returned results. The query processing
time is significantly influenced by the number of contacted data sources and
the amount of data transferred over the network. Hence, in order to avoid
contacting all data sources, the federation systems needs information about
the data sources and the data they provide. Statistical data is commonly used
in databases and can also be applied for Linked Data federation. However,
such detailed knowledge is hardly available for the whole Linked Data cloud.
Thus, we have to deal with new challenges which limit the adaptation of com-
mon database strategies. In general, we differentiate between three important
aspects which need to be covered by a federation infrastructure for SPARQL
endpoints, namely (1) managing Linked Data sources with (limited) statis-
tical metadata, (2) efficient distributed query processing, and (3) a scalable
implementation of the federation infrastructure.

Data Source Management

The Linked Data cloud is constantly growing and datasets change over time.
However, a complete list of all available Linked Data sources does not exist
and can hardly be compiled. Nevertheless, the CKAN data hub® collects in-
formation information about freely available Linked Data sources. But it is
far from complete and only basic meta-data is provided for the listed data
sources. Hence the federation infrastructure must implement specific mecha-
nisms to obtain the information required for data sources selection and query
optimization. The Vocabulary for Interlinked Datasets (VoiD) [9] allows for
describing data sources. But it is not widely used yet and data providers may
support it at different levels of granularity. Hence, it is necessary to have a
mechanism which can obtain the required statistical information about data
sources. Typically, the statistical information should have a high level of de-
tail in order to obtain accurate estimation results during query optimization.
However, detailed statistics also imply more space for data storage which

8 http://thedatahub.org
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leads to a trade-off between space consumption and statistical details. More-
over, changes in datasets require that these statistics have to be updated.
Otherwise, the query optimization can produce sub-optimal query plans due
to wrong cardinality estimations. Since an explicit change notification mech-
anism does not exist, a federation system has to take care that the statistics
are always up-to-date.

Distributed Query Processing

The query processing in a federation environment has to deal with different
optimization objectives. Query execution time is typically the most important
one but also the amount of transferred data and result completeness play an
important role. Especially the network communication overhead has a signif-
icant influence on the query execution time. Since only few data sources will
typically be able to return results for a query it is important to limit the
number of contacted SPARQL endpoints to those which can actually return
useful results. In general, the query processing has to deal with two major
challenges: (1) identifying suitable data sources which can return results for
a given query and (2) applying a query optimization strategy which finds
the optimal query execution plan according to query execution time, network
communication cost, and result completeness.

Query optimization approaches based on heuristics can hardly handle com-
plex query structures and take all constraints into account. Therefore, a query
optimization based on statistical information can often produce better results
if the cardinality of the query results can be estimated accurately. Further-
more, due to the heterogeneity of the Linked Data cloud we also have to deal
with technical constraints, e.g. limited bandwidth, high latency, and time-
outs are typical problems that are encountered. Coping with all these issues
requires more advanced strategies, like adaptive query processing. However,
this also comes with higher complexity for the query planning. Hence, a static
query optimization approach is typically applied.

Implementing and Testing Scalable Linked Data Federation

Currently, there exists no federation system which integrates the whole Linked
Data cloud. Moreover, there are also no benchmarks which allow for the objec-
tive evaluation of different federation implementations. In fact, there is only
limited experience available with typical Linked Data usage scenarios and the
accompanied technical challenges. In most cases only a few datasets from cer-
tain domains are integrated for specific application scenarios. But such limited
use cases cannot be used for testing scalability of a full fledged Linked Data
federation infrastructure. In order to evaluate scalability and performance of
federation implementations it is necessary to have a realistic setup and typical
query scenarios. While typical benchmarks focus mainly on query execution
time, this may not be the only aspect which is important for a federation
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implementation. The flexibility concerning dataset integration and the adap-
tation to changing datasets may also play an important role. However, since
benchmarks need to be reproducible it is necessary to acquire representa-
tive snapshots of the Linked Data cloud which implies other challenges with
respect to data size or use of sampling techniques. Furthermore, queries in
a federation system have other characteristics than queries in non-federated
scenarios. Hence, setting up a federation for Linked Data always requires hu-
man interaction, e. g. to select relevant data sources or define interesting query
characteristics.

1.3 Research Contributions

The research presented in this thesis deals with the aforementioned challenges
in different ways. Following is an overview of the main contributions.

Managing Distributed Data Sources

The integration of different SPARQL endpoints in a federation requires auto-
matic data source discovery, maintenance of relevant meta-data, and data
sources management for providing transparent access to the Linked Data
cloud. The SPLENDID federation approach relies on statistic information col-
lected from the Linked Data sources in order to decide where relevant data
can be found for a given query. VOID descriptions [9] are used for representing
the required meta-data and simple statistical information of data sources with
a common vocabulary. Heuristics are employed in order to compute an opti-
mal mapping between query expressions and data sources. The results of this
source selection approach is important for the effectiveness of the distributed
query optimization.

Distributed Query Optimization

The SPLENDID query optimization approach is based on statistical informa-
tion which are used to estimate cardinality and selectivity of query results.
The join-order optimization algorithm employs dynamic programming [205].
In contrast to a purely heuristics-based approach this allows for a better es-
timation of the individual query operator cost since the estimated size of
intermediate results can be taken into account. While this kind of query opti-
mization is already known from traditional databases, SPLENDID takes into
account the special characteristics of RDF data which leads to better estima-
tion results, depending on the details of the underlying statistics.
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Distributed Statistics for Full-text Search

RDF data exhibits a skewed data distribution where popular predicates and
types can be found in almost every data source. PINTS allows for weighting
statistical information from different Linked Data sources in order to accom-
modate for such data distributions. The underlying infrastructure is based
on a peer-to-peer network. It distributes and updates aggregated information
from all data sources in an efficient way. Based on these shared statistics
full-text search can basically be realized for the Linked Data cloud.

Linked Data Benchmarking

Benchmarking is important for testing and comparing different federation im-
plementations. Our contribution is a methodology and a toolset for the sys-
tematic generation of SPARQL queries which cover a wide range of possible
requests on the Linked Data cloud. A classification of query characteristics
provides the basis for the query generation strategy. The query generation
heuristic of SPLODGE (SPARQL Linked Open Data Query Generator) em-
ploys stepwise combination of query patterns which are selected based on
predefined query characteristics, e. g. query structure, result size, and affected
data sources.

1.4 Overview

Chapter 2 gives background information about the fundamental technologies
which are relevant for the presented work. Then the different architectures
and query processing approaches for consuming Linked Data are explained in
Chapter 3. Thereafter, SPLENDID is presented in detail, with focus on the
data source management and sources selection in Chapter 4 and presenting
the statistics-based distributed query optimization in Chapter 5. Chapter 6
continues with the PINTS approach for managing distributed statistic for full-
text search. Chapter 7 presents benchmarking Linked Data query processing
using the SPLODGE methodology and toolkit. Finally, Chapter 8 concludes
and gives and overview of future research directions which have been discov-
ered in this work.






Structured Data on the Web

To search the vast amount of information on the World Wide Web, search
engines have become indispensable. Keyword-based search allows us to find
all kinds of information quickly. However, the content of search results cannot
be understood by a search engine but has to be interpreted by a human user.
One approach for improving machine readability is to use structured data with
semantics and interlinks between related data items. In recent years we can
observe the evolution of the World Wide Web into a Web of Data. This also
offers more possibilities for information retrieval well beyond keyword search.
In the following, we will give an overview on the most important technologies
on which the Web of Data is based on.

2.1 RDF

The Resource Description Framework (RDF) is a generic, graph-based data
model used for describing resources in a machine-readable way. RDF was spec-
ified by the World Wide Web Consortium (W3C) and it is a widely accepted
standard in the Semantic Web. Due to its flexibility it has become a popular
format for representing and processing semi-structured data on the Web.

Definition 2.1 (RDF Triple). Let I, L, and B be the pairwise disjoint
infinite sets of IRIs [71], Literals, and Blank nodes, respectively. A triple
(s,p,0) € {IUB} xI x{IUBU L} is called an RDF triple. By conven-
tion, s is the subject, p is the predicate, and o is the object of the RDF triple.
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2.1.1 IRIs, URIrefs, Literals, and Blank Nodes

There are two different specifications for identifying resources in RDF. The
first W3C Recommendation of RDF [154] introduced RDF URI references! be-
cause the specification of the Internationalized Resource Identifiers [71] (IRIs)
was not yet finished. RDF URI references are compatible with IRls, but there
are significant differences concerning the handling of Unicode and special char-
acters, e.g. the characters <, >, {, }, |, “, =, ¢, " are allowed in RDF
URI references whereas all special character in IRIs must be percent encoded.
These differences can result in compatibility problems, especially since the
SPARQL query language specification (cf. Sec. 2.3) is based on IRIs. Hence,
the RDF 1.1 specification [60], which supersedes the previous version, replaces
RDF URI references with IRlIs.

HTTP-referencable URLs are a subset of IRls and the most commonly used
identifiers in RDF statements. URLs are especially important for Linked Data,
which will be described in Sec. 2.2. Common prefixes of IRIs are used to define
namespaces for the resources. Different IRl namespaces are often maintained
by different authorities. Literal values can be used for defining attributes of
a resource. Literals can be strings, numbers, dates or boolean values. They
are either plain (with an optional language tag) or typed. A typed literal
is annotated with a datatype URI, e.g. the commonly used XML Schema
datatypes. Blank Nodes represent anonymous resources which are used if an
entity is only used in a local context, e.g. a relation between two entities is
modeled as a Blank Node with specific attributes that specify the relation
in more detail. The identifiers of Blank Nodes are only defined for the local
scope of an RDF graph. Therefore, they are not unique and cannot be used in
a global context.

Figure 2.1 presents an RDF example describing a publication entitled
"d-complete sequences of integers" written by Paul Erdés and Mordechai
Levin. Three resources, namely dblp:ErdosL96, dblp:Mordechai_Levin, and
dblp:Paul_Erdos represent the publication and its two authors. The Dublin
Core and the FOAF vocabulary are used to express attributes and relations
of the document and authors.

2.1.2 RDF Graphs

The RDF model defines an RDF graph as a set of RDF triples [60]. However,
the typical visualization for RDF graphs is a directed, labeled graph with
Resources, Blank nodes, and Literals representing the nodes of the graph and
predicates defining typed edges leading from subject to object. For example,
Figure 2.2 shows the graph representation for the RDF triples in Fig. 2.1.

Definition 2.2 (RDF Graph). A set G C {(s,p,0)|s € ITUB,p € I,0 €
I'UBUL} is called an RDF graph.

! http://www.w3.org/ TR/rdf-concepts/#tdfn-URI-reference
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Q@prefix dc: <http://purl.org/dc/elements/1.1/>.

Q@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.
Q@prefix dblp: <http://dblp.13s.de/d2r/resource/>.

Qprefix dbpp: <http://dbpedia.org/property/>.

Q@prefix foaf: <http://xmlns.com/foaf/0.1/>.

Qprefix xsd: <http://www.w3.org/2001/XMLSchema#>.

dblp:ErdosL96 rdf:type foaf:Document ;
dc:title "d—complete sequences of integers" ;
dc:creator dblp:Paul_Erdos ;
dc:creator dblp:Mordechai_Levin .
dblp:Paul_Erdos rdf:type foaf:Person ;
foaf:name "Paul Erdos"@en ;
foaf:name "Erdés Pal"@hu ;
dbpp:birthDate "1913—03—26"""xsd:date ;
dbpp:deathDate "1996—09—20"""xsd:date .
dblp:Mordechai_Levin rdf:type foaf:Person ;
foaf:name "Mordechai Levin" .

© 0 N O U b W N =
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Fig. 2.1. An RDF example which describes a publication by Paul Erdés (in Turtle
notation, cf. RDF serialization formats in Sec. 2.1.4)

rdf:type y "Paul Erdos"@en }
: ~>{"Erdés Pal"@hu
dblp:Paul_Erdos — }

dbpp:birthDate
"1913-03-26"std:date]

rdf:type

dblp:Mordechai_Levin

dc:creator

dbpp:deathDate

"1996-09-20"~ ~xsd:date ]

foaf:Document
rdf:type
dblp:ErdosL96

Fig. 2.2. Graph representation of the running example

dc:creator

"d-complete sequences of integers"]

dc:title

2.1.3 RDF Vocabularies

The semantics of RDF statements is defined by vocabularies that are used
to express resource relations and class definitions. Such vocabularies can be
defined with the RDF Vocabulary Description Language (RDF Schema) [36]
and the Web Ontology Language (OWL) [156, 223].

RDF Schema (RDFS) provides classes and properties for defining RDF vo-
cabularies. Core RDF only provides rdf : type as property to define that an en-
tity is an instance of a class. RDFS adds class definitions like rdfs:Resource,
rdfs:Class, and rdfs:Literal. Moreover, the relation between entities can
be specified in detail by defining rdfs:subClass0f or rdfs:subProperty0f,
and by restricting domain and range of a property with rdfs:domain and
rdfs:range. An RDFS vocabulary definition itself is expressed in RDF.
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Other popular vocabularies used for RDF documents are for example
Dublin Core?, Friend Of A Friend® (FOAF) [37], and the Simple Knowledge
Organization System (SKOS) [122]. Dublin Core defines metadata for docu-
ments, e. g. author, title, and publication date. The Friend of a Friend vocab-
ulary provides definitions for describing a person as foaf:Person including
properties like name, address, and occupation. The relation foaf:knows can
be used to build a friendship network between persons. For classification of
concepts, the SKOS vocabulary defines skos:Concept and e. g. skos:broader
and skos:narrower among others semantic relationships.

2.1.4 RDF Syntax

RDF /XML [83] is the standard serialization format of RDF. Since XML is the
most popular data exchange format on the Web, the XML serialization of RDF
can also be processed by many tools and applications. However, RDF /XML is
not that easy to read for humans since XML is very verbose. Moreover, the
tree structure of XML is not the best representation for an RDF graph. Figure
2.3 shows the RDF from the example serialized as XML.

[y

<?xml version="1.0"7>
<rdf:RDF xmins:rdf="http://wuw.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:xsd="http://wuw.w3.0rg/2001/XMLSchema#"
xmins:foaf="http://xmlns.com/foaf/0.1/"
xmins:dc="http://purl.org/dc/elements/1.1/"
xmins:dbpp="http://dbpedia.org/property/"
xmins:dblp="http://dblp.13s.de/d2r/resource/" >
<foaf:Document rdf:about="http://dblp.13s.de/d2r/resource/ErdosL96">
<dc:title>d-complete sequences of integers</dc:title>
<dc:creator>
<foaf:Person rdf:about="http://dblp.13s.de/d2r/resource/Paul_Erdos">
<foaf:name xml:lang="en">Paul Erdos</foaf:name>

N

<foaf:name xml:lang="hu">Erdés Pal</foaf:name>

<dbpp:birthDate rdf:datatype="http://www.w3.org/2001/XMLSchema#date">
1913-03-26</dbpp:birthDate>

10 <dbpp:deathDate rdf:datatype="http://www.w3.0org/2001/XMLSchemat#date">

1996-09-20</dbpp:deathDate>

11 </foaf:Person>

12 </dc:creator>

13 <dc:creator rdf:resource="http://dblp.13s.de/d2r/resource/Mordechai_Levin" />

14| </foaf:Document>

15 | </rdf:RDF>

© 0N O 0w

Fig. 2.3. RDF/XML representation of the running example

N8, Turtle, and N-Triples. The Terse RDF Triple Language* (Turtle) is a
popular plain-text serialization format for RDF. It is very compact compared

% http://dublincore.org/
3 http://www.foaf-project.org/
* http://www.w3.org/TR/2011/WD-turtle-20110809/
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to RDF /XML and was designed with better human-readability in mind. Turtle
allows for the definition of namespace prefixes and provides shorthand nota-
tions for consecutive triples with the same subject (c.f. Figure 2.1). Turtle is
a subset of the more general Notation 3° (N3). While Turtle is restricted to
RDF, N3 also includes additional features, like defining rules which is not part
of RDF. N-Triples® is a simplistic subset of Turtle. Each RDF triple is written
in a separate text line with fully qualified URIs. The N-Triple syntax is easy
to parse for applications, but it consumes a lot of space due to its verbosity.

1| <http://dblp.13s.de/d2r/resource/Paul_Erdos>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Person>.

2| <http://dblp.13s.de/d2r/resource/Paul_Erdos> <http://xmlns.com/foaf/0.1/name> "Paul
Erdos"@en.

3| <http://dblp.13s.de/d2r/resource/Paul _Erdos> <http://xmlns.com/foaf/0.1/name> "Erdds
Pal"@hu.

4 | <http://dblp.13s.de/d2r/resource/Paul_Erdos> <http://dbpedia.org/property/birthDate>
"1913—03—26"""<http://www.w3.org/2001/XMLSchema#date>

5| <http://dblp.13s.de/d2r/resource/Paul_Erdos> <http://dbpedia.org/property/deathDate>
"1996—09—20"""<http://www.w3.org/2001/XMLSchema#date>

6 | <http://dblp.13s.de/d2r/resource/ErdosL96>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/Document>.

7 | <http://dblp.13s.de/d2r/resource/ErdosL96> <http://purl.org/dc/elements/1.1/title>
"d—complete sequences of integers".

8| <http://dblp.13s.de/d2r/resource/ErdosL96> <http://purl.org/dc/elements/1.1/creator>
<http://dblp.13s.de/d2r/resource/Paul_Erdos>

9 | <http://dblp.13s.de/d2r/resource/ErdosL96> <http://purl.org/dc/elements/1.1/creator>
<http://dblp.13s.de/d2r/resource/Mordechai_Levin>.

Fig. 2.4. N-Triples representation of the running example

Embedded RDF. The missing semantic structure in web documents has
been one of the reasons for the development of RDF. But RDF cannot simply
replace HTTML pages. Usually, RDF is provided separately in addition to ex-
isting web pages. In order to combine both worlds, RDFa [112] was developed.
RDFa allows for embedding RDF statements in Web documents. In contrast to
Microformats, which are a pragmatic approach with limited flexibility, RDFa
does support full expressiveness and features of RDF. Figure 2.5 shows the
RDFa representation for a part of the running example.

2.1.5 Named Graphs

All RDF data in a file is usually interpreted as a single RDF graph. In order
to define multiple RDF graphs in the same document or repository, Named
Graphs [46] can be used.

® http://www.w3.org/ TeamSubmission /n3/
® http://www.w3.0rg/2001/sw/RDFCore/ntriples/
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<div xmlns:dc="http://purl.org/dc/elements/1.1/"
about="http://dblp.13s.de/d2r/resource/ErdosL96">
The journal paper <span property="dc:title">d—complete sequences of integers</span>
was published by <span property="dc:creator">Paul Erdos</span>
and <span property="dc:creator">Mordechai Levin</span>.

</div>

DO WN

Fig. 2.5. RDFa example with embedded RDF data

Definition 2.3 (Named Graph). A Named Graph is a tuple ng = (id,G)
where id € I and G is an RDF graph. The functions name(ng) = id and
rdf graph(ng) = G return the graph’s identifier (IRl) and the actual RDF graph,
respectively.

Named Graphs are useful for attaching meta-data to a graph. For exam-
ple, provenance information and signatures can be added as well as version
or access control information. Named Graphs ensure that the meta data is
separated from the graph data. A reference to the name of a named graph,
i.e. the graph’s URI, can be used within the same Named Graph or in other
RDF graphs. Moreover, URIs may be shared between different Named Graphs
but not Blank Nodes.

Named Graphs are similar to Quads, which add context information as a
fourth element to an RDF triple. However, Named Graphs are treated as first
class objects. Syntaxes for Named Graphs, which need to express the name,
the graph, and the relation between them, are RDF /XML, TriX [48], and TriG.
TriX is a simple XML based serialization format and TriG is a variation of
Turtle, i.e. a compact plain text format, using '{’ and "}’ to enclose a graph.

2.2 Linked Open Data

The Web of Data describes a new paradigm for publishing structured data
on the Web. In contrast to the World Wide Web, i.e. the web of hypertext
documents, the Web of Data is a network of web-accessible and interlinked
resources. Linked Open Data (LOD) [30, 111] describes machine-readable in-
formation about resources which is published on the Web according to the
Linked Data Principles”.

2.2.1 Linked Data Principles

The Linked Data Principles define a set of requirements which should be met
such that the published data is useful for a wider audience. These are the
Linked Data Principles as named by Tim Berners-Lee in 2006:

e Use URIs as names for things

" http://www.w3.org/Designlssues/LinkedData.html
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Fig. 2.6. Classification of Linked Open Data within the space of private, public and
open data

e Use HTTP URIs so that people can look up those names.

e  When someone looks up a URI, provide useful information, using the stan-
dards (RDF, SPARQL)

e Include links to other URIs. so that they can discover more things.

The Linked Data Principles are merely guidelines. However, if not all prin-
ciples are fulfilled, the re-use of data will be limited. Tim Berners-Lee says that
fulfilling all four principles will offer the opportunity for unexpected re-use.
The first principle is about using URIs as unique identifiers. In the semantic
web every entity is identified with a URI. Principles two and three are about
providing information about an entity which is identified by a URl. HTTP
should be used as the standard protocol for looking up URIs and if some-
body does a HTTP lookup, some useful information about the entity should
be returned. Using the HT TP protocol also has the advantage that HTTP 303
redirects can be used to refer to alternative sources for serving the description
of the URI. Providing the data with standards like RDF and SPARQL allows for
machine-readable information about properties, classes, and the relationship
between terms. The amount of data which is considered to be useful depends
on the data provider. A common practice is to return RDF triples where the
URI is in the subject or object position. The fourth principle says that links
to other resources should be included, so other resources can be discovered as
well. The rational is that data is more meaningful if it is connected to other
datasets. This allows for discovering more information than the data which is
provided within a single dataset. The links in Linked Open Data are basically
RDF triples where subject and object are resources from different datasets.
The most common link type is owl:sameAs, which expresses that two entities
describe the same thing. But the links can essentially have any type of link,
e.g. foaf :knows is often used to describe relations between persons.
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2.2.2 Linked Data Cloud

The number of published linked datasets has been growing rapidly in recent
years. The Linked Data Cloud started in May 2007 with an initially small
number of twelve datasets. As of November 2011, the (official) Linked Data
Cloud, as visualized in Fig. 2.7, contained 295 datasets. Different topical clus-
ters can be identified (marked with different colors). The major clusters are
Media, Geographic, Publications, Government, Life Sciences, Cross-Domain,
and User-generated Content. The most prominent dataset in the Linked Data
Cloud is DBpedia®. It contains the infobox data of Wikipedia® as RDF state-
ments. DBpedia is also the central hub of the Linked Data Cloud. It was one of
the first datasets to be published as Linked Open Data. Thus, many datasets
provide links to resources in DBpedia. Another reason is the good reputation
of Wikipedia and the diversity of information that is provided. However, there
are only a few backlinks from DBpedia to other datasets. Within the different
topic clusters one can also observe that links between the datasets are sparse.
Especially, mutual links are very rare. A network analysis [192] of the Linked
Data Cloud in 2009 also revealed that the graph is not strongly connected.
Further in-depth analysis of the Linked Data Cloud were performed by Ding
et al. [68] and Bartolomeo [21].

uuuuuu
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Fig. 2.7. The Linked Open Data Cloud as of August 2014, by Max Schmachtenberg,
Christian Bizer, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/.

8 http://dbpedia.org/
? http:/ /wikipedia.org
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2.2.3 Consuming Linked Data

There are two different approaches for consuming linked data, i.e. keyword-
based search and query processing. The second approach is similar to data re-
trieval in relational databases and based on the evaluation of SPARQL queries
(c.f. Sec. 2.3) across the Linked Data sources. Depending on the capabilities
of the data sources, there are different possible approaches for the SPARQL
query evaluation, i.e. URI resolution and link traversal, integration of data
dumps, or the use of SPARQL endpoints. Basically, three main query pro-
cessing approaches can be considered, namely 1) Link Traversal Based Query
Evaluation, 2) Data Warehousing, and 3) Distributed Query Processing. These
three approaches will be discussed in more detail in Chapter 3. Hartig et al.
[107] also give a detailed overview of the strategies and additionally discuss
possible future combinations thereof.

2.2.4 Limitations of Linked Open Data

The datasets in the Linked Data Cloud are very heterogeneous and of varying
quality. Some datasets fully implement all linked data principles while others
support them only partially. Especially, there are datasets which are "Linked
Data" or "Open Data" but not "Linked Open Data". A common problem is
also the correctness and completeness of data. Datasets may contain errors,
at the syntactic or semantic level. In general, common vocabularies should be
used in datasets to allow for consistent interpretation of the data. Otherwise,
the data may not be processed correctly. The (mis)use of owl:sameAs links
[68, 95] is a prominent example for different semantic interpretations of the
same concept. The reason is a not so clear definition of the meaning of same
as in the Linked Data Cloud. Another problem is the sparseness of links in
the Linked Data Cloud. Often there are only links from one dataset to an-
other, but no backlinks. Consequently, there is no path between every node
in the network. Hence, when exploring the Linked Data Cloud, it may not be
possible to discover all relevant information. There may also be different ver-
sions of datasets which may hardly be discerned, because version information
cannot (easily) be attached to URIs or RDF statements. In fact, the handling
of provenance information requires special mechanisms to be implemented.

2.3 SPARQL

The SPARQL Protocol And RDF Query Language [187] has been developed
by the World Wide Web Consortium and W3C and defines a standard query
algebra and protocol for querying RDF data sources. SPARQL is based on
graph pattern matching. A set of triple patterns defines a graph structure
which needs to be matched by the RDF statements in the queried RDF graph.
A triple pattern contains unbound variables or bound variables (i. e. constant
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values) as subject, predicate, or object. SPARQL also includes further query
operators like projection, filter expression, or optional parts. There are four
forms of SPARQL queries, namely SELECT, CONSTRUCT, ASK, and DESCRIBE
queries (c.f. Fig. 2.8). The main difference is the kind of result that is returned
by each query type (cf. Fig. 2.9).

SELECT queries are the most common type of queries and they are comparable
with SQL queries. The result is a multiset of variable bindings obtained by
matching triple patterns with unbound variables against RDF statements.

CONSTRUCT queries are similar to SELECT queries. But instead of variable
bindings, they return an RDF graph. The desired graph structure is de-
fined in the CONSTRUCT clause and instantiated with the variable bindings
obtained during pattern matching.

ASK queries return a boolean value as a result. For a given query pattern they
return true if there is at least one valid set of variable bindings. Otherwise
they return false.

DESCRIBE queries are used to obtain information about resources. The query
result is an RDF graph which describes the resources that have been
matched in the query’s graph pattern. Alternatively, a DESCRIBE query
can contain a specific URI instead of a graph pattern. The amount of
information returned depends on the implementation of the query engine.

SELECT ?author 7coauthor CONSTRUCT {
WHERE { 7author foaf:knows ?coauthor .

?publication dc:creator 7author, ?coauthor . }

7author foaf:name "Paul Erdos" . WHERE {

?coauthor foaf:name "Mordechai Levin" . ?publication dc:creator ?author, ?coauthor .
} 7author foaf:name "Paul Erdos" .

?coauthor foaf:name "Mordechai Levin" .

ASK { !

?publication dc:creator 7author, ?coauthor .

7author foaf:name "Paul Erdos" . DESCRIBE

?coauthor foaf:name "Mordechai Levin" . <http://dblp.de/resource/Paul_Erdos>
}

Fig. 2.8. The four query forms of SPARQL: SELECT, CONSTRUCT, ASK, and DESCRIBE

Definition 2.4 (SPARQL Graph Pattern). Let T'= 1 U L U B be the set
of all IRIs, Literals, and Blank nodes (commonly known as RDF terms [60])
and let V' be an infinite set of query variables which is disjoint from T.
Following, the algebraic definitions of [183, 200] SPARQL graph patterns
are defined recursively with the binary operators UNION, AND, OPTIONAL,
and FILTER!Y. A triple pattern t € (TUV) x (IUV) x (T'UV) is a graph

10 AND defines an equi-join and OPTIONAL defines a left outer join (equivalent to
relational databases).
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SELECT: DESCRIBE:
?author ?coauthor @prefix rdf: <http://www.w3.org/...>.
dblp:Paul_Erdos | dblp:Mordechai_ Levin Qprefix dblp: <http://dblp.13s.de/...>.
Qprefix dbpp: <http://dbpedia.org/...>.
CONSTRUCT: Qprefix foaf: <http://xmlns.com/...>.

Oprefix xsd: <http://www.w3.org/...>.

dblp:Paul__Erdos foaf:knows

dblp:Mordechai__Levin dblp:Paul_Erdos rdf:type foaf:Person ;
foaf:name "Paul Erdos"@en ;
ASK: foaf:name "Erd&s Pal"@hu ;
dbpp:birthDate "1913—03—26"""xsd:date ;
true dbpp:deathDate "1996—09—20"""xsd:date .

Fig. 2.9. SPARQL results for SELECT, CONSTRUCT, ASK, and DESCRIBE example

pattern't. If P and P’ are graph patterns and E is a SPARQL filter expression,
then the expressions

(i) PAND P" (ii) P UNION P’ (i1i) P OPTIONAL P’ (iv) P FILTER E
are graph patterns, too.

The SPARQL example in Fig. 2.10 selects German co-authors of Paul
Erdos. The triple patterns to be matched are defined in the WHERE clause
(lines two to twelve). Result bindings for the variables have to satisfy all
triple patterns, except for the OPTIONAL patterns. The graph structure which
is described by the triple patterns is visualized on the right side of the ex-
ample in Fig. 2.10. Co-authorship is defined via the creator relation between
people and articles. The German nationality is a property of a person. Line
13 defines an order on the results and line 14 restricts the number of results
to 10. The first line specifies the final projection of variables. All namespaces
are omitted for better readability.

1| SELECT ?name ?workplace

2| WHERE { foaf:Document| "Paul Erdos"
3 ?author foaf:name "Paul Erdos".

4 ?article dc:creator ?author. rdfitype foaf:name
5 ?article dc:creator ?coauthor. ccromor

6 ?article rdf:type foaf:Document.

7 ?coauthor foaf:name ?name.

8 ?coauthor dbpprop:nationality dbpedia:German. dc:creator

9 OPT|ONAL{ foaf:name
10 ?coauthor dbpprop:workplaces ?workplace. dbprop:nationality dbprop-workplaces
11| }
12} .
13 | ORDER BY 7name | dbpedia:German |
14 | LIMIT 10

Fig. 2.10. SPARQL query example: German co-authors of Paul Erdos

1 Tn contrast to RDF the SPARQL specification permits Literals in subject position.
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2.3.1 SPARQL 1.1

SPARQL 1.1 [98] is a W3C proposed recommendation which includes var-
ious improvements for SPARQL. It does not only add new features to the
SPARQL query language, but also extends the SPARQL protocol, e.g. with
a standardized update mechanism for inserting RDF data into a data source.
The most notable additions for the SPARQL query language are Aggregates,
Sub Queries, and Property Paths. Aggregates apply an expression over a set of
query solutions. They have been part of SQL for decades, but so far SPARQL
was missing such important features. Therefore, several triple stores had al-
ready implemented their own set of aggregation functions. With SPARQL 1.1
there is finally a standard set of aggregation functions which have to be im-
plemented, namely COUNT, SUM, MIN, MAX, AVG, GROUP_CONCAT, and SAMPLE.
Property paths add the ability to match paths of arbitrary length, i.e. paths
between two nodes in the RDF graph which contain an arbitrary number
of edges. Sub Queries are used to embed SPARQL queries in other SPARQL
queries. This allows for evaluating sub expressions, e.g. in order to restrict
the number of results.

2.3.2 SPARQL Federation

Federation in the semantic web context deals with the seamless integration of
heterogeneous RDF data sources, like from the Linked Data cloud, such that
the data which is offered by different providers is accessed, aggregated, and
made available to the user through a SPARQL query interface as if it would
reside in a single data source. Therefore, SPARQL federation is formally the
evaluation of SPARQL queries across a federated RDF graph.

Definition 2.5 (Federated RDF Graph). A finite set F = {Gi1,...,Gn}
with RDF graphs G1,...,G, is a federated RDF graph.

Figure 2.11 shows some RDF statements distributed across three Linked
Data sources (as illustrated in [87]). A link between two datasets exists if the
same URI occurs in object position of an RDF triple in the first dataset and
in subject position of an RDF triple in the second dataset.

An important addition to SPARQL 1.1 is the federation extension [186].
Two new keywords were introduced to the SPARQL algebra, namely SERVICE
and VALUES (formerly BINDINGS). The SERVICE keyword allows for defining
explicit SPARQL endpoints for a set of triple patterns in the query. The exam-
ple in Fig. 2.12 associates the DBLP endpoint with two triple patterns. Hence,
the subset will be sent to the DBLP endpoint whereas the triple pattern in
line 3 will be evaluated on the default graph. The VALUES keyword is used
for passing values for already bound variables along with the query, i.e. if a
query part has already been evaluated, the resulting variable bindings can be
passed on to a different SPARQL endpoint.
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Fig. 2.11. Information about Paul Erdos in three linked data sources

Federation implementations based on SPARQL 1.0 [188, 88, 203] rely on
individual mechanisms to distribute the query evaluation and merge the re-
sults in an efficient way. With the two new keywords, however, a wider range
of optimizations is possible. Query optimizations for SPARQL federation will
be discussed in detail in Chapter 5.

SELECT ~article ?name
WHERE {
?author rdf:type Foaf:Person.
SERVICE <http://dblp.13s.de/sparql/> {
?article dc:creator 7author.
?author foaf:name ?name.

}

VALUES ?author { (<http://dblp.13s.de/d2r/resource/Paul_Erdos>) }

© 0N O Ol b WN =

}

Fig. 2.12. Use of SERVICE and VALUES keywords in a federated SPARQL query

2.4 RDF Stores

There are various implementations of RDF stores which use different ap-
proaches and technologies for the persistent storage of RDF data and for effi-
cient query processing. Relational Database Management Systems (RDBMS)
are de-facto the first choice for storing structured data. Hence, there are sev-
eral RDF store implementations which use a relational database as storage
backend. On the other hand, there are also custom (native) implementations
for storing RDF data.

2.4.1 RDF in RDBMS

The naive approach for putting RDF data into a relational database is to
create one large table with three columns for subject, predicate, and object.
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In a single table, however, all joins are self joins. Depending on the joined triple
patterns, a self join involves many different areas of the table which have to
be loaded beforehand. Indexes on the columns are maintained to avoid full
table scans. But long seek and scan times as well as a high number of disk
accesses occur if a large number of tuples, which do not all fit into memory,
have to be joined.

Property Tables [229] can be used for partitioning RDF data. The moti-
vation is that resources of the same type typically share the same properties
(i. e. predicates). A property table has a column for the subject and columns
for each predicate. A row contains the tuple with the subject and the object
values for each predicate, thus forming a subject-object-matrix. NULL val-
ues occur if there is no RDF statement for the subject-predicate combination.
There are two ways for creating property tables, either by explicit class def-
inition (i.e. via rdf:type) or by clustering predicates. In the second case,
a predicate must not occur in two different property tables. For predicates
which cannot be assigned to any property table there is one table containing
all the left-over statements using three columns for subject, predicate, and
object.

The advantage of property tables is that joins over the same subject can
typically be answered with the data from a single table. But there are also
several drawbacks. Since RDF is usually not highly structured, there can be
many NULL values in the tables, thus increasing the required space. Another
drawback is that multi-valued attributes, i.e. resources with multiple values
for the same predicate, cannot be represented efficiently in a property table.
Class-based property tables can only be used if the queries contain rdf:type
predicates. Otherwise they are useless. Without class information careful clus-
tering of predicates is necessary.

2.4.2 Column Stores

Vertical partitioning for RDF was first proposed by Abadi et al. [1]. A two-
column table is created for each unique predicate. The subjects of triples with
the predicate and the corresponding objects are then put in the tables and
sorted by subject. Compared to property tables, there is no clustering required
and the tables do not contain any NULL values. The vertical partitioning
approach uses a column-oriented database instead of a row-oriented database
as storage backend. With column stores the data is stored in a more compact
form. Especially, if dictionary encoding is used the tuples have a fixed length.
Moreover, data compression techniques can be used efficiently. Table scans are
much faster and, due to the sorted data, efficient merge-joins can be applied
as well. For joins over objects, the tables can be sorted (indexed) by object.
Vertical partitioning is not well suited for datasets with a skewed distribu-
tion of predicates. For very popular predicates like rdf:type and predicates,
which are not used that often, there will be a few large tables and many small
tables. Additionally, if a dataset, like DBpedia, has many different predicates
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there will also be a large number of tables. Vertical partitioning only works
well for queries with bound predicates. Triple patterns with unbound proper-
ties have to be matched against every single table. This is very inefficient as
all tables have to be scanned to match the pattern.

Figure 2.13 shows how the running example would be stored in tables for
the three described approaches.

Triple Table: Vertical Partitioning:

s D o Type

dblp:ErdosL96 rdf:type foaf:Document dblp:ErdosL96 foaf:Document

dblp:ErdosL96 dc:title "d-complete seq..." dblp:Paul_Erdos foaf:Person

dblp:ErdosL96 dc:creator dblp:Paul_Erdos dblp:Mordechai_Levin|foaf:Person

dblp:ErdosL96 dc:creator dblp:Mordechai_Levin

dblp:Paul_Erdos rdf:type foaf:Person Name

dblp:Paul_Erdos foaf :name "Paul Erdos" dblp:Paul_Erdos "Paul Erdos"

dblp:Paul_Erdos foaf:name "Erdés Pal" dblp:Paul_Erdos "Erd8s Pal"

dblp:Paul_Erdos dbpp:birthDate | "1913-03-26" dblp:Mordechai_Levin| "Mordechai Levin"

dblp:Paul_Erdos dbpp:deathDate | "1996-09-20"

dblp:Mordechai_Levin | rdf:type foaf:Person |BirthDate |

dblp:Mordechai_Levin | foaf:name "Mordechai Levin" [dblp:Paul_Erdos "1913-03-26" |

Property Tables: [Deathbate |
[dblp:Paul_Erdos "1996-09-20" |

Class: Person

Subject Name BirthDate |DeathDate Creator

dblp:Paul_Erdos {Paul Erdos, Erdds Pal} |1913-03-26 [ 1996-09-20 dblp:ErdosL96 |db1p:Pau1_Erdos

dblp:Mordechai_Levin |Mordechai Levin NULL NULL dblp:ErdosL96 |dblp:Mordechai_Levin

Class: Document |Title |

Subject [Title [Creator [dblp:ErdosL96 ["d-complete seq..." |

dblp:ErdosL96 [ "d-complete seq..."[{dblp:Paul_Erdos, ...}

Fig. 2.13. for triple table, property tables, and vertical partitioning

2.4.3 Triple and Quad Stores

The triple structure of RDF statements is the reason why RDF store imple-
mentations are commonly called triple stores. Most triple stores also support
the handling of contextual information, i.e. named graphs. In this case, an
RDF statement is a four-tuple (subject, predicate, object, and context) and for
a better distinction such implementations are typically named Quad Stores.
Triple and Quad stores employ specific data structures and optimizations for
efficient data storage and query answering. All URIs, Blank Nodes, and Liter-
als in an RDF statement are basically strings of variable length. Using a string
dictionary, RDF statements can be represented with fixed size tuples of inte-
ger values that point into the string dictionary. Fixed-size integer tuples and
a (sorted) string dictionary are better suited for effective compression when
storing the data on disk. Moreover, many operations on RDF statements (like
joins) can executed more efficiently, as more more data fits into memory and
the disk access is reduced.
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2.4.4 Indexing RDF

Fast and efficient query processing on large datasets requires optimized in-
dexes, i.e. additional data structures which allow for direct access to data
records without scanning the whole dataset. In relational databases, indexes
can be created for individual or combined table columns and their imple-
mentation is typically based on B-Trees [25] or Hash Indexes. Although RDF
triple stores often employ a table-based storage layout as well, the common
database indexing approaches are not well suitable for RDF graph data, e. g.
because relational databases often assume uniform data distribution and value
independence whereas the data in RDF graphs is highly correlated.

Index Variations

Specific indexes are required for the support of efficient triple pattern matching
and fast join computation. For example, there are six possible combinations for
having one or two bound variables in subject (S), predicate (P), and object (O)
position of a triple pattern, i.e. S, P, O, SP, PO, and SO. If context information
should be covered as well, a fourth component (C) needs to be included, thus,
yielding even more index combinations. Hence, the challenge for a triple/quad
store implementation is to minimize the cost for maintaining all indexes while
maximizing their benefit for an efficient query execution. Consequently, there
exist different approaches which have certain advantages and disadvantages.
The majority of triple patterns in SPARQL queries have a bound predicate,
either alone or in combination with a bound subject or a bound object, and
joins are often resource-centric. Therefore, many RDF stores, e.g. [39, 230],
employ a POS and SPO index alone (or POSC and SPOC index, respectively,
if context information is used). Full indexing of all six index combinations, like
in Hexastore [226] and RDF3X [172, 173], increases the amount of indexed data
significantly, but it also allows to produce results for matched triple patterns
directly from the indexes.

SPARQL queries typically contain groups of triple patterns with shared
variables which define complex graph patterns, e.g. forming a star or chain
structure. Therefore, an indexing approach that goes beyond single RDF state-
ments can help to speed up join computations and, thus, improve the query
processing performance. Maduko et al. [150] use pattern mining strategies in
order to create subgraph summaries. This allows for matching complete graph
patterns in a SPARQL query. However, since pattern mining is an expensive
pre-processing step it is usually not applicable for large datasets. Tran and
Ladwig [215] build a structure index using Bisimulation to find equivalence
classes for entities with the same incoming and outgoing links. Again, the
computation is expensive. Therefore, Lue et al. [146] propose a Map/Reduce-
based approach to perform Bisimulation on large datasets.
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Statistics and Compression

Many indexes usually also include statistical information, e. g. the number of
occurrences of subject-predicate-object combinations, which is used for the
cardinality estimation during the query optimization. Stocker et al. [208] ex-
tend indexes with histograms for object values in order to allow for more
precise cardinality estimation of triples with bound predicate and object.
Characteristic Sets [171] were proposed to further improve the accuracy of
join cardinality estimation for star-shaped query patterns. The motivation is
that classic selectivity estimates, based on the independence assumption, fall
short for RDF due to the high correlation between predicates and objects in
RDF triples and also between predicates in different RDF triples which share
the same subject. Characteristic sets are basically equivalence classes for sub-
jects with the same set of predicates. They contain counts for the number of
distinct entities and the frequency of predicates within the equivalence class.
Maintaining such detailed indexes, statistics, and histograms requires so-
phisticated data compression to reduce the size of the stored data. RDF3X,
for example, uses a sorted string dictionary that encodes the differences be-
tween consecutive strings. Atre et al. [14] use a 3-dimensional in-memory bit
matrix which represents subject-predicate-object combinations with a single
bit. Additionally, they apply run-length encoding compression. However, such
specific compression techniques are usually only applicable for static data
and cannot be used when changing datasets required regular updates. More
detailed information on RDF indexing approaches can be found in [213].

2.4.5 Relational Data Integration

Most of the data that can be published as RDF is already available in relational
databases. Therefore, a mapping is required which translates the content of the
relational tables into an RDF graph. Tables with a single column of primary
keys and more columns that define attributes for the entities identified by the
primary keys can usually be mapped easily to RDF. The primary keys are
interpreted as subjects, column names as predicates, and column values as
objects. Special care has to be taken for foreign keys or tables with multiple
primary key columns. For example, intermediate tables are used for defining n-
to-m relations between different entities. They should not be mapped directly
to RDF statements using the foreign key IDs. Instead, adding RDF statements
for each entity, which is referenced by the foreign keys, makes more sense.
Once a mapping from relational tables to RDF is defined, the data can be
transformed and stored in a triple store. However, it is often desirable not to
replicate the complete data, e. g. when the relational data changes frequently
and the RDF representation should always be up-to-date without expensive
repetitions of data imports. In that case, a wrapper like the D2RServer'? can

2 http://d2rq.org/d2r-server
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be used. The D2RServer uses the predefined mappings to translate SPARQL
to SQL queries and to automatically transform the results to RDF.

2.5 Graph Technologies

RDF is the primary data format for representing structured knowledge on the
Web. However, its graph model is very flexible and can basically be used for
other scenarios (outside the Semantic Web) as well. In addition, one can adopt
algorithms from graph theory for an application on RDF data. Since there
exist various domain-specific graph models similar to RDF it is also possible
to apply graph model transformations in order to solve specific problems with
graph algorithms from other domains which could not be directly applied
on the RDF data. Finally, there is a growing number of graph databases for
RDF which provide efficient indexing and retrieval by focusing on the graph
structure of the data.

2.5.1 Graph Algorithms for RDF

The directed labeled graph that underlies the RDF data model allows for the
application of a variety of graph algorithms from graph theory or other do-
mains with graph-based data models. For example, it is possible to compute
PageRank [181] on RDF entities, apply clustering techniques [91], or iden-
tify specific relationships between entities with network analysis approaches.
Hayes and Gutierrez [110] propose an intermediate bipartite graph-model to
allow for a direct application of standard graph libraries on RDF data. Fur-
thermore, several graph-based approaches focus on indexing and querying
RDF data, e.g. PathHop [41] deals with the reachability problem, i.e. find-
ing a path between two entities in the RDF graph. GRIN [217], gStore [234],
Maduko et al. [150], and Tran et al. [215] identify common sub graph struc-
tures, in order to build compact indexes and allow for efficient matching of
graph patterns in SPARQL queries. However, the scalability of these algo-
rithms is limited since they often have a complexity of O(n) or worse (where
n is the number of vertices in the graph). Hence, an application on large
RDF graphs from the Linked Data cloud is usually prohibitively expensive.
In order to improve the performance of complex computations on very large
graph the Signal/Collect framework [212] provides means for synchronous and
asynchronous execution of parallel algorithms in a distributed setup.

2.5.2 Graph Model Transformation

A graph is a versatile data structure used to model different concepts in var-
ious domains. Typical examples are knowledge representations and models
for social networks or state machines. Moreover, it is possible to apply map-
pings across different technology spaces, e. g. between the Semantic Web and
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software engineering [204]. Typical examples of graphs used in the software
engineering domain are EMF!3, Ecore, MOF!*, and TGraphs [74]. They allow
for defining meta models, software components, and so forth. Mappings be-
tween such graph models can be useful if the other technology space provides
methods which can be employed to solve certain problems in an easier way. For
example, Ontology-driven software development combines semantic concepts
with model-based technological spaces. This allows for consistency, satisfiabil-
ity, and subsumption checking in the semantic space and model transforma-
tion, merging and computation of differences in the model-based space.
Bidirectional graph transformation for combining Semantic Web and soft-
ware engineering technologies is an active research topic. For example, a map-
ping between RDF and TGraphs has been presented in [204]. TGraphs [73]
are directed graphs with typed nodes and edges. The types are stricter than
in RDF and they are modeled according to a schema on a separate schema
level. RDF has an implicit schema, e.g. resources used as predicates are in-
stances of rdf:Property and resources used as objects in triples with rdf:Type
predicates are instances of rdfs:Class. A transformation between RDF and
TGraphs cannot preserve all semantics because restrictions apply due to the
more generic RDF model. Thus, performing forward and backward transfor-
mation (RDF — TGraph — RDF) yields the original RDF graph with exception
of the strictly typed model. The transformation converts the basic RDF graph
structure where subjects and objects are nodes and predicates are arcs be-
tween the nodes. Restrictions on the transformation apply primarily to the
schema information in RDF, i.e. the RDF graph should not explicitly contain
definitions for subclasses, sub properties and domain and ranges of properties.

2.5.3 Graph Databases

Graph databases [12] ought to be an optimal choice for managing RDF graphs.
In fact, RDF data can be easily stored in a graph database but the retrieval
model of SPARQL is more closely related to relational databases and SQL and
does not fit well for a typical graph-oriented data storage. Therefore, the exe-
cution of SPARQL queries on top of graph databases faces new challenges. For
example, graph databases are designed for fast graph traversal, i.e. starting
from a specific node, one can quickly discover and follow graph edges based on
the defined search criteria. SPARQL, on the other hand, is used for matching
arbitrary sub-graph patterns, i.e. if a triple pattern has a bound predicate
with unbound subject and object variables, all graph edges of the specified
type and their connected nodes have to be returned. Without any supporting
index structure, graph databases have to scan the whole graph in order to
compute the results for such a query. Graph database implementations which

13 http://eclipse.org/modeling /emf/
' http://www.omg.org/mof/
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support RDF and SPARQL, e. g. Allegrograph'® and Neo4J16, typically employ
additional indexes in order to handle arbitrary SPARQL queries. A detailed
comparison of the RDF model with graph databases is presented by Angles
and Gutierrez [11].

2.6 Summary

This chapter gave a general overview of the fundamental technologies used for
Web-scale semantic data management, data storage issues, and graph tech-
nologies. RDF is the core data format in the Semantic Web which allows for
representing any kind of knowledge in a generic triple-based graph data struc-
ture. The Linked Data cloud is a large collection of various RDF datasets from
different domains and different data providers. Links between the datasets
allow for flexible mapping of similar concept and create create a large knowl-
edge graph which is constantly growing. Data retrieval is done via HTTP URI
lookups or by defining (complex) graph patterns in SPARQL queries which
are evaluated on so called SPARQL endpoints.

Storage and retrieval are important aspects for managing federated RDF
graphs. Hence, an overview of triple and quad stores was given. Like in rela-
tional databases the data organization, i.e. data structures and data storeage,
plays an important role. Different RDF indexing approaches were presented
which have certain advantages and disadvantages depending on the specific
use cases. Besides the classical data integration scenario, a variety of graph-
centered technologies were presented as well, e.g. including related concepts
and graph-oriented databases.

5 http://www.franz.com /agraph /allegrograph /
16 http://neo4j.org/
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The number of RDF datasets published on the Web is rapidly growing, espe-
cially due to the efforts of the Linked Open Data initiative [30, 111]. Web-
scale data integration is a major challenge in order to exploit the knowledge
in these datasets. However, the heterogeneity of Linked Data, i.e. different
access methods, different schemas, different sizes, and different structured-
ness of data sources, is problematic for a unifying data integration approach.
Moreover, there are different use cases, e.g. domain-specific analysis of large
and highly structured datasets (as needed by experts in the life science do-
main [94, 54]) or exploratory search of barely structured data across different
domains in order to discover new interesting information.

Data integration has been a prominent topic in the database community
for the past years. However, an adaptation for RDF and Linked Data is not
straightforward due to differences in the data model and specific constraints
with respect to the data access, e. g. via SPARQL endpoints [142]. Hence, there
exist different integration paradigms suitable for RDF and Linked Data which
are tailored for specific scenarios and requirements.

This chapter gives an overview of the diverse data integration technolo-
gies for RDF and Linked Data and highlights the respective advantages and
disadvantages. The first section starts with a summary of the most impor-
tant requirements for Linked Data integration in general. A short summary
of related work shows that there exist different perspectives for classifying
the relevant infrastructure paradigms. Then, each of these paradigms will be
presented in detail with a discussion of the respective research challenges.
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3.1 Linked Data Integration Scenarios

There exist different scenarios for integrating distributed RDF data. Depend-
ing on the actual use case different functionalities and infrastructure char-
acteristics may be more important than others. In general, there are two
distinguishable use cases.

Data Exploration The diversity of datasets in the Linked Data cloud con-
fronts most users with the problem of not knowing how to find the desired
information. Thus, an exploratory approach is typically used to discover
interesting resources through keyword-based search and gradual refine-
ment of the search constraint, e. g. domain, data type, or attribute ranges.
Such a data exploration is typically done by non-expert users.

Data Analysis Many domain-specific scientific datasets can be found in the
Linked Data cloud. They provide valuable information for users who are
experts in that area. Hence, an expert user usually knows about the em-
ployed vocabularies and dependencies between different datasets. Thus,
he can formulate very specific SPARQL queries in order to retrieve the
desired results.

Consequently, a sophisticated data integration system should cover at least
these two use case, i.e. by supporting keyword-based search and complex
structured SPARQL queries.

3.1.1 System Requirements

Software engineering typically consider functional and non-functional require-
ments when creating the specification of a software system. Although this
chapter does not deal with particular software engineering challenges for
Linked Data integration, it is advisable to investigate and understand the
different problem dimensions from this perspective.

Functional Requirements

The behavior of a data integration system is defined by the functional re-
quirements. In general, they describe how the retrieval of relevant information
works and what the expected result is.

Expressiveness There exist different means for specifying the information
need of a user. First of all there is keyword-based search which matches
text in RDF triples, maybe with basic filtering constraints, e.g. on types
and attributes. Moreover, there are complex structured queries expressed
with SPARQL used to express specific restrictions for resources with re-
spect to the RDF graph structure and connections between different re-
sources. In order to leverage the full potential of Linked Data, the full
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expressiveness of the SPARQL query language, including conjunctive/dis-
junctive queries, filter expressions, and sorting, should be supported by a
data integration system. Since SPARQL 1.1 there exists a specification for
data updates. However, the support of data updates depends on the data
provider.

Schema Mapping Linked Data sources have heterogeneous schemas, speci-
fied in explicit ontologies or defined implicitly through the use of common
vocabularies. A user typically does not know about all these different
schemas. Hence, queries will usually be expressed with some common on-
tology and need to be mapped to dataset-specific schemas in order to
retrieve results.

Reasoning A key feature of the Semantic Web technology stack is the sup-
port for reasoning. It allows for deriving additional information which has
not been explicitly expressed in the datasets but is defined in ontologies,
e. g. subclass/superclass relations.

Precision and Recall Typical performance measures in traditional infor-
mation retrieval systems are precision and recall. Precision measures if all
returned results are relevant and recall measures if all relevant results were
returned. Measuring precision for SPARQL queries is problematic because
SPARQL has exact match semantics. Recall, however, is quite important,
because ensuring result completeness may require to query many data
sources in the Linked Data cloud.

Result Ranking Result sets for keyword-based search as well as SPARQL
queries can be large, especially when the scope is not selective. Hence, a
common practice is to present results ordered by their relevance. However,
SPARQL queries do not define any sort order for the results unless it is
specified explicitly. Therefore, other aspects, like authority or trustwor-
thiness of data sources, can be used for ranking.

Flexibility Datasets in the Linked Data cloud are accessible by different
means, i.e. URI resolution, data dumps, and SPARQL endpoints. The
flexibility of a data integration system also depends on the support of
these access methods, especially if a broad coverage of the data sources
is intended. Moreover, data sources often have different capabilities, e. g.
with respect to the supported version of SPARQL, additional sets of cus-
tom functions, or metadata they provide. Additionally, the underlying
database implementation may include specific indexing techniques, which
may be recognized in the data integration.

Non-functional Requirements

The overall qualities of a data integration system are defined with the non-
functional requirements. This includes features like scalability, reliability, and
consistency.

Scalability There is a great variety of data sources in the Linked Data cloud,
ranging from a few large and highly structured scientific datasets, e.g.
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UniProt [18] over multi-domain datasets like DBpedia [15, 31] to many
small less structured datasets. The latter also includes fragments of larger
datasets which are obtained from URI lookups and represent a dataset by
their own. A scalable data integration system should be able to handle
the large number of datasets as well as the size and diversity of the data.
With respect to the growing number of datasets in the Linked Data cloud,
including billions of triples, there is certainly the need for scaling up to
data sizes which are by orders of magnitude larger in the future.

Performance Dealing with the large number of datasets in the Linked Data

cloud, the variety of the RDF data and the complexity of SPARQL queries
is challenging. The performance of data integration systems depends on
many factors, e. g. the utilization of index structures, the cost for sending
data over the network, or parallel query execution. Hence, it can be mea-
sured with different metrics, like response time, network communication
overhead, or recall.

There are also extreme application scenarios with frequently updated data
sources, e. g. stock exchange data or sensor data. In such cases the perfor-
mance plays an important role in order to provide continuous and up-to-
date results.

Reliability A Web-scale data integration has to deal with network-related is-

sues, e. g. unreachable data sources and unpredictable network conditions
(response time, bandwidth, data rate). Temporal and permanent failures
of data sources can also be an issue. A failure can be extremely severe
if a central component of the data integration infrastructure is affected.
From the perspective of distributed systems there exist several techniques
which can be applied to improve the reliability of a system, e.g. decen-
tralization of the infrastructure as well as caching and replication of data.
In the Linked Data cloud, it is already possible to find multiple copies of
certain datasets and resources.

Consistency The heterogeneity of the data sources leads to certain con-

flicting situations. First of all, errors in datasets are quite common, i.e.
syntactical and semantical errors. In the latter case datasets may violate
ontology specifications which can hamper data mapping and reasoning.
Moreover, there may be different versions of the same dataset available.
Such conflict cannot be handled without appropriate provenance informa-
tion.

Policy Enforcement Data sources in the Linked Data cloud are highly au-

tonomous. Moreover, data providers may impose restrictions on the use of
their data, i. e. there is a difference between Linked Open Data and Linked
Data. In such cases it may be permitted to access the data through spe-
cific interfaces but it is forbidden to download the data and store copies
at different sites. However, such restriction typically have a significant
influence on the implementation of the data integration.
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3.1.2 Classification of Infrastructure Paradigms

Distributed data integration has been an active research topic over the past
decades, especially in the database community. Federated database systems
[206] are a well-known example for integrating diverse heterogeneous data
sources with different schemas. Data integration approaches in general con-
sider two major strategies, namely materialized data integration and wvirtual
data integration. The first defines a system where data copies are maintained
in a local data store. The latter defines an infrastructure where the data is
accessed on the original data sources, e.g. through a mediator [228].

With respect to materialized and virtual data integration, it is possible to
differentiate between three general feature dimensions, namely autonomous/
cooperative data sources, central/distributed data storage, and central/dis-
tributed indexing [87]. Specific feature combinations, as depicted in Fig. 3.1,
characterize three different infrastructure paradigms, i. e. data warehouse, fed-
eration, and Peer-to-Peer data management.

Central Data Storage Distributed Data Storage
Autonomous

n/a n/a
Data Sources Data Federati

ederation
Cooperative % Warehouse P2P Data
Data Sources Management
Distr. Index Central Index Distr. Index

Fig. 3.1. Data integration characteristics (see also [87]) which yield different infras-
tructure paradigms

This classification is also applicable for RDF data integration in general.
But there are more aspects to be considered, especially with respect to the
characteristics of Linked Data and the functional and non-functional require-
ments mentioned before. Hence, it is not surprising that there exist different
perspectives on Linked Data integration in the research community.

Hartig and Langegger [107] take a “database perspective on consuming
Linked Data” They classify five different query processing approaches with
respect to several properties (functional and non-functional), namely universe
of discourse, source access, use of original data, supporting data structures,
response time and throughput, precision and recall, and up-to-dateness. Their
considered architecture paradigms are data warehousing, search engines, query
federation, active discovery query federation, and link traversal.

Hausenblas and Karnstedt [109] argue that Linked Open Data can be un-
derstood as a “Web-scale database”. They compare (mostly technical) features
of RDBMS with Linked Data, like operations and language, catalog, user views,
integrity, data independence, and distribution independence, and highlight re-
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quirements for a “Linked Data Base”, e.g. schema integration, ranking, and
provenance. Their view on integration paradigms includes centralized reposi-
tories, live look-ups, and peer-to-peer systems.

A similar perspective is taken by Hose et al. [116] with focus on centralized
and distributed data management. They distinguish between data warehouse,
search engines, federation, link traversal, and peer-to-peer systems. In addition,
they also consider reasoning on uncertain RDF databases.

Ladwig and Tran [135] focus on linked data query processing and consider
three challenges: (1) the volume of the source collection, i.e. dereferenceable
URIs are considered as distinct data sources, (2) the dynamics of the source
collection, e.g. sources with (frequently) changing content, and (3) the hete-
rogeneity, access options, and descriptions of sources. Based on these aspects
they differentiate between a top-down, a bottom-up, and a mixed query pro-
cessing strategy, which basically covers federation and link traversal as infras-
tructure paradigms.

There is obviously a common agreement on the distinction of the major
infrastructure paradigms in the community. Table 3.1 is an attempt to clas-
sify and compare these paradigms based on selected characteristics. But there
exist also hybrid approaches, e.g. federation combined with link traversal
[135], which combine certain characteristics. In addition, the table includes
a sixth paradigm which has not received much attention yet, i.e. the pub-
lish /subscribe paradigm. However, due to recently increased interest in the
application of RDF data in event-based systems, there is probably more re-
search activity in this area to be expected. Therefore, this overview is merely a
summarization of the current state-of-the-art and may not be complete. New
data integration strategies may be developed in the future.

The first part of the comparison distinguishes between local and dis-
tributed data/index management. It is complemented with a choice of four
non-functional characteristics and a classification ranging from poor to high
which reflects the relative perceived quality. A detailed discussion of each of
the paradigms is presented in the sections below.

Table 3.1. Comparison of infrastructure paradigms

Data Warehouse Search Engine Federation Link Traversal Peer-to-Peer Event-based

integration material. virtual virtual virtual material. virtual
data local distributed distributed distributed distributed distributed
index local local local — distributed —
scalability medium medium good good high good
reliability good good medium medium good good
consistency poor medium good good poor good

performance high high medium poor-medium  medium-good medium
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3.2 Data Warehousing

A data warehouse [52] implements materialized data integration by storing
data copies from different data sources in a centralized database. No network
communication is required for answering queries on the data. Moreover, op-
timized data storage and indexing is applied which allows for very efficient
query processing. Storing RDF in a data warehouse is recommendable if large
datasets need to be analyzed quickly with complex SPARQL queries.

A data warehouse is typically used to capture a historic view on the data
and allows for applying sophisticated data analysis methods, like Online Ana-
lytical Processing (OLAP) [56]. OLAP employs a multidimensional data model,
i.e. a data cube, with hierarchical levels containing statistical facts. Functions
like selection, projection, drill-down/roll-up, and slice/dice are used to aggre-
gate and analyze information from the dataset. Certain datasets from the
Linked Data cloud may also be analyzed in this way, but using OLAP makes
most sense when it is applied on multi-dimensional statistical data. In fact,
there are a few approaches [76, 124] which aim for implementing OLAP-like
analysis features for RDF data.

3.2.1 Materializing Linked Data

Data Warehouses use the Extract-Transform-Load (ETL) process to integrate
datasets in their local database. Extraction of Linked Data works best if data
dumps are available. Otherwise, URI lookups or queries on SPARQL endpoints
can be used to crawl the data. In order to keep track of the origin of the data,
Named Graphs [47] can be used. Transforming and loading the data into a
data warehouse is typically a time consuming task because index building and
the creation of statistical information is computationally expensive.

Linked Data is very diverse and datasets can change from time to time.
Updating a data warehouse can require repeating the whole ETL process be-
cause indexes and statistics may need to be rebuild. Ideally, a data warehouse
should be set up once and not modified afterwards, or, in the case of Linked
Data, it only suitable for datasets which do not change.

3.2.2 Data Clustering

Large RDF datasets require highly scalable and fast triple store implementa-
tions. Centralized data warehouse solutions offer high performance but they
cannot easily scale up to integrate all datasets from the Linked Data cloud.
A scalable architecture is necessary in order to cope with current and future
dataset sizes. Hence, some triple store implementations, like Virtuoso [75],
4store [97], and YARS2 [102], support clustering of RDF data.

Data clustering distributes all data across different independent storage
nodes. A central master node takes care of the data organization and controls
the query evaluation. Clustering provides a high scalability as storage nodes
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can be easily added and removed. Special attention has to be payed to the
distribution scheme of the underlying data structures. The partitioning of
relational tables, column stores [1], native implementations as property tables,
and the supporting indexes pose its own challenges. In general, the partitioning
should take the RDF graph structure into account and allow for executing
arbitrary SPARQL graph patterns efficiently.

Recent research on RDF clustering has been focusing on using distributed
key-value stores [193, 118, 232], like Google’s BigTable [51], Amazon’s Dy-
namo [62], Cassandra [137], and Apache Hadoop [227], which allow for fast
parallel processing of huge amounts of data based on the MapReduce [61]
paradigm. An application on Linked Data [119] requires to map the RDF graph
structure to the key/value model, e.g. using a data column layout similar to
property tables [229]. However, MapReduce implementations do not support
join operation which is a problem for complex queries with conjunctions of
triple patterns. Thus, the main challenge is to find optimal data placement
strategies which allow for matching a complex graph structure at a single
storage node, without explicit join computation. In addition, the objective of
MapReduce-based approaches is to support massive parallel execution for a
fast query evaluation.

3.3 Search Engines

The Search for RDF data, e.g. in the Linked Data cloud, is not so different
from traditional keyword-based search on the Web. Semantic Search Engines,
like Swoogle [67], Sindice [178], Watson [72], SWSE [100], and Falcons [53],
crawl the Web for RDF documents, extracted relevant metadata, and store it
in local indexes. A search for specific keywords is performed as lookups on the
indexes in order to return relevant documents, entities, or RDF triples.

Search engines are suitable for exploring the Linked Data cloud and for
finding descriptions for specific resources. However, the mentioned search en-
gines offer different search features and various result presentations. A detailed
overview of the individual search engines is given by Hose et al. [116]. Fol-
lowing is a summarization of commonly applied techniques with respect to
crawling, indexing, and ranked retrieval. Table 3.2 compares the most impor-
tant features of RDF-based search engines.

3.3.1 Crawling and Indexing

Documents containing structured data can be found on the Web in different
formats, e. g. RDF /XML, NTriples, embedded in Web pages as RDFa or even as
Microformats. Besides, RDF data is accessible as large data dumps, through
SPARQL endpoints, or as the results of Linked Data URI lookups. The crawler
of a search engine automatically discovers RDF documents with the help of
traditional Web search or by following links of previously crawled documents.
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Table 3.2. Comparison of Semantic Search Engines (the year refers to the relevant
scientific publication)

Swoogle (2004)

SWSE (2007)

Watson (2007)

Sindice (2008)

Falcons (2009)

Focus Documents Entities Ontology documents, Entities
documents SPARQL endp.
Discovery Web Search, se- Links Web Search, Links Links
mantic relations Swoogle, Links
Index N-Grams, URIs objects, triples, keywords keywords, URIs,  keywords,
joins property:value classes
Results document links entities with de-  documents/ documents entities with
+ metadata scription (type, entities description and
abstract, image) links
Ranking PageRank on PageRank on - TF-IDF on doc- term-based sim-
documents documents and uments ilarity and popu-
RDF graph larity
Filter/ metadata (lan- - classes, proper- property, type, class/type
Refine guage, type, ...) ties, entities ontology, format
Features advanced key- entity consolida- advanced key- SPARQL, triple class-inclusion
word queries tion word queries preview reasoning
URL http://swoogle.  http: http://watson. http: http://ws.nju.

umbc.edu

/ /swse.deri.org

kmi.open.ac.uk

//sindice.com

edu.cn/falcons

The document analysis includes the extraction of keywords from literals and
URIs, collection of entities and their attributes, and the identification of links
between documents and resources. SWSE [100] also applies entity consolida-
tion in order to identify different references which refer to the same real world
entities.

The mapping of keywords to entities and documents is commonly done
with inverted indexes. A typical approaches is to employ full-text indexing,
e. g. with Apache Lucene!. Some search engines [100, 178] also index the triples
in order to allow for more complex queries, like in a data warehouse. Crawling
and indexing is a continuous process as new data is constantly added and
updated in the Linked Data cloud.

3.3.2 Ranked Retrieval

The search engines can be divided into document-centric and entity-centric
systems, i.e. the result set contains either documents or entities for the re-
spective search request. Due to the graph structure of RDF the scope of a
keyword-based search can be restricted to specific objects, i.e. literals, URIs,

! http://lucene.apache.org/
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properties, or classes. Additionally, result documents can be filtered by certain
attributes. Falcons [53] also provides reasoning for class inclusion.

Similar to traditional information retrieval, the search results are com-
monly ranked by relevance. The document-centric search approaches [67, 178]
apply e.g. TF-IDF [17] based scores and PageRank [181] on the document
network while the entity-centric search engines compute PageRank on the
RDF graph [100] or determine the relevance based on term similarity and
popularity [53]. The presentation of the results differs significantly. Swoogle
just returns document links with basic metadata. Sindice shows additional in-
formation about the documents and gives a triple preview. Watson provides
document and entity links. SWSE and Falcons show entities with structured
metadata such as type, properties, links, and images.

3.4 Federated Systems

A materialized data integration for Linked Data has several drawbacks due to
the use of local data copies (cf. Sec. 3.2). The virtual data integration executes
live queries on the actual data source. Hence, it returns up-to-date results and
can also integrate data sources which prohibit copying their data. Because of
this flexibility, the federation approach is usually better suited for scalable
Linked Data integration than the data warehouse approach. The implementa-
tion of Linked Data federation is commonly based on a mediator architecture
[228] and the most important components are the data source management
and the distributed query optimization. However, there exist many different
approaches for RDF federation [190]. Figure 3.3 shows a comparison with re-
spect to the most common features.

3.4.1 Mediator-based Architecture

A mediator is a central node which provides the transparent integration of
different data sources, i.e. it exposes a common query interface to the user
which can be used as if all the data would be available from a local database. In
fact, the distributed data sources do not need to be aware of the federation.
Besides slight variations, the architecture of a mediator-based Linked Data
federation basically look the same as for a federated database. An example for
a mediator-based architecture is shown in Fig. 3.2. It depicts the components
of SPLENDID, the federator implementation which will be explained in more
detail in Chapters 4 and 5.

A federated database integrates different data sources through wrappers
which implement schema mapping and provide (statistical) information about
the data sources. A Linked Data mediator has no need for wrappers because
RDF and SPARQL already provide a common data format and query interface.
In order to manage the set of federated data sources, metadata and statis-
tical information is stored in a local catalog. In the case of SPLENDID, this
information is obtained through VOID descriptions.
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Fig. 3.2. Overview of the SPLENDID federation architecture

The query execution pipeline is the main part of a mediator. It starts
with submitting SPARQL queries to the SPARQL interface and a query parser
which translates the query into a logical query plan. A pre-processing step
applies certain query transformations like schema mapping. Then follows the
distributed query processing with source selection, query optimization and
query execution. The last part is the post-processing of the obtained result set,
e.g. duplicate removal, and the serialization into the desired output format.

3.4.2 Data Source Management

The responsibility of the data source management component is to organize
the integrated datasets and maintain a data catalog with the metadata and
statistics which is needed for source selection and query optimization.

Source Discovery

There are two different ways for integrating different RDF data sources in a
federation, i.e. static setup or dynamic discovery. The first requires explicit
(manual) definition of the known data sources. It is suitable for scenarios
which integrate only a few large datasets, as in the Life Science domain [94,
26, 54, 222, 13, 166]. Dynamic discovery is more flexible but requires suitable
discovery services for on the fly identification of relevant (linked) data sources,
e.g. search engines like Sindice [178] can return a list of relevant datasets for
given RDF terms. But information about SPARQL endpoints may be missing.
Moreover, frequent source discovery requests can significantly hamper the
performance of the query processing.

The CKAN data hub? is a recent effort to provide a directory with infor-
mation about more than 4000 linked datasets. It is useful to get an overview
about existing data sources and to obtain basic metadata about the datasets,
e.g. employed vocabularies and the URLs of SPARQL endpoints. However,

% http://thedatahub.org
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a federation infrastructure also needs schema information and certain sta-
tistical data from the datasets in order to perform efficient source selection
and query optimization. Hence, setting up a federated system with (initial)
datasets typically requires a pre-processing step for collecting such metadata
and statistics. But most Linked Data sources offer only limited or no informa-
tion at all about their data and the CKAN repository has seldomly complete
information at the required granularity. A common format for providing such
information has recently been proposed with the Vocabulary for Interlinked
Datasets (VOID) [9] which allows for describing Linked Data with metadata
and basic statistics. Although it has not been accepted as a standard yet,
there is a growing number of data providers which support VOID.

Data Catalog

The data catalog contains all the information which is required for schema
mapping, source selection, and query optimization. Relevant metadata about
data sources include the SPARQL endpoint, used ontologies and vocabular-
ies, extracted schema data, mapping rules, and links to other data sources.
Therefore, the data catalog employs different data structures to maintain this
information. Inverted indexes are needed by the source selection in order to
map RDF terms to data sources. Additionally, a cost based query optimization
requires statistical information about the data sets, e. g. frequency counts for
resources, predicates, and correlated items. Statistics can also be used for data
source ranking as in [135].

The general challenge for effective data source management is to find the
optimal trade-off between the benefits of having sophisticated statistics and
the cost for maintaining the data catalog. More detailed statistics will basically
allow for better source selection and query optimization. But managing a large
data catalog can be prohibitively expensive (in terms of size and update costs).
Moreover, a data catalog should ideally fit into main memory in order to avoid
expensive /O operations. Compression techniques can effectively reduce the
size of the data catalog. But existing implementations for efficient in memory
storage of data statistics [14] do not consider distributed scenarios yet.

Schema Index Most SPARQL queries contain triple patterns with schema-
related constraints, i.e. bound values for predicates or class types. A
schema index is useful to map such triple patterns to data sources.
DARQ [188], SemWIQ [140] and SPLENDID [88] maintain schema indexes
with information about the number of occurrences of each predicate and
type in a dataset. Such an index is very space efficient since the number of
predicates and types in a dataset is limited. However, basic count-based
indexes do not capture any correlation in the data.

Structure Index One of the first RDF federation systems used predicate-
based path indexes [211, 7] in order to allow for efficient matching of path
queries on a number of data sources. Such structural information can be
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very helpful for matching SPARQL graph patterns effectively. In order to
capture arbitrary graph patterns it is necessary to identify all common
sub graphs in the RDF datasets. However, such an analysis, e.g. as done
by Maduko et al. [150] and by Tran and Ladwig [215], is usually expensive
and has to be done as an off-line computation. Therefore, it is not suitable
for datasets which are updated frequently.

Instance Index Schema information is often not sufficient for effective source
selection and query optimization because SPARQL queries can also con-
tain instance data. But storing information for all URIs and literals of
the federated data sources in the data catalog is impossible. This would
basically lead to a complete replication of the federated datasets. Hence,
instance-level data can only be maintained in a highly compressed form.
A common approach in databases is to employ histograms for attributes.
But the application of typical histograms for RDF data is problematic
due to incomplete schema information and data correlations. An interest-
ing approach has been presented with QTrees [101] which combine a tree
structure with histograms in order to store triple pattern combinations
with statistical informations for source selection and query optimization
across many Linked Data sources. However, the initial QTree generation
is expensive and updates of the tree structure are hardly possible later-on.

Creating the data catalog for a federation can be expensive. For example,
DARQ [188] relies on hand-crafted capability files for each data source. Other
approaches like SPLENDID [88] and WoDQA [8] rely on VOID descriptions.
However, if the required metadata is not available, it has to be obtained by
other means, e.g. through automatic extraction from data dumps [34] or by
analyzing RDF data crawled from URIls and SPARQL endpoint [131].

3.4.3 Distributed Query Processing

The main task of a federator is the distributed query processing, i.e. imple-
menting a query processing pipeline with source selection, query optimization,
and query execution. All three parts have significant influence on the efficient
query execution.

Source Selection

The source selection determines a mapping from SPARQL graph patterns to
data sources which are expected to return results for theses patterns. Depend-
ing on the source selection strategy this information can be obtained from
stored mappings in the data catalog or through live lookup via a registry ser-
vice. Although live lookups impose extra cost for every processed query they
also enable the retrieval of results from previously unknown sources. A local
index is limited in size and often contains only schema-level information. This
is usually problematic for less selective query patterns, e.g. rdfs:label, which
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match most of the data sources. Hence, reducing the number of selected data
sources is important, as requests to data sources which cannot return any
results decreases the query execution performance. While additional statistics
can be helpful it is also possible to rank selected data sources based on their
relevance for the query, e.g. [135] includes only the top-k data sources for
query processing.

Query Optimization

The main goal for the query optimization is typically to determine the fasted
query execution plan. But in a distributed setting there are also other impor-
tant aspects like the cost for network communication and the reliability of
the queried data sources. There exist different optimization strategies, mostly
with focus on the join order optimization because the size of intermediate re-
sult sets has the most influence on the cost for query processing and network
communication.

Static query optimization (also referred to as optimize-then-execute ap-
proach) tries to find the best query execution plan using heuristics (FedX [203])
or cost-based query optimization (DARQ [188], SPLENDID [88]) and executes
all query operators in the specified order. Adaptive query optimization takes
into account that network conditions are not predictable and may change un-
expectedly, even during the execution of a query. Thus, a query plan which
was previously considered optimal may become inefficient. An adaptive op-
timization approach can cope with such changes through altering the query
execution plan dynamically (Anapsid [6]) or by using different execution plans
in parallel (Avalanche [22]).

Query Execution

The query execution is tightly coupled with the query optimization. On the
one hand it has to execute the query plan which has been generated by the
optimizer. On the other hand it restricts the optimization space to the sup-
ported physical query operators. In fact, there exist different physical join
implementations, like SHI-Join [136] or Controlled Bind Join [203] which are
more efficient in a distributed system than a nested-loop join or sort-merge
join. Moreover, queries to different data sources can be sent in parallel. Thus,
result tuples from different input streams can be processed simultaneously.
There are two approaches for processing a query execution plan, i.e. the
iterator-based evaluation (pulls result tuples) and the data driven evaluation
(pushes results tuples). Finally, the post-processing ensures that all SPARQL
result modifiers, like DISTINCT, are applied before the result tuples are seri-
alized in the expected output format.
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Table 3.3. Overview of federation systems

catalog source query query remarks
selection optimization execution
FedX [203] cached ASK explicit list, heuristics bind join
query results  ASK queries
SPLENDID [88] VOID explicit list, cost-based bind join,
schema (dyn. pro- hash join
data, ASK gramming)
queries
DARQ [188] explicit schema cost-based nested-loop limited to
capabilities, index (dyn. pro- join, bind bound
counts and gramming) join properties
selectivity
SemWIQ [140] schema- subject — nested-loop bound types
level, classes  clustering + hashed
(monitored, and type bind join
aggregate mapping
queries)
Stuckenschmidt et al.[210]  schema-level  longest path cost-based nested-loop only path
path index (simulated join, hash queries
annealing) join
Networked Graphs [196] — explicitly heuristics semi-join declarative
defined variation SPARQL
view
extension
Data Summaries [101] Q-Tree with Q-Tree — (in memory)  source
triples put in  lookup, join selection for
hash buckets overlap joins
SPARQL-DQP [40] — explicit RDBMS unknown based on
endpoints optimization OGSA-DQP
defined techniques [148]
Anapsid [6] list of based on adaptive adaptive
sources with estimated bushy plans, XJoin,
concepts and  execution small sized dependent
capabilities time sub queries join
Avalanche [22] schema directory using shipping parallelized
index search, split objective data, local pipeline,
by molecules  function join bloom filters
FeDeRate [54] — explicit heuristics/ (unknown) queries
endpoint rules based on
specification shared
ontology
DisMed [166] schema-level  subject- basic nested-loop
data, clustered, heuristics join, bind
properties checks all (filter join
and classes sources for push-down)
(monitored)  capabilities
Min-Tree BGP [221, 225] schema-level  predicate- cost-based, bind join
based minimum
spanning
tree
Prasser et al. [185] PART Tree, compressed cost-based, (depends intermediate
extension of schema + top-down on local results are
QTree with instance iteration, database) loaded in
type, vert. operator local
partitioning pruning database
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3.5 Link Traversal Query Processing

Due to the heterogeneity and the constant growth of the Linked Data cloud
it is impossible to know all data sources in advance. However, the evaluation
of complex SPARQL queries should include all Linked Data sources which can
contribute results. Hence, the objective of the link traversal query processing
[104, 105] is to discover new data sources on the fly through URI lookups
while executing a query. In this sense, link traversal query processing can be
seen as a specialization of federation [136], solely based on datasets which are
published according to the Linked Data principles (cf. Sec. 2.2).

The basic query evaluation strategy works like this [104]: (1) start with a
triple pattern which contains a resource URIs, then (2) resolve the URI and
store the retrieved descriptor object, i.e. RDF triples describing the resource,
in a local dataset and (3) match the triple pattern against the descriptor object
to create an intermediate result set for the respective variable bindings. Then,
(4) continue with a triple pattern that can be joined via the variables and
iteratively repeat steps (2) and (3) for newly discovered resource URIs in the
intermediate result set. The solutions for all variables in a query are complete
if the subset of RDF triples used for the evaluation contains all reachable
URIs and if all query patterns are applied on this subset to produce the result
bindings. An URI is reachable if there exists a path in the Linked Data graph
which starts at an URI contained in the query patterns and is connected by
RDF triples that can be matched by the query’s triple patterns.

An advantage of the link traversal approach is that it requires zero knowl-
edge [103], i.e. there is no need for initial dataset specifications or statistical
information. All information used for query planning and evaluation is con-
tained in a SPARQL query and retrieved on the fly through URI resolution.
However, pre-collected data, e.g. from previously executed queries, can im-
prove the source discovery and, therefore, also the result completeness. The
basic requirement is that SPARQL queries always contain resource URIs which
can be resolved to retrieve a set of suitable RDF triples describing the resource.
Table 3.4 gives an overview of the variations of link traversal approaches.

3.5.1 Non-blocking Query Execution

The basic link traversal query processing [104] is implemented as a pipeline
with nested iterators (left-deep tree). Each iterator fetches result bindings
from its predecessor, performs URI resolution for newly discovered resources,
and matches the obtained data against the triple pattern to generate result
bindings for its ancestor. The performance of the query execution is dominated
by the latency of the URI resolution, i.e. the whole pipeline can be blocked
by a single iterator if a server responds slowly or due to network issues. The
basic solution for this problem, as presented in [104], is prefetching of URIs
and non-blocking iterators which can reject bindings for later processing.
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Although, the iterator-based approach is very common for SPARQL query
evaluation, its pull-based strategy is not really suitable for processing parallel
requests to many Linked Data sources. Therefore, Ladwig and Tran [135,
136] propose a push-based strategy for query operator evaluation. In fact,
the distinction between iterator-based and the data-driven query evaluation is
well known in the area of adaptive query optimization in databases [65]. In the
data-driven (push-based) approach each operator forwards its results binding
to its successor. Thus a streaming-based binding propagation is implemented
and results are returned as soon as they become available. This also has the
effect that the first results are produced much faster than in the iterated based
approach, which also has a certain processing overhead due to rejection and
re-evaluation of bindings. However, the time for retrieving the complete result
set is basically the same in both approaches as it depends only on the time
which is required to receive all data from the data sources.

Another variation for event-driven query evaluation is presented by Mi-
ranker et al. [157] with their Diamond query engine. It is based on the Rete
match making approach [80] which is commonly applied for rule-based sys-
tems. A further difference of the push-based approach by Ladwig and Tran
[135, 136] is the inclusion of locally stored data. It realizes a hybrid federa-
tion approach with a special query operator, i. e. the Symmetric (Index) Hash
Join, which also fixes a problem with the iterator-based implementation. The
execution order of an iterator pipeline can produce incomplete results if data
is processed by one iterator and removed before another iterator can retrieve
additional data based on that information. The push-based approach ensures
that all reachable URIs are being considered during the query evaluation.

3.5.2 Limitations of Pure Linked Data Queries

The link traversal query processing is very flexible and scalable because it does
not need any kind of metadata or statistical information for source discovery.
However, it also comes with several limitations, as explained below.

Results completeness The link traversal is limited to finding resources
which are reachable from the starting URIs via graph edges matched by the
query patterns. Incomplete results my be returned if the URI lookup does
not return all relevant information?, e. g. for inverse relations or if resource
URIs are reused in other namespaces. The first case is quite common be-
cause information about links is typically stored at the source and not at
the destination of the link. The latter case refers to third-party resource

descriptions which reuse URIs directly (instead of defining owl:sameAs
links).

3 According to the Linked Data principles an URI lookup should return “interesting
data”, but the interpretation is up to the data provider. Common practice is to
return RDF triples which contain the resource URI in subject or object position.
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Query Expressiveness SPARQL queries have to have at least one query
pattern with a bound instance URI to define the starting point for the
link traversal. However, URIls in object position are generally problematic
because inverse relations cannot be discovered easily. Moreover, generic
queries which contain only schema descriptions or literals cannot be pro-
cessed. In addition, automatic schema mapping is not supported and light-
weight reasoning has just recently been proposed [218]. Hence, the user
basically has to know the vocabulary and how links connect the datasets
to formulate a query.

Communication Cost The query processing may need to resolve a poten-
tially large number of URIs, e.g. because of resources with many links.
Thus, query performance can be hampered due to the overhead for do-
ing many lookup and high latency of servers which need to handle many
individual URI lookups. A possible solution for reducing the number of
requests is source ranking [135].

Query Optimization The execution order of query operators has a signifi-
cant influence on the performance. However, traditional query optimiza-
tion strategies from relational databases are not applicable for pure link
traversal query processing because it is based on “zero knowledge” [103].
Thus, it is only possible to rely on heuristics, e.g. which take into ac-
count the query structure and selectivity of RDF terms. Hybrid approaches
[135, 136], which integrate indexed data, have certainly more potential for
applying effective query optimization techniques.

A main argument for link traversal query processing is the limitation of
predefined datasets in typical federation approaches. With respect to the re-
strictions discussed above, it seems that only a hybrid approach can provide
the desired flexibility and also allows for answering complex SPARQL queries
in an efficient way.

Table 3.4. Overview of link traversal approaches

recall query optimization query execution
Iterator-based Link Traversal [104, 105] incomplete results — iterator
Symmetric (Index) Hash Join [135, 136]  all reachable URIs with locally indexed  data-driven
data
Reasoning enabled Link Traversal [218] extended result set — iterator

Diamond query engine [157] all reachable URlIs — Rete
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3.6 Peer-to-Peer Systems

Peer-to-Peer (P2P) systems have been designed to overcome scalability and
reliability issues of centralized data integration approaches, like data ware-
houses. They provide decentralized data storage and fault tolerance in a net-
work of autonomous peers. With the increasing number of large RDF datasets
the application of Peer-to-Peer systems for RDF data integration has been
receiving more attention. The research in this area focuses mainly on data
distribution and efficient query processing. But before discussing different as-
pects of Semantic Peer-to-Peer systems [207] it is necessary to briefly summa-
rize typical Peer-to-Peer network topologies. A detailed survey of peer-to-peer
content distribution can be found in [10]

3.6.1 Overlay Network Topologies

Peer-to-Peer systems abstract from the physical network structure by employ-
ing a logical overlay network to connect the participating nodes. Depending
on the application scenario, there exist three main topologies for organizing
the overlay, namely unstructured, super-peer based, and structured networks.

Unstructured Networks integrate different peers in the most flexible way.
There is no specific structure defining how peers are connected. Unstruc-
tured Peer-to-Peer systems are typically document-oriented. Algorithms
can establish connections between peers based on different criteria, like
similar content. Each node maintains a list of its neighbors. Requests are
distributed to all nodes in the network using flooding. If a node can answer
a request with resources from its local database, a response is returned
to the node which has sent the query. Flooding greatly limits the scal-
ability of the peer-to-peer network due to the exponentially increasing
number of messages. Sending requests with a timeout can prevent flood-
ing of the whole network, but there is no guarantee for finding the desired
data within the fixed maximum number of routing hops. Each peer can
also keep information about the content of its neighbors in order to select
suitable peers when forwarding a request. Semantic clustering [175] or se-
mantic routing strategies [214, 145] can improve the connections between
peers with similar content. An example are Semantic Overlay Networks
(SON) [57] which create multiple overlay networks for different topics of
a topic hierarchy.

Super-Peer Networks solve the scalability limitations of unstructured net-
works by introducing a separate layer of super-peers which are responsible
for specific tasks like indexing, query routing, and semantic mapping [170].
Other peers are connected to these super-peers, e.g. in a star-like topol-
ogy. Edutella [169] is a prominent Peer-to-Peer system which employs
super-peers. The super-peers are connected with the so called HyperCuP
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topology [197], i.e. a multidimensional “Cube” which captures content-
similarity of the super-peers. The super-peers keep indexes for the con-
tent which is made available by the ordinary peers. Moreover, Edutella is
aware of schema information which is shared among the super-peers and
taken into account for semantic mapping and query optimization.

Structured Networks are highly scalable and employ a specific logical net-
work topology, e. g. a ring, tree, or cube, with efficient access to the data
that takes at most O (log N) routing hops, where N is the number of peers
in the network, for a data lookup operation, i.e. for finding the peer re-
sponsible for the requested data item. This is achieved by a specific data
distribution, i. e. each peer is responsible for a certain portion of the data.
Structured Peer-to-Peer networks commonly provide the data abstraction
of a distributed hash table (DHT), i.e. key/value pairs are stored and re-
trieved with put and get functionality. Popular implementations are, for
example, CAN [191], Chord [209], and Pastry [195]. Distributed hash ta-
bles have been studied extensively with respect to scalability, resilience,
replication, churn, and optimization of network traffic for routing. More-
over, advanced querying support has been added, e.g. range and prefix
queries in P-Grid [3, 5]. However, a major problem in DHTS is the efficient
processing of complex (conjunctive) queries.

3.6.2 RDF in Structured Peer-to-Peer Networks

The scalability issues of unstructured Peer-to-Peer networks have led to more
intense research in the area of storing RDF in distributed hash tables. This also
shifts the focus from managing various RDF documents to storing individual
RDF triples on the peers. Thus, the challenge for a distribution of RDF triples
in a distributed hash table is to find a suitable data indexing scheme and
allow for efficient query processing in terms of fast data access and minimal
routing overhead. A good overview for RDF storage in structured Peer-to-Peer
systems is given in [77].

Data Indexing

The key/value paradigm of distributed hash tables limits the flexibility when
storing RDF triples. Moreover, the indexing strategy has to consider how query
processing can be supported efficiently. With triple patterns as the basic build-
ing block of SPARQL queries, which can have different variations of bound
variables, the common approach is to index each triple pattern three times,
i. e. for subject, predicate, and object, and store it at the corresponding peers.
To avoid a skewed data distribution among the peers, e. g. caused by popular
predicates or types, some approaches, like GridVine [4, 58], use three more
index combinations for s — p, s — 0, and p — 0. This also allows for better load
distribution when executing queries but increases the size of the stored data.
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Query Processing

Query Processing in distributed hash tables has to take different aspects into
account: (1) the data is fully distributed in the network by hashing RDF triples,
i. e. related information is not necessarily stored at the same peer, (2) the data
is stored as key/value pairs and does not support complex data structures, and
(3) although a single lookup takes O (logN) hops, routing many messages in
a Web Scale environment can be extremely costly. Therefore, different query
processing strategies are implemented for different query types, i.e. atomic
queries (single triple pattern), range queries (triple pattern with filter ex-
pression on the object variable), disjunctive queries, and conjunctive queries.
RDFPeers [42] is based on multi-attribute addressable network (MAAN) [43],
with a Chord-like topology that uses locality preserving hashing of subject,
predicate, and object. It allows for atomic queries, range queries with dis-
junctive object constraints on a single triple pattern, and conjunctive queries
where all triple patterns have the same subject. GridVine [4, 58] is based on
P-Grid [3] which supports range queries and prefix queries and semantic map-
ping between different schemas. The work of Liarou at al. [143] is similar to
RDFPeers but adds conjunctive path queries by forwarding queries in a Chord
ring and evaluating consecutive query patterns. Additionally, load balancing
is achieved by hashing s —p, s—o0, and p— o as well as including variable bind-
ings in forwarded queries. None of the approaches mentioned above is capable
of evaluating complex SPARQL queries. Page [63] indexes triples with context
(spoc) using the indexing scheme of YARS [99], i.e. SPOC, CP, OCS, POC,
CSP, and OS indexes. The quad terms are hashed individually and combined
with the index id. Queries use the same schema and have a query mask which
indicates the positions of variables in a query. All peers with the same ID
prefix (according to the mask) are asked for triples. The indexes lead to a
clustering of the peer-id space. Page does not support conjunctive queries but
just atomic triple patterns.

More recent implementations provide support for more advanced queries.
Karnstedt et al. [127, 128] implemented an infrastructure for semantically-
enriched data on top of distributed hash tables (UniStore? /P-Grid [129]) with
schema mapping, SPARQL-like queries including prefix, range, edit distance,
skyline. The prefix-search capability of P-Grid allows for maintaining less in-
dexes, i.e. the p— o index is used for a predicates only as well as for predicate-
object combinations. The approach applies query shipping, query optimization
of logical /physical plans and parallel execution of queries. It achieves quick re-
sponse times through high parallelization and distribution across many nodes.

The approaches discussed above have not been shown yet to be applicable
for really large RDF data. Only Kaoudi et al. [126] have evaluated their ap-
proach with a large dataset, i.e. LUBM [92]. RDF triples are stored three times
and query order optimization based on selectivity estimation is applied. They
implemented static and dynamic query optimization by processing queries in

* http://www.tu-ilmenau.de/dbis/research /the-unistore-project/
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a chain (across peers) and avoiding cross products. A fully distributed map-
ping dictionary is used to replace terms with integers. Selectivity estimation
is based on triple patterns and joins. Statistics are kept by each peer with
histograms for term frequency and co-occurrence. The overhead for sending
requests, mappings, and statistics has shown to be minimal compared with
the number of messages required for query processing. The approach is im-
plemented in the Atlas® [125] system.

3.7 Event-based Middleware

All scenarios described before were request-driven, i.e. the data is pulled on
request from the location where it is stored. Event-based systems are com-
pletely different. Data providers publish their information as events and the
data integration has to ensure that the data is processed on the fly, i.e. it has
to be consumed in the moment the event is generated. A prominent example
is sensor data or stock exchange. Due to the popularity of RDF there has
also been some research effort in the direction of combining Semantic Web
technologies with sensor applications [180, 20, 182] and publish it as Linked
Data. There are different approaches for processing of RDF event data, i.e.
RDF stream processing and publish/subscribe based event consumption.

3.7.1 RDF Stream Processing

Sensor networks produce continuous streams of data which have to be pro-
cessed in real time. The combination with semantic Web technology allows to
define domain-specific ontologies and model sensor events as structured data
[44]. Walavalkar [224] speaks of streaming knowledge bases which pose new
challenges for the data processing including reasoning. Continuous SPARQL
(C-SPARQL) [19] is an extension of SPARQL with new features for evalu-
ating long-standing queries on RDF streams, i.e. sequences of (RDF triple,
time stamp) pairs. It introduces aggregation, window specifications (sliding
or tumbling), and definitions for when a query should be computed. The re-
sult is a set of bindings or new RDF data streams. A different RDF stream
processing approach is presented by Bolles et al. [35]. Their work is based on
a changed semantics of SPARQL to integrate the evaluation of time stamps
in every operator. However, this complicates the evaluation of queries and
cannot be used in combination with common SPARQL query processing im-
plementations. Moreover, their approach is also missing aggregation functions
on the results.

® http://atlas.di.uoa.gr/



3.8 Summary 51
3.7.2 Publish/Subscribe Systems

Publish /Subscribe systems are designed for event-based producer/consumer
scenarios, e. g. smart spaces, location-based services, or stock exchange. A gen-
eral feature of these systems is the decoupling of producer and consumer, i.e.
a consumer defines an interest in certain events with an event subscription and
the producer publishes event notifications which are routed asynchronously
through the event-based middleware to any interested consumer. A publish /-
subscribe middleware is especially suitable for scenarios with many producers
and many consumers.

Publish/Subscribe is suitable for Linked Open Data when there is an in-
terest in notifications concerning new data being added or if data is updated,
e.g. frequently changing data like product prices, continuous sensor data, or
anything else that is suitable for stream-based data consumption. Subscription
are typically defined as filters on topics or properties. Topics are organized in
a tree hierarchy and they are assigned for the whole event notification. Topics
are often too broad for a consumers interest. Property-based subscriptions are
more specific as they select properties from the content of the event notifi-
cation. Thus they are more flexible but the property-based matching is also
more complex. Content based publish/subscribe systems also support more
complex queries which is very similar to the evaluating conjunctive triple pat-
terns in SPARQL queries. One such approach has recently been presented by
Abdullah et al. [2]. It provides a translation of SPARQL queries to rules in
Rete [80]. Rete is an efficient implementation of parallel pattern matching. All
rules, i.e. query patterns, are arranged in a network tree. New facts, i.e. RDF
triples are checked against the rules and stored in shared temporal memory
if further rules have to be applied. The initial implementation shows that the
Rete implementation can compete with static queries in Sesame and Jena.
Event-based filtering is also known as continuous queries and can be realized
on top of a peer-to-peer network [144].

3.8 Summary

This chapter presented different scenarios and approaches for Linked Data in-
tegration. First, several functional and non-functional requirements for RDF
data integration were identified, which yield different infrastructure paradigms
with certain advantages and disadvantages. Then, the most prominent infras-
tructure paradigms, i.e. data ware housing, search engines, federation, link
traversal query processing, and peer-to-peer systems, (and event-based mid-
dleware), were discussed in detail.

Concerning the differences between materialized and virtual data integra-
tion it turns out that Linked Data integration requires high flexibility and
scalability because of the large number of heterogeneous data sources. Hence,
data maintenance in data warehouses and peer-to-peer systems is generally
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too expensive to ensure up-to-date results. Another common constraint for
most scenarios is the support for complex structured queries, e.g. through a
SPARQL endpoint. In this sense, search engines and the link traversal query
processing are too restricted and the latter approach may not be able to return
complete results.

Consequently, federation is left as the remaining data integration paradigm
which seems to fit all requirements best, especially with regard to virtual data
integration and support of complex queries. Since Linked Data federation is
similar to federated databases, there is a wide range of database technology
from 30 years of research which can potentially be adapted. But there are
also significant differences concerning the graph structure of RDF and the
capabilities of distributed RDF data sources. Hence, there are still many open
research questions. The next two chapters will specifically focus on data source
selection and query optimization for distributed RDF data.



SPLENDID Data Source Selection

Federation infrastructures hide the complexity of data locality from the user
and provide a query interface which can be used as if all data would be stored
in one large database. A manual definition of sub queries with associated data
sources, e.g. as provided by the SPARQL 1.1 federation extension [186] via
the SERVICE keyword, is not the responsibility of the user. Instead, federated
SPARQL queries should basically be defined like common queries on a local
data source and the federation engine takes care of schema mappings and
automatic distribution of sub queries to relevant data sources. Thus, the user
does not need to know anything about the actual data distribution.

Automatic query splitting and data source mapping is challenging for
queries on the Linked Data cloud because it is usually impossible to know in
advance which data sources can contribute results for a query. Link traversal
query processing [105] employs dynamic source discovery during query execu-
tion by resolving resource URIs in an iterative fashion starting with the URIs
contained in a SPARQL query. However, this approach has certain limitations
(cf. Sec. 3.5), especially with respect to query expressiveness and result com-
pleteness. The objective for Linked Data federation is to allow for executing
complex SPARQL queries on an arbitrary number of Linked Data sources and
return complete results. Therefore, it is necessary that each data source offers
a common query interface, i.e. a SPARQL endpoint, and a data summary to
give information about the stored data.

This chapter deals with the challenges of effective data source selection for
federated SPARQL queries, e. g. suitable strategies for mapping triple patterns
to data sources and specific aspects concerning the indexing of the required
metadata. The novel SPLENDID approach [88] is presented which uses VOID
descriptions for static data source selection. Finally, an evaluation on real
Linked Data verifies its effectiveness and further optimizations are discussed.



54 4 SPLENDID Data Source Selection

4.1 Federated Linked Data Management

The Linked Data cloud contains many different datasets and it is constantly
growing as new data sources are added. Although it is almost impossible
to know every dataset, a federation system needs to learn about “relevant”
datasets and their content in order to decide where queries have to be sent to.
Hence, a data source manager component takes care of the integration and
maintenance of different data sources and their metadata. SPLENDID relies
completely on SPARQL endpoints and does not consider URI resolution as
used in link traversal query processing (cf. Sec. 3.5). The latter is limited with
respect to the query expressiveness and, due to the focus on pure Linked Data
principles, it requires essentially a different query processing implementation
which employs many URI lookups. Instead, SPARQL endpoints allow for using
complex queries on a larger dataset. Thus, the source selection has to rely
on a data source catalog which contains information about all known data
sources. A data source entry includes the URL of the SPARQL endpoint and
additional metadata, e.g. size of the dataset, used vocabularies, and schema
information which is used for mapping query expressions to data sources.
The data source integration can be done statically or dynamically. Either
way, the responsibility of a data source manager is to retrieve all data source
descriptions and integrate them in the local data source catalog.

4.1.1 Static and Dynamic Data Source Integration

There exist basically two different approaches for integrating data sources in a
federation, i.e. with static definitions or dynamic discovery. Both approaches
have advantages and disadvantages but it typically depends on the federation
scenario, which of them is favorable. In addition, it is also possible to use a
hybrid combination of static and dynamic data source integration.

Static Source Definitions A static definition of data sources is applicable
for specific domains when all relevant datasets are already known at setup
time, e. g. an expert in the life sciences domain may need to integrate par-
ticular scientific data like UniProt [18] or Drugbank. The setup is typically
done manually by listing all relevant data sources with the respective
SPARQL endpoints and a summarization of their content.

Dynamic Source Discovery Due to the large size of the Linked Data cloud
it is essentially impossible to know all relevant data sources in advance (un-
less the federation is restricted to a particular subset). Hence, a dynamic
discovery approach offers the opportunity to find new data sources on the
fly. However, a query federation system cannot employ URI lookups dur-
ing query execution but needs to find SPARQL endpoints of data sources
which are capable of returning results for certain query patterns. Cur-
rently, only the CKAN repository and search engines like Sindice [178]
can be used to gather such information. But it is not guaranteed that
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the returned information is useful or complete, e. g. that links to SPARQL
endpoints are available. Furthermore, data summaries are often missing.

SPLENDID uses the static approach because it requires certain statistics
which are best generated in a pre-processing step. Collecting such statistics
on the fly is currently not possible in an efficient way. Changes of data sources
are in general problematic because it requires sophisticated update strategies
to keep a data source catalog up to data.

4.1.2 Describing Data Sources with VOID

In order to determine if certain datasets will be able to produce results for
a query expression the source selection needs information about the content
of all federated data sources. The creation of individual hand-crafted data
source descriptions, like in DARQ [188], is infeasible for the Linked Data cloud.
Moreover, extensive pre-processing steps, as employed for Q-Trees [101] or
graph structure indexes [211, 215, 150, 23] can be expensive as well. Ideally,
the data sources descriptions should be available in a compact representation
from the publishers of the datasets. However, they also have to consider cost
and benefit of providing such information.

Although the source selection benefits most from detailed data source
descriptions, their size should be limited for different reasons. First, an ef-
ficient data source selection needs to keep the descriptions of all federated
data sources in memory. Moreover, the generation of the data source descrip-
tions should be straightforward and require only little extra effort for the
data provider. Otherwise, it will outweigh the benefits, especially in case of
changing datasets. For example, maintaining information about all resources
in the Linked Data cloud is impossible. Hence, data summaries are typically
focused on schema-level information which is easy to generate and relatively
stable with respect to data changes. Finally, the source description should be
based on standard semantic web technology, preferably RDF, and allow for
integration of statistical information for query optimization and be extensible
for future requirements. Theses requirements can currently only be satisfied
with the Vocabulary for Interlinked Datasets (VOID) [9]. It provides means
for describing Linked Data sources with general metadata and supports basic
statistical information, e. g. frequency counts.

Figure 4.1 shows an example VOID description for the ChEBI dataset. It
starts with general dataset information like title, description, homepage, and
URL of the SPARQL endpoint. Additionally, it can include references to the
used vocabularies or notes about the creator. The second section deals with
basic statistics, like the triple count, the number of distinct properties, entities,
subjects, or objects. More detailed statistics are given with property partitions
and class partitions. They define the number of occurrences of predicates and
types in the RDF triples of the data sources. All statistical data can be created
automatically.
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1| :ChEBI a void:Dataset ; 17 | # entity count per concept
2 18 | void:classPartition [
3 | # general information 19 void:class chebi:Compound ;
4 | dcterms:title "ChEBI" ; 20 void:entities "50477" .
5 | dcterms:description "Chemical Entities" ; 21|];
6 | foaf:homepage 22
7 <http://chebi.bio2rdf.org/> 23 | # triple count per predicate
8 | void:sparqlEndpoint 24 | void:propertyPartition |
9 <http://chebi.bio2rdf.org/sparql> ; 25 void:property bio:formula ;
10 26 void:triples "39555" ;
11 | # simple data statistics: 27 (1. [
12 | void:triples "7325744" ; 28 void:property bio:image ;
13 | void:entities "50477" ; 29 void:triples "34055" ;
14 | void:properties "28" ; 30(].1
15 | void:distinctSubjects "50477" ; 31
16 | void:distinctObjects "772138" ; 32(].

Fig. 4.1. VOID description excerpt for the ChEBI dataset containing general in-
formation and statistical data, like total triple count and number of occurrences
of predicates and instances. (namespace are omitted for better readability, see
http://void.rkbexplorer.com/ for more examples)

4.1.3 VOID Generation

VOID descriptions are not widely available yet because there are only a limited
number of application scenarios and most data providers do not see a bene-
fit yet. A federation infrastructure based on VOID descriptions may provide
the right incentives for a broader support in the future. However, for now,
VOID descriptions usually have to be obtained in a pre-processing step. The
generation of statistical information for VOID descriptions is straightforward.
It basically requires counting number of triples, properties, distinct subjects,
and so on. There are two typical scenarios for creating the statistics, i.e. by
analyzing data dumps or by sending specific queries to the SPARQL endpoint.

Data Dump Analysis This is the most efficient way for generating VOID
descriptions. Schema-related item counts and statistics can basically be
extracted with a single pass over all RDF triples. More sophisticated struc-
ture analysis and the processing of large datasets may require specialized
extraction algorithms [34, 131].

Query-based Analysis Data dumps may not be available for all data
sources. Hence, the required information has to be extracted in a dif-
ferent way, i.e. through specifically crafted queries which are sent to the
SPARQL endpoints. Such queries are typically aggregate queries which ask
for all predicates and types with their respective number of occurrences
in the dataset. Thus, a SPARQL endpoint has to support SPARQL version
1.1 [98]. Otherwise, item counts cannot be extracted in an efficient way.
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4.2 Data Source Indexing

All schema-related information and statistical data from the VOID descrip-
tions are stored in the data catalog in order to make them easily accessible for
the source selection and query optimization. Hence, the data catalog has to
support indexing and retrieval of several data types and counts. For the data
source selection it keeps a mapping relation M C {(iri,ds) |Viri € INds € D}
from schema-specific RDF IRIs (cf. Def. 2.4) to matching data sources. Al-
though inverted lists are commonly used for such data mappings SPLENDID
employs RDF for storing all information in the data catalog. Thus, the VOID
descriptions can be directly imported and lookups for data sources can be
expressed as SPARQL queries. However, maintaining a data catalog for many
Linked Data sources can be challenging due to the large amount of data. Typ-
ically, the data catalog should fit into memory. But depending on the kept
information it may be necessary to store specific data indexes on disk or use
compression techniques in order to reduce the overall size. Following is an
overview of common constraints for the data catalog.

Index Size The size of a data source catalog influences the performance of
the source selection, e.g. expensive I/O operations can be avoided if all
mappings are kept in memory. The schema information found in VOID
descriptions is relatively small in size and can be easily maintained in
memory. More detailed information typically has to be summarized or
compressed. In addition, the cost for operations on the data structures
will increase with the index size.

Level of Detail A precise data source selection only includes mappings to
datasets which can actually return results for the respective query expres-
sions. But the memory size limitations make it essentially impossible to
maintain very detailed information, e.g. mappings for all URIs in every
Linked Data source. Hence, there is a trade-off between the level of detail
and the mapping precision. VOID descriptions are focused on schema-level
data. This offer a good recall for schema-based queries but query expres-
sions with instance-level restrictions will have a lower mapping precision.

Maintenance Cost Data sources in the Linked Data cloud can change more
or less frequently, i.e. resources are updated or new data will be added.
To ensure high precision and recall for the data source mappings the
indexed data in the catalog has to be updated as well. This can be a
complicated task depending on the number of different data sources, the
amount of indexed data, and the level of detail, e.g. it may require to
repeat expensive operations like a data dump analysis. VOID description
are rather easy to maintain, since the updated information can simply
replace the old indexed data.

With respect to index size and maintenance cost VOID statistics are a good
choice for building a data catalog. Although the SPLENDID source selection
can provide an effective data source mapping based on VOID descriptions only,
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it would also be possible to incorporate and combine further data source in-
formation in a data source catalog. Following section gives a short overview of
state-of-the-art indexing approaches for (distributed) RDF datasets and sum-
marizes specific advantages and disadvantages regarding their applicability for
the data source selection. As it turns out, it is generally not possible to find
an index combination which is optimal in every aspect.

4.2.1 Schema-level Index
Properties and Classes

A schema index basically stores information about the use of predicates and
class types found in the data sources. Therefore, two inverted indexes I, and
I; are maintained. The index size depends on the number of predicates, types,
and data sources. The data distribution is typically skewed, because popu-
lar predicates, like rdf:type and rdfs:label occur in almost every data source
while other predicates or types may just be used in one dataset. Predicates
and type definitions can be extracted directly from a dataset’s RDF triples.
However, some data sources may also provide an explicit schema definition in
a separate ontology, e.g. including information about inheritance of classes
and properties, like rdfs:subClassOf or rdfs:subPropertyOf, and restrictions to
domain and range of relations. Such additional schema information may be
indexed as well and used for schema mapping. SPLENDID [88] and DARQ [18§]
are two examples for federated query optimization approaches which rely on
schema indexes.

Namespace Index

VOID descriptions allow to include information about the vocabularies used
by a dataset. Such information may be helpful for the source selection if no
other metadata is available [8]. Namespace indexes contain the URI names-
paces which are exployed for defining the concepts of a vocabulary. However,
vocabularies are primarily used for schema definitions and specific vocabular-
ies, e. g. rdf, rdfs, foaf, dublin core, are more popular than others and used by
many datasets. Moreover, a dataset typically does not include all concepts of
a vocabulary. Hence, the data source mapping is typically coarse and in com-
bination with a schema index it does not provide any extra information. An
exception are vocabularies which are used for instance-level data in a dataset.
Currently, VOID descriptions with vocabulary information are rarely avail-
able. One possible source is the CKAN repository! , but the provided list of
vocabularies can be incomplete. Hence, an analysis of RDF data dumps would
usually be necessary in order to obtain all vocabulary data. But then it is
also possible to extract all schema-related data for a schema index. Instance-
specific namespaces cannot be described separately in VOID descriptions.

! http://ckan.org/
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4.2.2 Instance-level Index
Resource Index

The overall number of resources (URIs) in a set of Linked Data sources is typ-
ically too large for in-memory data catalogs. However, since SPARQL queries
may contain specific resource URIs in the triple patterns it would be useful
to have such information available for the source selection. There exist dif-
ferent approaches which apply compression techniques, but most of them are
focused on maintaining statistical data for query optimization [14, 171]. For
the purpose of source selection, only the Q-Tree-based data summaries [101]
and the PARTTree extension [185] are applicable. A Q-Tree is a three dimen-
sional data structure which uses hashing of (s, p, o) triples in combination
with histogram-like bounding boxes. Each bucket contains a list of associated
data sources and frequency counts. The Q-Tree can store information for an
arbitrarily large number of Linked Data sources. But the cost for generating
such data summaries is high and typically requires off-line process of data
dumps, which may not always be available.

Literal Index

All aforementioned indexes store mappings for URIs. But literals may also
occur in SPARQL queries and triple patterns with a literal are typically very
selective because in most cases there is just one data source which contains
the literal. However, as with the resource index, it is usually infeasible to store
a mapping for each literal and its respective data sources. Moreover, literals
can contain comprehensive descriptions, even complete text documents, and
they can be annotated with language tags. Therefore, a full-text indexing,
e.g. as provided by Apache Lucene?, would fit better. But index size and
maintenance cost will be increased. In addition, it is not possible to extract
such information from a data source without pre-processing of a data dump.

A special case are literals with data types, e. g. integer, float, boolean, or
date. In combination with a specific predicate, they describe certain attributes
of a resource, like a person’s age or a city’s population. Such attributes are
often matched by filter expression in SPARQL queries. Hence, the source se-
lection could basically benefit from additional statistical information, i.e. by
excluding data sources which cannot provide results for the defined attribute
ranges. Traditional databases commonly use histograms [120] to capture sta-
tistical information about such attributes. But employing histograms for feder-
ated RDF data sources is more complicated. Currently, there exist no suitable
solution for representing RDF data statistics in a concise and useful way, e. g.
Stocker [208] and Langegger [139] apply histograms on RDF data but they
do not differentiate between data types, thus, URlIs, literals, and numbers are
merged. Other options for comprehensive representation of item sets, besides

% http://lucene.apache.org/
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histograms, are Bloom filters [33, 38|, compressed Bloom filters [160], or hash
sketches [78].

4.2.3 Graph-level Index
Triple Pattern Index

The aforementioned indexes cover individual RDF terms which occur as con-
stants in triple patterns. Hence, common source selection approaches [188, 88]
for term combinations, e.g. (?x owl:sameAs dbpedia:Berlin), compute the in-
tersection of the sets of selected data sources. However, the result can include
false positives since the selectivity of the combination of two RDF terms is typ-
ically higher than the individual selectivities. Hence, centralized triple stores,
like RDF3X [172] or Hexastore [226], index all permutations of RDF term
combinations and apply sophisticated compressions techniques to reduce the
index size. But the computation is prohibitively expensive for a federation
system. The Q-Tree [101] is an alternative data structure (cf. instance index).
However, since VOID does not support the definition of RDF term combina-
tions such data cannot be easily exchanged between data sources.

Structure Indexes

Joins in a SPARQL query define restrictions on the result set, i.e. a partial
result for one triple pattern may not be included in the final result set if joined
with other data from the same or another data source. Detecting such situ-
ations and removing the respective data sources in the source selection will
simplify the query optimization and speed up the query execution. However,
additional information is needed in order to find out which data sources can
actually return results for a join combination of triple patterns. As SPARQL
queries can have arbitrary graph patterns a structure index has to store RDF
sub graph descriptions with a varying number of joined triple patterns. Fol-
lowing categorization describes a number of related approaches.

Path Index Stuckenschmidt et al. [211] employ a path index to store schema-
level information about connected RDF triples. Each path is defined by
the bound predicates and contains a set of matching data sources and the
number of occurrences. However, SPARQL queries also contain star-join
patterns which cannot be captured by such an index.

Resource Index Characteristic Sets [171] cover resource-centric star-join
patterns. While initially designed to maintain schema-level statistics for
query optimization they can be easily extended with information about
respective data sources. Yet, there is no implementation for federated data
source selection. A slightly different approach [79] uses equivalence classes
based on the similarity of schema-level data.
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Graph Index A catalog for frequent graph patterns is useful for mapping
data sources to arbitrary SPARQL query patterns. In fact, there exist sev-
eral graph mining approaches for identifying frequent sub-graph patterns
in RDF data [215, 150, 23]. But the in-depth analysis of the datasets is
computationally expensive.

Structure-based indexes are commonly generated for individual dataset.
It would be beneficial for the federation of Linked Data sources if such infor-
mation can also be collected for graphs across data sources. But building and
maintaining such an index for joins of any number of triple patterns in any
possible combinations across any data source is prohibitively expensive.

4.3 Data Source Selection

The performance of federated query processing on Linked Data sources is
significantly influenced by the network communication overhead. Hence, the
number of requests which have to be sent to remote data sources should
be minimal and involve only data sources which can actually return results.
Datasets which cannot contribute to the final result set, i.e. false positives,
will increase the number of request without adding new results, and thus,
decrease the query processing performance. However, a-priori it is unclear
which datasets can contribute results for which part of a query. Each triple
pattern in a SPARQL query may potentially be answered by different data
sources (cf. Fig. 4.2). But without executing queries for all triple patterns on
all data sources it is essentially impossible to determine the exact set of rele-
vant datasets. Therefore, the SPLENDID source selection algorithm has to rely
on a data source catalog which contains knowledge about the data sources.
Moreover, it employs optimization heuristics in order to obtain complete re-
sults with a minimal number of sub queries.

; \SI\IIE;EE'IIE' {?name /@ttp://dblp.uni—trier.de/>
3 ?coauthor foaf:name 7name. ‘%ﬁmtp: //dbpedia. org/>

4 ?coauthor dbprop:nationality dbpedia:German 7]

5|} Chttp ://rdf .freebase. com/>

Fig. 4.2. A SPARQL query with two triple patterns which are mapped to three
different data sources.

SPLENDID uses a static data source integration approach. Hence, all re-
quired VOID description are collected and indexed in a pre-processing step.
The data source catalog fits into memory and allows for fast computation of
mappings from triple patterns to data sources. Yet, it is extensible with addi-
tional (statistical) information which can be used for the query optimization.
The optimal trade-off between query performance and result completeness
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largely depends on the setup of the federation system and the metadata that
is available during the data sources selection. SPLENDID has the primary
focus on result completeness because an exact estimation of the number of
results for the different data sources is complicated based on the schema-level
VOID descriptions. Following, is a detailed explanation of the source selection
strategy which is divided into three individual phases. First, schema-based
data source mappings are determined for each triple pattern. Thereafter, a
refinement of the data source mappings is done with the help of SPARQL ASK
queries. Finally, the overall number of request is minimized by building sub
queries containing multiple triple patterns with common data sources.

4.3.1 Schema-based Source Selection

SPLENDID employs data source selection per triple pattern using the schema
information from the VOID descriptions. First, all triple patterns with a bound
predicate URI and those with rdf:type as predicate and a bound class URI as
object will be processed. A lookup of a predicate or type URI in the predicate
or type index, respectively, will return the associated set of data sources. If
a triple pattern does not have any other bound variables than predicate or
rdf:type and class the returned lookup result represents the exact data source
mapping. Otherwise, only a subset (potentially none) of the data sources
may be able to return results because of the additional restriction applied
by another bound variable. The obtained data source mappings are assigned
to the respective triple patterns, which are separated into the set of triple
patterns with exact mappings and the ones without exact mapping. Finally,
all remaining triple patterns, i.e. without a bound predicate, will be mapped
to all known data sources because it is not possible to determine any restriction
based on the schema-level index. This set of triple patterns should generally
be small since common SPARQL queries typically contain a bound predicate
[82, 184]. However, requests to all data sources are highly inefficient. Hence,
these triple patterns will also be added to the set of triple patterns without
exact mappings for further processing in the following refinement phase.

4.3.2 Data Source Pruning with ASK Queries

Resource URIs and literals are not covered in the VOID-based indexes. There-
fore, a triple pattern with a mix of schema-specific and instance-specific terms,
such as (7?x rdfs:label "Berlin"), can only be mapped to the data sources
which are associated with the schema-related RDF term, i. e. rdfs:label. While
rdfs:label is a popular predicate and used in many datasets, the literal "Berlin"
is rather selective, i.e. it occurs only in a few datasets and not necessarily in
combination with rdfs:label. The selection of false positives is problematic be-
cause of higher communication cost and longer query execution time without
getting additional results. Moreover, the query optimization will become more
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complex and finding the optimal query execution plan may not even be pos-
sible. Therefore, the set of selected data sources needs to be pruned for triple
patterns which contain bound RDF terms beyond schema information.
SPLENDID employs SPARQL ASK queries to validate each triple pattern in
the list of non-exact mappings. A SPARQL ASK query contains the same query
expression (in the WHERE clause) as a SPARQL SELECT query but the result
is either true or false depending on the ability of the data source to return
results for the query expression. Consequently, each data source which returns
false will be removed from the set of data sources for the respective triple
pattern. In the worst case this approach can potentially double the number of
sent requests, i.e. a SPARQL ASK query and SPARQL SELECT query for each
combination of triple pattern with selected data source. However, in reality
there will be a certain number of data sources which can be pruned with initial
ASK queries. Moreover, the cost for sending an ASK query is much lower than
the cost for the actual SELECT query, especially if intermediate result data
needs to be transferred. Therefore, the use of ASK queries can significantly
speed up the whole query execution by avoiding expensive requests with a few
cheap ones. Algorithm 1 shows in detail how the source selection is done.

Algorithm 1 Source Selection for triple patterns using VOID and ASK queries.

Require: I,; I;; D ={di,...,dn}; T ={t1,...,tn} // indexes, data sources, and
triple patterns

1: for each ¢t; € T' do
2 sources = )
3 s = subj(t;); p=pred(t;); o= obj(t;)
4:  if ! bound(p) then
5: sources = D // assign all sources for unbound predicate
6 else
7 if p = rdf:type A bound(o) then
8 sources = I:(0)
9: else
10: sources = I,(p)
11: end if
12:  end if
13:  // prune selected sources with ASK queries
14:  if ! bound(p) V bound(s) V bound(o) then
15: for each d; € sources do
16: if ASK(d;,t;) # true then
17: sources = sources \ {d;}
18: end if
19: end for
20:  end if

21: end for
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4.3.3 Sub-Query Optimization

The result of the source selection is a list of mappings where each triple pattern
has a set of selected data sources (i.e. SPARQL endpoints). A naive federation
approach could basically send each triple pattern individually to the assigned
data sources and then aggregate the returned results. However, an important
aspect of the query optimization is to minimize the number of requests which
have to be sent. For example, if multiple triple patterns have been assigned
to the same set of data sources it might be possible to aggregate them into
a single sub query. But certain constraints have to be considered. There are
situations where the combination of triple patterns can lead to incomplete
results. Moreover, cross products may be introduced which can yield large
intermediate result sets such that large amount of data have to be transferred
over the network.

Figure 4.2 illustrates a SPARQL query with two triple patterns and three
selected data sources, namely http://dblp.uni-trier.de/, http://dbpedia.org/,
and http://rdf.freebase.com/. At least three sub queries are required, i.e. one
for each data source. However, the combination of both triple pattern in a
sub-query for http://dbpedia.org/ can yield an incomplete result set, e.g. if
DBpedia contains results for the first triple pattern which can be joined with
results of Freebase for the second triple pattern. Hence, triple patterns with
multiple assigned data sources usually cannot be combined but have to be
sent individually, thus, ensuring that all intermediate results can be joined
across data sources. The SPLENDID source selection relies on three different
heuristics to group triple patterns while trying to ensure result completeness
as much as possible.

Exclusive Groups. If a single data source is exclusively selected for a set of
triple patterns all of them can be combined into one sub query. Such a set
of triple patterns has been referred to as exclusive group in FedX [203]. The
join structure of the triple patterns in exclusive groups has no effect on
the result completeness. However, for performance reasons cross products
should be avoided. Hence, the exclusive groups need to make sure that
the joined triple patterns form a connected graph, i.e. each triple pattern
contains at least one variable which is shared with another triple pattern
in the exclusive group.

Resource Groups. Queries for resources typically have a star-shaped graph
pattern where the respective variable used for matching the resources oc-
curs in the subject position of the respective triple patterns. Due to the
fact that resources are identified with a unique URI, which is defined by
the data provider, all of the information for a specific resource can usu-
ally be found in one data source. Moreover, it is common practice to use
owl:sameAs links and a distinguishable URIs when similar resources are de-
fined in different namespaces. Hence, it makes sense to combine such triple
patterns, especially if they contain popular predicates, like rdfs:1label or
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foaf:knows, which are matched by many data sources. In this case, the in-
tersection of the data sources of the relevant triple patterns is computed.
This heuristic actually sacrifices result completeness if information about
the same resource is defined in different data sources.

SameAs Groups. SameAs links are the most common type of links between
datasets in the Linked Data cloud. Thus, the source selection for triple
patterns with the predicate owl:sameAs typically returns a large set of
matched data sources. Assuming that all owl:sameAs links are defined in
the same dataset as a link’s source entity, it is possible to group all triple
patterns, which contain the variable used for matching the respective en-
tity, and reduce the data source sets by calculating the intersection. This
approach has to be used with caution because in the presence of 3rd party
datasets with external owl:sameAs definitions it is not possible to ensure
result completeness. Moreover, besides owl:sameAs, other predicates may
be used as well to define links between datasets. In such cases a combina-
tion of triple patterns like { ?x foaf:knows ?y . ?y owl:sameAs 7z } should
not be restricted to the same data sources.

The SPLENDID source selection employs all aforementioned heuristics in
order to minimize the number of sub queries which have to be sent to the
SPARQL endpoints. Its effectiveness depends on the characteristics of the
given queries and the number of involved data sources. Therefore, follow-
ing evaluation investigates the effect of the source selection for a number of
representative SPARQL queries.

4.4 Evaluation

The results of the source selection have a large influence on the distributed
query execution performance. Hence, different settings of the SPLENDID
source selection strategy are compared in an evaluation in order to analyze
the effects of the heuristics and optimization steps and to show that suitable
data source mappings based on VOID descriptions can be produced. However,
the evaluation cannot just measure the query execution and response times
because they depend too much on an effective query optimization and efficient
query execution. Instead, the evaluation measures the source selection quality
based on the number of selected data sources and the number of generated
sub-queries, i.e. requests which have to be sent over the network.

Three variations of the source selection are compared. The baseline em-
ploys only the information about predicates from the VOID descriptions to
map triple patterns to data sources. Sub queries are created using exclusive
groups if possible. The second configuration also takes type information from
the VOID descriptions into account. Finally, the third one combines triple pat-
terns with owl:sameAs in order to reduce the overall number of sub queries.
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Table 4.1. FedBench evaluation dataset statistics

Data Set triples links predicates types
DBpedia 3.5 subset 43.6 M 61.5k 1063 248
GeoNames 108.0 M 118.0k 26 1
LinkedMDB 6.2M 63.1k 222 53
Jamendo 1.1M 1.7k 26 11
New York Times 0.3M 31.7k 36 2
SW Dog Food 0.1M 1.6k 118 103
KEGG 1.1M 30.0k 21 4
ChEBI 7.3M - 28 1
Drugbank 0.8M 9.5k 119 8
4.4.1 Setup

The FedBench [198] benchmark suite is used to evaluate the source selection
for distributed queries on real Linked Data sources. It provides snapshots
of 10 linked datasets, which are carefully chosen with respects to aspects like
dataset size, data diversity, and the number of interlinks. An evaluation on the
original SPARQL endpoints not possible as it does not allow for an objective
comparison due to unpredictable reliability and varying latency.

The benchmark queries resemble typical requests on the datasets and their
structure ranges from simple star and chain queries to complex graph patterns.
All queries cover at least two different data sources. Table 4.1 gives details
about the size of the data sets along with statistical information. The number
of sources which contribute results to a query and the number of result tuples
are shown in Tab 4.2.

Table 4.2. Number of data sources which are covered in FedBench’s cross domain
(CD) and life science (LS) queries and the number of results per query.

CD1 CD2 CD3 CD4 CD5 CD6 CD7 LS1 LS2 LS3 LS4 LS5 LS6 LS7

sources 2 2 5 5 5 4 5 2 4 2 2 3 3 3
results 90 1 2 1 2 11 1 1159 333 9054 3 393 28 144

The dataset snapshots were distributed across five 64bit Intel® Xeon®
CPU 3.60GHz server instances running a Sesame 2.4.2 triple store implemen-
tation with each instance hosting the SPARQL endpoint for one life science
and for one cross domain dataset. All 14 queries for the life science and cross
domain datasets of FedBench were executed on these SPARQL endpoints. The
query processing was done on a separate server instance with 64bit Intel®
Xeon® CPU 3.60GHz and a 100Mbit network connection.



4.4.2 Results

The compared source selection strategies are based on 1) VOID predicates
and exclusive groups, 2) VOID predicates + type and exclusive groups, and
3) VOID predicates + type and exclusive groups + owl:sameAs groups. For all
life science and cross domain queries the number of selected data sources and
the number of requests to SPARQL endpoints, which are necessary to execute
the generated sub queries, are measured. Figure 4.3 shows the results. Lower
values mean less selected data sources and fewer requests, and thus, faster

query execution.
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Fig. 4.3. Number of selected data sources (above) and number of SPARQL end-
points requests (below) when using VOID statistics with or without type informa-
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Life science and cross domain queries show different results for the com-
pared source selection strategies. Regarding the number of selected data
sources, Figure 4.3 shows that type information has no effect for the cross
domain queries (except for CD 3) because they do not contain any triple pat-
tern with rdf:type. For the life science queries, one to seven data sources can
be excluded if type information is used. In contrast, the grouping of triple pat-
terns with owl:sameAs has no effect for life science queries (except for LS3), as
such triple patterns are not part of the queries. In contrast, for the cross do-
main queries one to five data source can be ignored. Queries CD1 and LS2 are
special because they contain a triple pattern with no bound variable. Hence,
all sources have to be selected in any case in order to obtain complete results.

Figure 4.3 also shows the number of requests which have to be send to
execute all sub queries. They depend on the number of joins in a query. On
the other hand the aggregation of triple patterns in exclusive groups can
reduce the number of sub queries. But this depends on the selected number of
different data sources, i.e. for less selected data source it is more likely that
multiple triple patterns are part of an exclusive group.

The presented results show that type information is generally important
for the source selection. SameAs links between datasets can also be exploited
to reduce the number of selected datasets. But the result completeness may
be sacrificed if the link definition is not located in the same dataset as the
link’s subject. The FedBench datasets contain no third-party links. Therefore,
the SameAs grouping can be safely applied in this case.

In general, the effects of the optimization depend a lot on the query charac-
teristics. There are significant differences for the life science and cross domain
queries. In the case of FedBench one query set has many rdf:type triple pat-
terns the other includes owl:sameAs. Thus the optimization can improve only
one of the two cases. The results are clearly visible in the charts.

4.5 Summary

The SPLENDID source selection approach follows two primary objectives,
1) maximization of result completeness and 2) minimization of the number of
sub queries such that an efficient query execution can be done afterwards. The
first goal requires to identify all datasets which can provide results for a query,
the second considers the network communication cost for multiple requests be-
cause it has the largest impact on the query execution time. Therefore, the
main challenges are an optimal utilization of compact data source descriptions
in order to determine mappings from query expressions to data sources and
for building sub queries.

The SPLENDID source selection employs a mapping of triple patterns to
data sources using VOID based schema information alone, does a refinement
with SPARQL ASK queries, and applies sub query optimization by creating
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suitable triple pattern groups. More detailed source descriptions can theoret-
ically help to improve the quality of the source selection result but the main-
tenance overhead for managing such source description can be very costly
for the general Linked Data scenario. In order to show that the aforemen-
tioned requirements are met an evaluation on real datasets from the Linked
Data cloud with representative SPARQL queries was conducted. A variation of
source selection strategies was compared to assess the differences with respect
to the number of selected data sources and the number of requests which are
necessary to evaluate all sub queries. The results led to the conclusion that
VOID based source selection is a viable solution for Linked Data federation.
However, the overall effectiveness depends on the actual query characteristics.






SPLENDID Cost-based Distributed Query
Optimization

Research on query optimization has a long history in the database community.
The main objective is to determine the best query execution plan with respect
to specific optimization criteria, like query execution time or result complete-
ness. Information retrieval in the Semantic Web basically deals with the same
objectives when executing complex SPARQL queries on RDF data. Therefore,
the adaptation of suitable query optimization strategies known from central-
ized and distributed relational databases [132] seems to be reasonable. How-
ever, due to differences between the relational data model and RDF graphs as
well as certain limitations of SPARQL endpoints, mainly centralized RDF triple
stores have been implementing common database techniques for query opti-
mization so far. Only recently, due to the growing number of freely available
Linked Data sources and limitations of centralized data warehouse approaches
(cf. Sec. 3.2), there has been an increasing interest in distributed SPARQL
query processing. Especially federation-based infrastructures for Linked Data
have received more attention lately.

Compared to traditional distributed/federated databases, the federation
of interlinked RDF data sources has to deal with new challenges, e.g. highly
autonomous and heterogeneous data sources from various domains containing
graph data with different levels of structuredness!. Therefore, an adaption of
common database approaches for query processing across federated Linked
Data (via SPARQL endpoints) is not straight forward. In this chapter the ar-
chitecture, optimization strategy, and implementation of SPLENDID [88] will
be presented. It is a distributed query optimization approach for Linked Data

! The structuredness of RDF datasets ranges from highly structured data (like in
relational databases) to hardly structured data, i.e. datasets without explicit
schema and different resource types with varying properties
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federation which employs concepts of federated databases [206] in order to al-
low for efficient query optimizations of distributed SPARQL queries. It follows
the optimize-then-execute paradigm and utilizes Dynamic Programming [205],
which is a well-known query optimization strategy in relational databases.
This chapter starts with an overview of common concepts and strategies
of (distributed) query optimization approaches in relational databases. Sec-
tion 5.2 highlights the major challenges for distributed query optimization
in general and specifically for federated Linked Data. Then, in Sec. 5.3 the
SPLENDID approach to federated SPARQL query optimization is presented.
Details of the cost-based join-order optimization for SPARQL basic graph pat-
terns are elaborated in Sec. 5.4. Section 5.5 presents evaluation results and
compares SPLENDID with other state-of-the-art RDF federation implementa-
tions. A summarization and discussion of future challenges is given in Sec. 5.6.

5.1 Query Optimization in Traditional Databases

Query optimization for Linked Data faces similar challenges as in distributed
and federated databases [132, 206]. But there are also significant differences
which hinder a direct adoption of successful database technology. In order
to better understand these differences it is necessary to first get an overview
about important concepts and query optimization techniques which have been
developed in over 30 years of database research.

5.1.1 Query Plans

A query plan is the logical representation of an algebraic query and defines
the order in which the query operators should be executed. It is commonly
represented as a tree. Each tree node is either a binary operator (e.g. join)
or an unary operator (e.g. selection, projection, filter expression). Nodes take
the output of their child nodes as input. The result is passed to the respective
parent node. The root node produces the final result set. Leaf nodes define
so called access paths, which specify how the input data is obtained from the
data sources. The notion of input relations originates from database tables
and refers to the set of tuples which are used as input for a query operator.

There are two different approaches for scheduling the execution of query
operators, the iterator-based model and the data-driven model [65]. In the
iterator-based evaluation each query operator takes control over its child
nodes. In a top-down fashion, starting at the root node, each query opera-
tor signals start and end of query precessing to its child nodes and explicitly
fetches each tuple from the input relations. Thus, the performance is dom-
inated by the query operators with the lowest data rate. The event-driven
evaluation works in a bottom-up fashion propagating result tuples to the par-
ent node when they become available and using queues to organize the input
data for each operator.
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Query Plan Structure

Query plans can have different tree structures. Figure 5.1 shows an example
query with two different query plan representations, namely left-deep tree and
bushy tree. The first corresponds to the exact transformation of the sequential
order of the query patterns while the latter defines an alternative operator or-
der with different sub trees. Both types of query plans have certain advantages
and disadvantages.

SELECT ?author ?coauthor
WHERE {
?author foaf:name "Paul Erdos" .
?article dc:creator 7author .
?article rdf:type foaf:Document .
?article dc:creator 7coauthor .
?coauthor foaf:name ?name .

}
/N?coauthor\
X2 agrticle ?coauthor foaf:name ?name
/
X2article ?mc:creator ?coauthor
/
Xoauthor ?armf:type foaf:Document
7author foaf:name "flErdos" ?article dc:creator 7author

X2grticle

/

X?2guthor

/ \7article rdf:type foaf:Document X2 coauthor
?author foaf:name "Paul Erdos" 7article dc:creator 7author / \

7article dc:creator 7coauthor ?coauthor foafiname ?name

X2grticle

Fig. 5.1. Left-deep tree (above) and a bushy tree (below) representation for a
SPARQL query with five triple patterns grouped in a basic graph pattern.

Left-deep Trees define a chain of binary operators, i.e. starting with two
input relations (triple patterns in SPARQL), the result of each join operation is
joined with the next input relation. Thus, all query operators are processed in
a pipeline, which basically means that each join waits for the results of the left
child operator. Left-deep trees are not well suited for queries with Cartesian
products, unless the Cartesian product can be performed at the root node.
Otherwise large intermediate results may be produced rather early. Moreover,
the pipelined execution can become a bottleneck if large results have to be
retrieved from different data sources. A parallel execution of triple pattern
may alleviate that problem but at the cost of a higher resource consumption.
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Bushy Trees support arbitrary branching of sub queries. It has been shown
that bushy trees offer better query execution plans for the optimization of rela-
tional queries [121]. Moreover, the different subtrees can easily be executed in
parallel. This allows for more optimization options, especially for distributed
queries.

Physical Query Operators

A logical query plan defines the order in which logical query operators have
to be applied to produce the final query result. Different equivalent logical
query plans will produce the same result. However, a logical query plan does
not specify how a query should be executed. Therefore, physical query oper-
ators define the actual algorithms which should be used to implement data
access, e.g. table scan, or how to perform join operations, like nested-loop
join, sort-merge join, or hash join. Hence, in a physical query plan logical
query operators are annotated with the physical implementation that should
be used to evaluate the operator.

However, in a federated database it is not possible to specify the physical
access plan for a leaf node because the actual access implementations, like
table scans or index lookups, are typically not known. The choice of physical
join operators, however, plays an important role as they can significantly
influence the performance of the query execution. The next section will give
some details on the different join implementations.

5.1.2 Join Algorithms

The query execution performance depends a lot on the use of efficient join al-
gorithms [159]. For centralized databases there exist different join implemen-
tations which take into account aspects like memory size, I/O operations, size
of input relations, and indexes on attributes. Join algorithms for distributed
databases also have to consider the join site, the number of messages, and
the amount of data transferred. Following is a short overview of the most
important join algorithms used in centralized and distributed databases.

Nested-Loop Join. This is the simplest join algorithm which basically it-
erates all join combinations of two input relations and selects only tuples
matching the join condition [159]. One input relation is defined as outer
relation and the other one as inner relation. Each tuple from the outer
relation is matched against all tuples of the inner relation. Hence, the com-
plexity is O(n xm). Typically, both relations are processed block-oriented.
If processing of the inner relation requires I/O activity in each loop, it is
more efficient if the outer relation is the smaller relation. The nested-loop
join is not suitable for joining large relations with low join selectivity but
great for parallelization as block comparison can be split up easily.
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Sort-Merge Join. The objective of the Sort-Merge Join [159] is to to reduce
the number of tuple comparisons. It operates in two stages. First, the
relations are sorted by the join attribute. Then they are scanned and
compared in the order of the join attribute. The comparison becomes more
expensive if the same join attribute occurs in multiple tuples, especially if
they do not fit into memory. The relations are only scanned once. Hence,
the complexity is O(m + n). The execution time depends mainly on the
sorting time which is O(nlogn). The Sort-Merge Join is simplified if the
join attributes are indexed because index scan and the actual joining of
tuples can be separated.

Hash Join. The cost for comparing tuples from the first relation with tuples
from the second relation is reduced with the application of hashing [159].
First, all tuples of one relation are hashed on the join attribute. Then each
tuple of the other relation is compared against the limited set of the first
relation. Thus, tuple combinations are ignored which cannot join. Hash
collisions are problematic as they require additional comparisons. Ideally,
the first relation contains the fewest distinct join attributes. Practically,
the smallest relation is used. The complexity of the Hash Join is O(m+mn)
as it requires only one scan of each relation. The overall performance
depends on the performance of the hash function.

In distributed databases [132] join algorithms have to be adapted for pro-
cessing relations which are located at different data sources, i. e. distinct nodes
in the network. There are different factors which influence the overall perfor-
mance and complexity for query optimization, e. g. the join site. Three options
are possible, i.e. the join is performed at the first node, at the second node,
or at a third node which retrieves both input relations from the other two
nodes. There are two approaches for transmitting the tuples of a relation from
one node to the other. Ship whole transfers a complete relation while fetch
matches requests only a subset of tuples with specific bindings for the join
attribute [149]. Moreover, join processing can be done in a pipelined fashion
or by materializing the input relations.

The choice of join algorithms typically also depends on the capabilities of
the nodes, the cost for transmitting the data, and the cost for computing the
join at the respective join site. In wide area networks the cost for transmitting
data is much larger than the cost for local join processing [29]. Hence, an
optimization of the data transfer cost at the expense of the local processing
cost may be beneficial. Following is an overview of common join algorithms
in distributed databases with a discussion of their application scenario and
respective advantages and disadvantages.

Semi-Join. If two input relation are located at different nodes the Semi-
Join [28] reduces the amount of data which has to be transferred to the join
site. Instead of shipping a whole relation only attributes which can actually
be matched by the join are sent. The first node applies a projection of the
join attribute on its input relation and sends the projected values to the
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second node. There, the Semi-Join is computed which reduces the amount
of tuples that will be returned to the first node and used to compute
the final join. The initial projection, the Semi-Join, and the final join
evaluation require additional processing overhead but the performance is
improved significantly in wide area networks due to less communication
costs. A Semi-Join is typically applied on the relation with less distinct
join attributes. If such information is not available, the smallest relation
is typically used.

BloomJoin A Semi-Join variation is implemented by the Bloom Join [149].
It further reduces the amount of data transferred by sending a Bloom
filter [33], i.e. a bit vector, instead of a set of projected join attributes
to the second node. Each join attribute of the first relation is hashed.
The hash value points to a bit in the bit vector which is set accordingly.
Computing the Semi-Join only requires to hash the join attributes of the
second relation (using the same hash function) and check if the respective
bit in the Bloom filter is set. Due to potential collisions the reduced input
relation, which is sent back to the first node, can be slightly larger than
for the original Semi-Join. However, the reduction achieved by the Bloom
filter outweighs this effect.

Bind Join Similar to Semi-Joins the communication cost and the query ex-
ecution cost at data sources can be reduced with a Bind Join [93]. The
Bind Join works as a nested-loop join and passes bindings for the join
attribute from the outer relation to the data source wrapper of the inner
relation. Results are then filtered based on the provided bindings. The
performance of a bind join is typically improved if intermediate results
are small and if indexes for the join attributes exist at the join side.

Symmetric Hash Join. Hash joins cannot produce results immediately be-
cause the inner relations has to be retrieved and hashed completely before
the comparison with join attributes from the out relation can be done. The
symmetric hash join [231, 114] applies the hashing on both input relations.
Thus, each relation can be iterated in parallel and checked if there is a
matching tuple in the other relation. This join is suitable for event-driven
join processing, i.e. tuples are not fetched from the relation when needed
but the arrival of a new tuple triggers the join processing. A common
problem with symmetric hash joins is the increased space requirement for
storing the hash tables. A solution is provided by the XJoin [220] imple-
mentation which employs external storage for tuples which do not fit into
memory.

5.1.3 Query Optimization Strategies

The primary objective of query optimization strategies is to chose the best
query execution plan according to specific performance criteria, i.e. usually
the query execution time. However, finding the optimal query plan would
require to execute and compare all possible query plans, which is obviously
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infeasible. Hence, it is necessary to employ strategies which allow for find-
ing a sufficiently good query execution plan using only the limited amount
of information about data sources and query processing capabilities that is
available a priori. Following is an overview of two common query optimization
strategies used in (federated) relational databases.

Cost-based Query Optimization

Dynamic Programming [205] is a well-known cost-based query optimization
strategy in relational databases. It employs exhaustive query plan iteration
and cost estimation to find the best query execution plan. The basis for the
cost computation is a cost model which is used to estimate the processing cost
for each query operator depending on the size of the input relations. Statistics-
based selectivity estimation allows to determine the size of intermediate re-
sults. Dynamic Programming iterates through all query plan combinations
for a specified query plan tree structure (cf. Sec. 5.1.1), i. e. joins are basically
employed in any possible combination. This ensures that the optimal query
execution plan is found, given that the cost estimation is accurate. Since the
number of overall query execution plans, which have to be compared, increases
exponentially with the number of joins Dynamic Programming prunes inferior
plans (i.e. equivalent plans with higher estimated cost) as soon as possible.
Queries with many joins can be optimized with Iterative Dynamic Program-
ming [133], an optimized approach for handling a large number of intermediate
query plans. Further optimizations for efficiently generating query plans for
specific join structures with Dynamic Programming have been presented by
Moerkotte and Neumann [161].

Adaptive Query Optimization

Query optimization strategies which follow the optimize-then-execute ap-
proach assume a stable environment with sufficient statistical information
about the datasets in order to find the best query execution plan. If these
requirements cannot be satisfied, e. g. because of missing or limited statistics,
unexpected correlation, unpredictable cost, or dynamic data, a static query
optimization can easily produce ineffective query execution plans. Moreover,
querying autonomous data sources introduces additional problems, like server
timeouts, limited bandwidth, or other network related problems. Adaptive
query processing [65] tries to overcome such problems during query execution
by introducing a feedback cycle. This allows for query adaption at runtime,
e.g. by altering the query execution plan or by changing the scheduling of
query operators [16, 64].
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5.2 Query Optimization Challenges for Federated Linked Data

There are many similarities between federated databases and the federation
of RDF datasets in the Linked Data cloud. Hence, query optimization for fed-
erated Linked Data deals with almost the same challenges as encountered in
distributed and federated databases [132, 206]. However, relational query op-
timization approaches can only be employed with certain restrictions because
of the specific characteristics of RDF’s graph-based data model and due to
architectural differences. This section describes SPLENDID’s query optimiza-
tion goals, compares federated databases with the federation of Linked Data,
and discusses common query optimization strategies and their adaption for
federated, heterogeneous RDF data sources.

5.2.1 Optimization Objectives

Minimizing the query execution time is usually the most important objec-
tive for a query optimizer. Additionally, the processing overhead for the net-
work communication and the amount of data transferred over the network
are relevant in a distributed setting. The SPLENDID query optimizer utilizes
common cost-based query optimization techniques from distributed databases
and allows for the transparent federation of Linked Data sources. Hence, the
objective is to adapt and integrate efficient join implementations and gener-
ate optimal query plans which are suitable for parallel query execution. The
result of the query optimization is a query plan which is optimized according
to following aspects.

Result Completeness

Precision and recall are typical performance criteria in classic information
retrieval systems [17]. But they are not directly applicable for the evaluation
of SPARQL queries on RDF data because graph pattern matching in SPARQL
produces exact results. Moreover, a ranking of results is only possible if an
explicit sort order has been specified. Therefore, top-k retrieval [151] and
relevancy-based performance criteria are not generally applicable. Instead, the
objective of SPLENDID’s query optimization strategy is to return complete
results.

Minimizing Network Communication

Distributed query processing requires communication with different data
sources and exchanging queries and results over the network. The cost for
establishing network connections, sending requests and retrieving results in a
wide area network, is significantly higher than the cost for local query pro-
cessing [29]. Moreover, the number of requests and the amount of data which
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is transferred over the network has a direct influence on the query execu-
tion time. Hence, the query processing performance can be greatly improved
through the minimization of the network communication cost. Especially for
a large number of data sources, like in the Linked Data cloud, the commu-
nication overhead cannot be neglected. Following is a overview of the most
important aspects.

Parallel Execution. The source selection (cf. Chapter 4) may identify mul-
tiple data sources which can return results for the same part of a query.
In this case, a sub query can be executed in parallel at different data
sources. Parallelization can also be done for different parts of a query
if no sequential order has to be asserted. The applicability of parallel
execution depends on the structure of a query, the query processing ca-
pabilities of SPARQL endpoints, and the join implementations which may
require that intermediate results have to be retrieved completely before
the next query operator can be executed. Parallelization is possible in gen-
eral if results can be retrieved independently from different data sources.
Sequential query execution is less efficient because the overall query exe-
cution time is the sum of the execution times of all requests to individual
data sources. However, there is also a limit for parallelization as only a
maximum number of connections can usually be open at the same time
for multiple data sources.

Location of Join Processing. SPARQL endpoints are only capable of an-
swering queries on their provided data but cannot exchange meta data
between each other. Therefore, the join computation for intermediate re-
sults from different data sources usually has to be done at the federator,
i.e. the query issuer. The query processing overhead for the federator
can be reduced if queries are split into larger sub queries, such that each
SPARQL endpoint computes join results for complete sub queries, or if
semi-joins can be applied. Choosing different join sites is a suitable ap-
proach for better load balancing and to minimize the processing cost for
the federator or different SPARQL endpoints.

Stream Processing. Transferring large result sets over the network can de-
lay the query execution significantly. Thus, the query execution can be
sped up when consecutive query operators can already be applied on the
data stream while the data is still being retrieved, which allows for return-
ing results as soon as they become available. However, such an approach
may be problematic when an order has to be applied on the results. In
addition, stream processing is only possible for SPARQL result sets. There
is currently no support for stream-based processing of SPARQL queries
with bindings. Stream processing can also help to cope with unpredictable
data rates. But it cannot avoid situations where unresponsive SPARQL
endpoints become the bottleneck in the query execution.
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5.2.2 Comparison of Linked Data with Federated Databases

As pointed out earlier, there are several differences between a federation of
Linked Data sources and federated databases. Following is a detailed compar-
ison of these differences which lead to certain constraints for the adaption of
database technology for the query optimization on federated Linked Data.

Data Integration. Federated databases [206] use custom wrappers to in-
tegrate diverse data sources with different schemas and capabilities. A
wrapper provides different functionalities, e. g. schema mapping, transla-
tion of algebraic query expression to specific database implementations
(i.e. table scans, index scans, join implementations), support for query
planning with information about the database content including statistical
information, and cardinality estimates for cost-based query optimization.
Linked Data supports URI resolution, provides SPARQL endpoints, and
represents all data with RDF. There is no need for specific data source
wrappers, as the data format and data access is already standardized.
However, a SPARQL endpoint typically does not provide additional meta
data, like the supported SPARQL version.

Query Planning. Data source wrappers in federated databases can support
query planning with information about physical operators, query plan
translation, and query plan cost estimations. This helps the mediator to
assess if a query plan can benefit from specific join implementations or if
shipping of whole relations is necessary. Distributed query optimization
for federated Linked Data has no such information about the different
data sources. Implementation details of the underlying triple stores are
usually hidden. Thus, a federator can only assume that all data sources
have common capabilities and provide the same set of features.

Data Structure. Relational data is highly structured. RDF in turn is less
structured and usually comes without explicit schema information. More-
over, theres exist different types of links between the resources of dif-
ferent Linked Data sources. Query optimization in (federated) relational
databases often relies on the attribute independence and uniform distribu-
tion assumption. However, since RDF data is highly correlated common
estimation approaches from relational databases [205] cannot be applied.

Meta-Data and Statistics. Data source wrappers in federated databases
maintain meta-data about data sources, including information about sup-
ported operator implementation and the availability of indexes. Addition-
ally, relational database employ sophisticated statistics, like histograms
[120] for attributes, in order to allow for accurate cost estimation. Such
statistical data can also be available within data source wrappers to be
used for query planning. In contrast, statistics for Linked Data are hardly
available and usually do not contain detailed information as histograms,
but mainly basic counts for the schema data. However, due to the high
correlation of RDF resources a sophisticated cost-based query optimizer
would need more detailed statistical data than for relational databases.
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5.2.3 Distributed SPARQL Query Optimization Strategies

Finding the optimal query execution plan, whether for federated databases
or federated Linked Data, is challenging because various factors influence
the overall query execution time. Existing query optimization strategies use
heuristics, statistics-based cost estimates, or adaptive query optimization in
order to determine the best possible query execution plan with respect to
available information about the datasets and capabilities of the involved data
sources. Sophisticated query optimization strategies can generally achieve bet-
ter results than heuristics. But they have a higher computational overhead
and may require specific meta data and statistics, e.g. for estimating and
comparing the cost of different query execution plans. Moreover, when using
the optimize-then-execute approach the time required for generating the op-
timized query plan has to be considered within the overall query execution
time, i.e. a query optimization strategy can be inefficient if finding the op-
timal query plan for a complex query takes much longer than choosing and
executing a less optimal query plan.

Join order optimization [159, 179] plays an important role, especially for
distributed SPARQL queries because the size of intermediate results has a
significant influence on the query processing cost and on the amount of data
transferred over the network. Many SPARQL query optimizations strategies
rely on heuristics for optimizing basic graph patterns. But also cost-based and
adaptive SPARQL query optimization strategies can be used, e.g. if specific
statistics about the Linked Data sources are available. Advantages and dis-
advantages of these three approaches will be outlined in the following. For
a general survey of state-of-the-art Linked Data federation approaches the
interested reader is referred to [190]. More detailed investigations concerning
the complexity of SPARQL query optimization have been conducted by Pérez
et al. [183] and Schmidt et al. [200].

Heuristic-based Query Optimization

Heuristic-based query optimization is often used when information about the
data sources is limited or not available at all. The general idea of all heuristic-
based query optimization approaches is to order a query’s join operators such
that small intermediate result sets are produced first, i.e. to start with the
most selective query expressions. However, the main problem for SPARQL
queries is to determine the actual selectivity of individual triple patterns and
of joins only based on the syntax and structure of the basic graph patterns.
Variable counting [208, 203] is a commonly used technique, i. e. triple patterns
with two bound variables are considered more selective than triple patterns
with one or no bound variables. In addition, the position of bound variables
plays also an important role. The selectivity of triple patterns with a bound
subject is considered higher than with a bound object, or with a bound pred-
icate. This assumption is typically supported by the characteristics of RDF
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graphs which contain few distinct predicates but many different resources.
Selectivity estimation for joins is even more complicated. Again, the position
of join variables is important. Subject-subject joins are more common than
subject-object joins or object-objects joins. Hence, joins are executed in this
precedence order. Rare joins, e. g. involving predicates, are considered highly
selective. The maximum selectivity is applied for triple patterns where the
join variable is bound to a specific value whereas joins over triple patterns
with no common join variable have the lowest selectivity.

There exist several heuristics-based SPARQL query optimization imple-
mentations focusing on join order optimization of basic graph patterns in a
centralized or distributed setting. Stocker et al. [208] use heuristics in com-
bination with a probabilistic model based on a central triple store with pre-
computed statistical data. Tsialiamanis et al. [216] favor heuristics because
they argue that cost-based SPARQL query optimization is generally compli-
cated because of the high data correlation in RDF data which is rarely consid-
ered in relational optimization approaches. Their approach tries to maximize
the number of merge joins by looking at structural characteristics of the join
graph, thus, reducing the problem to finding the maximum weight indepen-
dent set. FedX [203] implements heuristics for distributed SPARQL query op-
timization using a variation of the variable counting technique of [208] with
a preference to sub queries which can be evaluated at the same data source.
Montoya et al. [163] use heuristics for creating sub queries with triple patterns
which can be executed on the same data source. Each sub-query can be exe-
cuted in parallel. The query planner uses a greedy algorithm to combine all
sub queries in a bushy tree while avoiding Cartesian products and minimizing
the height of the query operator tree.

The application of heuristics is often sufficient for the optimization of ba-
sic SPARQL queries. But complex query expressions with many joins and
additional constraints, like filters and optional parts, are much more chal-
lenging. Moreover, the join order optimization with heuristics typically leads
to a pipelined execution which is not optimal for the distributed scenario of
federated Linked Data where parallel execution can be highly beneficial.

Cost-based Query Optimization

Cost-based query optimization is a typical optimization approach in relational
databases and allows for accurate estimations of the size of intermediate re-
sults given that relevant statistical information is available. However, it is
not widely used for optimizing SPARQL queries yet as it requires sophisti-
cated statistical information about the correlations found in RDF data. There
are two promising research implementations for centralized RDF triple stores,
namely RDF3X [172] and Hexastore [226]. RDF3X provides very efficient query
optimizations using dynamic programming and many different indexes on all
possible variations of bound variables in triple patterns and join combinations.
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Hexastore applies similar optimization techniques but with a slightly different
RDF indexing approach.

The application of cost-based query optimization for distributed SPARQL
query processing is currently limited. So far, only two federation systems, i. e.
DARQ [188] and SPLENDID [88], implement distributed query optimization
with cost-based query optimization (dynamic programming) and have been
evaluated with real distributed RDF data. However, DARQ is not scalable be-
yond a few datasets as it requires the manual definition of so called capabilities
for each data source. SPLENDID’s goal is to allow a more flexible federation
of Linked Data sources using automatically created statistical data.

Adaptive Query Optimization

Query optimization for autonomous data sources can be challenging due to
unpredictable network conditions. Adaptive query processing tries to cope
with these problems by re-optimizing queries during execution. Research on
adaptive query processing for Linked Data federation has not received much
attention until recently. For example, Anapsid [6] deals with unreliable data
rates and interrupted result retrieval by employing the flexible XJoin [220] op-
erator. In contrast, Avalanche [22] selects top-k query execution plans which
are processed in parallel. The results of the fastest query execution plan are
returned to the user. A combination of cost-based query optimization with
adaption heuristics is presented by Aderis [147]. However, it lacks a detailed
description of the adaptive join re-ordering and a suitable evaluation. Finally,
Hartig [103] proposed link traversal query processing (cf. Sec. 3.5) with iter-
ators that can detect blocking of result transmission and issue new requests
to obtain results from alive data sources. Although the latter approach is well
suited for querying interlinked RDF datasets it cannot easily scale up to the
size of the Linked Data cloud.

5.2.4 Maintaining Linked Data Statistics

Cost-based query optimization techniques generally produce better results
than heuristics. But they needs statistical information in order to estimate
the cost for the query execution plans. With respect to the aforementioned
characteristics of federated Linked Data sources there are different challenges
for maintaining such statistics. Especially due to the loose structure and the
correlations in RDF data detailed statistics are required in order to obtain
accurate cost estimations for query plans.

The generation of statistical information for a data set requires a certain
effort which is necessary before any cost-based query optimization can be
done. However, Linked Data providers typically do not consider this effort
beneficial, which means that there exist only few Linked Data sources which
have statistical data available. Moreover, these statistics vary a lot in their
quality and the provided level of detail is often not sufficient. Therefore, it
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is usually necessary to have a pre-processing step before setting up a Linked
Data federation in order to collect, generate, and store the statistical data
for all known data sources. Certain statistics can be easily retrieved through
specific aggregate queries on SPARQL endpoints. However, such an approach
requires a number of initial query requests before all required statistics are
available for the query optimization. Thus, it is not scalable for a federation
of the Linked Data cloud.

The management of the statistics has to be done by the federator, typ-
ically in specific indexes, because the query optimizer needs to access them
frequently. However, the indexes can become quite large due to the size of
detailed statistics for many Linked Data sources. This can be a serious prob-
lem, especially since the statistics should usually be kept in memory to allow
for fast lookups. Hence, the main challenge is to find the optimal trade-off
between the maintained amount of statistical information and the achievable
accuracy of the cost estimation for query plans. Figure 5.2 illustrates this
trade-off and shows the potential best threshold with respect to the statistics
maintenance cost. While maintaining more statistical data becomes more ex-
pensive the benefits for the cardinality estimation will decrease. In fact, after
a certain point further improvements of the accuracy may not even have any
more effects on the order of operators in a query plan.
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Fig. 5.2. Trade-off between statistics maintenance cost and cardinality estimation
accuracy for complex query plans

5.3 Join Order Optimization for Distributed SPARQL Queries

The objective of SPLENDID is to efficiently optimize distributed SPARQL
queries for federated Linked Data sources by adapting cost-based query op-
timization techniques known from federated databases which can produce
better query execution plans than common heuristics-based join order opti-
mization approaches. Following, SPLENDID’s query optimization approach,
with solutions for the aforementioned challenges, will be explained in detail.
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5.3.1 Linked Data Integration Requirements

The integration of different Linked Data sources is generally very easy due to
the use of RDF and SPARQL endpoints as common data format and query
interface, respectively. However, SPARQL endpoints may support different ver-
sions of SPARQL or offer proprietary functions which are specific to the un-
derlying triple store implementation. It is often hard to find out the exactly
supported feature set for each SPARQL endpoint. Moreover, it is infeasible
to implement a federation of Linked Data sources which uses a customized
query execution for each SPARQL endpoint according to the supported fea-
ture set. Therefore, SPLENDID relies on SPARQL 1.0 [187] for the distributed
query execution as it cannot be assumed that SPARQL 1.1 [98] is supported
by every SPARQL endpoint

Cost-based query optimization requires statistical information about the
content of the data sources. These statistics should be available in a stan-
dard format, preferable in RDF, which can be easily processed. The use of
RDF allows for directly querying statistical data with the same mechanisms
as for querying the actual RDF data. Moreover, there is no need for different
data formats or local data structures for maintaining the statistics. Statis-
tical information can be expressed in RDF with different vocabularies, like
Scovo [108] or the RDF Data Cube Vocabulary [59]. But these RDF vocab-
ularies are designed for expressing very generic statistics, e.g. with multiple
dimensions and various data types. Hence, they are quite verbose and not
really suited for the use in a Linked Data scenario. Another suitable choice
is VOID, i.e. the Vocabulary for Interlinked Datasets [9]. VOID is primarily
designed for describing general meta-data of Linked Data sources but also
allows for expressing basic statistical data. In an early draft version VOID
relied on the Scovo vocabulary, which was later replaced in favor of a more
concise representation. Currently, only basic statistical data can be expressed
with the VOID vocabulary. However, it is possible to easily extend VOID with
additional statistical data, e.g. using other RDF vocabularies. VOID descrip-
tions can be generated with automatic tools and a serialization to the Turtle
RDF format is still human-readable (cf. Fig. 5.4). Moreover, VOID has been
employed for SPLENDID’s source selection (cf. Chapter 4).

5.3.2 SPARQL Join Implementations

The efficiency of specific physical join implementations depends on different
aspects, like data location, input data size, and join selectivity. Especially for
distributed data sources it makes a huge difference how much data has to
be transmitted over the network. Section 5.1.2 described different join im-
plementation which are employed in federated databases. They are generally
applicable for distributed SPARQL query processing as well, e.g. semi-join
and bind join, which significantly reduce the network communication cost.
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But there are also restrictions of the SPARQL syntax [187] (e.g. result bind-
ings only supported by SPARQL 1.1) and the SPARQL protocol [55] (e.g.
lacks streaming of result bindings) which renders such join implementations
for SPARQL endpoints less straight forward.

Semi-Join

A Semi-Join [28] applies a projection on the join attributes and two consecu-
tive joins on partial data in oder to reduce the size of intermediate results sets
which have to be transferred over the network. These three operations can be
easily expressed with SPARQL but the transmission of the partial data is com-
plicated, because SPARQL 1.0 does not allow for including variable bindings
in a query. This was fixed with the SPARQL 1.1 specification [98] by intro-
duced the new keyword VALUES [186] (BINDINGS in the former draft versions)
which allows to include values for tuple bindings in a SPARQL 1.1 query. As
of March 2013 SPARQL 1.1 has become a “W3C Recommendation” but it
cannot be assumed that all existing SPARQL endpoints already support it.
Workarounds for implementing Semi-Joins with SPARQL 1.0 can be found
in Networked Graphs [196], Distributed SPARQL [233], DisMed [166], and
FedX [203]. One possibility is to define variable restrictions with FILTER ex-
pressions. But including a long list of filtered values also yields a longer query
and the evaluation of many filter expressions is usually not very efficient. In-
stead, it is better to use a UNION expression, which includes the graph pattern
multiple times, each having the variable substituted with one value binding.
Although the UNION approach increases the query length as well it can usu-
ally be evaluated more efficiently. The drawback, however, is that the variable
is eliminated and the substituted value bindings cannot be returned in the
result set. Therefore, FedX [203] implements an extension of variable names
with unique identifiers in order to retain the original value bindings. For ex-
ample, given n variable bindings ) ...)), for variable 7y in triple pattern
“?a dc:creator 7y’ FedX will rename the unbound variable ?x in the rewritten
triple pattern for each binding ); by adding a unique suffix '_i’ and storing
the mapping (?z_i, );). All query pattern variations are shown in Fig. 5.3.

Bind-Join

The problem with executing semi-joins on SPARQL endpoints is that the com-
plete SPARQL query has to be parsed before the actual query execution starts.
Hence, a large number of variable bindings, which may be received slowly from
one data source and need to be transmitted entirely to the other data source,
can significantly delay the overall query execution. The bind join [93] (cf.
Sec. 5.1.2) instead, sends query and variable bindings separately. Thus, the
data source can optimize the query plan first and produce results as soon
as new variable bindings are available. However, SPARQL does not support
such a separation, i.e. the bindings have to be included in the SPARQL query.
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SPARQL 1.1 Expression: Filter Expression:

1| SELECT 7?article 7author ?coauthor 1 | SELECT ~?article 7author ?coauthor

2 | WHERE { 2 | WHERE {

3 ?article dc:creator 7author. 3 ?article dc:creator 7author.

4 ?article dc:creator ?coauthor. 4 ?article dc:creator ?coauthor.

5|} 5 FILTER (

6 | VALUES (7author ?coauthor) { 6| (?7author = "Paul Erdos" &&

7| ("Paul Erdos" "Andreas Blass") 7 ?coauthor = "Andreas Blass") ||

8| ("Paul Erdos" "Walter Deuber") 8| (7author = "Paul Erdos" &&

9 9 ?coauthor = "Walter Deuber"))
10|} 10 | }

UNION Expression: FedX UNION Expression:

1| SELECT ?article 1 | SELECT ?article_1 ?article_2

2 | WHERE { 2 | WHERE {

3 { 3 {

4 ?7article dc:creator "Paul Erdos". 4 ?article__1 dc:creator "Paul Erdos".
5 ?7article dc:creator "Andreas Blass". 5 7article__1 dc:creator "Andreas Blass".
6 } UNION { 6 } UNION {

7 ?7article dc:creator "Paul Erdos". 7 ?article__2 dc:creator "Paul Erdos".
8 ?7article dc:creator "Walter Deuber". 8 ?article__2 dc:creator "Walter Deuber".
9 } 9 }
10|} 10|}

Fig. 5.3. Variable bindings for Semi-Join: using VALUES syntax in SPARQL 1.1 and
workaround solutions for SPARQL 1.0 with FILTER and UNION expressions

Therefore, a bind join can only be imitated to some extend. For example, sev-
eral distributed SPARQL query processing implementations rely on a nested
loop join which sends a SPARQL query for each binding. But this is very in-
efficient if the outer relation is large and many individual bindings have to be
transmitted. In order to reduce the number of requests, a block-wise trans-
mission of bindings can be used. FedX [203] implements a “blocked bind join”
which employs the UNION-based Semi-Join approach described above to send
queries containing “blocks” of bindings.

Non-Blocking Local Joins

Local joins operate on locally available data or the results retrieved from re-
mote SPARQL endpoints. Common join implementation may not be efficient
as the network communication cost can significantly hamper the overall per-
formance, e. g. because nested-loop joins first have to process the inner relation
before the join processing can start. Under these conditions it is better to use
an event-based query processing approach, i.e. result tuples are handed to the
next operator when they become available. Thus, a join operator should be
able to process result tuples in a non-blocking way and independently of the
input relation that produces them. There exist a few such implementations
for SPARQL. Ladwig and Than [135] use a parallel hash join. It was further
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extended to the SIHJoin [136], a recently proposed non-blocking join opera-
tor similar to the XJoin [220], which was designed to join remote data with
locally stored tuples. Hartig et al. [104] implement a Non-Blocking Iterator
Join for the link traversal query processing (cf. Sec. 3.5). Result tuples are
fetched and if no match can be computed the tuple will be put in a queue for
later consumption.

Support of Join Implementations in Query Models

Most RDF Federation implementations, like DARQ [188] and SemWIQ [140],
which are based on the Sesame [39] or Jena2 [230] RDF framework, employ
usually only one join type in their query plans, i.e. a nested-loop join. This
limitation has several disadvantages with respect to the efficient execution of
distributed queries. First, nested-loop joins are highly inefficient for joining
large intermediate result sets from two different data sources, because a large
number of messages need to be exchanged. Furthermore, one join implemen-
tation does not fit all conditions. Depending on the size and location of the
input data, different join implementations may be chosen. However, the query
model has to support the use of different join implementations. Typically, the
join nodes in an abstract syntax tree need to be annotated with the desired
physical join operator. SPLENDID employs the Sesame Query Model which
had to be extended to support this kind of annotation for different physical
join implementations. Currently two different join algorithms are supported
in SPLENDID, i.e. a Bind Join similar to FedX’s Controlled Bound Join and
a Parallel Hash Join. Hence, the query planning is more flexible and joins can
be chosen appropriately.

As soon as SPARQL 1.1 becomes widely supported it will also be possi-
ble to develop more effective query optimization techniques for Linked Data
federation. For example, the introduction of the SERVICE keyword allows for
defining remote request to other SPARQL endpoints within a query. Thus, a
cooperative processing of sub queries by different data sources may be possible
if such a query is sent to one SPARQL endpoint which is capable of forwarding
the inner query to a different SPARQL endpoint and then include the returned
results in its own query evaluation. Such an approach would relieve the fed-
erator because join processing can be delegated to other SPARQL endpoints.
However, the complexity of such a query optimization approach is significantly
higher due to additional optimization parameters, e.g. query shipping versus
data shipping and load distribution among the involved endpoints.

5.3.3 Cost-based Join Order Optimization

The core problem for the SPARQL query optimization strategies is to find the
best execution order for the conjunctive joins defined in basic graph patterns,
i.e. a set of triple patterns with optional filter expressions. The formal model



5.3 Join Order Optimization for Distributed SPARQL Queries 89

of Hartig and Heese [106] defines query operators based on the consumed in-
put data and the produced output data, i. e. data flows of tuples with bindings
for specific variables. The challenge for the query optimization is to find the
optimal order of join operators such that the input data of each join oper-
ator contains bindings for the required input variables and that the overall
processing cost is minimized.

In contrast to heuristics-based approaches [106, 203] SPLENDID employs
dynamic programming [205] for cost-based join order optimization. Dynamic
programming performs an exhaustive search on all possible combinations of
joins in a query plan. Pruning techniques are applied to reduce the search
space and prevent an exponential growth in the number of query plans. The
dynamic programming algorithm initially starts with all access plans (i.e.
all sub queries) and creates iteratively new query plans with 2..n operators
by joining query plans produced in the previous iterations. Each new join
combination is created for all supported join types, i.e. parallel hash join and
blocked bound join in SPLENDID. At the end of each iteration all query plans
are pruned such that for equivalent query plans only the one with the lowest
cost is retained for further query combinations.

Algorithm 2 shows the pseudo code for the dynamic programming algo-
rithm used in SPLENDID. The result is the optimal query execution plan, i. e.
an operator tree annotated with the chosen join implementations and over-
all lowest estimated execution cost. The algorithm starts with the set of sub
queries {Q;, ..., @y} which are obtained from the source selection. Federated
databases may apply different access plans for evaluating a sub query on a

Algorithm 2 Query Optimization with Dynamic Programming

Input: a set of sub queries {Q1, .., @, } = sourceSelection(Q)

Output: an optimal query execution plan for Q)

1: // create initial access plans, i.e. a SPARQL request for each sub query
2: fort=1—ndo

3:  optPlan({Q:}) = {SparqlRequest(Q;)}
4: end for

5: // iterate over all join combinations of the sub queries
6: for =2 — n do

7 // assess each subset of i joined sub queries

8: for all Q C {Q1,...,Qn} such that |Q| =i do

9: optPlan(Q) = 0

10: // create all join variations for Q using query plans of previous iterations
11: for all O C O do

12: optPlan(Q) = optPlan(Q) U joinPlans(optPlan(O), optPlan(Q \ O)))
13: prunePlans(optPlan(Q))

14: end for

15:  end for

16: end for

17: prunePlans(optPlan({Q1,...,Qxn}))
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data source but in SPLENDID there is only one type of access plan, i.e. a
standard SPARQL SELECT query. Hence, in the first iteration step (lines 2-4)
each sub query is mapped to exactly one SPARQL request which is added
to the map optPlan. In the following iterations (lines 6-16) new query plans
are generated by adding one join at a time (cf. condition in line 8), thus,
producing two-way, three-way, ..., n-way joins on the given sub queries. New
query plans are obtained by combining all permutations of two query plans
from previous iterations (line 11). For example, a four-way join can be made
up of two two-way joins or a three-way join with a sub query. Since SPLEN-
DID employs two different join implementations, joinPlans() yields a set of
alternative query plans which are added to optPlan for the respective set of
sub queries Q (line 12). At the end of each iteration (line 13) inferior query
plans are removed with prunePlans(), i. e. for logically equivalent query plans
only the query plan with the lowest cost will be maintained. Finally, opt Plan
contains the best execution plan for joining all sub queries {Q;,...,Q,}.

Sub queries in SPLENDID are either exclusive groups, i.e. a set of triple
patterns which are evaluated at one data source, or they contain just a single
triple pattern which may be evaluated at different data sources. In the latter
case, a union will be used to aggregate the results of requests to multiple data
sources. Additionally, the query plan generation prefers joins of sub queries
with a common join variable. Thus, Cartesian products are only considered if
no other join combination is possible. The algorithm implemented by SPLEN-
DID also allows for including filter expressions which are applied to a query
plan at the end of an iteration step if the query plan contains all variables of
the filter expression.

5.3.4 Representing RDF Statistics with VOID

The motivation for using VOID descriptions to manage statistical information
about Linked Data sources was already given in Sec. 5.3.1. Figure 5.4 shows
an excerpt from the description of the Drugbank dataset. The first section
(lines 6-10) provides general statistics, e.g. item counts for the the overall
number of triples, properties (predicates), entities, and the distinct number
of subjects and objects. Thereafter follows schema-specific data (lines 13-53)
concerning the number of RDF classes and predicates. The final section (lines
55-60) contains information about links to other datasets.

Schema Statistics The schema-specific statistics are divided into two parts.
The class partition (void:ClassPartition) gives details about all RDF
classes, i.e. resources which occur in object position of an RDF triple
with the predicate rdf:type. Information about predicates is contained
in the property partition (void:PropertyPartition). A class partition
references the class with void:class and specifies the overall number of
entities of this class by void:entities. A predicate in a property parti-
tion is identified via void:property and defines the respective number of
occurrences in all RDF triples of the dataset with void:triples.
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:Drugbank a void:Dataset ; 31 | void:propertyPartition |
32 void:property rdf:type ;
dcterms:title "Drugbank" ; 33 void:triples "24522" ;
void:sparqlEndpoint <http://...>; 34 void:distinctSubjects "19693" ;
35 void:distinctObjects "8"

void:triples "766920" ; 36 (], 1

void:entities "19693" ; 37 void:property rdfs:label ;

void:properties "119" ; 38 void:triples "19627" ;

void:distinctSubjects "19693" ; 39 void:distinctSubjects "19570" ;

void:distinctObjects "276142" ; 40 void:distinctObjects "18780"

at ], ]
42 void:property owl:sameAs ;
void:classPartition [ 43 void:triples "9521" ;
void:class rdf:Property ; 44 void:distinctSubjects "2209" ;
void:entities "117" 45 void:distinctObjects "9486"

1.1 46 ], [
void:class rdfs:Class ; 47 void:property drugbank:absorption ;
void:entities "6" 48 void:triples "975" ;

1.1 49 void:distinctSubjects "975" ;
void:class drugbank:drug__interactions ; 50 void:distinctObjects "863"
void:entities "10153" 51|]. [

i 52
void:class drugbank:drugs ; 53|].
void:entities "4772" 54

1.1 55 | :SameAsLinks a void:Linkset;
void:class drugbank:enzymes ; 56 void:subset :Drugbank ;
void:entities "53" 57 void:target :Drugbank ;

1.1 58 void:target :DBpedia ;

59 void:linkPredicate owl:sameAs ;

l: 60 void:triples "9521" ;

Fig. 5.4. VOID statistics for the Drugbank dataset

Entity Statistics Detailed information about RDF entities cannot be in-

cluded in VOID statistics because of the huge amount of data. Neverthe-
less, with void:distinctSubject and void:distinctObject there is at
least some entity-related data which can be used for SPLENDID’s cost es-
timation. However, only rough estimates can be computed based on these
two values. Therefore, the VOID descriptions have been extended with
distinct subject and object counts for each predicate.

Link Statistics VOID also allows for describing links between datasets. This

is done with linksets which are a subclass of datasets. An example is given
in Fig. 5.4 in lines 55 to 60. Each linkset has two target datasets speci-
fied by void:target or void:subjectTarget and void:objectTarget.
The predicate and the number of triples representing the links is defined
with void:linkPredicate and void:triples, respectively. The prop-
erty void:subset defines in which dataset the links can be found. This
reflects the fact that links between datasets can also be defined in third
party datasets.

The statistical data of the VOID descriptions is used to estimate the result

size of query expressions. This information is required for the cost computation
of query execution plans which will be described in the next section.
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5.3.5 A Cost Model for Distributed SPARQL Queries

Relational databases use cost models to compute an estimated execution time
for each query plan. A cost model basically considers CPU cost, I/0 cost, and
for distributed queries also communication cost [153]. The cost computation
is done recursively, i. e. the cost of a query operator also includes the cost for
all operators in its sub tree. Hence, the total cost of a query plan is iden-
tical to the cost of the root node. Calculating CPU and I/O cost depends
on the implementation of the physical operators. Since the cost for evaluat-
ing an operator basically depends on the size of the intermediate results the
cost formulas are parameterized by the cardinality of the input relations. An
adaption of this approach for SPARQL queries is easy due to the algebraic
similarity of SPARQL and SQL, e.g. Obermaier and Nixon [177] present a
formalization for cost estimation of basic SPARQL query operators which de-
rives its cost formulas from cost estimations of equivalent query operators in
relational databases.

Remote Queries

An important aspect for distributed query execution in federated systems
is the cost estimation for query parts which are executed at remote data
sources [194]. Usually, the federator has no knowledge about the physical
data layout or the query processing capabilities of a distributed data source.
Data wrappers in federated databases may be able to provide source-specific
cost estimates for a given query but for SPARQL endpoints it is infeasible
to obtain such information. However, the local query execution time is com-
monly negligible for distributed query processing in wide area networks, like
the Linked Data cloud, because the communication cost is the dominating
factor [29]. Therefore, SPLENDID considers only the communication cost in
its cost model. An extension with respect to local CPU and I/O cost at the
federator, however, is possible.

Communication Cost

The communication cost is typically based on two factors, namely the number
of messages sent and the amount of data transferred [149]. Messages are sent
whenever a SPARQL query or a result set is transmitted between the federator
and a SPARQL endpoint. The message size of SPARQL queries and result sets
varies. But for simplification of the computational model it is assumed that
a SPARQL query always fits into one TCP/IP data packet and that results
tuples have an average size which can be used to estimate the overall size of
a response for a known number of contained result tuples.
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Data Transfer Cost for Physical Joins

The use of specific join algorithms, like semi-join or bind join, has a significant
influence on the amount of data transferred over the network. Hence, different
cost formulas are used for each join implementation. The join cost depends on
the way the data is retrieved by the federator, i.e. a local join of the results
of two SPARQL requests (ship-whole), or a bind join which substitutes values
of the first result set as bindings in the query for the second query expres-
sion (fetch-as-needed). SPLENDID relies on this distinction for computing the
communication cost for the employed hash join and bind join and applies the
join cost definition of DARQ [188]:

Hash Join: C(ql Xy Q2) = |R(Q1)| * Ctuple + |R(Q2>’ * Ctuple + 2- Cquery
Bind Join: c(Ql XpB QQ) = ‘R(Q1)’ * Ctuple + ‘R((h)’ * Cquery + |R((]£)‘ * Ctuple

The cost for sending a query and receiving a tuple is specified by the con-
stants cquery and crypre, respectively. |R(q)| defines the (estimated) cardinality
of the result set of a query q. |R(g5)| in the bind join refers to the result size
for ¢ with the variables bound to the values obtained from the result set
of ¢1. The approximation of |R(qg5)| with |R(q1 X ¢2)| yields a lower bound
because the actual result set can be larger due to duplicates.

Cost Model Refinements

The DARQ inspired cost model assumes that sub queries are exclusive groups,
i.e. a sub query is sent to a single SPARQL endpoint. In fact, a sub query
may be sent to multiple SPARQL endpoints. This has no influence on the
cardinality of the result set but on the overall number of SPARQL requests.
Hence, the computation of the cost for requests needs a slight adaption in
order to incorporate the number of assigned data sources per sub query.

Another problem is that the children of a join operator are not necessarily
sub queries but other joins or filter expressions. Thus their results set is already
locally available and no transfer cost has to be computed. There are essentially
three variations for a join operator, it receives result tuples from (1) two sub
queries, (2) just one sub query, or (3) no sub query at all. Depending on
the actual situation, the data transfer cost can only be computed for the
respective sub query. Otherwise the join is computed locally and there is no
relevant communication cost involved in it. However, an exception is the bind
join which forwards tuples as bindings to the right sub operator. If it is not a
sub query, the actual data transfer cost is unpredictable, as the bindings may
be used for different sub queries.

FedX’s [203] blocked bound join, which SPLENDID uses for the bind join
optimization, combines multiple tuple values in a single request. The reduction
in the number of messages has to be accounted for in the cost formula by a
constant which represents the block size. Moreover, a large block size also
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increases the query size which may not fit into one TCP/IP data packet any
more. For a semi-join like implementation with a large number of bindings in
a query the cost for the request has to include the number of tuples from the
first result set in the formula.

Finally, since the estimated query execution cost typically represents the
expected query execution time it makes sense to consider the parallel execution
of query operators as well. However, due to the complexity of estimating the
effects of a parallel query execution correctly SPLENDID does not include any
specific adjustments. Instead, the calculated cost for a query plan represents
the upper bound as is executed in a pipelined fashion.

5.4 Cardinality Estimation for Distributed SPARQL Queries

The computation of the execution cost for a query plan requires knowledge
about the cardinality of intermediate results sets. However, since such infor-
mation is not readily available it has to be estimated with the help of dataset-
specific statistical information. For SPARQL the cardinality estimation has to
be applied on basic graph patterns and the graph structure defined by them.
Thus, estimation techniques from relational databases, which often rely on
the attribute independence and uniform distribution assumption, cannot be
adopted as such. Instead, correlation in the RDF data has to be taken into
account as well. In order to minimize the deviations between the estimated
cardinality and the true results size detailed statistics are required. However,
there may be restrictions regarding the availability of sophisticated statistical
data, e. g. the VOID descriptions used by SPLENDID are usually limited with
respect to the level of detail. Therefore, the cardinality estimation also has to
cope with less accurate data source descriptions.

This section gives a detailed overview of the cardinality computation for
SPARQL graph patterns. It starts with basic triple patterns and then extends
it to more complex expression with conjunctive joins of triple patterns. Similar
to the cost estimation of query plans the cardinality computation also employs
a recursive algorithm. Specific problems regarding the correlations in RDF
data will be discussed where appropriate.

5.4.1 Triple Pattern Cardinality Estimation

Triple patterns are the basic building blocks of SPARQL queries. They contain
variables or constant values (i.e. bound variables) in subject, predicate, and
object positions. The bound variables define restrictions for the RDF triples to
be matched. Due to the similarity with SQL it is reasonable to adapt common
cardinality estimation techniques from relational databases for SPARQL triple
patterns but with slight modifications that suit the RDF data model.

Definition 5.1. The cardinality of a triple pattern P = (s, p,0) with respect
to a collection of datasets D from the Linked Data cloud is defined as
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cardp(P) = Z cardq(s,p, o) (5.1)
vVdeD

Relational database often assume independent attributes in order to sim-
plify the cardinality computation or if correlations are not known. An adaption
for SPARQL triple patterns translates into following formula which considers
the restrictions of the (bound) subject, predicate, and object variables with
independent selectivity factors.

Definition 5.2. The selectivity-based cardinality estimation for a triple pat-
tern (s, p,0) with respect to a dataset d € D is the product of the dataset size
with the specific selectivities of the subject, predicate, and object variables.

cardq(s,p,0) = |d| - sely(s) - selq(p) - selq(o) (5.2)

where |d| is the dataset size, i. e. the number of all RDF triples in d, and the
respective selectivity sely is a real number in the range [0..1].

The selectivity selg(v) defines a factor by which a restriction of variable v
reduces the number of matched RDF triples compared to the overall number
of RDF triples in dataset d € D. Unbound variables have a selectivity of 1.
Hence, a triple pattern without bound variables matches all RDF triples in a
dataset, i. e.

cardqy(?s, 7p,70) = |d|. (5.3)

A triple pattern with all variables bound can match at most one RDF triple
which has the exact terms as defined in the triple pattern (or none if the
dataset does not contain the specified RDF triple). For this special case the
cardinality is set to 1.

cardg(s,p,0) = 1. (5.4)

The independent variable assumption may be sufficient for querying nor-
malized data in relational database tables. However, it is no suitable at all
for triple patterns in SPARQL queries. Due to the high correlation between
subject, predicate, and object it is necessary to use a better cardinality esti-
mation than the selectivity based formula 5.2. In fact, the statistics from the
VOID descriptions can be used to obtain much better cardinality estimates
for most variable combinations. In total, there exist eight different permuta-
tions for having bound and unbound variables in a triple pattern. Depending
on the number and position of the bound variables different estimation ap-
proaches will be employed for calculating cardy(s,p,0). In the following, the
cardinality computation for triple patterns is distinguished between 1) triple
patterns with schema-related bound variables, for which the true cardinality
can be obtained from the VOID statistics, 2) triple patterns with single entity
restriction, and 3) triple patterns with two correlated bound variables.
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Triple Patterns with Schema Restriction

VOID descriptions may include statistics about the dataset schema in the so
called property partition and class partition (cf. 5.3.4). This information about
the number of occurrences of predicates and RDF types allows to determine the
true cardinality for two kinds of triple patterns with specific schema-related
variable restrictions, i.e. (7s, p, 7o) and (7s, rdf:type, t), where 7s, and 7o are
unbound variables and p and t are constant RDF terms. The dataset-specific
triple pattern cardinality is directly obtained by looking up the distinct counts
for predicates and RDF types in all datasets d € D.

cardg(?s,p,?0) = VOIDcardyreq(p,d)
cardy(?s, rdf:type,t) = VOIDcard.jqss(t, d)

Triple Patterns with Entity Restriction

Determining the true cardinality for triple patterns with instance-specific
bound variables, i.e. constants in subject or object position, cannot be done
with the help of VOID statistics. Maintaining such information is prohibitively
expensive due to the huge number of individual instances in the Linked Data
cloud. Therefore, the cardinality is typically estimated based on the selectivity
of the variable restriction.

The selectivity of an individual bound variable is often determined based
on the uniform distribution assumption, i.e. each unique value has the same
number of occurrences in the dataset. Hence, for SPARQL triple patterns the
selectivity of a bound subject or object variable is computed as

= 1 selg(o) = 1
~ {s](s,p,0) € d}|’ T Hol(s,p,o) € dY

where the denominator of the fractions represents the distinct number of sub-
jects and objects, respectively. In VOID this kind of information is provided
by void:distinctSubjects and void:distinctObjects statements. Of course, the uni-
form distribution assumption is imperfect, especially since there are typically
very popular entities in a datasets and others which occur only once. Moreover
there is no distinction between resources and literals. But since VOID statistics
cannot provide detailed information about the potentially large number of en-
tities in an RDF graph, this assumption is the best approximation which can
be made. However, a future extension of VOID, e.g. with information about
the average selectivity of resources and literals would be useful, though.

(5.5)

selq(s)

Cardinality Estimation for Dependent Variables

Triple patterns with two bound variables basically define restrictions for
matching attributes of resources. From the three different combinations
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(S7 p? ?0)7 (?S? p? 0)7 (57 ?p7 O)

the first defines a resource with an attribute type but the value is unknown,
the second defines an attribute type and a value but the resource is unknown,
and the third defines a resource with an attribute value but the type of the
attribute is unknown.

The cardinality of these triple patterns can essentially be computed with
formula 5.2 using separate selectivity estimates for the two bound variables.
However, such a multiplication of selectivity values assumes attribute inde-
pendence while combinations of attribute values in RDF are in general highly
correlated. Thus, it is necessary to use additional statistical information in
order to better estimate the selectivity of specific value combinations.

Two of the three combinations shown above have a bound predicate. Thus,
the exact number of triple patterns for this predicate is known from the statis-
tics. The additional bound subject or bound object reduces the result set ac-
cordingly to RDF triples with the respective value combination. This case is
basically similar to triple patterns where only the subject or object is bound.
The difference is that the base cardinality of the source data is not the overall
number of RDF triples in the dataset but just the number of triples with the
respective predicate. Hence, the co-occurrence cardinality is computed as

1
cardgy(s,p,?0) = cardy(?s,p,?0) -
[{s](s,p,0) € d}|
1
cardy(?s,p,0) = cardq(?s,p,?0) p # rdf:itype  (5.6)

ol (s,p,0) € d}f’

Moreover, the number of distinct subjects and objects does not refer to
the whole dataset as in equation 5.5 but also just to the subset of triples
which contain predicate p. This information is provided in the predicate par-
titions of VOID statistics via predicate-specific void:distinctSubject and
void:distinctObject values (cf. Fig. 5.4).

For the combination of a bound subject with a bound object, there is no
additional information available. However, there is typically just one predicate
which connects specific subjects and objects. Hence, the cardinality of such a
combination is set to 1 by default.

cardg(s,?p,0) = 1 (5.7)

5.4.2 Cardinality of Basic Graph Patterns

A SPARQL basic graph pattern is a set of triple patterns (with optional filter
expressions) which represents a conjunctive query. The triple pattern typi-
cally have shared variables, i.e. the join of two triple patterns represents an
Equi-Join. Again, the cardinality estimation for joined triple patterns can
be adapted from common join cardinality estimation techniques in relational
databases [179].
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Definition 5.3. The cardinality of two joined triple patterns Pi1 and Po is
defined as the cardinality of the Cartesian product of both triple pattern mul-
tiplied with the respective join selectivity.

CCLT’dd(Pl X 732) = cardd(Pl X 732) . seld(P1 X 732) (5.8)
where cardy(P1 X Ps) = cardq(s1,p1,01) - cardq(sa, p2,02).

The cardinality of the Cartesian product defines an upper bound for the
result size. However, due to the restrictions of the shared variables the actual
result cardinality will typically be much smaller. Therefore, the join selectivity
represents an estimation of the fraction of results which are actually matched
by the join condition. An exception are triple patterns without shared vari-
ables. Then the join selectivity will be 1.

In relational databases the selectivity for Equi-Joins is computed by esti-
mating the overlap between the values of the respective join attributes (typi-
cally relying on the attribute independence) assumption. Having two relations
R and S with join attributes R.a and R.b, the join selectivity can be expressed
as the maximum of the individual selectivities of the join attributes.

sel(R X Rg.q=sp B) = max(sel(R.a), sel(S.h)) (5.9)

However, RDF data is highly correlated and joins in SPARQL are basically
self-joins on all RDF triples in a dataset. Hence, the join selectivity depends
on the actual position of the shared variable in the joined triple patterns, i.e.
subject-subject joins are considered more selective than subject-object joins
or object-object joins. Moreover, joins involving predicates are usually most
selective. These correlations can hardly be captured with the join selectivity
estimation of equation 5.9. Instead, the graph structure defined by the basic
graph patterns has to be considered for a reliable estimation the appropriate
join selectivity. Following, the two most prominent join patterns are distin-
guished, i.e. star-shaped graph patterns, which are used to match resources
with certain attributes, and path-shaped graph patterns, which match con-
nections between entities.

Star-Join Cardinality

Star shaped query patterns are very common in SPARQL queries [184]. A join
variable which occurs in subject position of multiple triple patterns selects
all resources with the matching set of attributes. Example 5.4 shows two
SPARQL queries with different basic graph patterns which are joined via a
shared subject variable 7s. In the first query all predicates and all objects
are bound while in the second query there are also unbound predicates and
unbound objects. This distinction is significant for computing the cardinality
of the star-join.
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Ezample 5.4 (Star-Join). Two queries with different basic graph patterns: one
with bound predicates and objects (left) and the other with unbound predicate
and unbound object (right).

1 [SELECT x 1 [SELECT x

2 | WHERE { 2 | WHERE {

3 ?’s a foaf:Person. 3 s a foaf:Person.

4 ?s :lives_in "Berlin". 4 ?s ?relation "Berlin".

5 ?s foaf:knows :John . 5 ?s foaf:-knows ?someone .
6|} 6|}

A triple pattern with a bound predicate and a bound object imposes a
greater restriction on the result size because only value bindings for one vari-
able will be returned. In the example there is just the variable 7s in the
first query but three variables in the second query, namely 7s, ?relation, and
?someone. Consequently, there are more possible combinations for variable
bindings in the latter case. In fact, the result size for the first case is limited
by the triple pattern with the smallest cardinality. For example, assuming that
there are n entities which match <7s :lives_in "Berlin"> and m entities which
match <?s :has_name "John">, then there cannot be more than min(n,m)
entities which match both triple patterns. In contrast, for the second case the
result size can be increased by adding variable bindings for ?someone because
each entity which matches 7s can have multiple foaf:knows relations. Hence,
the cardinality estimation for star-joins employs a distinction between the
different triple pattern types.

Definition 5.5 (Star-Join Cardinality). Let Pi,...,P, be a set of triple
patterns with a shared subject variable. Further, let P" be a triple pattern with
two bound variables and let P’ be a triple pattern with one bound variable
such that {P1,..., P}y ={P{,...., P YU{P1,..., P/} Nk +1=mn. Then, the
star-join cardinality is defined as

cardpy(Pi,...,Pp) = Y cardj(Py,...,Py) (5.10)
VdeD
with
card;(P1,...,Pn) = min(cardqs(P;)) - H cardy(P;) (5.11)

where cardfi(Pj() is the cardinality of 73]’- in combination with a bound subject
variable s.

This formula cannot be applied if individual statements with the same sub-
ject are mapped to different data sources. In that case, the Star-Join cardinality
is computed separately for each subset and aggregated using the formula for

Path-Joins (Def. 5.6).
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The multiplication with card? allows for taking into account the increasing
result size when triple patterns with unbound predicate or unbound object are
involved. Its computation is done using the equations for dependent variables
in Sec. 5.4.1. For example, if 500 RDF triples with predicate foaf:knows have
50 distinct subjects, then the cardinality for the respective triple pattern in
combination with a bound subject is 10, because on average each subject will
have 10 foaf:knows relations.

Due to missing information about the correlation of triple patterns in a
star-join, e. g. if predicates co-occur for the same subjects, it is hardly possible
to further improve the cardinality estimation. However, the estimate already
gives a good and reliable upper bound for the star-join result size. Finally,
analogous to the subject-based star-join, the same computation can be used
to estimate the cardinality of an object-based star-join.

Path-Join Cardinality

A sequence of connected SPARQL triple patterns, i.e. with shared variables
occurring in subject position of one triple pattern and in object position of
another triple pattern, is called a path-join. The cardinality estimation for
path-joins extends equation (5.8) such that sequences of triple patterns across
multiple data sources are covered.

Definition 5.6 (Path-Join Cardinality). For a sequence of triple patterns
P1, ..., Pn, which represent a path-join over a set of data sources D, the path-
join cardinality is defined as

card5(P1y .., Pn) = H cardp(P;) - selp(P1,Pa) ... selp(Pn_1,Pn)
1<i<n

(5.12)

The computation of cardp(P;) follows equation (5.1) while the join selectivity
considers multiple paths across different data sources by averaging over the
individual selectivities for each data source combination.

selp(Pi, Piy1) = avg(selg,a (Pi, Pit1)) (5.13)
Vd,d €D: cards(P;) >0 A cardg (Piy1) > 0

Since VOID descriptions do not include statistics about join paths, especially
not for joins across data sources, the selectivity computation relies on the
distinct number of subjects and objects, assuming a uniform distribution.

selg a'(Pi, Pit1) = max(selqg(0;), sela (Si+1)) (5.14)

5.5 Evaluation

In order to assess the effectiveness of the SPLENDID query optimization, an
evaluation with a federation of actual Linked Data sources had to be done.
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The main objective was to verify that distributed SPARQL queries can be
processed efficiently with SPLENDID by choosing optimal query execution
plans. Therefore, measuring the actual query processing time (including source
selection, query optimization, and query execution) is the most comprehensive
indicator for the overall performance. An isolated evaluation of the cardinality
estimation has not been conducted because initial investigations have shown
that although the magnitude of the cardinality estimation error grows quickly
with the number of joins it has little effect on the final join order in a query
plan. Hence, the evaluation concentrated on the query execution time

The evaluation methodology employs a variation of query optimizer set-
tings in order to investigate how the performance of the query evaluation is
influenced by choosing different (physical) query execution plans. Therefore,
the use of hash join and bind join in SPLENDID query plans is evaluated
separately. Moreover, the effects of combining owl:sameAs patterns in sub
queries is evaluated. This combination can significantly influence the query
processing performance but it should only be applied if no third party links
are involved (cf. Sec. 4.3.3). In the second part the overall effectiveness of
the SPLENDID query optimization is evaluated through a comparison with
state-of-the-art federation implementations, i.e. DARQ [188], FedX [203], and
Sesame AliBaba?. The main differences between the systems (cf. Table 5.1)
are the use of heuristics (FedX, AliBaba) versus cost-based query optimization
(SPLENDID, DARQ) and the choice of physical join implementations.

Table 5.1. Characteristics of the compared state-of-the-art federation systems.
Physical Join implementations are Hash Join (HJ) and Nested-Loop Join (NLJ)
for local join computation as well as Bind-Join (BJ) [93] and Controlled Bound Join
(CBJ) [203] for reducing the data transfer cost.

SPLENDID DARQ FedX AliBaba
query plan structure bushy left-deep left-deep left-deep
optimization algorithm dyn. prog. it. dyn. prog. heuristics heuristics
supporting statistics yes (VOID) yes no no
join implementations HJ, CBJ NLJ, BJ CBJ NLJ, BJ

A comparison of different federation systems typically considers each im-
plementation as a black box and does not evaluate the different components
independently, i. e. query optimization and query execution. However, prelim-
inary evaluation results indicated that FedX has generally a superior query
execution due to the optimized bind join implementation which significantly

% http://www.openrdf.org/doc/alibaba/2.0-beta9/alibaba-sail-federation /index.html
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reduces the network communication cost. In order to obtain comparable eval-
uation results considering only the effectiveness of the query optimization,
it is necessary to perform the evaluation without side effects from the source
selection and query execution. Unfortunately, the implementations of the com-
pared federation systems do not easily allow for an isolated evaluation. In fact,
some components are tightly coupled, e.g. the query execution needs to sup-
port the physical join implementations used in the query optimizations and
vice versa. Therefore, the federation implementations of DARQ and AliBaba
were evaluated as is. Only for SPLENDID and FedX it was possible to han-
dle the query optimization separately and use the same source selection and
query execution code, i.e. the source selection was done in both cases with
ASK queries for each triple pattern and for the query execution SPLENDID
employs the Blocked Bind Join implementation of FedX as well.

5.5.1 Setup

The comparison of different optimization strategies is best done with a bench-
mark. However, the number of suitable benchmarks for distributed SPARQL
query processing is very limited. In fact, FedBench [198] is the only bench-
mark suite which explicitly focuses on this scenario and has already been
used by a number of researcher for this purpose. Other research efforts in this
direction [89, 164] mainly investigate improvements for distributed SPARQL
benchmarks but do not provide a complete benchmark suite. The FedBench
evaluation infrastructure® provides means for measuring the average query ex-
ecution times of different benchmark queries. It incorporates snapshots of ten
Linked Data sources, separated in life science and cross domain datasets, and
14 queries with different characteristics which cover these datasets. Details
of the benchmark queries are shown in Table 5.2. FedBench prefers dataset
snapshots over live requests on SPARQL endpoints because the latency and
bandwidth can differ significantly. It would be hardly possible to obtain reli-
able results for a detailed performance comparison.

Table 5.2. Number of covered data sources and result sizes for FedBench’s cross
domain (CD) and life science (LS) queries

CD1 CD2 CD3 CD4 CD5 CD6 CD7 LS1 LS2 LS3 LS4 LS5 LS6 LS7

sources 2 2 5 5 5 4 5 2 4 2 2 3 3 3
results 90 1 2 1 2 11 1 1159 333 9054 3 393 28 144

The SPLENDID evaluation setup comprised five 64bit Intel® Xeon® CPU
3.60GHz server instances running Sesame 2.4.2. Each of the servers provided

3 http://code.google.com/p/fbench/
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the SPARQL endpoint for one life science and for one cross domain dataset.
The SPLENDID federator instance was executed on a separate server instance
with 64bit Intel® Xeon® CPU 3.60GHz and a 100Mbit network connection.
Each FedBench query was evaluated ten times in order to measure the average
query execution time. The first run was excluded such that cold caches could
not influence the results. The query execution time was measured as the time
required for retrieving the complete result set. In order to prevent extremely
long running queries a timeout of two minutes was set.

5.5.2 Results

The first evaluation compares the effects on the query execution performance
for varying physical join implementations in the query plans, i.e. the SPLEN-
DID optimizer used either hash join or bind join exclusively in the generated
query plan. Additionally, the effect of grouping owl:sameAs patterns in sub
queries was investigated. The second part shows the results for comparing the
performance with different state-of-the-art federation implementations.

Comparison of Different Join Implementations

SPLENDID was run with different settings for applying the two physical join
implementations in the query plans. Figure 5.5 shows the results. The first
interesting observation can be made regarding the query timeout for CDI1,
CD6, CD7, LS, and LS3 with hash joins. In contrast, all queries with bind
joins finished within the time limit. The bind join is also superior to the
hash join in almost all queries. However, the life science queries LS1, LS5,
and LS7 are executed fastest with the hash join implementation. The reason
for these observations are the different sizes of intermediate result sets. The
bind join has a clear advantage when the amount of data which has to be
transmitted over the network is reduced. The hash join is better when only
small intermediate results have to be retrieved.

Figure 5.6 shows the query execution times for query plans where both
bind join and hash join can be applied in a query plan. All cross domain
queries achieve the best query execution time compared to Fig. 5.5. However,
for the life science queries it also happens that a sub optimal query plan is
chosen, which can be attributed to estimation errors in the cardinality and
cost computation for the query plans.

The grouping of owl:sameAs patterns in the cross domain queries leads
generally to faster query execution times. The highest impact can be seen for
the cross domain queries. The life science queries do not contain owl:sameAs
patterns except for LS3. However, such a grouping of owl:sameAs patterns
only returns complete results if the owl:sameAs triple statements are located
in the same data source as the subject (which is the case for FedBench).
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Fig. 5.5. SPLENDID query execution times for cross domain (CD) and life science
(LS) queries. The optimization employs either bind join (B) or hash join (H). The
grouping of owl:sameAs patterns (GSA) further reduces the query execution time.

Comparison with State-of-the-Art Federation Systems

The results of the comparison of the query execution times for SPLENDID,
FedX, DARQ and AliBaba are shown in Fig. 5.7. DARQ and AliBaba are not
able to process all FedBench queries. AliBaba generates malformed sub queries
for CD3, CD5, LS6, and LS7. DARQ cannot evaluate CD1 and LS2 due to
unbound predicates and CD3 and CD5 fail to complete because DARQ opens
too many connections to the GeoNames endpoint. DARQ and AliBaba queries
labeled with timeout take longer than the limit of two minutes. SPLENDID
and FedX can return results for all queries within this time limit.

FedX and SPLENDID achieve for all queries the best query execution times
when compared with DARQ and AliBaba. FedX is usually a bit faster than
SPLENDID, except for queries CD3 and CD4. An investigation of theses differ-
ences revealed interesting insights. The FedX optimization heuristics are faster
than the cost-based query optimization in SPLENDID. But usually both FedX
and SPLENDID generate the same query execution plans with the same join
order. In some cases SPLENDID uses hash joins instead of bind joins and pro-
duces a different join order for two queries. This lead to a sub optimal query
plan for queries CD6, CD7, LS5, LS6, LLS7. The reason are erroneous estimates
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Fig. 5.6. SPLENDID query execution times for cross domain (CD) and life science
(LS) queries using a combination of bind join and hash join. The effect of grouping
of owl:sameAs patterns (GSA) is shown as well.

for the result cardinality and the query execution cost. Additionally, the hash
join is hardly optimized and relies on accurate estimates for the cardinalities
of the input data. However, the results of SPLENDID for queries CD3 and
CD4 supports the hypothesis that better query performance can be achieved
through cost-based query optimization and different join operator implemen-
tations. An independent investigation by Rakhmawati and Hausenblas [189]
confirm the good performance of SPLENDID for different data distributions
and partitions.

5.6 Summary

This chapter started with a survey of relevant research in the area of dis-
tributed and federated databases. It has been shown that there are a lot of
useful query optimization techniques which can be adopted for distributed
SPARQL query processing on federated Linked Data source. However, there
are also significant differences concerning the RDF data structure and limita-
tions of the SPARQL syntax and protocol.
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Fig. 5.7. Comparing the query evaluation time for state-of-the-art SPARQL end-
point federation approaches, i.e. Sesame AliBaba, DARQ, FedX, and SPLENDID,
using the FedBench cross domain (CD) and life science (LS) queries.

The main contributions to this field of research are the newly developed
SPLENDID approach for implementing effective distributed query processing
on Linked Data employing cost-based query optimization which used statis-
tical data expressed in VOID descriptions. Therefore, a cost model based on
data transfer cost and suitable cardinality estimation techniques capturing
the correlation of RDF data were derived.

The final evaluation has shown that efficient physical join implementations,
like hash join and bind join, have a significant influence on the query execution
performance. With respect to finding the best query execution plan, it turns
out that heuristics can provide quite good results for queries with common
basic graph patterns. The optimization of more complex queries is certainly
more challenging and SPLENDID shows a slightly better performance in some
of these cases. However, the complexity of the FedBench [198] benchmark
queries, e. g. with respect to the number of joins and the number of involved
data sources, is limited. Therefore, chapter 7 investigates the benchmarking
of Linked Data federation systems in more depth.



PINTS: Maintaining Distributed Statistics for
Peer-to-Peer Information Retrieval

RDF is a very flexible data format which can be used to represent informa-
tion from various domains. Depending on the application scenario, large scale
RDF data management can be implemented based on different infrastruc-
ture paradigms (cf. Chap. 3). While the previous chapters focused on fed-
erated SPARQL query processing over distributed, linked RDF data sources,
this chapter deals with the maintenance of distributed statistics for graph-
structured data in Peer-to-Peer networks. Most of the research on RDF data
storage in Peer-to-Peer networks (cf. Sec. 3.6) investigates optimal data dis-
tribution and sophisticated query processing strategies. But a ranked retrieval
of peer-specific search results is often not covered. In general, the search on
RDF graphs differs significantly from the classic document-based information
retrieval, i.e. SPARQL queries either return tuples with variable bindings,
individual RDF triples, or specific RDF sub graphs. Therefore, a relevance
ordering on the results essentially requires specific ranking strategies, e.g.
[113, 81, 158]. However, these algorithms do not fit well to the data storage
in structured Peer-to-Peer networks. Gathering all required data at one peer
(i. e. the query initiator) and then obtaining a list of globally ranked results
based on locally computed relevance scores is typically prohibitively expen-
sive. A restriction of the application scope to a specific domain can help to
reduce the complexity because the underlying data model will be limited to
a well known schema with specific entity types.

Typical scenarios for the application of Peer-to-Peer systems are large user
communities which exchange information or share specific resources, e. g. so-
cial networks and file sharing communities are the classic use cases. From an
infrastructure perspective basically any social network can be managed in a
distributed fashion on top of a Peer-to-Peer network. An example for such a
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system is Tagster [86] which provides support for decentralized collaborative
tagging using a tagging ontology [174]. The tagging ontology defines an RDF
model for the relation between users, tags, and resources. Search requests on
such a collaborative tagging network are user-centric, resource-centric, or tag-
centric. Due to the similarity to classic keyword-based information retrieval
it is possible to adapt well known concepts, like the vector space model and
the tf-idf metric [17], and apply relevance ranking by computing the similar-
ity between tagging-based feature vectors. However, the computation of tf-idf
in a Peer-to-Peer system is challenging because some statistics, e.g. the co-
occurrence count for related users, tags, and resources, need to be collected
from different peers in the network. Therefore, it is necessary to implement an
efficient meta-data management strategy which can basically aggregate and
maintain important statistics with minimal network communication overhead.
In order to solve this problem, the contribution of this chapter is twofold. First,
a formal model for characterizing item sets in a collaborative tagging system
is defined and used as the basis for adapting the tf-idf metrics for the underly-
ing tripartite network structure. Second, PINTS [85], an efficient solution for
managing distributed statistics, is presented. It employs a prediction-based
update strategy for global statistics which significantly reduces the network
communication cost and, at the same time, maintains a high accuracy of the
individual feature vectors.

The chapter is structured as follows. Section 6.1 gives an overview of
the collaborative tagging model along with a description on how the tra-
ditional tf-idf approach can be adapted to it. A description of the challenges
for distributed collaborative tagging is given in Sec. 6.2. Then, in Sec. 6.3, the
PINTS approach for efficient updates of statistics in the distributed scenario
is presented. Finally, a discussion of evaluation results based on real tagging
datasets follows in Sec. 6.4.

6.1 A Data Model for Collaborative Tagging Systems

Collaborative tagging systems have gained some popularity in the last decade.
Tagging is a well suited paradigm for data organization and allows for easy
categorization of information objects by assigning simple user-chosen key-
words (i.e. tags). People tag resources for two different reasons: for personal
data organization and to share interesting information with others. This gave
rise to services like Flickr!, Delicious?, YouTube?, LastFM*, Bibsonomy® and
the like which allow for easy organization and sharing of photos, bookmarks,
videos, music, and publications over the Internet. The main benefit of such

! http:/ /flickr.com

% http://delicious.com
3 http:/ /youtube.com
* http://last.fm

® http://bibsonomy.org
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sites is the collaborative categorization of a huge amount of data and the abil-
ity to browse in a very easy way through all that data to find new interesting
things because other people have been tagging them with similar tags [84].

Tagging systems are not bound to a fixed classification hierarchy. A user
simply assigns any number of arbitrary, short labels (tags) to a resource in
order to categorize it. Figure 6.1 illustrates the relations between users, tags,
and resources as defined through different tag assignments. Resource retrieval
is then performed on the basis of the associated tags and users can simply
browse along the tag-resource-user relations. The emerging network, which
has similar characteristics as complex systems [84, 50, 96], is also called a
folksonomy (derived from folk+tazonomy®).

Fig. 6.1. Tag assignment relations between users, tags, and resources.

6.1.1 Tripartite Networks

Folksonomies have the structure of a tripartite network [138] (or hypergraph)
with ternary relations (i.e. tag assignments) between users, resources (e.g.
images, media files), and associated tags (i.e. arbitrary text labels).

Definition 6.1. Folksonomy. Let U be a set of users, T be a set of tags, and
R be a set of resources. Then a set of tag assignments isY CU xT x R.

The elements in U, T', and R can be mutually characterized based on these
relations. For example, a user’s interests and the topic of a resource can be
described by the associated tags. Analyzing such characteristics [201] helps
to find interesting resources in a folksonomy, identify specific interest groups,
give personalized recommendations, or provide tag suggestions for annotat-
ing new resources. Computations on folksonomy data often rely on common
network analysis approaches which require that tripartite tag assignments
are projected to a bipartite or unipartite network [84], e.g. by counting the
frequency of occurrences or the correlation between elements.

® http://vanderwal.net/folksonomy.html
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6.1.2 Generic Tag Clouds

The notion of “tag clouds” is commonly used to visualize tag-centered folkson-
omy characteristics. Figure 6.2 shows an example tag cloud centered around
the topic Web 2.0. It uses different font sizes to differentiate between im-
portant tags (large font) and less important tags (small font). Additionally,
different colors can be used or the tag layout and sort order may be varied.
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Fig. 6.2. Example of a tag cloud centered around the topic “Web 2.0”7

However, various forms of relations between users, tags, and resources are
interesting from an information retrieval perspective. Therefore, the concept
of a generic “tag cloud” is introduced to characterize elements from U, R, and
even T in a flexible way.

Definition 6.2. A generic tag cloud is defined on a context-dependent subset
Y* CY of all tag assignments using a tag-rank function f(t) that computes
a score (weight) for each t € T* from Y*.

T:="f) with f(t):Y"—=R (6.1)

Using Def. 6.2 individual users and resources can be characterized based
on the collection of tags from the respective subset of relations in Y*. Thus,
it is possible to differentiate between user-centric tag clouds T, (i.e. all tags
assigned by a user u € U) and resource-centric tag clouds T, (i.e. all tags
associated with a specific resource r € R):

Tuw:= Yy, fu), Yo CH{u}xT xR :
T =Y fr), Y.C U XTx{r} (6.3)
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Moreover, community-centric tag clouds can be defined which summarize
all tags of a group of users U* C U or for a collection of resources R* C R:

{IU* = (YU*,fU*), YU*gU*XTXR
TR* = (YR*,fR*), YR* - UxTxR*

The combination of a group of users U* C U and a collection of resources
R* C R leads to a tag cloud centered around a community of user and re-
sources:

TU*R* = (YU*R*an*R*)7 YU*R* g U*xT x R* (66)

The conceptual model behind these tag cloud definitions is rather generic
and can be easily adapted to focus on users and resources. Although “user
clouds” or “resource clouds” are rather uncommon, a generic tag cloud is
essentially a collection of labels with an associated weight which is interpreted
as the relevance of the labeled item in a specific context. Therefore, it is
convenient to stick to the popular tag cloud notion, even if the concept is
applied in a broader context where it represents a collection of labeled items
from U, T, or R, respectively.

6.1.3 Feature Vectors for Folksonomies

Item-based searches in folksonomies, such as finding all resources or users as-
sociated with a given tag, can be realized by employing common information
retrieval approaches. However, an adaptation with respect to the characteris-
tics of tag clouds and the tripartite tagging relations is necessary. The classic
information retrieval [17, 152] usually relies on the Vector Space Model, which
employs feature vectors to characterize documents and to determine their
relevance with respect to the search terms.

The Vector Space Model

A feature vector v = (wy,ws,...,w,) contains weights for the terms that
occur in the document or query, respectively. Relevance ranking of documents
is done by computing the similarity between the query terms and the features
of the documents [17]. The difference between two feature vectors v; and v
is often calculated using the cosine similarity measure:

V1 - V2

S’Lm(’Ul,UQ) - m (67)

This measure basically determines the angle between two vectors in the vector
space (dot product normalized by the vector length ||v]]).

" http:/ /wikipedia.org/w/index.php?title=File:Web_2.0_Map.svg, CC BY-SA 2.5
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Term weights in a feature vector can be influenced by long documents and
frequent terms. Therefore, the tf-idf weighting function takes into account
the whole document collection and computes normalized weights for all terms
based on term frequency (tf) and inverse document frequency (idf).

Term Frequency captures the number of occurrences of term ¢ in docu-
ment d. This can be the raw term frequency freq(t,d) or (in order to ac-
commodate for longer documents) a normalized frequency, e.g. raw term
frequency divided by the maximum raw frequency of any term w in d.

freq(t, d)
maz(freq(w,d) : w € d)

tf(t,d) = (6.8)

Inverse Document Frequency takes into account the popularity of term
t in the whole document collection D. It is the ratio of the overall number
of documents divided by the number of documents the term occurs in.

Dl
{de D:ted}

idf (t, D) = log (6.9)
The normalized importance of term ¢ within document d relative to the
document collection D is then computed as t fidf (¢,d, D) = tf(t,d)-idf (t, D).

TF-IDF for Tag Clouds

The adaptation of tf-idf for tag clouds requires a modification of the statistics
calculations in order to work for the tripartite relation of tags, users, and
resources instead of the bipartite relation of terms and documents. Therefore,
this section defines a generic weighting model which is employed to compute
the weight for a user, tag, or resource based on the other two related sets.

Definition 6.3. Let I be an item set, i.e. U, T, or R. Then, the domain of
I is a tuple which contains the respective other two item sets J and K

dom(I) = (J,K) withI,J,K € {U,T,R} and I # J # K (6.10)
For example, dom(U) = (T, R), dom(T) = (U, R), and dom(R) = (U, T).

Users and resources can be characterized by their associated tags. In turn,
the relevance of a tag is usually computed based on its occurrence in the set of
users or in the document corpus, respectively. However, the tf-idf computation
on the tripartite tagging relations allows for aggregating the information for
resources and users in a combined tag weight. Following is a general formaliza-
tion for tf-idf on arbitrary item sets which combines the weight computation
of both item sets from the respective domain in one formula. Therefore, the
notions of item-to-item frequency (if) and inverse item frequency (iif) are intro-
duced, which return a vector with two weight entries, one for each dimension
of the domain of an item set.
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Definition 6.4. For a context dependent subset of tag assignments Y*, the
item-to-item frequency (if ) is defined as the number of occurrences of item
i € I in a relation with distinct items from dom(I)

ify-(1) = (1J7], |K71) (6.11)
with J; ={jeJ|dz e K: (i,j,z) e Y}
K'={keK|3xeJ: (i,z,k) e Y},
e. g. the number of different users and resources associated with a tag.
The inverse item frequency (iif ) represents the popularity of an item i € I
in the whole set of tag assignments Y . It is defined on the item sets in dom(I)

as the ratio between the respective item set cardinality and the subset of items
which occur in a relation with item 1.

iify (i) = <log ||ji||,log ||K£zl|) (6.12)

with J;={jeJ |3z e K: (i,j,x) €Y}
K,={ke K|3xeJ: (i,z,k) €Y}

Combining if (i) and if(I) via the dot product (inner product) of the re-
spective vector representation yields the value of the i-th feature vector ele-
ment.

ifiif (i) = if (i) - aif (i)" . (6.13)
In order to allow for a more flexible tuning of the influence of the item

sets in dom(i), two arbitrary weighting parameters wy, ws with wy + we = 1
are introduced, which are multiplied as elements of a diagonal matriz W .

ifiif (i) = if (i) - W - @f (i) T with W = (u())l u(;) (6.14)
Following example illustrates the computation of user-specific feature vec-
tors based on a small set of tag assignments Y with three users, three tags
and three resources. Figure 6.3 visualizes the respective bipartite graph rep-
resentation centered around the tags.
The construction of the tag-centric feature vector of Alice employs the
subset Y4;ice for computing the if values of each tag (cf. Eq. 6.11) and all tag
assignments in Y to determine the corresponding iif values (cf. Eq. 6.12).

ify,,,.. (holiday) - iify (holiday)
VAlice = ify ... (mountain) - iify (mountain)

ify,,... (sea) - iify (sea)

1,1) - (log(2),log(3))” 2 - log(3) 3.2
= 1,1 (log(%), log(%))T = 2. log(%) ~ 112
(1,1) - (log(3),log(3))” log(3) + log(3) 2.2
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E & S

Alice Bob Dave

[holiday ]

Photo1 Photo2 Photo3

Fig. 6.3. Tag-centered visualization of five tag assignments by three users

A weight in the resulting feature vector is higher if the tag is more discrim-
inative than another tag, i.e. if it is less popular and connected with fewer
users or resources. For example, the tag “mountain” is shared by two users.
Hence, it is less specific than the tag “holiday” which is only used by Alice.
The feature vectors of Bob and Dave (using Y., and Ypaye, respectively) are
then computed accordingly.

0,0) - (log($), log($))" 0 0

vBoh = | (1,1) - (log(5),log(3))" | = 2 -log(3) ~ [ 1.2
(0,0) - (log(2),log(2))" 0 0

(0,0) - (log(2), log(2))" 0 0

Vpave = | (0,0) - (log(3),1og(3))" | = 0 ~1 0
(1,1) - (log(2),log(3))* log(2) + log(3) 2.2

Alice and Bob both use the tag “mountain” while Alice and Dave have
the tag “sea” in common. But only Dave shares a resource with Alice, i.e.
“photo 3”. Consequently, the similarity between the feature vectors of Alice
and Dave is higher than for Alice and Bob.

Sim(vAlicea UBob) =0.29 Sim(vAlicea UDave) = 0.54

6.2 Managing Distributed Tagging Data

Centralized tagging systems like Flickr, YouTube, Delicious, and Bibsonomy
are easy to use but they also have several drawbacks. A user has to sign
up with different services to organize and share different media types, like
Web links, photos, videos, and publications. Moreover, the data needs to be
uploaded and stored within the infrastructure of the tagging service provider.
This implies a certain loss of control over the data, a single point of failure,
and the need to trust the service provider and to accept the respective terms of
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service, e. g. Flickr limits the amount of photo storage space for free accounts
(initially only 200 photos, now up to a certain volume) and also imposes a
certain amount of censorship. Finally, with multiple tagging service providers
it is hardly possible to connect the different resources types and obtain tagging
statistics across system boundaries. Hence, it is currently not possible to use
these systems for open data sharing, including other document types, like
vector graphics, spread sheets, or ontologies.

Decentralized infrastructures are much more flexible and allow users to
keep any kind of files locally while only exchanging the tagging meta data.
An important advantage is the full control over the shared personal data
without involving any central authority. Tagster [86] is a prototype of such
a distributed collaborative tagging system. It has been implemented on top
of a structured Peer-to-Peer network and offers the same basic tagging and
search functionality as in centralized tagging applications (cf. screenshot of the
Tagster user interface in Fig. 6.4). However, the computation of tag clouds
and ranked retrieval is more complicated because of the data distribution and
the cost for storing and maintaining all necessary statistical information.
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Fig. 6.4. Screenshot of the Tagster prototype. It combines file browser style resource
navigation (hierarchical view) with collaborative tagging, i. e. tag-based browsing of
local data and information shared by other users.
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6.2.1 Decentralized Storage of Tagging Data

A peer (in Tagster) commonly represents one user. Therefore, it can answer
all requests concerning the user’s tagging data. But if global information is
requested, e.g. the usage of a tag by other users, it is necessary to collect
that data from the network. For example, the calculation of if-#if-based user-
centric tag clouds would be highly inefficient if each peer needs to ask all
other peers about the used tags. Instead, dedicated peers can maintain cer-
tain statistics such that (at best) only a few requests are necessary to retrieve
the information. Therefore, the data distribution in a Peer-to-Peer system has
a great influence on different non-functional aspects, like information retrieval
performance, load balancing across peers, data locality, and flexibility and re-
silience in case of network changes. Different approaches for storing (RDF)
data in a Peer-to-Peer network have been discussed in Sec. 3.6. Tagster is im-
plemented on top of a distributed hash table (DHT), i.e. a structured overlay
network, which has certain advantages over unstructured Peer-to-Peer sys-
tems. In a distributed hash table all data is represented as “key:value” pairs
and indexing is done using a global consistent hash function which maps keys
to peers. Thus, the hashing allows for an even distribution of the data across all
peers and specific routing tables ensure that at most O (log n) routing steps
are necessary to lookup any key in a network of n nodes (for more details
see Sec. 3.6.2). A simple lookup-based interface provides access to all stored
“key:value” mappings and each peer just maintains the data of its specific key
range. No global knowledge about the data distribution is required. In addi-
tion, distributed hash tables are highly scalable, support flexible reassignment
of key ranges, and provide good fault tolerance through data replication.
The storage of tag assignments in a distributed hash table requires a trans-
formation of the tripartite tagging relations into “key:value” pairs. Therefore,
the user-tag-resource combinations are split into the respective bipartite re-
lations for tags and resources creating four different “key:value” mappings,
i.e. “tag:user”, “tag:resource”, “resource:tag”, and “resource:user”. When put
into the distributed hash table, each “key:value” pair is sent to the peer which
is responsible for the respective key. For example, the assignment of multiple
tags to one resource will create several “tag:resource” mappings which are in-
dexed at different peers whereas all “resource:tag” mappings are stored at the
same peer. In addition to the “key:value” mappings each peer also maintains
statistical information for each stored key, i. e. if and 7if values (cf. Sec. 6.1.3),
which are used for the feature vector based relevancy ranking of results.

6.2.2 Feature Vector based Information Retrieval

Tag-based search and the browsing of associated users, tags, and resources
are common interactions in folksonomies, which translate in Tagster into dis-
tributed hash table lookups that return all stored values for the specified key.
Besides such basic operations, a user also wants to discover new and interesting
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resources, e.g. through related topics or by finding users with similar inter-
ests. However, in order to compute the similarity between different items it is
necessary to have a suitable data model that allows to characterize and rank
items based on their respective tagging relations. Moreover, it must be imple-
mented efficiently in a Peer-to-Peer network. Therefore, existing algorithms
like Folkrank [117], which provides a resource ranking mechanism similar to
Pagerank [181], cannot be applied because it focuses on centralized tagging
systems where all data can be found and analyzed in a large database. In
fact, the generic tag-cloud centered vector space model presented in Sec. 6.1.3
fits well for the Peer-to-Peer scenario since it does not need any complex
calculations but solely relies on item counts.

In order to compute the if and #if values for the weights in a feature vector
(as defined in Def. 6.4), a peer requires local knowledge about item-specific tag
assignments and global knowledge about the occurrences of the item in tagging
relations of all peers. For example, assuming that each user u € U acts as one
peer in the overlay network and that, for ease of presentation, only tag-based
user characterizations are considered, i.e. the coefficients in equation (6.14)
are chosen accordingly to include only elements from the tag relations (e.g.
wy; = 0 and wy = 1). Then, the if value is the tag frequency for the user
and the #if value is computed based on the overall number of users using
this tag and the total number of users in the system. A peer can get the tag
frequency from its locally stored data but it has to obtain the tag’s iif value
from the respective peer which is responsible for the tag in the distributed
hash table. However, there are two challenges concerning the computation
and exchange of 7if values in a highly flexible Peer-to-Peer environment, i.e.
1) reliable counting of global item frequencies, e.g. total number of users,
tags, and resources in the system and 2) updates of the if values which are
maintained by one peer but used in the feature vectors of other peers.

Counting in peer-to-peer systems is problematic because many peers may
have relevant items but only a few should be contacted to gather the re-
quired information [176]. Moreover, for if-iif feature vectors it is necessary
to have up-to-date total counts for each iif value. Although, it is possible to
exploit the underlying network structure for cardinality estimations [115, 134]
the tracking of a large number of cardinalities cannot be implemented effi-
ciently. Alternatives are gossiping-based approaches [123, 130], where peers
exchange counts iteratively until they converge to a stable value, sampling-
based counting algorithms [24], or a combination of gossiping and sampling
[155]. But these approaches do not scale for a large number of items in highly
dynamic tagging scenarios or they cannot accurately estimate the number of
infrequently used items. Only the probabilistic counting with distributed hash
sketches [176] is suitable for Tagster in order to obtain the total number of
users, tags, and resources from the distributed hash table. Consequently, all
7if values are computed by the peers responsible for managing an item’s tag-
ging relations. The PINTS approach, which allows for efficient synchronization
of the 7if values with all other peers, will be presented in the next section.
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6.3 Efficient Updates for Distributed Statistics

Global 4if values are constantly changing as new tag assignments are being
applied by different users of the distributed tagging system. Thus, local if-iif
feature vectors can be influenced even if a user is not actively adding new tag
assignments over a certain period of time. In order to avoid inconsistencies a
user has to have up-to-date iif values whenever feature vectors are displayed
(as tag clouds) or used for calculations. However, on demand update requests
initiated by a user are typically very inefficient because many peers need to
be contacted in order to retrieve all #if values for a feature vector. Moreover,
some requests may even be unnecessary but a peer cannot know in advance
if an 7if value has been changed since it was last retrieved. Instead, PINTS
follows an update propagation approach, i.e. users are notified about changes
of the global #if values. But instant propagation of every #if update to all
peers also leads to a high network communication overhead. Therefore, PINTS
implements an update propagation strategy which decides dynamically when
to notify peers. Hence, it is able to minimize the number of exchanged update
messages while ensuring the accuracy of the local feature vectors at the same
time. Following, the PINTS approach will be presented in detail.

6.3.1 Feature Vector Update Strategies

An update strategy for feature vectors has two orthogonal optimization goals.
First, the propagation of information about changed global statistics, i.e. #if
values, to all (potentially) affected peers in order to keep their local feature
vectors accurate. Second, the limitation of the number of update messages,
because the network communication overhead increases with the number of
peers and for frequently used items, like popular tags. However, it is not possi-
ble to achieve both optimization goals at the same time. Thus, there is always
a trade-off between the feature vector accuracy and the number of update
messages. Following is a description of advantages and disadvantages of three
different update strategies which either maximize the feature vector accuracy,
minimize the number of update messages, or combine both optimization cri-
teria to find the optimal solution.

Transient Updates. This naive approach propagates every change of an #if
value immediately to all affected peers. On the one hand this ensures that
all local feature vectors are always up-to-date, but on the other hand it
requires a lot of update messages, especially for items used by many peers.
However, not every update will yield a significant change for a local feature
vector. Especially for popular tags, there is a large number of associated
peers while the weight of the propagated #if value is low and will have
only little influence on the local feature vectors. Therefore, this update
strategy is highly inefficient.
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Interval-based Updates. The transient update approach sends significantly
more messages than actually required for storing the respective data in
the distributed hash table. In order to reduce the network communication
cost updates can be limited by defining specific update intervals. Such
an approach is useful if certain expensive computations, like item-based
clustering or the analysis of popular trends, are only performed at spe-
cific times (e.g. daily at midnight). Meanwhile, the accuracy of the local
feature vectors decreases because only the last observed #if value is main-
tained. However, 7if values change at different rates. Hence, the accuracy
of individual feature vectors can differ significantly. An individual tuning
of update intervals can improve the accuracy but at the cost of additional
management overhead.

Dynamic Updates. Changes of iif values can have different effects on the
accuracy of feature vectors, e.g. depending on an item’s popularity (rare
items yield larger iif changes). Thus, the network communication cost can
be minimized if update messages are only sent when necessary. However,
dynamic update strategies come with an extra management overhead, i. e.
for storing additional meta data and computing individual update condi-
tions, in order to allow for a more flexible optimization and fine tuning of
the trade-off between the number of update messages and the accuracy
of the feature vectors. In fact, finding the optimal criteria for triggering
update messages is challenging for different reasons. First, one needs to
determine if a change of an #if value is significant for the accuracy of the
affected feature vectors. Since this basically depends on the vector size
and the other weights, it will be different for each feature vector. There-
fore, update notifications are typically only necessary for a subset of peers.
Moreover, the change rate of iif values is not stable over time. Hence, the
use of individually but predefined update intervals is not feasible. Instead,
the dynamic update strategy has to be based on continuous observations
of the changes of 7if values and feature vectors.

The approach implemented by PINTS follows the dynamic update strategy
and additionally employs a prediction of changes to the global 7if values based
on discrete observations in the past. Thus, the number of update messages
can be reduced even more because with accurate predications a peer can rely
on locally available information and does not need to receive update messages
as long as the predication is correct. But due to the dynamic nature of the
tagging system, the predicted #if values will deviate from the ’true’ values
over time. Therefore, it is necessary to adjust the predictions as soon as the
differences would have a significant effect on the feature vector accuracy. The
problem, however, is to employ an efficient mechanism which allows index
peers to detect deviations from the peers local predications and propagate
updates on an individual basis. Therefore, PINTS implements a novel up-
date approach using evolution prediction with individual error approrimation
which is described in the following section.
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6.3.2 Prediction-based Feature Vector Approximation

For a locally maintained (user-centric) feature vector a peer in PINTS keeps
track of the previously observed values #if(i,01), ..., 7if(i,0,) at time points
01,...,0, and it predicts future values ii f*(7, #) with a suitable approximation
function. An investigation of the evolution of #if values for tags in Flickr and
Delicious showed almost linear growth. Therefore, the approximation function
is of the form

iif*(i,0) =a; -0+ b; (6.15)

where 7 represents an entry in the feature vector and the custom parameters
a; and b; are derived through linear regression. Thus, the #if value of any
feature weight can be predicted for arbitrary time points . Furthermore, the
accuracy of an approximated tag cloud specific feature vector v (6) at time 6
can be determined by computing the vector similarity between v3 () and the
current “true” feature vector ve.

sim(v3(0), vy) > 0 (6.16)

If the results lies above a predefined threshold § (e.g. 6 = 0.9) there is no
need to send an update message.

Propagating Updates

Every new tag assignment (u, ¢, r) is stored in the local database of peer u and
sent to the index peers responsible for tag ¢ and resource r, respectively. Each
index peer updates its indexes, computes the new value for 7if, and updates
the approximation for i f*(60). The parameters of the approximation function
are sent to the respective peers for use in their locally approximated feature
vector v*(#). Assuming that the local predictions for all iif*(#) are correct,
a compressed form of the estimated v*(6) is returned to the respective index
peers in order to be able to determine if a new #if value might violate the
accuracy of the peer’s predicted feature vector.

However, large feature vectors, which are commonly encountered for the
characterization of users with many tags, basically require to send the com-
plete feature vector approximation to all respective index peers. Certainly,
this is more information than an index peer needs for checking the “true” iif
value with the approximation for one element of the vector. The rest of the
approximated feature vector has no influence on the similarity computation
in the context of one index peer. The following section explains details of the
optimization used in PINTS which minimizes the amount of data that has to
be exchanged between peers and index peers for communicating approximated
feature vectors.
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Compressed Approximation Parameters

An index peer, which receives new tagging data, will compute a new #if value
and check if the accuracy of the approximated feature vector of any peer
which relies on this #if value is changed beyond the predefined threshold (cf.
the update condition in equation 6.16). Formally, a peer’s approximated fea-
ture vector v*() and an index peer’s variation of the approximated feature
vector v} (0), where the m-th entry includes the index peer’s iif value, are
defined as

if (i1) - (as, - 0 + by,) \ if (i1) - (as, - 0+ by,)
0 (0) = | ifim) - (as, 0+ 0:) | v (0) = | i) - iif (i)
\ if(in) - (i, 0+ b;,) if(in) - (a5, 0+ i)

with values a;, ...a;, and b;, ...b; representing the parameters for the linear
approximation of the i-th element. However, the vectors differ only at the
m-th element. Hence, the formula for the computation of the cosine similar-
ity (equation 6.7) between the vectors contains identical terms for all other
elements in both vectors.

@) n®) X
sim(@*0). o) = [ en@)] ~ vz T

X =) (if(in) - (ai,- 0+ bi,)* + if (im)? - (@i, - 0+ bi,) - iif (i),
k#m

Y= | (if(in) - (i 04+ 0,)2 + if (im)? - (@i, 0+ bi,,)2,
k#m

k#m

The terms for the m-th vector item are isolated, i.e. if (i), if(im,), and
(a;,-0+Db; ), such that the remaining sum expression, which is the same for X,
Y, and Z, only depends on a peer’s local if value and the linear approximation.
By rearranging the sum formula around powers of 6, a quadratic polynomial
is derived where the factors are represented by A,,, B,,, and C,,.
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> (i) - (aiy- 0+ bi,)2 = Y if(ir)? - (0 - 0 + 2ai, by, - 0 + b,

k#m k#£m

— Z[z‘f(z'k)%?kﬂ? + 20f (ir,) % @iy b0 + if (i) 202 ]
k#£m

=A,,-0> + 2B,,-0 + C,, with

A=Y if(ix)%al,, Bm= Y if(ix)ai by, and Cp=> if(ix)’b},.

k#m k#m k#m

This aggregation of terms allows for a very compact representation of all
values necessary for the similarity computation between v*(0) and v, (6). Only
seven distinct parameters [A,,, Bm, Cm, if (im), 1if (im), a;,,,b;, | are needed
to capture all local approximations and the globally known values. A peer
basically computes A,,, By, and C,, for its feature vector weights and sends
the values to the index peers responsible for i,,. The index peer knows if (i,,)
and 7if (i,,). Moreover, it keeps track of the previous evolution approximation
parameters a;, and b; ~which were propagated to the peers. Thus, it holds
all required parameters to compute the similarity between the two feature
vectors, and it can check the consistency condition (Eq. 6.16) whenever the
global values change. Update messages to peers are only exchanged if the
vector similarity falls below the specified threshold. In that case, an index
peer will notify all affected peers about the new approximation and it receives
in return an updated set of the parameters A,,, B,,, and C,,.

The space requirements for storing all parameters at an index peer is small
and it depends on the actual number of peers which use the specific item 7,,,. In
general, the index peer has to store the aforementioned seven values for each
peer. With 8 bytes per value (i.e. long integers or double precision floating
point numbers) an entry is 56 bytes. In addition, maintaining a history of up
to five previous #if values including the corresponding timestamps requires
80 bytes. For example, the global tag-specific index for a large snapshot of the
Flickr dataset 8, with about 320,000 users, 1.6 million tags, and an average
of 50 user per tag, would require a total space of 4.6 GB. Since the indexes
are distributed across many index peers, each of them only has to store a
little amount of data, e.g. 4.6 MB for 1000 index peers. Hence, in a Peer-to-
Peer network, where each user also acts as an index peer, the storage size for
keeping the statistics is not significant compared to the actual tagging data
maintained by each peer.

8 http://west.uni-koblenz.de/Research /DataSets/PINTSExperimentsDataSets
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6.4 Evaluation

The objective of the evaluation is to show that PINTS is actually able to signif-
icantly reduce the network communication overhead while maintaining a high
accuracy of the local feature vectors. Therefore, a systematic comparison was
done between the three discussed update strategies (cf. Sec. 6.3.2), i.e. tran-
sient updates, interval-based updates, and the PINTS approach. The relevant
measures for the evaluation are the number of update messages transmitted
over the network and the number of similarity threshold violations for local
feature vectors before updates with the correct #if values were propagated. The
first measure is an important performance indicator in Peer-to-Peer systems
while the latter captures the effectiveness of the compared update strategies.

In order to obtain authentic results, the evaluation exploits real tagging
data from two of the earliest and most popular social tagging platforms, i.e.
Delicious and Flickr. By replaying each tag assignment from these datasets
the evaluation can simulate real tagging activity of different users. The main
difference between Delicious and Flickr is the correlation between users and
resources. The photos in Flickr are only tagged by one user whereas Deli-
cious users can add tags to any resource. Both tagging datasets were obtained
from the Tagora research project? which crawled the Delicious and Flickr web
sites over a longer period of time. Each dataset contains over a hundred mil-
lion individual tag assignments from several hundred thousand users using
more than a million different tags (cf. Table 6.1). A tag assignment is a four-

Table 6.1. Statistics of the Flickr and Delicious tagging datasets

users tags resources tag assignm. time span

Flickr 319,686 1,607,879 28,153,045 112,900,000 Jan 04 - Jan 06
Delicious 532,924 2,481,698 17,262,480 140,126,586 Jan 03 - Jan 06

tuple which consists of time stamp, user ID, tag ID, and resource ID. The
datasets were anonymized due to legal issues concerning the republication of
the crawled data. But this is irrelevant for the evaluation which only requires
that the original tag assignments are available. Next, the evaluation setup is
described. Then, detailed results will be presented.

6.4.1 Setup

Replaying all tag assignments of the Flickr and Delicious datasets in a real
Peer-to-Peer system is complicated because global data consistency and the
correct event order has to be ensured. Therefore, this evaluation employs

9 http://www.tagora-project.eu/



124 6 PINTS: Maintaining Distributed Statistics for P2P Information Retrieval

PeerSim [165] to simulate a large Peer-to-Peer network in a controllable envi-
ronment. Each individual user from the datasets is modeled as a peer which
stores all tag assignments of the user locally and also sends notifications to the
respective index peers, which maintain the global statistics. The number of
index peers in the distributed hash table overlay network is set to 1000. Peer-
Sim provides an event-based simulation framework, i.e. all tag assignments
are processed in time stamp based order as discrete events. This allows for
replaying a complete stream of tag assignments and performing the appropri-
ate global statistics computations and sending the necessary update messages.
Although the time stamp information in the tag assignments is irrelevant for
the baseline update strategy and for the PINTS approach it is needed for trig-
gering the update events in the interval-based update strategy and for the
time-based comparison of the evaluation results.

6.4.2 Results

The evaluation results are presented individually for Flickr and Delicious in
order to show differences in their characteristics. In general it can be observed
that the popularity of both platforms increased significantly during the eval-
uated time frame. This is visible through a larger number of tag assignments
which also effects the exchanged messages and the rate at which violations of
the vector similarity occur.

Similarity Threshold Violation

The first comparison assesses the ability of the different update strategies
to maintain the accuracy of the local feature vectors, i.e. by computing the
cosine similarity with the true feature vector (Eq. 6.16). Interval updates were
performed at a rate of one day and five days. The number of local feature
vectors with a violated accuracy was determined just before the next interval
update was applied. A feature vector similarity above 90% was considered
acceptable. Hence, the threshold was set to = 0.9. For the PINTS approach
the same threshold value was used as the tuning parameter and, in the same
way, the number of diverging vectors was computed before a local vector was
updated (which may occur at any time). Figure 6.5 shows the average number
of violated feature vectors for Flickr and Delicious, normalized by the total
number of users (peers) which had been encountered so far. The transient
update strategy is not shown in the diagrams since it does not yield any
similarity violations.

There is some fluctuation in the curves, especially in the beginning when
the tagging activity in certain intervals can significantly influence the global
7if values, e.g. through bursts of new tag assignments or new topics and
trends. As expected, the curve of the five day update interval lies well above
the curve of the one day update interval, since the deviation is higher with
five times less updates. The results for PINTS improve significantly after a
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Fig. 6.5. Relative frequency of violations of the similarity threshold 6 = 0.9 with
different update strategies for Flickr (above) and Delicious (below)

first period of instability, i. e. changes by individual tag assignments have less
effects due to a larger number of previous tag assignments which dominate
in the computation of the weights. Thus, changes in the global iif values are
smaller and the approximations are more accurate. Concerning the difference
between Flickr and Delicious, one can see that the PINTS curve stabilizes
much quicker for Flickr and remains at a very low value. This is certainly an
effect of the specific tagging restrictions of Flickr which allow only one user to
tag a resource. In Delicious there is more freedom in tagging resources which
makes tag assignments less predictable. Two more notable observations are the
burst in Flickr around July 2004 and in Delicious in September 2005. While
in all cases the measures for the interval updates get worse, it only affects the
PINTS approach in Flickr. For Delicious there is no noticeable change.
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Message Complexity

Figure 6.6 shows the number of messages for transmitting changed #if values
by the different update strategies. Due to the rapidly increasing number of
tag assignments, all values have been normalized by the total number of tags
at that specific point in time. Thus, the graphs show the average number of
update messages per tag which are sent by an index peer.
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Fig. 6.6. Message complexity for different update strategies for Flickr (above) and
Delicious (below).

The transient update strategy sends the largest number of update mes-
sages. In addition to the fast growth (note the log scale) it also highlights
the points in time where Flickr and Delicious experienced a boost of new tag
assignments. Compared to the other approaches the values for the transient
update are by orders of magnitude higher. For the interval based updates one
can see how much a shorter update interval increases the number of messages.
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In contrast, the PINTS approach clearly employs the lowest number of update
messages, i.e. only one to ten messages per index peer and tag.

Discussion

The evaluation shows that the PINTS approach fully meets the expectations.
A reduction of the number of update messages can be achieved with only lit-
tle sacrifices concerning the accuracy of the local feature vectors. Compared
with the interval-based approaches, PINTS can ensure the same level of ac-
curacy like daily updates but with two orders of magnitude less messages.
However, in the initial phase the accuracy of the locally maintained vectors is
generally problematic for all update strategies since the feature vector weights
can change quickly through a few new tag assignments. In order to overcome
this problem PINTS can be flexibly tuned with a higher similarity threshold.
As soon as the approximations become more stable a lower threshold can be
applied. The interval-based update strategies do not allow for such a kind of
flexibility. Hence, a manual configuration would be required.

6.5 Summary

Information retrieval on distributed, graph-structured data is an interesting
research area with different application scenarios. This chapter focused on a
decentralized collaborative tagging architecture where large amounts of highly
connected data are stored in a structured Peer-to-Peer network. However,
such a Peer-to-Peer infrastructure usually supports only lookup operations.
In order to allow for result ranking and similarity-based searches a generic
tag-cloud model was defined. It captures different aspects of the tripartite
tagging relations and is basically an adaption of tf-idf feature vectors which
are commonly used in traditional information retrieval approaches. However,
the maintenance of statistical data in a distributed system is challenging,
especially when frequent data updates occur. For example, the combination of
global and local statistics in the aforementioned tag-cloud data model requires
to exchange information between index peers and client peers whenever the
data is changed. Therefore, the presented PINTS approach implements a novel
and efficient update propagation strategy for global statistics. It employs an
evolution-based approximation model for global meta data and ensures up-
to-date local feature vectors with only few update messages. The overhead
for storing the additionally information for the approximation coefficients is
minimal compared to the actual data. Furthermore, an evaluation has shown
that PINTS can drastically reduce the network communication overhead while
still achieving a high accuracy for the approximated local feature vectors.
Moreover, PINTS is flexible with respect to the application scenario and can
be adapted for other domains with similar data structures.






SPLODGE Benchmark Methodology for Federated
Linked Data Systems

Benchmarking is traditionally used to compare different software implementa-
tions according to specific performance metrics. It has a long tradition in the
database community [45, 49, 66] where state-of-the-art research systems and
commercial databases are compared against each other. Thus, benchmarks
usually cover a wide range of application scenarios, i.e. common requests as
well as challenging corner cases, in order to obtain a comprehensive picture
over the capabilities of the tested systems. The benchmark handbook by Gray
[90] mentions four general requirements for a benchmark, i.e. it has to be 1)
relevant, i. e. test and measure the typical operations in the problem domain,
2) portable, e.g. run on different systems and architectures, 3) scalable, thus
applicable on small and large computer systems, and 4) understandable in
order to be credible.

RDF benchmarks [92, 199, 32] have been designed with essentially the
same objectives, i.e. to compare RDF triple store implementations by mea-
suring their performance for different queries of varying complexity. However,
query processing on RDF data is different in certain ways from the query pro-
cessing on highly structured relational databases. For example, RDF data is
less structured, has a high degree of data correlation, and many datasets do
not provide explicit schema information [192]. Moreover, new challenges are
introduced by federated query processing on Linked Data which has received
a lot of attention recently. Compared to (distributed) relational database sys-
tems, which have matured over the past decades, the research on efficient
query evaluation across RDF data sources is still in its infancy [190]. Hence,
benchmarks for federated SPARQL query processing are necessary in order
to evaluate such systems, taking into account the peculiar aspects as data
distribution and connections between data sources in the Linked Data cloud.
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But the choice of available RDF federation benchmarks is limited. Currently,
only FedBench [198] offers a complete benchmark suite, including a variety
of federated SPARQL queries for a selected number of linked RDF datasets.
Hence, it has already been used by other researchers and it is also employed to
benchmark SPLENDID in Chap. 4 and 5. However, FedBench (as well as other
federated benchmark proposals) typically have certain limitations, e.g. with
respect to scalability, flexibility, and complexity of the benchmark queries.
Therefore, capturing dataset and query characteristics which are typical for
Linked Data is still a challenge.

This chapter starts with a discussion of design issues for federated RDF
benchmarks. Therefore, several currently available RDF benchmark approaches
are surveyed with respect to their strengths and weaknesses. Then, a classi-
fication of common benchmark query characteristics is presented which also
takes into account aspects for benchmarking federated systems. Afterwards,
details of the SPLODGE [89] benchmark methodology are presented. Based
on findings from the query characterization and it allows for flexible gener-
ation of random benchmark queries. Finally, an evaluation of the SPLODGE
benchmarking methodology on real Linked Data concludes the chapter.

7.1 Design Issues for Federated RDF Benchmarks

In contrast to centralized RDF benchmarks a benchmark for federated SPARQL
query processing systems should 1) be based on characteristic linked RDF
datasets, with various schemas, different levels of structuredness, and small
to large data sizes, 2) provide typical Linked Data queries, having different
graph patterns and query constructs with varying complexity, and 3) con-
sider an evaluation environment which incorporates physical characteristics
and constraints of the Linked Data cloud, i. e. network latency, limited band-
width, and restrictions of SPARQL endpoints. However, existing benchmarks
hardly satisfy all these requirements. From the currently available set of RDF
benchmarks the majority [92, 199, 32, 168, 167| is designed for centralized
triple stores. So far, FedBench [198] is the only benchmark which is exclu-
sively designed for distributed query processing scenarios. However, it has
limitations as well, e. g. it does not allow for large-scale evaluations.

7.1.1 Datasets

A typical problem for designing RDF benchmarks is the choice between arti-
ficial and real datasets. Especially in the context of Linked Data they both
have certain advantages and disadvantages. In general, the former are ideal for
modeling complex benchmark queries while the latter allow for more realistic
evaluation scenarios. Artificial datasets are typically found in centralized RDF
benchmarks, e. g. in LUBM [92], BSBM [32], and SP2Bench [199]. Examples for
benchmarks utilizing real RDF datasets are DBPSB [168, 167], FedBench [198],
and LIDAQ [219].
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Artificial Datasets

The LeHigh University Benchmark [92] (LUBM) was among the first bench-
marks for evaluating RDF triple stores. Its data model is centered around
university resources, e.g. defining relations between students, lecturers, and
courses. A dataset generator can create synthetic benchmark datasets of ar-
bitrary sizes. LUBM provides hand-crafted queries which cover complex query
expressions, different result sizes and also include inferencing of subclass rela-
tions. Thus, the performance evaluation includes several challenging queries.
The Berlin SPARQL Benchmark [32] (BSBM) focuses on an e-commerce use
case, i. e. the benchmark queries are centered around the search and navigation
of consumers who are looking for specific products. The data schema describes
products with different features, offers, and consumer reviews. Again, a data
generator allows to create artificial datasets of arbitrary size. The benchmark
queries include different SPARQL query operators and result modifiers. Dif-
ferent query structures are used to cover diverse query processing aspects.
The SPARQL Performance Benchmark [199] (SP?Bench) generates artificial
datasets which follow the DBLP publications schema [141]. Its data genera-
tor creates arbitrarily large datasets with the characteristic data distribution
and data correlations of DBLP. The hand picked SPARQL benchmark queries
represent meaningful requests on the data. In order to test a broad range of
different query types, a variety of operator combinations, including UNION,
FILTER, and OPTIONAL, with different RDF access patterns are covered.

These artificial RDF datasets provide a well controlled environment to de-
sign complex SPARQL queries for testing various aspect of RDF triple stores.
Individually crafted data schemas help to realize the desired RDF graph char-
acteristics which are required by specific benchmark queries. Since artificial
datasets are typically highly structured [70] they can hardly resemble the
characteristics of real datasets from the Linked Data cloud. The latter are
very diverse with respect to schema and structuredness. Moreover, artificial
datasets can hardly be partitioned in a suitable way to represent a Linked
Data federation scenario with appropriate links between resources. Finally,
the benchmark queries are missing typical aspects related to distributed data
retrieval in the Linked Data cloud. Hence, a federated RDF benchmark should
ideally be based on real data from the Linked Data cloud.

Real Datasets

The Linked Data cloud contains a large variety of RDF datasets with different
characteristics (cf. Sec. 2.2.2). Hence, a good set of benchmark datasets should
typically cover different dataset sizes, structuredness, schema complexity, data
quality, and links to other data sources. Moreover, the access methods, i.e.
URI resolution, SPARQL endpoint, or download of data snapshots, and the
frequency of updates may also be important because benchmark results should
be reproducible and comparable.
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The Benchmark Suite for Federated Semantic Data Query Processing
(FedBench) [198] is currently the only widely accepted federated RDF bench-
mark framework which integrates diverse data sources from the Linked Data
cloud, including DBpedia [15, 31], which is by far the most prominent dataset,
and others, like Drugbank, ChEBI, or Musicbrainz. The benchmark queries have
been hand-picked and cover different aspects, like star and path join patterns
as well as different solution modifiers. Moreover, they are divided into dis-
tinct query sets which target different data domains (e.g. life science, cross
domain, and a partitioned SP?Bench dataset). However, there are also lim-
itations of FedBench, e.g. the fixed number of ten preselected datasets and
that each query involves no more than five of them. LIDAQ [219] implements
a more scalable benchmarking approach which is based on crawled Linked
Data. It automatically generates query sets by employing random walks on
the RDF graph. Two different query pattern structures are supported, i.e.
resource-centric (star-join) and path queries. Variations are applied by the
substitution of RDF terms with variables in the query patterns. Other query
operators besides conjunctive joins are not considered. The random walk ap-
proach ensures that there exist at least one result for any join pattern combi-
nation. But it is not possible to control the result size or the number of data
sources which are involved in the query evaluation. The DBpedia SPARQL
Benchmark (DBPSB) [168, 167] analyzes real queries from the official query
log of the DBpedia SPARQL endpoint. Normalization and clustering is applied
to identify common query characteristics. The results are 25 queries which
cover different SPARQL features, e.g. JOIN, UNION, and OPTIONAL, solution
modifiers, and filter conditions. Different parts of these queries can be varied
randomly. Moreover, a data generator allows to compute subsets of DBpedia
and maintain the characteristic data distribution.

Using real linked datasets allows for designing authentic federated bench-
marks. But the examples above also illustrate some problems. A manual se-
lection of data sources can be tedious, especially if different linked dataset
characteristics should be covered. Moreover, the benchmark scalability is lim-
ited because of fixed dataset sizes and difficulties with dataset partitioning. In
contrast, a crawling-based approach is much more flexible since it can produce
Linked Data corpora of any size with the common characteristics. However,
it is often difficult to understand which data is actually collected. Hence, the
generation of meaningful benchmark queries becomes much more complicated.

7.1.2 Queries

The choice of queries is important for a benchmark because the benchmark’s
usefulness and credibility depends on the coverage of typical application sce-
narios. Thus, an important objective is to find suitable benchmark queries
for a given set of Linked Data sources. But since federation systems are not
in wide use yet, there exist no query logs which could be used to identify
common distributed queries across multiple RDF data sources. The bench-
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marks presented in the previous section follow different approaches to obtain
suitable benchmark queries (cf. Tab. 7.1 for detailed features). FedBench em-
ploys hand-picked SPARQL queries which resemble meaningful requests on
the selected data. But this manual approach requires a good knowledge about
dataset schemas and links. Moreover, the size and diversity of the Linked Data
cloud makes it almost impossible to cover all potentially relevant aspects with
hand-picked queries. LIDAQ in turn, creates random queries according to a
predefined set of basic query structures. Thus, it allows for more flexibility
and better coverage of the datasets. But the generated SPARQL queries cover
only a limited number of typical query characteristics and it remains unclear
if they are realistic in a federation scenario. Therefore, the goal of SPLODGE
is to overcome this gap with a benchmark methodology that offers automatic
generation of complex SPARQL queries for arbitrarily large RDF datasets.

Table 7.1. Overview of typical query features covered in RDF benchmarks. For each
feature the number of queries which contain the feature are given.

LUBM SP2?Bench BSBM FedBench DBPSB LIDAQ
use case university = publication e-commerce Linked Data DBpedia  Linked Data
dataset synthetic synthetic synthetic real (+SP2B) real real
data size variable variable variable fixed variable variable
#queries 14 12 12 T+7+11 25 random
max joins 5 12 14 6 11 3
var pred. - 1 1 2 5 -
union - 2 2 3 10 -
optional - 3 4 1 8 -
filter - 6 9 1 15 -
negation - 2 1 - 2 -
limit/offset - 1/1 6/1 - (25)/- -
order by - 2 6 - - -
distinct - 5 3 - 13 -

7.1.3 Evaluation Environment

The main purpose of benchmarks is to measure specific performance metrics
which can be used to compare different implementations. However, for a fed-
eration benchmark this does not only depend on the choice of datasets and
queries but also on the actual benchmark setup. For example, live queries on
SPARQL endpoints are not feasible for reliable benchmark results because
of specific endpoint restrictions, network latency, and varying bandwidth.
Therefore, snapshots of Linked Data sources are often used in a controlled
benchmark environment. Moreover, it must be possible to acquire different
performance metrics in an easy way. Besides query execution time, which can
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be differentiated between response time for returning the first results and the
total execution time, there are other aspects which are typically interesting
for a federation benchmark.

Transmitted Data The distributed SPARQL query evaluation requires to
send messages to designated SPARQL endpoints. Depending on the query
execution strategy, the amount of data transferred over the network can
differ significantly. The effects of an optimization focusing on minimization
of the communication cost can be measured with respect of the size of the
data which has been transmitted.

Result Completeness Obtaining complete results may require many re-
quests to different data sources. However, in order to prevent long query
execution times a federation implementation may contact only a subset
of the data sources or set a timeout for the query execution. Hence, query
execution time should not be the only performance measure but result
completeness has to be taken into account as well.

CPU/Memory Utilization Federated databases [206] support cooperation
between different data sources to a certain degree, i. e. the mediator dele-
gates query execution tasks among the participating nodes, e. g. by ship-
ping data. Limitations of SPARQL, however, leave much of the query pro-
cessing responsibility to the mediator. Thus, RDF federation benchmarks
may also consider CPU and memory utilization as performance criteria.

7.2 SPARQL Query Characterization

The objective of SPLODGE is to generate random SPARQL queries for real
Linked Data sources including certain characteristics that are specifically
suited for evaluating federated SPARQL processing approaches. Thus, in or-
der to provide a suitable set of benchmark queries, i.e. from common cases
to border cases, it is necessary to identify appropriate query characteristics
for a federation benchmark. Centralized benchmarks with artificial datasets
[92, 199, 32] already cover a wide range of typical SPARQL query features. But
these need to be extended such that the distribution of related entities across
different datasets is taken into account, i.e. queries across multiple Linked
Data sources are of major interest. However, identifying common features
for federated queries is complicated because there exist no publicly available
federation systems which could provide query logs. Hence, there is a general
need for a characterization of typical (federated) benchmark queries in order
to allow for defining the desired query features.

Following summarization of query characteristics is based on a collection
of findings from query log analysis of centralized RDF stores [162, 184, 82| and
the investigation of typical queries used in the aforementioned benchmarks,
e. g. FedBench [198] which is currently one of a few benchmarks which provides
meaningful hand-picked queries spanning multiple Linked Data sources.
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The query characterization is divided along three dimensions, namely
Query Algebra, Query Structure, and Query Cardinality. These dimensions
and features of the query characterization are considered representative to
define a large set of different benchmark queries. However, it is not assumed
to be complete. With an advanced development and use of federated systems,
it is possible that more characteristics may be identified.

The FedBench [198] queries were used as a reference for the analysis of
common query structures. Figure 7.1 gives an overview of the triple pattern
structure of the life-science, cross-domain, and linked data queries. The visual-
ization is focused on conjunctive joins. Filters and optional parts are omitted.
Variable names and bound RDF terms are left out as well in order to highlight
the graph structure. Thus, different combinations of triple patterns in star-
joins and path-joins can be clearly seen. Queries |1 |- |3 | contain subject-based
star-joins, in the case of the latter two combined with a path-join. Queries
and combine two star joins, one with a subject-object join, the other as
an object-object join. The last two query structure types and combine
multiple star-join patterns in different ways with a path-join.

(4]

N e ] N ] N O N FT )

star path + star star + star path + star*
Life Science 1s3 1s6-7 Is4 Is5
Cross Domain cdb-7 cd3 cd4
Linked Data 1d5,7 1d1-2,9-11 1d3 1d4

Fig. 7.1. Overview of different graph pattern combinations (path/star) found in the
FedBench queries (top). The life-science (I1s1-7), cross-domain (cd1-7), and linked data
(1d1-11) queries are differently distributed among the query graph patterns (below).
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7.2.1 Algebra

The first set of query characteristics relate to the semantic properties of
SPARQL. Different query operators are supported by SPARQL. Research on
the query complexity [183, 200] has shown that SPARQL query evaluation
beyond Basic Graph Pattern, i.e. conjunctive joins and filter expression, is
PSPACE-complete and that the main source of complexity is the OPTIONAL
operator.

Query Form. SPARQL has four query forms, i.e. SELECT, CONSTRUCT, ASK,
and DESCRIBE. Query evaluation is based on matching graph patterns as
defined in the WHERE clause of a query. Solutions are returned as a multiset
of variable bindings (SELECT), an RDF graph constructed from triple tem-
plates with substituted solution bindings (CONSTRUCT), a boolean value
indicating the existence of solutions for the graph pattern (ASK), or a
graph describing the resources that have been matched (DESCRIBE). In-
stead of a graph pattern DESCRIBE queries can also take a single URI.

Join Type. Joins in SPARQL are defined by combinations of triple patterns.
Three different join types are supported, i. e. conjunctive join (.), disjunc-
tive join (UNION), and left-join (OPTIONAL). It has been shown [200] that
the OPTIONAL operator significantly increases the complexity of the query
evaluation.

Result Modifiers. The results of the pattern matching, so called solution
sequences, can be altered by modifiers like DISTINCT, LIMIT, OFFSET, and
ORDER BY. The application of these additional constraints also increases
the complexity of the query evaluation.

7.2.2 Structure

The next properties deal with the graph structure that is defined by the
triple patterns in a query’s WHERE clause. There are basically two aspects for
variability in the query structure, i.e. the assignment of variables to subject,
predicate, or object position in a triple pattern and the connection of triple
patterns via join variables.

Variable Patterns. Eight different combinations are possible for having
zero to three variables in subject, predicate, or object position of an RDF
triple pattern. Not all combinations are equally common, e. g. triple pat-
terns with unbound predicate are rarely used while a bound predicate and
variables in subject and/or objection position occurs quite often.

Join Patterns. Triple patterns with a common variable define an equi-join
over the solutions of the triple patterns. Queries can have different graph
shapes depending on the position of the join variable in the triple pat-
terns. Typical join combinations are subject-subject joins (star shape)
and subject-object joins (path shape). The combination of star-shaped
and path-shaped joins yields hybrid join patterns. (cf. Fig. 7.1)
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Cartesian Product. The graph structure of joined triple patterns may have
disconnected parts if they do not share a common join variable. In such
a case the result is the cross product of the partial solutions. The dis-
connected graph patterns can be evaluated independently. However, the
result set of a Cartesian product may be quite large which implies a large
overhead for the query evaluation.

7.2.3 Cardinality

The third group of properties deals with the number of sources and joins
involved in the evaluation of a query and with the size of the returned result
sets. Thus, the group includes specific aspects relevant for distributed query
execution.

Number of Relevant Sources. Federated queries are intended to span
multiple Linked Data sources. Therefore, the number of relevant data
sources, i. e. the data sources which match the graph patterns of a query, is
an important property. Let P be a graph pattern and let F be a federated
RDF graph. Then the set of relevant data sources is

Fp:={GeF|IP e€P:eval(P,G)#0}.

Number of Joins. The complexity of a query increases with the number
of joined triple patterns because the query optimizer has to consider a
larger space of possible query execution plans. Moreover, the cost for query
processing increases as well, e. g. due to a larger number of sub queries and
the increased amount of data transferred over the network. The number of
joins of a graph pattern P are defined based on the number of contained
triple pattern 7.

joins(P) = |{T € P} —1

Result Size. The number of tuples in the solution sequence define the result
size of a query. However, different data sources can contribute a different
number of result tuples. Thus, the final result set is actually a combination
of the source-specific results and the query selectivity is used to define
the proportion between the overall number of triples in the relevant data
sources and the number of triples which actually contribute to the query
result. The evaluation of a graph pattern P on a federated RDF graph F
yields following selectivity.

_ > ger, leval(P" € P,G)|

selF(P) > G
GeEFp
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7.3 Query Generation Methodology

The SPLODGE query generation approach, which focuses on creating ran-
dom SPARQL queries for Linked Data sources, provides a methodology and a
toolkit that can be used to define federation benchmarks for evaluating RDF
federation systems in a reproducible and comparable manner. Therefore, three
steps are necessary, namely (1) query parameterization, (2) query generation,
and (3) query validation. The query parameters define the characteristics of
the query which should be generated. The query generation is an automatic
process which creates random queries according to the query parameters. Fi-
nally, the query validation ensures that all query constraints are met. A more
detailed explanation of these three parts is given below.

7.3.1 Query Parameterization

The SPLODGE query generator is based on parameterized query descriptions
which define structure, complexity, and cardinality constraints according to
the characteristics described in Sec. 7.2. Such query parameterizations allow
for defining different types of benchmark queries in a very flexible way and to
create random queries of the same type.

The query parameterization is primarily oriented on the query struc-
ture, i.e. the definition of basic graph patterns with the desired constraints.
Through the combination of path-join patterns and star-join patterns all pos-
sible variations of basic graph patterns can be constructed. Path-joins and
star-joins are defined by the number of joined triple patterns. This also spec-
ifies the cardinality constraint for the number of triple patterns in a query.
Another parameter defines the number of data sources which should be in-
volved in producing results for the join pattern. However, this parameter has
different semantics for path-joins and star-joins. For path-joins, it defines the
minimum number of linked data source to be involved such that the path-join
can be evaluated across them. Hence, it cannot be greater than the number
of joined triple patterns. For star-joins it refers to the number of data sources
which can individually match all triple patterns of the star-join. The com-
bination of different join-patterns is defined via anchor nodes which have to
be in subject or object position, e.g. nodes , , and @ in Fig. 7.2 are
anchor nodes. Joins across predicates are currently not supported.

By default, all predicates in the triple patterns are assumed to be bound
while subjects and objects are assumed to be unbound variables. The result
are common schema-level queries. However, the parameterization also allows
to define that a number of predicates should not be bound or that a subset
of subjects and objects will be bound. In some cases it may be desirable
that the value for bound variables can be controlled. Therefore, the query
parameterization may define specific predicates, e.g. owl:sameAs, or specific
class types, like foaf:Person, to be included as bound RDF terms of a query.
These value restrictions are limited to schema-based URIs.
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7.3.2 Iterative Query Generation

Based on a given query parameterization the query generator creates random
queries, i. e. queries with the desired graph structure and algebraic complexity
where RDF terms for bound variables in the triple patterns are chosen ran-
domly from the set of eligible values. Thus, the result is a set of queries with
the same structure but different result sets. Figure 7.2 illustrates a query with
a path-join and attached three star-join patterns. The triple patterns contain
the (join) variables ?a to 7h, and randomly assigned predicates p; to p,;. Path-
joins and star-joins are defined by using the same variable in subject or object
position of different triple patterns. The SPLODGE query generator creates
triple patterns which reuse variable names and have constant RDF terms only
in predicate position. This restriction simplifies the query generation and the
resulting queries are based on schema information only.

Fig. 7.2. Query Structure Generation Example. First, triple patterns are combined
as path-shaped joins, i.e. (?a, p1, 7b), (7b, p2, 7¢), (?¢c, p3, 7d), then star-shaped joins
are added.

The main challenge for the query generation is to ensure the cardinality
constraints, i. e. all queries should involve the required number of data sources
and return non-empty result sets. Given that there exists at least one solution
for creating a query according to a specified parameterization, then the naive
approach would work as follows. First, create the specified query graph pattern
by using triple patterns which contain only variables. Evaluate a SPARQL
SELECT query with this graph pattern on the actual data sources to obtain all
possible solutions for the variable bindings. Determine the number of involved
data sources and the cardinality for each result set. Remove all solutions for
variable bindings which do not satisfy the specified query constraints. Pick
a random subset of the remaining solution sets and create the corresponding
queries with bound RDF terms.

In reality, this approach is infeasible for the Linked Data cloud, because an
efficient large scale federation implementation is not available. The distributed
query evaluation of a large number of queries with many joins will simply
take too long. Therefore, the SPLODGE query generator employs an iterative
approach based on statistical information and cardinality estimation to create
path-join and star-join patterns and ensure all cardinality constraints. Starting
with one triple pattern, the query graph structure is extended stepwise by
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adding one more triple pattern in each iteration until the complete query
structure has been created. The problem, however, is to pick a triple pattern
(with bound predicate) such that the extended query satisfies all constraints.

The query construction process starts with combining path-join triple pat-
terns before adding star-join triple patterns to the query (cf. Def. 7.1). This
order has been chosen because the number of possible path-joins across mul-
tiple data sources is essentially much smaller than the number of star-join
patterns which are satisfiable within one data source. Therefore, it is the
most restrictive part of the query parameterization.

Definition 7.1. Path-Joins and Star-Joins are basic graph pattern with a set
of associated data sources. Let F = {G,...,Gm} be a federated graph and let

P=(Ti,...,Tn) € (UUV)x (UUV) x (UULUV))", n€N

be a basic graph pattern. Then, a Path-Join is a “sequence” of triple patterns
across data sources such that

PathJoing(P) :V 0 <i<mn: obj(T;) = subj(Tix1) N 3 j:eval(T;,G;) # 0

The Star-Join defines resource-centric triple patterns which are matched as a
whole by different data sources such that

StarJoing(P) : subj(T1) =...=subj(T,) V obj(Ty)=...=0bj(T,) and
1GeF: VO0<i<n: eval(t;,G)#0

Path-Join Construction

According to the parameterization Path Joins have to include n triple patterns
and span m data sources (with m < mn). A path (i.e. link) across two data
sources is defined by two RDF triples which are located in different data sources
but contain the same URI in subject and object position, respectively. It is
not sufficient to have just one RDF triple which links to resource URI from a
different namespace. The second RDF triple is required such that the actual
instantiation of the resource with respective properties can be matched by a
query. Due to the requirement that each triple pattern in a path-join has to
have a bound predicate the query generation relies on predicate path pairs.

Definition 7.2 (Predicate Path Pair). A pair of triple patterns T1 and T
with bound predicates p1 and po which match connected RDF triples across
data sources G1,Go € F are referred to as predicate path pair.

PPP(ﬂ)E) = (p17g11p27g2) Zf eva’l(ﬂ’gl) 7£ (b A eval(7d27g2) #@

The set of all predicate path pairs in F is defined as

‘C]: = {(pl7g17p27g2)| = 8,0, € UUBUL: (S7p17x) S gl A (x7p270) S g2}
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The creation of path-joins which span two or more data sources basically
relies on the combination of multiple predicate path pairs, e.g. a path-join
with three triple patterns across three data sources is defined by the join of

prP(T1, T2) = (p1,G1,p2,G2) and ppp(T2, T3) = (p2, G2, p3, Gs). Example 7.3
illustrates this approach.

Example 7.3. A combination of two predicate path pairs which yields a path-
join with three triple patterns.

((7s, dc:creator, 7x),(?x, owl:sameAs, 70)) and

((7s, owl:sameAs, 7y), (7y, dbpp:name, 70))

Note that the triple pattern 75 must be the same in both predicate path
pairs, i.e. have the same predicate and the same data source association.
Moreover, the individual result sets of 73, i.e. for the bindings of (?x, 70) and
(7s,7y) respectively, must overlap in order to return a result for the resulting
path-join. The functions ¢ and 7 define which values can be matched with the
first or second pattern in a predicate path pair.

¢(p17g17p27g2) = {(S,Qf)| (S7p17x) € gl A (x7p2>0) S g2}
T(p17g17p27g2) — {($70)| (S,pl,l') S gl A\ (l’,pg,O) S g2}

Hence, the condition for ensuring non-empty result for the combination of
two predicate path pairs is

T(p17g17p27g2) N ¢(p2;g27p37g3) # (b

Path-Join Cardinality

The cardinality estimation for path-joins is similar to the cardinality estima-
tion of equi-joins in relational databases (cf. Chapter 5). It requires knowledge
about the cardinality and the join selectivity of two triple patterns. Such in-
formation is provided through statistics about the occurrence and correlation
of predicates in triple patterns per data source.

Definition 7.4 (Path-Join Cardinality). Let a path-join be defined by a
set of predicate path pairs where (p1,G1), ..., (Pn,Gn) define n triple patterns
with bound predicate p; and associated data source G;. Then the Path-Join
cardinality is the product of the individual triple pattern cardinalities o,,(G;)
and the respective join selectivity for all matching predicate path pair tuples.

|PathJoinz(P)| = H lop, (Gi)| - H sel(ppp(Ti—1, Ti) % ppp(Ti, Titv1))

i1=1..n 1=2..n-1

with Op; (gl) = {<Sapi7 O) < gl} and

86[(737773(72_177;) X PPP(7;,7E+1)) _ |7-(pz'—17gi—lypi7|§i)|(.;q.b)(|];i,gi,pi+1’gi+1)|
pi\J1
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Star-Join Construction

The parameterization of a Star-Join defines the number of triple patterns to
be included, the position of the join variable for all triple patterns, i. e. subject
or object position, and the number of data sources to be involved for returning
matching resources. Moreover, a combination with another join pattern can
be specified with an extension point in order to build complex queries. In the
latter case the triple pattern of the extension point is automatically included
in the Star-Join, e. g. triple pattern (?a, p1, 7b) in Fig. 7.2 is part of a Path-Join
and a connected Star-Join.

The construction of Star-Joins also relies on triple patterns with bound
predicates. Again, an evaluation of a Star-Join pattern with unbound variables
on the actual data sources, in order to find suitable predicate bindings, is too
expensive and statistical data will be used as well. But in contrast to Path-
Joins, which employ statistics about links between resources, the Star-Join
construction requires only resource-centric information which can be easily
maintained with Characteristic Sets [171].

Definition 7.5 (Characteristic Sets). Resources in RDF graphs can be
characterized by their associated predicates. Thus, the characteristic set of
a resource s in data source G € F 1is basically the set of all its predicates.

CSg(S) = {p ‘ do: (S,p,O) € g}

Further, the set of all characteristic sets in F is
csr =1{csg(s) |VGeF: Ipo: (s,p,0) €G}

Analogously, inverse characteristic sets are defined for the co-occurrence of
predicates in the incoming links of a resource o in data source G € F.

sg(0)={p|Is: (s,p,0) €G}
Additionally, all inverse characteristic sets in F are defined by
cs7 = {es3(0) | ¥G € F: Is,p: (5,p,0) €T}

Characteristic Sets are essentially equivalence classes for resources. Thus,
each resource can only be part of one Characteristic Set. The original definition
of Characteristic Sets [171] includes the number of resources and the frequency
of each predicate in order to maintain information about multi-valued resource
attributes. SPLODGE extends Characteristic Sets with a list of relevant data
sources and the respective number of resources and the predicate frequency per
data source. During query construction Characteristic Sets are employed for
finding suitable combinations of predicates such that the Star-Join constraints
can be satisfied as well as to determine the respective result cardinality and
the number of involved data sources.
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The Path-Join construction uses an iterative approach to extend the set of
triple patterns incrementally. This is not necessary for Star-Joins because all
possible combinations of predicates in Star-Joins are already represented in the
Characteristic Sets. Hence, the Star-Join construction works as follows. For a
Star-Join with n triple patterns and m resources, a subset of Characteristic
Sets is selected such that the number of covered predicates and data sources
is greater or equal to n and m, respectively. If a Star-Join has a predefined
triple pattern, all Characteristic Sets which do not contain the respective
predicate and possibly associated data source will be excluded. Moreover,
all Characteristic Sets with less than n predicates will be ignored. From the
remaining Characteristic Sets a random combination of n predicates will be
selected.

Star-Join Cardinality

In order to determine the results size of a Star-Join it is only necessary to
determine the supersets of the characteristic set of the joined triple patterns.
This can be done based on the statistical information in Characteristic sets.

Definition 7.6 (Star-Join Pattern Cardinality). The results set of a star-
join will contain resource s iff the star-join’s characteristic set ¢s(P) is a
subset of the characteristic set cs,(s).

|StarJoing(P)| = {s|VG e F: cs(P)C csg(s)}

The resulting number of resources is exact. Hence, the cardinality for star-
join patterns can always be computed without estimation errors.

Combination of Join Patterns

The combination of two join patterns is done by defining an extension point,
i.e. a triple pattern, in a previously created join pattern, and adding a new
join pattern which uses the extension point as its initial triple pattern. Some
restrictions apply for the definition of extension points. First, only Path-Joins
are used to define extension points. However, they can be chosen randomly
to allow for variations in the structure of the resulting queries while ensuring
similar join patterns. Second, it is important to define the position of the join
variable in an extension point, i.e. if it should be located in subject or object
position. This is especially important for extensions with Path-Joins. A join
via subject variable is done with the first triple pattern of the extending Path-
Join while a join via object variable is done with the last triple pattern. Join
patterns will be combined via UNION if no extension point is specified.
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7.3.3 Validation of Generated Queries

The query generator should only return queries which satisfy all constraints
specified in the query parameters. A query’s structural constraints are already
covered by the iterative query building approach. However, the cardinality
constraints are not so easy to validate because executing a query and then
counting the number of results is typically prohibitively expensive. The main
reasons are the large size of the employed Linked Data sources (which need to
be accessible through a federation or a large data warehouse) and the inten-
tionally high complexity of certain queries. Hence, the cardinality validation
has to rely on the statistical data and heuristics to estimate the likelihood that
a query will actually return results. A naive heuristic may exclude queries with
an estimated result cardinality smaller than a certain threshold (e.g. 1 or any
other suitable value). Unfortunately, a query’s estimated cardinality is often
inaccurate and can differ significantly from the actual result size. Especially
queries with many joins are affected because the estimation error grows with
every join as the estimated pattern selectivities are multiplied. Therefore, the
validation relies on a specific confidence value which is computed for each
query. It indicates the likelihood that a query satisfies the cardinality con-
straints, primarily that a query will return non-empty result sets. SPLODGE
defines the confidence value based on the individual join selectivities in a query
graph pattern. This allows for rejecting queries with very selective join combi-
nations which are likely to produce no results. The evaluation of the SPLODGE
approach in the next section will show the influence of this confidence value
on the query result sizes.

7.4 Evaluation

The purpose of SPLODGE is to provide a methodology and tool set for the
generation of benchmark queries across federated Linked Data sources. Hence,
it does not define which set of queries should be included in a benchmark suite.
This problem has been investigated by Montoya et al. [164]. Consequently, fol-
lowing evaluation is not a SPLODGE-based comparison of different federation
systems. Instead, it investigates if the SPLODGE query generator is able to
produce suitable benchmark queries which respect to a given query parame-
terization.

First, a set of query parameterizations is defined which will be used to
generate sets of 100 random queries using a selection of data sources from
the Linked Data cloud. In order to study the effects of the aforementioned
confidence value on the query generation the SPLODGE query generator is
configured with different settings, i.e. a baseline and different confidence
value thresholds. The baseline is a totally random selection of triple pat-
terns. SPLODGE ;. does not use any confidence value whereas SPLODGE -4,
SPLODGE (-4, and SPLODGE;j-+ employ a minimum join selectivity thresh-
old of 0.0001, 0.001, and 0.01, respectively. The generated query sets are then
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compared in order to assess their conformance to the defined query parame-
terizations. Especially, the query result cardinality is in the focus of the evalu-
ation since its estimation is the most challenging part of the query generation.
Therefore, each query is executed on the actual data. Then the different query
sets are compared with respect to the number queries with non-empty results
and the accuracy of the estimation of the result cardinality.

7.4.1 Setup

The evaluation needs a suitable subset of real Linked Data sources from the
Linked Data cloud and respective statistical information as required by the
query generator. Moreover, the evaluation requires query parameterizations
which are suitable for testing the main design goal of the SPLODGE methodol-
ogy, i.e. the capability to create random queries across multiple data sources.

Dataset

There are numerous datasets in the Linked Data cloud, with different sizes,
various schemas, and varying characteristics such as their degree of struc-
turedness [70]. A large number of these datasets can be found on the CKAN!
Data Hub? which is maintained by the Open Knowledge Foundation®. Live
queries on SPARQL endpoints are infeasible for a federation benchmark be-
cause the performance suffers from the network delay and the results are not
reproducible. Therefore, a snapshot of the datasets is required which can be
obtained from data dumps or by crawling Linked Data resources. However,
links between datasets in the Linked Data cloud are usually sparse [192] and
the selection of a suitable subset, with enough connections such that a suf-
ficient large number of queries across multiple data sources can be created
for the evaluation, is not straightforward. Hence, the evaluation of SPLODGE
uses crawled data from the Billion Triple Challenge.

The Billion Triple Challenge (in short BTC) is an annual competition in
the context of the International Semantic Web Conference (ISWC). Its pur-
pose is to encourage the development of useful applications for very large real
life semantic web datasets. Each year a new dataset is provided which is the
result of a crawl on the Linked Data cloud. Hence, it is an authentic snap-
shot of actual data found in the Linked Data cloud and it is often used by
researchers beyond the scope of the Billion Triple Challenge. Authentic data
also means that the BTC dataset is of varying quality and that it contains
syntactic and semantic errors. Table 7.2 gives an overview of the characteris-
tics of the Billion Triple Challenge datasets from past years. The SPLODGE
evaluation uses the BTC dataset of 2011, which has the highest number of
unique triples.

! http://ckan.org/
% http://thedatahub.org/
3 http://okfn.org/
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Table 7.2. Statistics of different Billion Triple Challenge Datasets

BTC 2010

BTC 2011

BTC 2012

Total Size
Total Quads
Unique Quads
Unique Triples

624 GB
3.171.793.030
3.154.896.097
1.426.831.520

450 GB
2.178.395.469
2.145.122.248
1.968.347.976

303 GB
1.436.545.545
1.311.765.894
1.056.184.911

Contexts/Documents 8.132.721 7.423.477 9.283.829
Common Domains 22.299 789 837
Types 168.482 314.448 296.607
Predicates 95.589 47.738 57.257

The evaluation of benchmark queries on the BTC datasets is challenging,
because an efficient implementation of a federation system for the Linked Data
cloud does not exist yet. However, the measurement of the result cardinalities
of queries does not need a distributed setup of the BTC data as it is indepen-
dent of the actual data distribution. Thus, a data warehouse approach is used
to store all data in a local repository with optimized indexes for fast query
execution. But the size of the BTC dataset is even challenging for a central-
ized triple store implementation. Therefore, the SPLODGE evaluation utilizes
RDF3X [172], a highly optimized and fast triple store implementation which
can deal with very large RDF datasets. The storage of the 2 billion unique RDF
triples of the 2011 BTC dataset in RDF3X with all indexes requires 150 GB
of disk space. Most queries can be answered by RDF3X within seconds. But
the evaluation of certain queries with large intermediate result sets can take
up to several hours. Therefore, a timeout of two minutes is applied for each

query.

Data Preprocessing

The evaluation setup includes the generation of all statistical information re-
quired by the SPLODGE query generator, i. e. the predicate path index and the
characteristic sets. Analyzing the co-occurrence of predicates in path-shaped
and star-shaped graph patterns in the benchmark dataset is a complex and
expensive task which needs to be done in an off-line pre-processing step. The
general problem is that the complete dataset cannot be kept in main memory
for the analysis but needs to be processed in chunks. Thus, the relevant RDF
triple for certain predicate combinations may be located in different chunks.
Sorting can improve the data processing but is it also expensive and basically
needs to be done for subjects and objects. Therefore, all statistics need to be
extracted in an efficient way such that the memory usage, the amount of data
stored on disk, and the overall processing time is minimized.
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SPLODGE implements a pre-processing pipeline with different stages (cf.
Fig. 7.3) that reads RDF data directly from chunked input files in the NQuads
format, i. e. each text line contains (subject, predicate, object, context) tuples.
The RDF data may contain syntactic errors and semantic inconsistencies, but
SPLODGE does not apply any validation or correction mechanism. Following
is a detailed description of the operations performed in each pre-processing
step.

identify common domains
(e. g. jane08.lifejournal.com/home)

v

Replace quad context
(reduce number of sources)

AV

[ ]
[ ]
[ Sort quads, remove duplicates |
( )
( )

v

Build predicate/context dictionary

v

Create resource in/out link index

Create Compute
linked predicate stats Characteristic Sets

Fig. 7.3. Pre-processing steps for generating the datasets statistics

Identify Common Domains The Billion Triple Challenge dataset contains
contexts information (document URIs) to refer to the original sources the
data comes from. There are many contexts which belong to the same
domain, e. g. livejournal.com has different sub-domains for each user, like
{john,jane} .livejournal.com. SPLODGE identifies common domains through
context URIs which have at least two other contexts as direct sub-domains.

Merging Quad Contexts SPLODGE is based on federated data source.
Hence, the many different context URIs in the BTC data, which often
contain just a few RDF triples, are not suitable for the query generation.
Hence, an aggregation is done which replaces all context URIs with their
respective common domain. This basically reduces the number of distinct
contexts in the 2011 BTC data from several million document URIs to
roughly 800 common domains. (cf. Tab. 7.2).

Sorting and Duplicate Removal Duplicate triples (or quads) are typi-
cally encountered in the BTC datasets. However, the statistics require
frequency counts for the distinct number of elements. Hence, sorting and
duplicate removal has to be done. Moreover, the generation of predicate
path statistics benefits from sorted input data because it requires a group-
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ing of RDF triples by the same resources in subject and object position.
But sorting the complete dataset twice, i.e. by subject and by object, is
expensive with respect to sorting time and the required disk space. There-
fore, it will only be done for the subject and the subsequent processing
step has to aggregate objects separately. Finally, an external sort mecha-
nism is required since sorting of such a large dataset as cannot be done in
memory, In fact, the standard UNIX sort utility is used as it already pro-
vides an efficient implementation of an external sort algorithm for large
files including support for duplicate removal.

Building Dictionaries Predicate URIs and context URIs are quite verbose.
But an efficient storage of indexes and statistics requires a compact data
representation. In fact, the goal is to keep all data in main memory in order
to allow for fast processing of the maintained statistical data. Hence, the
next pre-processing step creates two dictionaries, i. e. for predicates and for
common domains, which associate each URI with an integer value. This is
a common approach for reducing the size of indexes. Moreover, knowledge
about the actual URIs is not required for the following pre-processing steps
and operations on integer values can be done much faster.

Create Resource Predicate Index The query generator requires statisti-
cal information about the co-occurrence of predicates. Therefore, all pairs
of triple patterns which are connected by the same resource, either in a
path-shaped or star-shaped join combination, have to be determined. Due
to the large number of resources in the Linked Data cloud, i.e. several
hundred thousand URIs for the 2011 BTC dataset (cf. Table 7.3), the Re-
source Predicate Index cannot be build in memory. Therefore, the BTC
data is processed in chunks. In the first step a Resource Predicate Index
is created for each chunk. Thereafter, they are sorted and merged.

Table 7.3. Number of Entities and Blank Nodes in the 2011 BTC Dataset

Entities BlankNodes
Total 485.630.664 382.608.765
as Subject 406.183.064 382.489.863
as Object 470.731.674 374.280.894

as Subject & Object 391.284.074 374.161.992

Each entry of the Resource Predicate Index describes one resource, i. e.
it contains all predicate/context combinations for the resource’s in-links
Pin and out-links P, with respective frequency counts.

P’in = {(piagia |€U6ngi (Sapiar)D}
Pout = {(pj7gj7 |6?}algj (Tapj70)|)}
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Table 7.4 shows an example of the information stored in the Resource
Predicate Index. It has three columns. The first contains all resources while
the second and third store all information about in-links and out-links,
respectively. Based on this index structure the creation of the Predicate
Path Index and the Characteristic Set Index requires only a single pass
over the Resource Predicate Index. Thus pre-processing cost and memory
consumption is minimized.

Table 7.4. The Resource Predicate Index contains tuples of resources, in-links Py,
and out-links P,,:. Each link entry is a set of tuples containing information about
predicate, data source, and RDF triple count.

r P@ Pout

http://0-17.livejournal.com/  {(foaf:openid, livejournal.com, 1), {(lj:dateCreated, livejournal.com, 1)}
(foaf:weblog, livejournal.com, 3)}

http://aladiw.us {(foaf:homepage, identi.ca, 2), {}
(foaf:homepage, status.net, 1)}

Create Path and Star Pattern Statistics The final step generates pred-
icate path statistics and characteristic sets from the information in the
Resource Predicate Index. Predicate Path statistics are essentially ob-
tained by the Cartesian product of the predicates from all in-links with
the predicates of the out-links of all resources in the Resource Predicate
Index. Resources which have only in-links or only out-links are ignored
because they are not part of a predicate path. Table 7.5 shows example
statistics for Predicate Path statistics.

Table 7.5. Predicate Path Statistics. Each row defines a triple path (7,,, 7p,) with
predicates p1 and p2 such that 7,, = {(s,pi,0) € Gi} Vs € Uy o€ U, G € F.
Predicate and graph URIs are replaced with integer values in the actual index file.

p1 — p2 G1 | Tps | G2 | Tp |
owl:sameAs — foaf:knows http://data.gov.uk : 22 http://dbpedia.org : 31
owl:sameAs — foaf:knows http://open.ac.uk : 58  http://dbpedia.org 0 17

rdfs:seeAlso — rdf:type http://bio2rdf.org : 15  http://www.uniprot.org : 38
rdfs:seeAlso — rdfs:label  http://zitgist.com : 49  http://musicbrainz.org : 36
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Characteristic sets are based on the co-occurrence of predicates in the out-
links of a resource. Inverse characteristic sets use the in-links instead. Ta-
ble 7.6 shows example data stored in a characteristic set. The index entries
for each combination of predicates and relevant data sources with match-
ing resources includes the number of resources and the number of triple
patterns for each predicate in the characteristic set. Due to multi-valued
attributes the triple count can be higher than the number of resources.

Table 7.6. Characteristic Set Statistics. Predicate and graph URIs are replaced with
integer values in the actual index file.

p={p1,p2,p3,...} g |Rp.gl | Tpil |Tp2l | Tpsl
rdf:type, rdfs:label, owl:sameAs http://bio2rdf.org 632 632 844 632
—"— http://www.uniprot.org 924 924 924 924

—— http://data.gov.uk 1173 1421 1173 1399

rdf:type, rdfs:label, foaf:name  http://dbpedia.org 3981 3981 5536 3981

All processing steps have been implemented with Shell scripts and Perl
scripts which are optimized for low memory consumption and fast processing
speed. Thus, they can also be run on typical commodity hardware. The source
code of the scripts and of the query generator have been published as open
source* under the LGPL license.

Query Parameterization

The goal of the evaluation is to verify that the SPLODGE query generator can
produce useful distributed benchmark queries, i. e. queries with graph patterns
that match connected resources across multiple data sources. It is one of the
major contributions that SPLODGE can automatically generate such queries.
Therefore, the parameterization of the evaluation queries defines path-joins
with 3-6 triple patterns. Each triple pattern must be evaluated at a different
data source. The generation of such queries is especially challenging because
such triple pattern path are rare. The query generator produces sets of 100
random queries for the four different query types, i. e. path-joins with 3-6 triple
patterns. The seed for the random number generator is fixed which allows to
make the query generation reproducible.

* http://code.google.com/p/splodge/
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7.4.2 Results

The evaluation results are presented according to three different measured
aspects, i.e. the ratio of queries with non-empty results in a query batch, the
distribution of result cardinalities in a query batch, and the comparison of the
estimated result size with the real result size.

Result Cardinality

The investigation of the query result cardinality is divided into a quantitative
evaluation which measures the result size of each generated query and a qual-
itative analysis of the compliance of estimated and real result sizes. First, in
each batch of 100 path-join queries with three to six triple patterns, the num-
ber of queries which return non-empty results is counted. This is the primary
indicator for the ability of the query generator to return queries which satisfy
the result cardinality constraint of the query parameterization. Additionally,
the distribution of result sizes is investigated.

Figure 7.4 shows the number of generated queries with non-empty re-
sults for each query generator configuration, comparing the baseline with the
SPLODGE approach using no confidence value (SPLODGE/ite) and increasing
confidence values (SPLODGE, ), where x defines a minimum join selectivity of
0.0001, 0.001, or 0.01, respectively.

First of all, the baseline algorithm, which uses only random triple patterns
for the query construction, fails to create a single path-join query pattern that
can be matched on the BTC dataset and return at least one result. Next, the
SPLODGEI/ite approach can only produce 22 queries with non-empty result
set for three triple patterns and significantly less for longer path-joins with
just one query for the batch of queries with six triple patterns. SPLODGE
with confidence values is able to produce considerably more queries with non-
empty result sets. The number goes up to around 60% for three triple patterns
whereas the join selectivity threshold does not make much of a difference. For
queries with four to six path-join triple patterns there is an obvious drop in
the number of non-empty results. This drop is more obvious for a less strict
join selectivity threshold of 0.001 or 0.001. However, the highest threshold
of 0.01 prevents the creation of any path-join query with six triple patterns,
because there basically exist no triple pattern combination which satisfies all
query parameters and additionally has this minimum join selectivity.

The variation of the result sizes is shown in the second plot of Fig. 7.4.
It depicts minimum and maximum, as well as 0.2, 0.5 (median), and 0.8
quantiles for all non-empty result sizes in a query batch. For most query
batches the minimum results size is 1 and the median lies between 10 and 100.
A larger variation is observed for query batches with just a few non-empty
query results. Query batches with a higher number of non-empty result sets
are more similar. This similarity is most obvious, even including the 0.2 and
0.8 quantiles, for SPLODGE query batches with three or five triple patterns.
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Number of non-empty results for path-joins with 3-6 patterns

100 - SPLODGElire T ||
SPLODGE ¢4 ==

80 - SPLODGE10'3 W N
§ SPLODGE; 2

60 - ¥ w Baseline I |

40 | \ |
I I I o8

20 | 2 E E 53 |
0 0 o o ¢
. e NENe NENe Nijee

3 4 5 6

Min/Max result sizes and quantiles for path-joins with 3-6 patterns

lexi2 1 SPLODGElite 1]
1e+10 | SPLODGE 54 E==17 | |
[ SPLODGE, y3 gz ||
1e+08 | SPLODGE 2 oy |
1e+06 |- .
10000 | 0 -
100 F S A

- B 5% B o
1L — c

3 4 5 6

Fig. 7.4. Comparison of SPLODGEI/ite and SPLODGE using different confidence
values, i. e. minimum join selectivity of 0.0001, 0.001, or 0.01, respectively. For each
batch of 100 path-join queries with 3-6 triple patterns the number of non-empty
results are compared (above). Moreover, the minimum and maximum result size as
well as the quantiles for 0.2, 0.5 and 0.8 are shown for each query batch (below).

The maximum size of the result cardinality is around 1 million for several
query batches with some outliers below and beyond.

The large spread of the observed result cardinalities, especially for path-
joins with four triple patterns, which ranges from 1 and to several million,
needs to be controlled by the query generator in order to produce queries
which satisfy the result cardinality constraint as well. Therefore it is necessary
to investigate how the estimated result size correlates to the real result size.
Figure 7.5 shows a comparison of both values for the path-join queries with
four triple patterns. The general observation is that there are only a few
queries where estimated result size is close to the real result size (data points
near the line). In fact, the result cardinality is overestimated in most cases
(data points above the line) and there is also a considerable number of queries
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with underestimated result sizes (data points below the line). For many cases
this mis-estimation is even off by by several orders of magnitude. With the use
of minimum join selectivity as a confidence value it is possible to reduce the
number of differences between estimated and real result size, i.e. the queries
generated with the most strict threshold of 0.01 are generally closer to the
line and have less extreme outliers. However, there is still a larger number of
overestimated result sizes.
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Fig. 7.5. Comparison of estimated and real result cardinality for path-join queries
with four triple patterns. Data points above the line indicate overestimation, data
points below the line indicate underestimation of the result cardinality.

The correct estimation of the result cardinality for SPARQL query patterns
is generally challenging. In fact, estimation errors grow considerably with the
number of joined triple patterns. While estimation errors are still acceptable
to a certain degree for the query optimization (cf. Chapter 5), it is a problem
for the query generator if a certain result cardinality is demanded by the query
parameterization. However, it is not possible to improve the result cardinality
estimation without including more statistical information about the graph
structure of the datasets.

Query Analysis

The restriction of triple pattern combinations to certain graph structures and
the use of cardinality constraints limit the number of RDF terms which can be
chosen as bound predicates in the queries generated by SPLODGE. Therefore,
the investigation of the frequency and distribution of predicate values may
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reveal implicit characteristics of the queries. Table 7.7 shows the frequency of
predicates for the different query generator settings. Obviously, many predi-
cates come from the core Semantic Web vocabularies rdf, rdfs, and owl, e.g.
rdf:type is the most prominent predicate and occurs in average in 1 out of
5 times in the queries. The rank of owl:equivalentClass is almost constant
for the different algorithms while the ranking of the other predicates shows
more fluctuation. Notable changes can be observed for skos:exactMatch and
owl:sameAs, e. g. skos:exactMatch does not show up in the top 10 predicates
except for SPLODGE;y-1. However, for SPLODGEj-2 it is not used in any
of the queries. Another interesting observation can be made for owl:sameAs
which is usually considered as the standard predicate for defining links be-
tween datasets. However, as the threshold for the minimum selectivity in-
creases it occurs less often in the queries. One reasonable explanation is that
resources are typically not connected via a long chain of owl:sameAs relations
across multiple datasets. Another interesting predicate is zemanta:targetType.
Its popularity increases significantly with a higher threshold for the join selec-
tivity. The reason is probably the reduction of the overall number of distinct
predicates which qualify for being used in a query.

Table 7.7. Ranking of predicates occurring in the benchmark queries generated with
SPLODGE lite, SPLODGE; -4, SPLODGE, -3, and SPLODGE, -2, respectively. The
first column is the overall predicate frequency in all generated queries. The other
columns indicate the individual predicate frequency and the according rank.

all SPLODGElite SPLODGE,,4 SPLODGE,,3 SPLODGE,.>
rdf:type 191% 157% (2) 18.6% (1) 21.8% (1) 21.0% (1)
rdfs:seeAlso 84% 163% (1) 62% (3) 53% (4) 46% (3)
owl:disjointWith 54% 26% (6) 37% (5) 7.0% (2) 95% (2)
rdfs:subClassOf 39% 31% (5) 24% (8) 65% (3) 35% (5)
rdfs:isDefinedBy 37% 1.7% (9) 6.5% (2) 4.0% (5) 1.9% (10)

owl:equivalentClass 2.7 % 23% (7) 27% (7) 32% (6) 27% (8)
foaf:primaryTopic 24% 39% (4) 0.8% (16) 1.9% (7) 31% (7)

rdfs:label 19% 15% (10) 16% (10) 17% (9) 3.2% (6)
skos:exactMatch 1.8% 13% (11) 43% (4) 0.9% (18) -
owl:sameAs 1.7% 19% (8) 32% (6) 0.7% (21) 0.8% (14)

zemanta:targetType 12% 0.1% (91) 05% (29) 13% (14) 3.8% (4)

distinct predicates 687 402 353 283 191
total predicates 6600 1800 1800 1800 1200
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7.5 Summary

Benchmarks are widely used for comparing the performance of different query
processing implementations. However, there is a lack of Linked Data bench-
marks for distributed SPARQL query processing. SPLODGE provides a novel
methodology and a tool set for a systematic generation of SPARQL benchmark
queries for federated Linked Data query processing systems. First, a thorough
analysis of benchmark query characteristics was conducted, taking into ac-
count existing benchmarks and query characteristics of available query logs.
Thus, three query parameter dimensions were defined, i. e. structural patterns,
query complexity, and cardinality constraints. The resulting parameterization
of benchmark queries is very flexible and can be used to define queries for
common scenarios and also corner cases.

A core feature of SPLODGE is the automatic generation of random bench-
mark queries for a given query parameterization. Its general approach is an
iterative join pattern construction with validation of cardinality constraints,
i. e. especially result cardinality. This cannot be done on the actual data dur-
ing query generation because it is prohibitively expensive. Instead, compressed
dataset statistics for Path-Joins and Star-Joins are used. However, since esti-
mation errors occur for the statistics-based cardinality computation the gen-
erated queries are only accepted as valid results if they have a high likelihood
for returning non-empty results.

In order to verify that SPLODGE generates appropriate benchmark queries
for a given query parameterization, an evaluation was conducted to access
the “quality” of the generated queries. The evaluation was based on the 2011
Billion Triple Challenge dataset. All benchmark queries were executed on the
dataset in order to measure their result size and to analyze how many queries
could actually return results. A comparison with estimated result size revealed
large difference between estimated and real result size. This is due to the
correlations in the RDF data which can hardly be captured without detailed
statistics. However, it was shown that SPLODGE is a flexible and scalable
approach for automatic generation of useful SPARQL benchmark queries.






Conclusion

The scalability of information retrieval on top of the growing number of Linked
Data sources has received a lot of attention in recent years. Especially, RDF
data source federation is currently an active research area and it also has been
the main research topic of this dissertation. Since the number of linked RDF
datasets is increasing rapidly there is a need for systems which can provide
easy access to this huge amount of data. However, this requires a scalable
federation infrastructure and sophisticated algorithms for distributed query
processing. Therefore, researchers have become quite interested in the adap-
tion of well-known database approaches and query optimization techniques
for Linked Data information retrieval because both research areas share sim-
ilar challenges. But since there are also significant differences it is necessary
to have a good knowledge of both domains in order to determine adequate
combinations of appropriate solutions. So far, only few database researchers
have been looking at Semantic Web technologies and on the other side the Se-
mantic Web community is somehow reluctant to dive into 40 years of database
research. Hence, there are still many open research questions.

This dissertation focused primarily on distributed query optimization for
federated RDF data sources, including specific aspects like the requirements
for a scalable Linked Data federation infrastructure, data source selection,
and cost-based join order optimization. Moreover, solutions for distributed
statistics management and benchmark query generation for Linked Data were
presented. The main contributions of this thesis will be summarized in the next
section. It is followed by a reflection of the lessons learned and a discussion of
future research opportunities in this area.
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8.1 Summary and Research Contributions

Due to the growing size of the Linked Data cloud, the number of different
domains, and the diversity of the datasets, there are many new challenges
concerning scalable and efficient data processing like in a web-scale database.
One of the basic assumptions of this dissertation is that the federation of RDF
data sources can benefit from the adoption of common techniques from dis-
tributed and federated databases which have been developed in four decades
of research in that area. In order to provide a system for RDF data source
federation a mediator-based architecture was chosen which implements a dis-
tributed query optimization strategy based on common database technologies,
e.g. cost-based selection of optimal query execution plans. However, due to
major differences between relational data and the RDF graph model there have
been a number of related issues, like source selection, statistics management,
and benchmarking, which had to be investigated as well. Therefore, this disser-
tation makes several contributions for building a flexible and scalable Linked
Data federation infrastructures.

e The design and implementation of a mediator-based federation infrastruc-
ture for Linked Data. It is based on standard Semantic Web technology
and incorporates common relational databases approaches in order to al-
low for efficient distributed SPARQL query processing.

e A source selection strategy which utilizes VOID descriptions for matching
query patterns to data sources including a refinement with SPARQL ASK
queries in order to split arbitrary SPARQL queries into suitable sub queries
for a distributed execution.

e A join-order optimization approach for distributed SPARQL queries based
on dynamic programming with a cost-based model that takes into account
the specific characteristics of RDF graph data and employs VOID statistics
for cardinality estimation in order to find the optimal query execution plan.

e An evaluation which compares SPLENDID with other state-of-the-art
query optimization implementations and proofs that the use of the meta
data and statistics from VOID descriptions allows for an efficient dis-
tributed query optimization.

e A query generation methodology for RDF federation benchmarks that
scales with the number and sizes of the involved datasets and offers au-
tomatic generation of benchmark queries for more realistic evaluations on
arbitrary datasets from the Linked Data cloud.

In addition, issues related to information retrieval on highly correlated data
in a distributed setup have been studied that led to following results.

e A novel and scalable statistics management strategy for complex graph
data with TF-IDF-based result ranking in a highly distributed system
relying on a Peer-to-Peer network topology.
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8.2 Research Obstacles and Lessons Learned

The initial motivation for developing SPLENDID was to provide efficient dis-
tributed SPARQL query execution for federated RDF data sources by optimiz-
ing the join order of triple patterns. But since different optimization criteria
have to be considered it soon became apparent that simple heuristics are often
not sufficient for effective join order optimization. Therefore, a more sophisti-
cated query optimization strategy was needed and dynamic programming was
chosen because it is a popular approach in relational databases and allows to
find the best query execution plan. However, the overall query processing per-
formance does not only depend on the query optimization. It is also influenced
by the source selection, the efficiency of the query execution, and the accu-
racy of the employed data statistics. For example, even with a sophisticated
query optimization strategy the distributed query execution can be slow if the
source selection and the query execution are not implemented efficiently as
well. Consequently, the research on an efficient Linked Data federation had to
cover multiple aspects including source selection, query optimization, query
execution, and suitable statistics which can be used for both source selection
and query optimization.

The first prototype implemented the cost-based join order optimization on
top of the Sesame RDF library. But it turned out that there is a strong de-
pendency between the query optimization and the query execution, i. e. either
a query optimizer can only employ the physical join operators which are sup-
ported by the query executer or, as in the case of SPLENDID, Sesame’s query
executor had to be extended in order to support an additional join algorithm.
However, this dependency also makes a comparison with other federation im-
plementations complicated because the components often cannot be tested in
isolation. This very problem occurred when comparing SPLENDID with FedX
and it required an in-depth analysis of the results. Although the evaluation
was intended to compare the query optimization of both approaches it turned
out that the differences in the results were caused by a better query execution
in FedX. As a result SPLENDID’s query execution adapted the FedX imple-
mentation. But this experience also leads to another important insight, i.e.
the choice of employed join operators has a significant influence on the overall
federator performance. Thus, instead of implementing a federator by following
the distributed query processing workflow, i.e. source selection, query opti-
mization, and query execution, it makes more sense to first find the most
efficient join implementations for the investigated scenario, then focus on the
query optimization, and finally deal with the source selection.

Dataset statistics are very important for the query optimization, especially
for the cardinality estimation in SPLENDID’s cost-based join order optimiza-
tions, i.e. the best query execution plans should be obtained when detailed
statistics are used to compute accurate cost estimates. However, it is not pos-
sible to collect highly detailed statistics for an arbitrary number of Linked
Data sources. Hence, it seemed quite challenging to produce good query ex-
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ecution plans based on VOID statistics. But it turned out that SPLENDID
would often produce the same query execution plan for the tested queries as
FedX’s heuristics-based approach. Moreover, the variation of the used statis-
tics did have less effect on the execution plans for some queries than expected.
Although this seemed surprising at first there is a simple explanation. The ac-
curacy of the cardinality estimation always decreases with the number of joins
due to growing estimation errors. Therefore, detailed statistics typically yield
only better estimations for the first triple patterns and the first join. Since the
benchmark included common queries with only a few joins both optimization
approaches could generally determine the best combination of the “cheapest”
SPARQL triple patterns. However, a cost-based query optimization can usu-
ally outperform heuristic for more complex queries and non-sequential query
execution plans.

The need for a suitable data format to summarize dataset characteristics
led to the use of VOID descriptions. Albeit VOID has become a de-facto stan-
dard it is not widely supported yet. Therefore, a significant pre-processing
overhead is inevitable but it also allows to generate VOID description specifi-
cally tailored for SPLENDID’s needs, i.e. for source selection and query opti-
mization. As mentioned above even with limited statistical data it is possible
to generate good query execution plans. On the other hand the use of VOID
descriptions for the source selection turned out to be more problematic than
initially expected. For instance, the list of potential data sources for SPARQL
query patterns with properties and types from common vocabularies, like
FOAF, can become quite large. But specific restrictions of the triple patterns,
e.g. bound resource URIs or join combinations, can hardly be taken into ac-
count using only the information from the VOID descriptions. Therefore, the
VOID-based source selection in SPLENDID had to be combined with a refine-
ment mechanism, i.e. ASK queries, in order to reduce the number of requests
to SPARQL endpoints.

Another problem throughout the work on SPLENDID was the lack of a
suitable benchmark to test the system and compare it with other federation
implementations. An adaption of existing centralized RDF benchmarks was
not a viable option as the datasets and queries of these benchmarks could not
resemble the characteristics of federated Linked Data scenarios. However, ob-
taining suitable federated SPARQL queries is problematic because there is still
no live Linked Data federation system which could provide authentic query
logs. Still, the only available benchmark is FedBench. But its limitation to
a few datasets and the use of hand-picked queries does not allow for testing
federated query execution on a larger scale within the Linked Data cloud.
Thus, the results of a FedBench-based comparison between different federa-
tion implementations are only valid for restricted federation scenarios. But an
automatic query generation for arbitrary datasets, as provided by SPLODGE
is also challenging. In fact, the computation is very similar to the estimations
of the query optimization, e.g. it requires sophisticated dataset statistics in
order to estimate if a combination of triple pattern can likely produce some
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results when evaluated on the datasets. The latter gets even harder with an
increasing number of joins and more connected data sources. Additionally, the
generated queries are not necessarily meaningful albeit they have the desired
characteristics.

8.3 Outlook and Future Work

Although a lot of research has been done recently on different aspects of
federated SPARQL query processing there is still no single system which pro-
vides a comprehensive solution for scalable Linked Data federation. The main
reasons are the size of the Linked Data cloud, the diversity of the datasets,
and — on the technical side — the dependencies between individual processing
steps, like federation setup, source discovery, statistics management, source
selection, query optimization, and query execution. In order to focus on spe-
cific federation aspects and also to simplify the implementation, all federation
systems consider certain application scenario constraints, e.g. in the case of
SPLENDID a static setup with pre-computed statistics and a query optimiza-
tion strategy which follows the optimize-then-execute paradigm. A step-wise
relaxation of these constraints would be among the next steps in order to allow
for more flexible Linked Data federation, i.e. with dynamic data integration,
and to scale up to a large number of diverse RDF data sources.

While designing and implementing SPLENDID’s distributed query pro-
cessing it became clear that there is a high potential for more research in the
direction of adapting established database query optimization techniques for
Linked Data query processing. In fact, there are two research aspect which
seem to be most promising for further investigations, i.e. 1) using additional
information about the graph structure and links between the RDF datasets
for better source selection and cardinality estimation and 2) the application
of adaptive query optimization strategies which allow for coping with unre-
liable network conditions and providing a responsive application which can
return results even in case of failures of individual data sources. The first as-
pect is mainly about dealing with the high data correlation and dependencies
in RDF graphs, which is often ignored for cardinality estimation due to the
inherent complexity. Moreover, compressed data structures like histograms
are commonly used in relational databases, but there is not yet any sophisti-
cated adaption for RDF which can be incorporated in VOID descriptions and
also allows for a differentiation of predicates, entities, and literals. The second
aspect is also very important when consuming data from the Linked Data
cloud. Although adaptive query processing has been intensively researched in
the database area only few researchers have investigated an application for
query processing on RDF data sources. Thus, especially for the larger number
of small and often less reliable Linked Data sources this approach will be more
beneficial than static query optimization.
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Another area of improvement exists with respect to the setup of a Linked
Data federation system. Instead of an explicit initial definition of a fixed set of
data sources an automatic discovery mechanism should be able to add suitable
RDF data sources to the federation on the fly. Therefore, information about
datasets have to be obtained including their SPARQL endpoints and suit-
able VOID descriptions. Since the lookup of resource URIs (found in SPARQL
queries) cannot provide such information it is necessary to rely on directory
services like CKAN which know a large number of data sources and can answer
requests that ask for data sources with certain vocabularies or containing re-
sources with a specific data schema. Moreover, the gathering of the required
VOID statistics has to be performed on demand. An expensive preprocessing
step, as currently used by SPLENDID, would block the whole query processing
if dynamic discovery of a new data sources is employed. Hence, sophisticated
statistics collection and management strategies are required which would also
benefit from a better support of VOID descriptions by the data providers or
by third party directory services.

An effective statistics management in general is also a future research
topic since Linked Data sources are dynamic, i.e. datasets get updated in
unpredictable intervals. Hence, such updates need to be reflected in the index
of a statistics-based federation system. There is still no standard for how such
updates can be detected and propagated. At least on the technical side it
seems reasonable to investigate update mechanism which can be combined
with the provisioning of VOID descriptions.

Finally, scalable Linked Data federation systems face new challenges con-
cerning their usability. Due to the abstraction of the underlying data sources a
user may not know which vocabularies (ontologies) to use in order to formulate
a SPARQL query that can return the desired results. Therefore, future feder-
ation systems need to guide the user in her search, e. g. by giving information
about commonly used vocabularies and through auto completion features. On
the other hand, the exact match semantics of SPARQL is problematic for re-
turning all relevant results because different vocabularies may be used in the
datasets to describe the same or similar resources. Query expansion is a com-
mon approach to solve this problem but it requires to collect and maintain
information about mappings between the ontologies. As pointed out before,
a broader support of VOID descriptions, e. g. with extensions to support such
information would be beneficial for Linked Data federation systems.
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