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Abstract

Folksonomies are Web 2.0 platforms where users share resources with

each other. Furthermore, they can assign keywords (called tags) to

the resources for categorizing and organizing the resources. Numer-

ous types of resources like websites (Delicious), images (Flickr), and

videos (YouTube) are supported by different folksonomies. The folk-

sonomies are easy to use and thus attract the attention of millions of

users. Together with the ease they offer, there are also some problems.

This thesis addresses different problems of folksonomies and proposes

solutions for these problems.

The first problem occurs when users search for relevant resources in

folksonomies. Often, the users are not able to find all relevant re-

sources because they don’t know which tags are relevant.

The second problem is assigning tags to resources. Although many

folksonomies (like Delicious) recommend tags for the resources, other

folksonomies (like Flickr) do not recommend any tags. Tag recom-

mendation helps the users to easily tag their resources.

The third problem is that tags and resources are lacking semantics.

This leads for example to ambiguous tags. The tags are lacking

semantics because they are freely chosen keywords. The automatic

identification of the semantics of tags and resources helps in reducing

problems that arise from this freedom of the users in choosing the

tags.

This thesis proposes methods which exploit semantics to address the

problems of search, tag recommendation, and the identification of tag

semantics. The semantics are discovered from a variety of sources. In

this thesis, we exploit web search engines, online social communities



and the co-occurrences of tags as sources of semantics. Using different

sources for discovering semantics reduces the efforts to build systems

which solve the problems mentioned earlier.

This thesis evaluates the proposed methods on a large scale data set.

The evaluation results suggest that it is possible to exploit the se-

mantics for improving search, recommendation of tags, and automatic

identification of the semantics of tags and resources.



Zusammenfassung

Folksonomien sind Web 2.0 Plattformen, in denen Benutzer verschied-

ene Inhalte miteinander teilen können. Die Inhalte können mit Hilfe

von Stichwörtern, den sogenannten Tags, kategorisiert und organ-

isiert werden. Die verschiedenen Folksonomien unterstützen unter-

schiedliche Inhaltstypen wie zum Beispiel Webseiten (Delicious), Bil-

der (Flickr) oder Videos (YouTube). Aufgrund ihrer einfachen Benut-

zungsweise haben Folksonomien viele Millionen Benutzer. Die ein-

fache Benutzungsweise führt aber auch zu einigen Problemen. Diese

Doktorarbeit beschäftigt sich mit drei der wichtigsten Probleme und

beschreibt Methoden, wie sie gelöst werden können.

Das erste dieser Probleme tritt auf, wenn Benutzer die Folksonomien

nach bestimmten Inhalten durchsuchen wollen. Häufig können dabei

nicht alle relevanten Inhalte gefunden werden, da diesen relevante

Stichwörter fehlen.

Dementsprechend tritt das zweite Problem während der Vergabe von

Stichwörtern auf. Manche Folksonomien, wie zum Beispiel Delicious,

unterstützen ihre Benutzer dabei, indem sie ihnen mögliche Stichwör-

ter empfehlen. Andere Folksonomien, wie zum Beispiel Flickr, bieten

keine solche Unterstützung. Die Empfehlung von Stichwörtern hilft

dem Benutzer dabei, Inhalte auf einfache Art und Weise mit den

jeweils relevanten Stichwörtern zu versehen.

Das dritte Problem besteht darin, dass weder Stichwörter noch Inhalte

mit einer festen Semantik versehen sind und mehrdeutig sein können.

Das Problem entsteht dadurch, dass die Benutzer die Stichwörter vol-

lkommen frei verwenden können. Die automatische Identifizierung



der Semantik von Stichwörtern und Inhalten hilft dabei, die dadurch

entstehenden Probleme zu reduzieren.

Diese Doktorarbeit stellt mehrere Methoden vor, wie verschiedene

Quellen für semantische Informationen benutzt werden können, um

die vorher genannten drei Probleme zu lösen. In dieser Doktorarbeit

benutzen wir als Quellen Internetsuchmaschinen, soziale Netzwerke

im Internet und die gemeinsamen Vorkommen von Stichwörtern in

Folksonomien. Die Verwendung der verschiedenen Quellen reduziert

den Aufwand bei der Erstellung von Systemen, die die vorher genan-

nten Probleme lösen.

Die vorgestellten Methoden wurden auf einem großen Datensatz evalu-

iert. Die erzielten Ergebnisse legen nahe, dass semantische Informa-

tionen bei der Lösung der Probleme helfen, die während der Suche

von Inhalten, der Empfehlung von Stichwörtern als auch der automa-

tischen Identifizierung der Semantik von Stichwörtern und Inhalten

auftreten.
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Chapter 1

Introduction

The term folksonomy was coined by Thomas Vander Wal in 2004. It is a portman-

teau of folk and taxonomy, meaning taxonomy by folks (people). A folksonomy

is also often called a collaborative tagging system or simply a tagging system. It

mainly consists of three elements, users, resources, and tags.

With the popularity of Web 2.0, many folksonomy platforms have emerged in

the past few years. Folksonomies are built for almost any type of media. For ex-

ample, there are folksonomies for sharing bookmarks1, books2, citations3, music4,

photos5, and videos6. Tagging has also been used in other domains than sharing

resources. E-commerce websites like Amazon7 allow their buyers to tag products.

Users can share and tag their goals at 43things8, and social networking websites

like facebook9 allow their users to tag photos and videos. Details of different

types of folksonomies with their features are available in the book (Peters, 2009,

chap. 1).

With an increasing interest of users, folksonomies are expanding tremendously.

1http://www.delicious.com/, http://www.bibsonomy.org/
2http://www.librarything.com/
3http://www.citeulike.org/, http://www.bibsonomy.org/
4http://www.last.fm/
5http://www.flickr.com/
6http://www.youtube.com/
7http://www.amazon.com/
8http://www.43things.com/
9http://www.facebook.com/

http://www.delicious.com/
http://www.bibsonomy.org/
http://www.librarything.com/
http://www.citeulike.org/
http://www.bibsonomy.org/
http://www.last.fm/
http://www.flickr.com/
http://www.youtube.com/
http://www.amazon.com/
http://www.43things.com/
http://www.facebook.com/
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In September 2010, there were five billion photos on Flickr1 and in November 2008

there were 180 million unique URLs on delicious uploaded by 5.3 million users2.

With the passage of time, more and more users use folksonomies to share their

resources with other users.

Folksonomies are easy to use since users do not require specialized skills for

using them. Tags are freely chosen keywords and users are free to create or select

tags of their choice. The tagging process in folksonomies is informal. For tagging

resources, no fixed set of words is used in folksonomies, this allows the users to

create and use new words such as toread (representing the verb “to read”) or

day50 (representing the “50th day” of a year). Tags in folksonomies are used for

navigation, searching, and browsing (Peters, 2009).

In addition to facilitating the sharing of resources, some folksonomies provide

additional tools to their users. For example, Flickr allows the creation of online

communities using its groups. Each Flickr group has its own topic. In a group,

users post images related to the topic of the group. These groups assist users in

searching and browsing resources related to a particular topic.

Folksonomies provide many benefits to its users, but problems also occur while

using them. One of the problems is searching resources in folksonomies. Often

there are insufficiently many relevant tags associated to the resources. Fewer

relevant tags make it difficult to search for resources in folksonomies. The next

problem is recommending tags for the resources. As people share a large num-

ber of resources, it becomes difficult for them to assign tags to their resources.

Although some folksonomies like Delicious provide tag recommendations, but

other folksonomies like Flickr do not provide any tag recommendation. Another

problem is the lack of semantics in folksonomies.

For example, it is not obvious by looking at the tag Paris, whether it represents

a person or a city. In this thesis we address these problems by discovering and

exploiting semantics in folksonomies. The following sections describe each of

these problems in detail and the solutions presented in this thesis.

1http://blog.flickr.net/en/2010/09/19/5000000000/
2http://blog.delicious.com/blog/2008/11/delicious-is-5.html

http://blog.flickr.net/en/2010/09/19/5000000000/
http://blog.delicious.com/blog/2008/11/delicious-is-5.html
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1.1 Search

Despite the enormous size of folksonomies, resource retrieval in folksonomies is

limited (Hotho et al., 2006). Users are not obliged to assign tags to their resources.

Often they do not add many relevant tags to their resources. Lack of a sufficient

number of tags results in sparseness of data and it becomes difficult to search

resources related to a query. For example, a user searching for funny pictures of

seventies using the tags funny and seventies will get only the images which are

tagged with the tags funny and seventies. The user will not be able to retrieve

the resources which are tagged with the tags 1970s and humorous (instead of

the tags seventies and funny), although the resources tagged with the tags 1970s

and humorous are also relevant to the query. While searching resource in a

folksonomy, many resources are not retrieved because they are not associated

with many of the relevant tags.

To improve search in folksonomies, we propose methods which discover and

exploit semantics. The proposed methods discover tags which are semantically

related and use these semantically related tags to enrich the data in folksonomies.

By enriching the data, many relevant resources are retrieved, that are otherwise

not retrieved.

We discover the semantically related tags based on the context and the type

of the similarity between the tags. The contexts of the tags give different per-

spectives to them. We consider two types of tag contexts for improving search in

folksonomies: the resource context and the user context. The resource context

of tags helps in finding tags which are mostly used for similar kind of resources,

whereas the user context finds broad relationships between tags based on the

users’ interests (represented by the tags they use).

We evaluate the methods proposed for improving search in folksonomies on

a large scale dataset (having around 27 million resources). Experimental results

show that the enrichment of existing data helps in improving resource retrieval,

particularly for the queries for which only few relevant resources exist.
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1.2 Tagging

While sharing resources on a folksonomy users often add tags to their resources.

Adding tags could be a tedious job, particularly when sharing many resources

at once, for example, sharing pictures of a trip. It is important to automate the

process of tagging by developing the Tag Recommender Systems. They assist

users in the tagging phase.

We analyze different types of resource features like geographical coordinates,

tags, and low-level image features for tag recommendation. The analysis helps in

selecting the appropriate type of resource feature. We develop a framework for

tag recommendation that does not require manual training. The framework auto-

mates the process of tagging in folksonomies. It relies on clustering techniques for

recommending tags. The resources are first clustered based on a feature. Then

tags in each cluster are aggregated to get a list of the most representative tags for

the clusters. Resources in each cluster are used to train a classifier which classifies

a new resource to one of the clusters. The most representative tags of the cluster

are then recommended for the resource. Results of experiments performed to

evaluate the tag recommendation framework on a large scale dataset show that

the geographical coordinates of the resources give the best results when compared

to other features.

1.3 Semantics

Tags are freely chosen or generated by the users in contrast to the formal anno-

tations. The users do not require any formal background knowledge for tagging

their resources. It is possible that the users are not an expert on the subject of

the resource being tagged. The tags can therefore be of varying quality and lack

formal semantics. Lack of semantics makes it difficult for machines to understand

the meanings of the tags and the type of resources. Considering current searching

and browsing facilities provided by these systems, it seems difficult to identify the

semantics of tags and resources. We propose methods for identifying the seman-

tics of tags and resources by classifying them into categories. Classification helps

in identifying resources which might be interesting for some users, for example, in
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identification of images which show worth visiting sights or landmarks of a city.

Classification might also help in faceted browsing by categorizing the resources

and tags into categories like persons, organizations, or places etc.

We present a system T-ORG (Tag-ORGanizer) to discover the semantics of

tags. T-ORG organizes resources by classifying the tags attached to them into

predefined categories. To avoid the efforts required to train the classifier used

in T-ORG, we develop a classification algorithm T-KNOW (Tags classification

through KNOwledge on the Web). This algorithm classifies the tags into prede-

fined categories by using lexico-syntactic patterns and a web search engine. It

does not require manually labeled training data to learn a classification model.

Given a list of tags and categories, T-KNOW classifies these tags into categories.

In addition to the classification of tags using web resources, we also exploit

the information available in online social communities for classifying resources.

We propose a system TG-SVM (Tag Group Support Vector Machine) which

exploits the information available in online social communities like Flickr groups

for classifying resources representing the landmarks of a location. The method

involves minimum human efforts as it only requires the links to the relevant Flickr

groups. The system automatically trains a classifier based on the data retrieved

from these groups. Evaluation results show that TG-SVM outperforms the state

of the art methods.

1.4 Structure of the Thesis

The thesis starts with an introduction to folksonomies. Its first chapter identifies

the following three problems related to different aspects of folksonomies:

1. Searching

2. Tagging

3. Semantics

Chapter 2 discusses the limitation of folksonomies and gives an overview of

the research work related to the solutions of these limitations.
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Chapter 3 describes the formal representation of folksonomies. Formal repre-

sentation is important, because it enables to describe and understand the prob-

lems and solutions in a systematic way. The chapter also covers the different

elements of folksonomies and their respective formal representations by using

two alternative methods, graphs and vector spaces.

Chapter 4 introduces the methods for discovering semantics in folksonomies.

The chapter discusses the methods to discover semantically related tags by ex-

ploiting external and internal data sources. The external data sources include

WordNet (Miller, 1995) and Application Programming Interfaces (APIs). The

internal data sources include different co-occurrence and probabilistic methods.

The methods for discovering semantically related tags presented in the chapter

are published in (Abbasi, 2010, to appear).

The semantically related tags discovered in Chapter 4 are exploited in Chap-

ter 5 to reduce the sparseness and to improve search in folksonomies. Chap-

ter 5 exploits the semantic relationships between tags to enrich the data in folk-

sonomies. It proposes enriched vector space models for improving search. The

proposed methods in the chapter are evaluated on a large scale using a dataset

of around 27 million resources, 92,000 tags and 94 million tag assignments. Ex-

perimental results show that the enriched vector space models help in improving

search, especially for the queries with few relevant resources. The methods used

in the chapter are also published in (Abbasi and Staab, 2009).

Chapter 6 exploits different kinds of resource descriptions to recommend tags

for new resources uploaded to a folksonomy. It compares the tags, the geograph-

ical coordinates, and the low-level image features. Tags are suggested to the new

resources which are uploaded to a folksonomy. The chapter presents a frame-

work which relies on clustering for tag recommendation. The resources are first

clustered based on a feature. Tags in each cluster are aggregated to get a list

of the most representative tags for that cluster. Then each cluster is used as a

training model and a new resource is classified to one of the clusters. The most

representative tags of the cluster are then recommended for the resource. Results

of experiments performed on a large scale dataset show that the geographical

coordinates of resources give the best results when compared to other available

features. We published the outcomes of the chapter in (Abbasi et al., 2009b).
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Chapter 7 proposes methods for classifying tags and resources. The chapter

presents a system called T-ORG (Tag ORGanizer) which classifies the tags into

predefined categories. The evaluation results show that T-ORG can be used to

discover semantics of tags and resources in an effective manner. The chapter also

proposes a method called TG-SVM (Tag Group Support Vector Machine) for

classifying resources by exploiting information available in online social commu-

nities. The user study presented in the chapter shows that the proposed method

outperforms state-of-the-art systems that address the same kind of problems. The

work related to this chapter has been published in (Abbasi et al., 2007, 2009a)

Finally Chapter 8 summarizes the main contributions of the thesis.

1.5 Publications Related to the Thesis

The research work presented in this thesis has been published at various confer-

ences. Following is the list of most relevant publications.� Chapter 4: Rabeeh Abbasi. Query Expansion in Folksonomies: In Pro-

ceedings of 5th International Conference on Semantic and Digital Media

Technologies, Semantic Multimedia, Lecture Notes in Computer Science,

Berlin, Heidelberg, 2010, to appear. Springer Verlag. (Abbasi, 2010, to

appear).� Chapters 4 and 5: Rabeeh Abbasi and Steffen Staab. RichVSM: enRiched

vector space models for folksonomies: In Proceedings of the 20th ACM con-

ference on Hypertext and hypermedia, pages 219–228, New York, NY, USA,

6 2009. ACM. (Abbasi and Staab, 2009).� Chapter 6: Rabeeh Abbasi, Marcin Grzegorzek, and Steffen Staab. Large

Scale Tag Recommendation Using Different Image Representations. In

Proceedings of 4th International Conference on Semantic and Digital Me-

dia Technologies, Semantic Multimedia, volume 5887 of Lecture Notes in

Computer Science, pages 65–76, Berlin, Heidelberg. Springer Berlin / Hei-

delberg. (Abbasi et al., 2009b).



Publications Related to the Thesis 8� Chapter 7: Rabeeh Abbasi, Sergey Chernov, Wolfgang Nejdl, Raluca Paiu,

and Steffen Staab. Exploiting Flickr Tags and Groups for Finding Land-

mark Photos. In Proceedings of European Conference on Information Re-

trieval 2009, Advances in Information Retrieval, volume 5478 of Lecture

Notes in Computer Science, pages 654–661, Berlin, Heidelberg, 4 2009.

Springer Berlin / Heidelberg. (Abbasi et al., 2009a).� Chapter 7: Rabeeh Abbasi, Steffen Staab, and Philipp Cimiano. Organizing

Resources on Tagging Systems using T-ORG: In Proceedings of Workshop

on Bridging the Gap between Semantic Web and Web 2.0 at European Se-

mantic Web Conference 2007, pages 97–110, Innsbruck, Austria, June 2007.

(Abbasi et al., 2007).



Chapter 2

Related Work

This chapter discusses the research work related to the problems discussed in

the previous chapter. The related work is divided into three categories, the first

category is search and information retrieval, the second is tag recommendation,

and the third is semantics and classification. The research work related to each of

these categories in perspective of folksonomies is listed in the following sections.

2.1 Search and Information Retrieval

Tags are one of the common elements in folksonomies. They are important for

searching and retrieving resources. Assigning tags to the resources is neither

formal nor mandatory; therefore the motivation behind tagging varies among dif-

ferent users. Tagging motivations range from self-organization to social communi-

cation (Ames and Naaman, 2007; Nov et al., 2008, 2010). Nov et al. (2010) inves-

tigate four motivations (Self-Development, Reputation, Enjoyment, and Commit-

ment) for participation of users in Flickr. They find that newer folksonomy users

are more motivated for self-development than the old community members. The

users who are motivated to improve their reputation mostly add meta-information

(e.g. tagging) to their resources to draw attention of other users. They also dis-

cover that the motivation for enjoyment is not correlated with the number of

tags or photos shared. They argue that this could be due to the reason that

users might enjoy in taking photos as a first step, but find sharing and tagging
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photos less enjoying. Nov et al. (2010) also discover that the users who are highly

committed to the community add more information to their resources as opposed

to the users who are less committed.

Many researchers have proposed methods to improve search in folksonomies.

Hotho et al. (2006) present an algorithm called FolkRank based on the PageRank

algorithm for ranking tags, resources, and users in folksonomies. FolkRank gives

higher rank to the resources which are tagged by important users and important

tags. Similarly tags and users can also be ranked using FolkRank. The tags,

users, and resources which are ranked higher by FolkRank are considered more

important or relevant than the others. (Hotho et al., 2006) describes the FolkRank

algorithm in detail.

The research work presented in this thesis differs from the research work done

by Hotho et al. (2006) in different aspects. For example, our focus is on improving

search by enriching the data in folksonomies, whereas the FolkRank algorithm is

used for ranking the tags, resources, or users. Ranked elements can be used for

generating recommendations. The evaluation performed by Hotho et al. (2006)

does not show the explicit significance of the FolkRank algorithm for improving

search in folksonomies.

Yahia et al. (2008) present methods based on network-aware search in folk-

sonomies. Their proposed methods construct clusters of users based on users’

activity similarity. The top-k querying methods they propose can be used for

ranking resources. In their experiments, they show that clustering users leads to

improvements in both space and execution time. In comparison to their work,

our focus for improving search in folksonomies is at system level without going

into preferences of individual users.

This thesis mainly focuses on improving search in folksonomies by exploiting

semantically related tags. Other researchers have developed methods based on

cross language information retrieval to improve search in folksonomies. For exam-

ple, Noh et al. (2009) propose methods to improve search by translating the tags

into different languages. Their proposed method translates the tags by analyzing

the global tag co-occurrence methods.

Users can create or choose any set of tags to annotate their resources. A data

analysis shows that there are only 3.1 tags associated to each resource on an
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average in a large folksonomy dataset of 54 million resources (Bolettieri et al.,

2009). The fewer number of tags associated to resources makes the available data

in folksonomies very sparse. The sparseness of data leads to difficulty in searching

resources. Often relevant resources are not retrieved for a search query because

the resources are associated with different but semantically related tags. One

way of reducing the sparseness is to exploit semantically related tags.

Markines et al. (2009) analyze different types of similarity measures to dis-

cover semantically related tags. The simplest approach they considered is based

on tag co-occurrence. Tag co-occurrence between two tags counts the number of

resources in which the two tags appear together. Other than using co-occurrence

information, Markines et al. (2009) also propose similarity measures like Overlap,

Jaccard, Dice, Cosine, and Mutual Information to discover semantically related

tags. They evaluate the tag relatedness by computing the relative placement of

tags in WordNet hierarchy. Our work relates to the work done by Markines et al.

(2009) with respect to discovering semantically related tags. They found that

the semantic relationships between tags are best discovered using Mutual Infor-

mation, which is also computationally the most expensive method. The methods

presented in this thesis for discovering semantically related tags and exploiting

them for enriching the vector space models were published (Abbasi and Staab,

2009) around the same time as the research by Markines et al. (2009). Some of the

methods used in this thesis (see Chapters 4 and 5) for discovering semantically

related tags like Cosine similarity have also been used by Markines et al. (2009).

Additionally we have proposed an asymmetric co-efficient (Modified Overlap Co-

efficient) for discovering semantically related tags. It could be an interesting

future work to incorporate the best results (e.g. Mutual Information) found by

Markines et al. (2009) into the enrichment methods presented in this thesis. In

comparison to the work presented by Markines et al. (2009), our work further ex-

tends the semantically discovered tags to improve search in folksonomies, whereas

Markines et al. (2009) focus on the semantic grounding of semantically related

tags.

Semantically related tags have also been used to enrich ontologies. Mika

(2007) presents methods to extract ontologies from folksonomies. The proposed

methods induce ontologies from large folksonomy data using information available
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through tag co-occurrence. The methods also build hierarchical relationships

between tags by discovering semantically related tags. Although the main focus of

the research work presented by Mika (2007) revolves around extracting ontologies

from folksonomies instead of improving search, but there are some similarities

between the work presented in this thesis and Mika (2007)’s work. The methods

proposed by Mika (2007) implicitly exploit the contexts of resources and users.

We also exploit the contextual information to discover semantically related tags.

In addition, our proposed methods use different similarity methods than the

simple co-occurrence, because simple co-occurrence has a bias towards relating

very frequent tags to all the tags.

In addition to improving search by enriching the folksonomies, some researchers

have proposed methods to improve search by query expansion. Probabilistic

methods for query expansion have been proposed by Collins-Thompson and Callan

(2005); Lafferty and Zhai (2001). Billerbeck et al. (2003); Cui et al. (2002) ex-

ploit query logs for expanding queries. Arguello et al. (2008) proposes different

representations of blogs for expanding queries. Bertier et al. (2009) expands

queries using representative tags of a user in folksonomies. Their query expan-

sion method is personalized for the user who gives the query. Pan et al. (2009)

propose to expand folksonomy search using ontologies.

The methods proposed in this thesis to discover semantically related tags ex-

ploit the type of similarity between the tags and the context of the tags simulta-

neously. In comparison to the presented related work, we exploit the discovered

relationships among tags for improving search in folksonomies, particularly by

reducing the sparseness in folksonomies.

2.2 Tag Recommendation

A tag recommendation system is used to assist users in tagging resources. These

systems have been discussed in various research works over the last few years. Re-

searchers have come up with frameworks which allow the comparison of different

tag recommendation methods. Jäschke et al. (2009) present a tag recommenda-

tion framework for their system Bibsonomy. The framework allows the evaluation

of different tag recommendation algorithms. The framework is though limited to
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the tag recommender systems which only use the tagging information.

Jäschke et al. (2007) compared two algorithms, FolkRank and Collaborative

Filtering (Goldberg et al., 1992) for tag recommendation. FolkRank is based on

PageRank (Brin and Page, 1998). It uses random walk techniques on the graph

of users, tags, and resources and assumes that popular users, tags, and resources

can reinforce each other. In collaborative filtering, similarity between users and

tags and between users and resources is used to recommend tags. Their exper-

iments based on the datasets from delicious1, last.fm2, and Bibsonomy3 show

that the FolkRank algorithm outperforms other methods. The tag recommenda-

tion methods as proposed by Jäschke et al. (2007) depend mainly on the tagging

information and do not consider the features (like geographical coordinates or

low-level image features) available in rich media (like photos or videos). The

tag recommendation framework presented in this thesis considers and compares

different features like geographical coordinates and low-level image features avail-

able in rich media. The tag recommendation methods proposed by Jäschke et al.

(2007) suggest tags for already partially tagged resources, whereas the tag recom-

mendation framework proposed in this thesis can suggest tags for newly uploaded

resources which are not associated with any tags.

Sigurbjörnsson and van Zwol (2008) present a tag recommendation system

which evaluates different similarity measures, tag aggregation methods and rank-

ing strategies. Given a photo and some initial tags, candidate tags are derived

for each of the given tag. The candidate tags are retrieved based on the tag co-

occurrence information. All of the candidate tags are then merged and ranked.

A final list of tags is then presented to the user. As in the work presented by

Jäschke et al. (2007), the methods proposed by Sigurbjörnsson and van Zwol

(2008) lack a tag recommendation strategy for newly uploaded resources. Al-

though the experiments were performed on Flickr (photos) dataset, the methods

do not consider the available rich media features.

Nowadays, the state-of-the-art imaging devices provide photos together with

the geographical coordinates (geo-tags) stating precisely where they have been

1http://www.delicious.com/
2http://www.last.fm/
3http://www.bibsonomy.org/
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acquired. Therefore, more and more researchers make use of this additional in-

formation. Cristani et al. (2008) exploit geographical coordinates for improving

visualization of images on a map. Kennedy et al. (2007) and Kennedy and Naa-

man (2008) use low-level image features and geographical coordinates to identify

the landmarks of a city. Moëllic et al. (2008) present a system which combines

tags and low-level image features for clustering images. They suggest that clus-

tering images can enhance the browsing and visualization of the images. But

none of these approaches exploit the features available in rich media for recom-

mending tags. In comparison to the above mentioned methods, the contribution

of this thesis regarding tag recommendation is twofold, first, we develop a tag

recommendation system, which recommends tags for newly uploaded resources,

and second we compare the performance of different rich media features in the

process of tag recommendation.

In addition to the features available in rich media, some researchers have used

external data sources for recommending tags. Heymann et al. (2008) predict tags

by using information available in the resource content, anchor text, and already

available tags. Given a set of objects, and a set of tags applied to those objects

by users, their approach predicts whether a given tag could/should be applied to

a particular object. Heymann et al. (2008) formulate the problem of tag recom-

mendation into a supervised learning problem. For each tag to be recommended,

they train a binary (SVM) classifier which predicts the association of a resource

with the tag. Their approach is limited to a set of tags that can be recommended

and may not be applied in a generic large scale scenario. Resource features like

titles of webpages have also been exploited by other researchers (Lipczak, 2008).

Lipczak (2008) suggests a tag recommendation system which extracts the tags

from the resource title. The tag co-occurrence information available within the

resource’s posts in form of a personomy is used for recommending tags. In addi-

tion to exploiting external data sources and resource contents, some researchers

have also used formal ontologies in the process of tag recommendation. Adrian

et al. (2007) present a system called ConTag. It generates semantic tag rec-

ommendations for documents based on Semantic Web ontologies and Web 2.0

services.

Other recent research work related to tag recommendation includes (Illig et al.,
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2009; Rae et al., 2010; Krestel et al., 2009; Jin et al., 2010). Illig et al. (2009)

present an algorithm for tag recommendation based on the contents of the re-

sources. They train different classifiers like SVM and Multinomial Näıve Bayes

etc. on the training data for recommending tags for newly upload resources. Rae

et al. (2010) propose a method of tag recommendation for partially annotated

media. Their method exploits different contexts of the users. It achieves best

results using the Social Group context. Krestel et al. (2009) and Jin et al. (2010)

have used probabilistic methods like Latent Dirichlet Allocation (LDA) for tag

recommendation. The method proposed by Krestel et al. (2009) discovers latent

topics using tagging information and these topics are then used to recommend

tags for the new resources belonging to the same topic. Jin et al. (2010) com-

bine Language Model and Latent Dirichlet Allocation to recommend tags. The

focus of these recent research works is basically on recommending tags using the

tagging or tag co-occurrence information, and these research works do not utilize

the information available in the rich media.

Finally some of the tag recommendation methods exploit rich media features

like geographical coordinates and low-level image features. Moxley et al. (2008)

present a tag recommendation tool called SpiritTagger which uses the geograph-

ical coordinates of the images available at Flickr. Their approach weights geo-

graphically relevant annotations for tag recommendation for an image database.

Experimental results on two cities show that their approach outperforms the

geographical and visual baselines for smaller cities, but the geographical coordi-

nates give the best results for larger cities. The tag recommendation framework

presented in this thesis also focuses on tag recommendation based on different

rich media features and compare the performance of each of these features. It

would be an interesting future work to compare the performance of our proposed

framework and the SpiritTagger.

2.3 Semantics and Classification

Tags and resources in folksonomies lack formal semantics. The tags and resources

are not classified using any taxonomy or ontology. The lack of formal semantics

in folksonomies makes it difficult for an algorithm or system to understand it.
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The problem of the lack of semantics in tags and resources has been considered

by many researchers. Some researchers have focused on mapping folksonomy

tags on a formal semantic vocabulary. For example, Schmitz (2006) presents a

method to induce taxonomies from tags using a probabilistic method. Schmitz

(2006) proposes to use a probabilistic subsumptions based model to produce

hierarchical relationships between tags. As compared to the work presented in

this thesis, the method proposed by Schmitz (2006) does not classify tags into

predefine categories, which could help in focused or faceted browsing of resources.

The methods to identify semantics of tags proposed in this thesis exploit

external data sources like web search engines along with linguistic patterns. The

idea of utilizing linguistic patterns for identifying semantics of words and terms is

not new. Hearst (1992) used lexico-syntactic patterns to extract hyponyms from

large text corpora. These linguistic patterns have been used by other researchers

for identifying semantics. The classification algorithm T-KNOW presented in this

thesis for identifying semantics of tags is based on the C-PANKOW system (see

(Cimiano et al., 2004) and (Cimiano et al., 2005)), which uses lexical patterns

along with the search results from a web search engine for semantic annotation

of web pages. With respect to folksonomies, we extended the research work done

by Cimiano et al. (2005) by exploiting four different types of tag contexts.

In addition to ontologies and linguistic patterns, researchers have also used

classification methods for identifying the semantics of tags and resources. Overell

et al. (2009) present a method for classifying tags using Wikipedia1 and the

Open Directory Project2. They developed a classifier which utilizes information

available in Wikipedia and WordNet and classifies the tags to the anchor text

in Wikipedia articles. The Wikipedia articles are themselves categorized into

WordNet categories. Similarly, Angeletou et al. (2009) propose a framework for

annotating folksonomy tags using formal knowledge. Their framework exploits

WordNet and online available ontologies for identifying semantics of tags. Their

experiments show that the folksonomy enrichment using ontologies based methods

outperform the enrichment based on WordNet. Although, the methods proposed

in this thesis also identify the semantics of tags and resources, the method of iden-

1http://www.wikipedia.org/
2http://www.dmoz.org/

http://www.wikipedia.org/
http://www.dmoz.org/
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tifying semantics differs from the methods presented by Angeletou et al. (2009).

We discover the semantics by exploiting online resources like web search engines

and lexico-syntactic patterns. It would be an interesting future task to develop

an evaluation framework where different approaches for identifying semantics in

folksonomies can be compared.

In addition to identifying the semantics of tags, we also identify the seman-

tics of resources by exploiting information available in online communities like

Flickr groups1. In particular we focus on identifying the photos in Flickr which

represent the landmarks of a city. Previous algorithms for identifying landmark

photos have employed both purely content-based techniques, as well as methods

combining content and contextual information of the pictures. Popescu et al.

(2008) use external data sources (Geonames, Wikipedia, Panoramio, and Search

engines snippets) to extract geographical entities of a place. Jaffe et al. (2006)

propose an approach for generating photo summaries relying on hierarchical clus-

ters; each of these clusters is scored and finally a flat ordering of all photos in

the dataset is generated. In a later work, Kennedy et al. (2007) replace the

original clustering algorithm with K-Means and add the analysis of image visual

features. A similar approach combining context- and content-based tools is pre-

sented in (Kennedy and Naaman, 2008). Landmarks are detected by analyzing

the distribution patterns of the tags in the dataset. The representative pictures

for a landmark are identified based on canonical views, using various image pro-

cessing methods. Also using content-based techniques, Berg and Forsyth (2007)

present an algorithm which ranks iconic images labeled with a particular theme,

according to how well they represent a visual category.

Closely related to the work presented in this thesis, Ahern et al. (2007) pro-

pose a system called World Explorer for identifying landmarks of a city. World

Explorer clusters the photos according to their geographical location. Then the

tags in each cluster are ranked according their representativeness. A TF-IDF

based method is used for ranking the tags. Ahern et al. (2007) suggest that the

identified clusters represent an interesting location and the ranked tags suggest

the labels for the clusters. The method proposed in this thesis called TG-SVM

utilizes information available in online communities to learn a classifier which

1http://www.flickr.com/groups/

http://www.flickr.com/groups/
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can identify landmark photos. TG-SVM does not require the geographical coor-

dinates for identifying landmark photos as in the case of World Explorer. This

could be particularly useful for classifying resources which do not contain geo-

graphical information. The experiments comparing TG-SVM to World Explorer

show that TG-SVM mostly outperforms World Explorer.

Once the semantics of tags and resources are discovered, they can be used in

a variety of applications. One such application is faceted browsing, where facets

from the dataset are displayed to the user and the user can narrow down his

browsing experience using these facets. An example of such a system which sup-

ports facets and semantics is SemaPlorer. SemaPlorer allows users to browse and

visualize resources in real time. The data (e.g. images from Flickr) is visualized

on a map and users can narrow down the results by selecting different facets like

persons, locations, or tags. Systems like SemaPlorer can be further enhanced by

utilizing the methods proposed in this thesis for identifying semantics of tags and

resources.

2.4 Conclusions

This chapter described the research work related to the problems of searching,

tagging, and semantics as discussed in Chapter 1. The related work mentioned in

this chapter discussed a variety of methods to address these problems. The dis-

cussed solutions varied from methods which analyze the semantics in folksonomies

to the frameworks which allow comparison of different methods.



Chapter 3

Representation of Folksonomies

When millions of users share their resources, they generate huge amounts of data.

To analyze folksonomy data, we need to identify and formalize different elements

of folksonomies. In this chapter, we discuss different elements of folksonomies

and their formal representation. We describe two alternative methods, graphs

and vector spaces, to formally represent a folksonomy. Formal representation of

folksonomies let us analyze folksonomies in a systematic way.

3.1 Elements of Folksonomies

Mainly, a folksonomy consists of three elements Users, Tags, and Resources (see

Figure 3.1), where users annotate resources with keywords called tags. Users are

free to create tags of their choice. Details about tags, users, and resources and

their interaction in a folksonomy are described in the following sections:

3.1.1 Users

A user interacts with a folksonomy in multiple ways like browsing, searching,

and sharing. While sharing a resource, a user can associate tags to the resource.

Researchers have suggested different motivations like enjoyment, commitment,

self-development, and reputation for sharing resources on folksonomies. Motiva-

tions of users behind sharing their resources are discussed in detail by Ames and

Naaman (2007), Nov et al. (2008) and Nov et al. (2010).
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Figure 3.1: Relationships between elements of folksonomies.
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3.1.2 Resources

Folksonomies support different types of resources. For example, a user of Flickr1

can share photos, one can use YouTube2 for sharing videos, Delicious3 for book-

marks, Citeulike4 for publications, Last.fm5 for music etc. Some folksonomies

also support multiple types of resources e.g. in Bibsonomy6 users can share their

bookmarks as well as publications.

In some folksonomies like Flickr or YouTube, users own their resources, e.g.

pictures or videos they upload. Mostly they themselves assign tags to their re-

sources. Rarely other users might also add tags to the resources of other users.

Tagging resources of other users is sometimes not allowed in these folksonomies

(e.g. when owner of the resource does not allow doing so). Such folksonomies

in which mostly the owners assign tags their resources are called narrow folk-

sonomies (Vander Wal, 2005). On the other hand, some folksonomies allow the

sharing of common resources, such as websites7, songs8, or books9 etc. In these

folksonomies, different users can assign keywords to the same resources; such

folksonomies are called broad folksonomies (Vander Wal, 2005).

3.1.3 Tags

Tags are assigned to the resources. They are selected or created by the users

themselves. For example, if a user shares a website http://last.fm/, he

might add the tags university, Koblenz, Germany, to visit to it. Later on, he or

other users can search the folksonomy using one or more of these tags. Tags are

not only used for searching resources, but they can also be used for browsing the

resources.

Folksonomies usually provide a tag cloud which displays the most frequent

1http://www.flickr.com/
2http://www.youtube.com/
3http://www.delicious.com/
4http://www.citeulike.org/
5http://www.last.fm/
6http://www.bibsonomy.org/
7http://www.delicious.com/
8http://www.last.fm/
9http://www.librarything.com/

http://last.fm/
http://www.flickr.com/
http://www.youtube.com/
http://www.delicious.com/
http://www.citeulike.org/
http://www.last.fm/
http://www.bibsonomy.org/
http://www.delicious.com/
http://www.last.fm/
http://www.librarything.com/
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(or recent) tags in the folksonomy. Figure 3.2 shows a tag cloud of the delicious

website. Most frequently used tags like design, blog, and video etc. are shown in

a bigger font size, whereas relatively less frequent tags like car, flickr, and artist

are displayed in a smaller font size. When a user clicks on a tag, he gets a list of

resources associated with the clicked tag. The tag clouds can be personalized by

displaying tags of a particular entity (e.g. a user).

Figure 3.2: A tag cloud displaying most popular tags in delicious.

There are a few tags which are used by many of the users. Figure 3.3 shows

the frequency of users using a particular tag. We observe that only few tags are

used by many users and most of the tags are used by only a few users.

3.1.4 Other Elements of Folksonomies

The common elements of folksonomies are users, tags, and resources. But some

folksonomies also provide additional elements like tag bundles1, networks of users2,

1http://blog.delicious.com/blog/2005/10/bundle_up.html, last accessed in
October 2010

2http://blog.delicious.com/blog/2006/04/its_made_out_of.html, last ac-
cessed in October 2010

http://blog.delicious.com/blog/2005/10/bundle_up.html
http://blog.delicious.com/blog/2006/04/its_made_out_of.html
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Figure 3.3: Number of users per tag.
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and groups1 etc. These elements can also be used for discovering semantics from

folksonomies. A major part of this thesis presents techniques for discovering and

exploiting semantics from users, tags and resources, but Chapter 7 exploits other

elements like online social communities for discovering and exploiting semantics.

In the following sections, we formally represent the main elements a folksonomy

and their relationships using graph and vector based representations.

3.2 Graph Based Representation

A folksonomy can be represented by a tri-partite hyper-graph. Where users, tags,

and resources are the nodes of the graph and they are connected by hyper-edges,

showing relationships between a user, a tag, and a resource. We use the same

formal model of folksonomies as defined in (Schmitz et al., 2006). A folksonomy

is a tuple:

F := (U, T,R, Y ) (3.1)

Where U , T , and R are finite sets representing users, tags, and resources

respectively. Y represents taggings by users U , using tags T of resources R, and

Y ⊆ {U × T × R}. The relationships between different entities of a folksonomy

can be represented using bipartite graphs which are projections of the original tri-

partite hyper-graph. Relationships between users and tags can be represented by

the bipartite graph over {U×T}. Similarly, relations between tags and resources,

and resources and users can be represented by the graphs {T ×R} and {R×U}

respectively.

3.3 Vector Based Representation

In addition to the graph representation of folksonomies, vector space models

can be used for representing the relationships between users, tags, and resources

in a folksonomy. The relationships between users, tags, and resources can be

1http://www.flickr.com/groups/, last accessed in October 2010

http://www.flickr.com/groups/
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projected on a two dimensional vector space in form of matrices. Let us define

the relationships between tags and users using the matrix U as follows:

U = [ui,j] (3.2)

Where ui,j is equal to 1, if user j has used the tag i, otherwise ui,j is equal to

0. Each row vector ~ui,∗ of the matrix U represents a tag vector, whose non-zero

elements represent the users that have used this tag. Each column vector ~u∗,j of

the matrix U represents the users. In this thesis, we denote row vectors with the

subscript i, ∗ and the column vectors with the subscript ∗, j throughout the text.

Similar to the matrix U , we represent the relationships between tags and

resources using the matrix R as follows:

R = [ri,j] (3.3)

Where ri,j denotes how many times the tag i appeared with the resource j.

Each row ~ri,∗ of the matrix R is a tag vector, whose non-zero elements represent

how many times these elements (resources) have been annotated with this tag

(i). Each column vector ~r∗,j of the matrix R represents a resource, which has

non-zero values for the associated tags, and zero for the tags it does not use. As

there are millions of tags and resources, but each resource is assigned only few

tags, therefore the matrix R is a very sparse matrix.

The matrix U is a sparse matrix, but denser than the R matrix, because the

column vector ~u∗,j has non-zero value for all the tags which are used by the user

j and it is more likely that the set of tags used by a user is bigger than the tags

used in a resource.

In some folksonomies (called Narrow Folksonomies (Vander Wal, 2005) like

Flickr), a resource cannot be tagged with a tag more than once, while in other

folksonomies (called Broad Folksonomies (Vander Wal, 2005)) a single resource

can be tagged with a tag multiple times from different users. In case of Narrow

Folksonomies, the value of ri,j is always equal to zero or one.
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3.4 Conclusions

This chapter discusses the three main elements of folksonomies: users, tags, and

resources. It furthermore discusses how they interact within a folksonomy. It

also discusses graph and vector based representations of the main elements of

folksonomies. It also lists non-standard elements which are found in some folk-

sonomies. These elements include tag bundles, user networks, and user groups.



Chapter 4

Discovering Semantic

Relationships among Tags

Only few tags are on average associated with each resource in a folksonomy. Due

to the lack of a sufficient number of relevant tags, data in folksonomies is very

sparse. The sparseness of data makes search and retrieval in folksonomies diffi-

cult. This sparseness can be overcome by discovering semantically related tags.

This chapter discusses the methods to discover semantically related tags. The

methods use external data sources like WordNet and Data Application Program-

ming Interfaces (APIs) as well as the internal data of folksonomies. We propose

two dimensions for discovering semantically related tags, one is based on the

type of similarity between the tags, and the second is based on the context of the

tags. The application of the methods proposed in this chapter is shown in the

next chapter, where semantically related tags are used to reduce the sparseness

of folksonomy data for improving search.

4.1 Discovering Semantically Related Tags

Data in folksonomies is very sparse as compared to ordinary text documents. The

amount of tags associated to a resource is much less than the words associated

to a document. Figure 4.1 shows the number of tags associated with around 27

million resources uploaded to the Flickr website between the years 2004 and 2005.
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A user searching against a query might not find relevant resources because many

relevant resources might not be tagged with the searched terms. For example, if

a user wants to search resources related to the terms “forties, coin”, he might

not be able to retrieve resources tagged with “1940s, penny” or “1944, cent”.

Resources not tagged with sufficient number of relevant tags make the data

in a folksonomy very sparse, which makes search in folksonomies difficult. We

can reduce the sparseness in folksonomies by discovering semantically related

tags and enriching the data in folksonomies. The common methods for finding

semantically related tags use either co-occurrence information among tags or use

the external data sources like Wikipedia or WordNet.
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Figure 4.1: Number of tags associated with around 27 million resources uploaded
to Flickr between the years 2004 and 2005.

In this chapter, we discuss the methods for discovering relationships between

tags based on two dimensions, first the context of the tags and second the type of
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similarity between the tags. We consider two types of tag contexts, the resource

context (which resources are assigned to a particular tag), and the user context

(which users have used a particular tag). The resource context of tags helps in

finding tags which are mostly used in similar kind of resources, whereas the user

context finds broad relationships between tags based on the users’ interests (rep-

resented by the tags they use). We also discuss different kinds of tag similarities

like co-occurrence based, probabilistic, and heuristic based similarity as well as

similarity among tags based on external data sources like WordNet and Data

APIs.

4.2 Exploiting External Data Sources

Semantic relationships between tags or words can be retrieved using external data

sources like thesauri or Data APIs.

4.2.1 WordNet

WordNet (Miller, 1995) is a lexical reference system which represents relationships

between different lexical entities in English (nouns, verbs, adjectives, adverbs).

In WordNet, words are grouped into different sets called “synsets”. These synsets

provide a method to identify semantically related tags. Given a tag, semantically

similar tags can be identified by searching words in the synset of the given tag.

For example, for the word Jaguar, a synset in WordNet includes the related words

panther, Panthera onca, and Felis onca. The limitation of exploiting WordNet

for identifying semantically related tags is its limited vocabulary. WordNet does

not include domain specific words or non-standard tags created particularly in

folksonomies.

4.2.2 Data APIs

Folksonomies like Flickr provide an extensive set of services using APIs. As

an example, the Flickr API1 can be used for finding semantically related tags.

1http://www.flickr.com/services/api/flickr.tags.getRelated.html,
last accessed in October 2010

http://www.flickr.com/services/api/flickr.tags.getRelated.html
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According to Flickr API website, the function flickr.tags.getRelated “returns a

list of tags related to the given tag, based on clustered usage analysis”. For

any given tag, relevant tags can be retrieved by the API. In general, the main

disadvantage of using APIs is the lack of knowledge about the methodology for

finding semantically related tags. Changes in the methods used for finding related

tags could result in different sets of related tags over a period of time.

4.3 Exploiting Internal Data of a Folksonomy

Co-occurrence based information can also be used for discovering semantically

related tags. We explore different co-occurrence methods based on similarity

between tags. The relevant tags are identified by measuring similarity between the

tags. We classify the similarities between tags1 into the following three categories:

Co-occurrence: The simplest form of finding semantically similar tags is

co-occurrence; two tags are relevant, if they co-occur in resources. If we represent

the tag ti with the tag vector ~ti, then simple co-occurrence between two tag vec-

tors ~t1 and ~t2 can be computed using Equation 4.1, i.e. by counting, in how many

resources a tag t1 appears together with another tag t2. The main disadvantage

of using this simple co-occurrence measure is the lack of normalization. Very fre-

quent tags like sky, family or travel co-occur with many of the tags in Flickr, and

it leads to very obvious or unwanted relationships between tags. Normalizing co-

occurrence with the frequencies of the tags helps in finding relevant tags which

might not be very frequent globally. One way of normalization is using cosine

similarity (see Equation 4.2), in which co-occurrence of tags is normalized by the

Euclidean norm of the tag vectors. Other co-occurrence based similarity mea-

sures include Dice (see Equation 4.3) and Jaccard (see Equation 4.4) coefficients.

The Dice coefficient gives higher value to co-occurring tags than the Jaccard co-

efficient. Jaccard coefficient penalizes tags which do not co-occur very frequently

(Manning and Schütze, 1999).

1We represent the tag vector of the tag ti without any contextual information (see Sec-
tion 4.4.2) as ~ti.
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simple(~t1,~t2) =~t1 · ~t2 (4.1)

cosine(~t1,~t2) =
~t1 · ~t2

‖~t1‖ × ‖~t2‖
(4.2)

dice(~t1,~t2) =2
~t1 · ~t2

|~t1|+ |~t2|
(4.3)

jaccard(~t1,~t2) =
~t1 · ~t2

|~t1| × |~t2| − ~t1 · ~t2
(4.4)

The above mentioned measures provide semantically similar tags or synonyms

based on co-occurrence information. If two tags appear together in many of the

resources, then they are considered to be similar. For example, the tags Brazil

and Brasil appear often together, therefore they are considered to be semantically

similar tags. Similarly Notre and Dame can also be considered semantically

similar tags.

Probabilistic: We also use a probabilistic model (Mutual Information) for

discovering semantically related tags. Mutual Information (MI, see Equation 4.5)

measures the association between two tag vectors. The measure of association

depends upon the probability of two tags appearing together. It is more likely

that the tags t1 and t2 appear together, the value of mutual information between

their tag vectors will be high. Mutual Information among two tag vectors can be

computed as follows:

MI(~t1,~t2) =
∑

~t1

∑

~t2

p(~t1,~t2) log

(

p(~t1,~t2)

p(~t1) · p(~t2)

)

(4.5)

Where p(~t1) and p(~t2) are the marginal probabilities of the tag vectors ~t1 and

~t2 respectively. p(~t1,~t2) is the joint probability between the tag vectors ~t1 and ~t2.

Heuristic: In addition to standard similarity measures (see Equations 4.1–

4.4), we also explore two heuristics (overlap and modified overlap coefficients)

for finding relevant tags. The value of the overlap coefficient (see Equation 4.6)

between two tag vectors ~t1 and ~t2 is high, if one of the tags mostly appears with
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the other tag. For example, if the tag sky always appears with the tag blue, then

the value of their overlap coefficient is equal to one.

We also propose a non-symmetric version of the overlap coefficient called

overlap mod (see Equation 4.7). The modified overlap coefficient identifies the

relationship between a less common tag and a common tag. A less common tag is

associated to the common tag, but not vice versa. For example, if the tag Koblenz

appears in 50,000 resources and the tag Germany appears in 5 million resources,

and both of these tags appear in 10,000 resources together, then the similarity

value between the tag vectors of the tags Koblenz and Germany1 using modified

coefficient is overlap mod(~tKoblenz,~tGermany) = 0.2 (10, 000 ÷ 50, 000). However,

the similarity between the tag vectors of the tags Germany and Koblenz using

modified overlap coefficient is overlap mod(~tGermany,~tKoblenz) = 0 (|~tGermany| �

|~tKoblenz|).

overlap(~t1,~t2) =
~t1 · ~t2

min(|~t1|, |~t2|)
(4.6)

overlap mod(~t1,~t2) =











~t1 · ~t2

|~t1|
if |~t1| ≤ |~t2|;

0 otherwise.

(4.7)

Examples of semantically related tags using the methods presented are shown

in Table 4.1 for three different sets of tags. The dataset for discovering these

semantically related tags was consisted of approximately 27 million resources and

92 thousand tags from Flickr (see Section 5.3.2). We have listed the top 5 relevant

tags for each set of tags. We can observe that different types of similarities

result in different semantically related tags. The example of WordNet shows its

limitation of limited vocabulary. There are no relevant words for the tag chevy in

WordNet, but based on global or local analysis, or on an external data source like

Flickr API, we can minimize this limitation. We can see that all other methods

than WordNet have the relevant word Chevrolet for the tag chevy.

1 The tag vector ~tKoblenz represents the tag Koblenz and ~tGermany represents the tag vector
of the tag Germany.



Exploiting Internal Data of a Folksonomy 33

Table 4.1: Sample semantically related tags using different methods.

Method 1929, chevy lake, huntington purple, flowers

Co-Occ. flood, iowa, cedarrapids,
chevrolet, car, cars, automo-
bile

water, 2005, nature, sun-
set, beach, garden, califor-
nia

flower, green, nature, gar-
den, macro

Cosine cedarrapids, christman,
memorium, royalyork,
chevrolet, chrystler, super-
charged, impala

water, steelhead, frankfort,
frenzy, huntingtongardens,
hage, skulptur, jardin

flower, pink, violet, gar-
den, plants, nature

Dice cedarrapids, christman,
memorium, modela, chevro-
let, corvette, impala, carshow

water, michigan, moun-
tains, tahoe, huntington-
gardens, hage, skulptur,
jardin

flower, pink, green, garden,
nature, plants

Jaccard cedarrapids, christman,
memorium, modela, chevro-
let, corvette, impala, viper

water, michigan, fishing,
mountains, huntington-
gardens, hage, skulptur,
jardin

violet, catchycolors, iris,
orchid, garden, flower,
plants, macro

MI flood, iowa, ford, memorium,
chevrolet, car, cars, automo-
bile

water, tahoe, district,
michigan, garden, gardens,
beach, giardino

flower, green, pink, garden,
nature, plants

Overlap christman, memorium, roya-
lyork, car, chrystler, hhr, su-
percharged, chevrolet

peyto, jarvi, natsuki, hunt-
ingtongardens, hage, dieu,
myths

roxo, paars, purplerain,
beautyberry, daises, geni-
talia, loreak, gerberas

Flickr chavorlet, car, classic, truck water, trees, nature, re-
flection, beach, california,
pier, surf

flower, pink, blue, nature,
spring

WordNet flower, blossom, bloom,
peak, prime
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4.4 Dimensions of Similarity among Tags

We define two dimensions of semantic relationships between tags and propose en-

riched vector space models based on these dimensions. Following sections describe

each dimension in detail:

4.4.1 Type of Similarity

Semantic relatedness between tags based on different similarity measures / heuris-

tics provide different types of associations among tags. For example, similarity

between two tags based on WordNet could be different from similarity based on

cosine measure. Even different co-occurrence based similarity measures / heuris-

tics provide different types of similarities. The strength or weight of similarity

between two tags based on two different measures could be different. Therefore

we consider the methods of finding semantically similar tags as one dimension,

called “Tag Similarity”. Different types of similarity measures based on exter-

nal and internal data sources are described in the previous Sections 4.2 and 4.3

respectively.

4.4.2 Context of the Tag

In addition to the type of tag similarity, the context of the tag is another dimen-

sion for finding semantically related tags. We describe the two different kinds of

contexts of the tags as follows:

Resource Context: The resource context of a tag ti consists of all the

resources that are annotated with the tag ti. We formally represent the resource

context of the tag ti as a resource vector ~ri,∗ (see Equation 3.3) . To discover the

semantically similar tags ti and tj based on the resource context, we can compute

the similarity between them using their resource contexts. Similarity between

two tag vectors ~ri,∗ and ~rj,∗ is computed using the Equations 4.1–4.7.

User Context: We hypothesize that tags represent the interests of the users.

Users would usually add tags to the resources in which they are interested in. A

set of users sharing a particular set of tags reflects their common interest in some

resources or subjects. The user context of a tag consists of all the users that
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share the same tag. We can exploit the user context for discovering semantically

related tags. For example, if many users annotate different resources with the

tags coin and cent, and they do not use these two tags together in any of the

resources they annotate, it would still be possible to find relationships between

these tags by considering the number of users that shared both of these tags. We

formally represent the user context of the tag ti as a vector ~ui,∗ (see Equation 3.2),

which represents all the users who have used the tag ti. Similarity between two tag

vectors based on their user context can be computed using the Equations 4.1–4.7.

Table 4.2 shows some examples of semantically related tags using the methods

described in this section with respect to different contexts. The examples are

based on a dataset of around 27 million resources uploaded to the Flickr website

during the years 2004 and 2005.

Table 4.2: Semantically related tags based on resource and user tag contexts.

Tag Resource Context User Context

brick wall(0.11) wall(0.37)
fence(0.36)
window(0.36)
rust(0.35)

bromelia airplant(0.32) lirio(0.18)
bromeliad(0.17) tibouchina(0.15)
tillandsia(0.15) soneca(0.15)

strelitzia(0.15)
designs desktops(0.29)

wallpapers(0.22)
backgrounds(0.21)

madrid spain(0.19) spain(0.31)
zarzuela(0.13) espaa(0.24)
hipodromo(0.13) segovia(0.22)
carreras(0.12) toledo(0.21)

pub crawl(0.17) beer(0.25)
bar(0.24)
sign(0.22)
london(0.22)

seventies 70s(0.16) sixties(0.19)
entertainers(0.14) 70s(0.17)
sixties(0.13) eighties(0.16)

forties(0.13)
spain espaa(0.37) barcelona(0.36)

barcelona(0.25) espaa(0.32)
andalucia(0.20) madrid(0.31)
madrid(0.19) gaudi(0.27)

style crave(0.14) fashion(0.16)
arian(0.13) hair(0.13)
fashion(0.11) woman(0.12)
persians(0.10) man(0.12)
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The different types of relationships using different contexts can be observed

from the examples. The resource context discovers close relationships among

tags, for example, the tag brick is similar to the tag wall. The tags bromelia is

similar to the tags airplant, bromeliad, and tillandsia which belong to the same

family of flowers. If we consider the user context of the tags, we observe a wide

range of tag associations. For example, we find the tags tibouchina and strelitzia

associated to the tag bromelia which are different kinds of flower plants. User

context also associate the tags seventies to the tags sixties, eighties, and forties,

which shows the interest of users in old pictures. In the next chapter, we exploit

the semantically related tags for enriching the data in a folksonomy.

4.5 Conclusions

This chapter discusses different methods of discovering semantically related tags.

Semantically related tags can be exploited to enrich the sparseness in folksonomies.

Reducing sparseness in folksonomies would enable us to retrieve resources which

are otherwise not retrieved due to sparseness. As detailed in this chapter, the

next chapter discusses how reducing sparseness in folksonomies can enable us to

improve search in folksonomies.



Chapter 5

Exploiting Semantics for

Improving Search

In order to access and share resources, users add tags to the resources. The tags

are freely chosen keywords and it is not possible for the users to tag their resources

with all the relevant tags for obvious reasons. As a result, most resources are

not annotated with the majority of tags relevant to them. The lack of relevant

tags results in sparseness of folksonomy data, and this sparseness of data makes

many relevant resources unsearchable. To overcome the problem of search in

folksonomies, we propose the enriched vector space models which exploit the

semantically related tags discussed in Chapter 4. The enriched vector space

models are less sparse and help in improving search in folksonomies. We evaluate

the methods proposed in this chapter on a large dataset. The dataset consists

of around 27 million resources and 92 thousand tags, 150 queries are used for

the evaluation done by 18 users. Experimental results based on the large scale

evaluation show that the enrichment of the existing data by exploiting semantic

relationships among tags helps in improving the search results, particularly for

the queries for which only few relevant resources exist in the original data.
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5.1 Sparseness in Folksonomies

In folksonomies users are free to choose tags for annotating their resources. A lot

of resources are not tagged with many of the relevant tags. An analysis of a large

folksonomy dataset of 54 million resources shows that there are on average only

3.1 tags associated with each resource (Bolettieri et al., 2009). This makes the

data in a folksonomy very sparse. The sparseness of the data makes it difficult

to search resources. For example, if a picture of a penny of 1972 is tagged with

penny and 1972 instead of the tags seventies and coin, and a user searches for

the resources using keywords seventies and coin, he will not discover the resource

because this resource is not tagged with the tags seventies and coin. However, if

we associate the tag coin with the tag penny and the tag seventies with the tag

1972, then it would be possible to retrieve the resources which are tagged with

1972 and penny using the query seventies and coin.

We hypothesize that there are many resources in a folksonomy which are not

searchable because they are not associated with most of the relevant tags. By

adding relevant tags to the resources, it is possible to search resources which are

otherwise not searchable. We associate the relevant tags to the resources using

a linear transformation function to enrich the standard vector space model of

a folksonomy. We consider several methods to enrich the vector space model

depending upon the type of similarity between tags and the context of the tags.

The basic idea behind all the proposed methods is to discover the semantically

related tags and then enrich the standard vector space model using the discovered

semantically related tags.

5.2 Exploiting Semantically Related Tags

To exploit the semantically related tags for enriching the sparse vector space

model of folksonomies, we define a linear transformation function LT : V → E

based on the type of similarity (see Section 4.4.1) and context of the tags (see

Section 4.4.2).

LTS

C

(R) = T S
C × R (5.1)
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Where R is the simple vector space model for a folksonomy as defined in

Equation 3.3 and T S
C is a matrix representing the similarity between the tags

based on the similarity type (S) and the context (C) of the tags. The matrix

T S
C is always a square matrix with both dimensions equal to the number of tags

in the folksonomy. Each value at the ith and jth index of the matrix T S
C is

the similarity between the tags i and j. The matrices T S
C based on similarity

measures/coefficients and the resource context can be computed as follows:

TC
R =[cosine(~ri,∗, ~rj,∗)] (5.2)

T S
R =[simple(~ri,∗, ~rj,∗)] (5.3)

TD
R =[dice(~ri,∗, ~rj,∗)] (5.4)

T J
R =[jaccard(~ri,∗, ~rj,∗)] (5.5)

TM
R =[MI(~ri,∗, ~rj,∗)] (5.6)

TO
R =[overlap(~ri,∗, ~rj,∗)] (5.7)

T P
R =[overlap mod(~ri,∗, ~rj,∗)] (5.8)

To exploit the user context, we can use the user based vector space model (see

Equation 3.2).

TC
U =[cosine(~ui,∗, ~uj,∗)] (5.9)

T S
U =[simple(~ui,∗, ~uj,∗)] (5.10)

TD
U =[dice(~ui,∗, ~uj,∗)] (5.11)

T J
U =[jaccard(~ui,∗, ~uj,∗)] (5.12)

TM
U =[MI(~ui,∗, ~uj,∗)] (5.13)

TO
U =[overlap(~ui,∗, ~uj,∗)] (5.14)

T P
U =[overlap mod(~ui,∗, ~uj,∗)] (5.15)

To represent the context of the tags in the similarity measures, we changed the

notation of tag vectors from ~ti (as used in Eqs. 4.1–4.7) to ~ri,∗ or ~ui,∗ (as defined
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in Chapter 3). The vectors denoted by ~ri,∗ or ~rj,∗ denote the tag vectors based

on the resource context, whereas the vectors denoted by ~ui,∗ or ~uj,∗ represent the

tag vectors based on the user context.

Any representation of the matrix T S
C from Equation 5.2 to Equation 5.15 can

be replaced in the Equation 5.1 to compute an enriched vector space model. Some

examples of the enriched vector space model are given as follows:

LTC

R

(R) =TC
R × R (resource context / cosine similarity) (5.16)

LTP

R
(R) =T P

R × R (resource context / overlap-mod co-eff.) (5.17)

LTC

U

(R) =TC
U × R (user context / cosine similarity) (5.18)

After the transformation of the original vector space model R into the enriched

vector space model, the semantically related tags are assigned to the resources in

the enriched vector space model. As an example, assume that Table 5.1 shows

the original vector space model. The matrix TC
R computed using the resource

context and the cosine similarity (see Equation 5.2) is shown in Table 5.2. After

transforming the original vector space model R (see Table 5.1) into an enriched

vector space using the Equation 5.1, the resulting enriched vector model space is

shown in Table 5.3.

Table 5.1: An example original vector space model.

r1 r2 r3 r4
1972 1 1 0 0
coin 0 1 0 0

flower 0 0 1 0
hibiscus 0 0 1 1
nature 0 0 0 1
penny 1 0 0 0

seventies 0 1 0 0

We can observe that some of the missing relevant tags are now added to the

enriched vector space model, as the tags 1972 and seventies are semantically
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related in Table 5.2 (representing the matrix TC
R ). Therefore, they are assigned

to the resource r1 in the enriched vector space model (see Table 5.3). Similarly,

the tag flower is assigned to the resource r4 because it is semantically related to

the tag hibiscus in the matrix TC
R showing semantic relationships between tags

(see Table 5.2).

Table 5.2: An example matrix, showing semantically related tags. The matrix is
computed using the resource context and the cosine similarity.

1972 coin flower hibiscus nature penny seventies
1972 1 0.71 0 0 0 0.71 0.71
coin 0.71 1 0 0 0 0 1

flower 0 0 1 0.71 0 0 0
hibiscus 0 0 0.71 1 0.71 0 0
nature 0 0 0 0.71 1 0 0
penny 0.71 0 0 0 0 1 0

seventies 0.71 1 0 0 0 0 1

Table 5.3: An example enriched vector space model.

r1 r2 r3 r4
1972 1.71 2.41 0 0
coin 0.71 2.71 0 0

flower 0 0 1.71 0.71
hibiscus 0 0 1.71 1.71
nature 0 0 0.71 1.71
penny 1.71 0.71 0 0

seventies 0.71 2.71 0 0

Ranking Relevant Resources against a Query:

In order to rank the relevant resources against a query, we adopt a two-step

ranking strategy. The ranking strategy is a mixture of exact match and cosine

similarity. The same ranking strategy is used for all the vector space models

and baselines. In the first step the resources having the maximum number of

queried tags are ranked higher, followed by the resources having fewer queried



Exploiting Semantically Related Tags 42

tags. This is an enhancement of the simple exact match in which all the search

results must be tagged with the queried tags. But using enhanced exact match,

we also retrieve the resources which are not tagged with all of the queried tags

and these resources are ranked below the resources which are tagged with all of

the queried tags. Formally, the rank of each resource is computed as follows:

Cj=1..N = |~q ∩ ~r∗,j| (5.19)

Where ~C is the common term vector representing the number of common

terms between the query q and the resource j, ~q represents the query vector, N

is the total number of resources in the vector space model, ~r∗,j represents the j
th

resource in the vector space model and |~q∩~r∗,j | represents the number of common

tags between the query q and the jth resource1. The resources retrieved against

the query q are ranked in descending order of the values of the vector ~C.

Based on exact match, there can be a situation where many resources are

ranked equally (having the same number of queried tags) and as we do not com-

pute the global rank of each resource (as in case of PageRank), we need to further

rank the resources which contain the same number of queried tags. For this pur-

pose, in the second step of ranking, the resources having same number of queried

tags are ranked based on their cosine similarity to the query using the Equa-

tion 4.2.

As an example of ranking resources, if a query q consists of the tags t1, t2, and

t3, then the resources having all these tags t1, t2, and t3 are ranked the highest,

followed by the resources which contain any two of these tags (“t1 and t2” or “t1

and t3” or “t2 and t3”). The resources having only one of the queried tags (t1, t2,

or t3) are ranked the lowest. If there are more than one resource which contain

same number of queried tags, they are ranked based on their cosine similarity

with the query. For example, if the resources r1 and r2 both have the queried

tags t1, t2, and t3 and the cosine similarity between the resource r1 and the query

q is 0.7 and the cosine similarity between the resource r2 and the query q is 0.5,

1Note that the intersection symbol (∩) in Equation 5.19 is used to count the number of
common terms between the vectors ~q and ~r∗,j . If qi represents the ith tag in the query and ri,j
represents the ith tag in the jth resource, then the value of qi ∩ ri,j would be equal to 0 if the
value of either qi or ri,j is equal to zero and 1 otherwise.
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then the resource r1 is ranked higher than the resource r2.

5.3 Evaluating Enriched Vector Space Models

To evaluate the use of enriched vector space models for improving search in

folksonomies, we used real life queries from a query log of a web search engine.

The search results for the queries were retrieved from a dataset of around 27

million resources. 18 users evaluated the results for different vector space models.

Following are the details of the evaluation methodology and the dataset:

5.3.1 Evaluation Methodology

For doing experiments on real life queries, we used the AOL query log (details in

(Pass et al., 2006)). This log originally contained 20 million queries from 650,000

users during three months from March to May 2006. Out of these 20 million

queries, we randomly selected those queries for which a user had clicked on a link

to the Flickr website. We split the queries into three sets depending upon the

number of relevant resources in the original dataset. Each query set had 1 to 10,

11 to 50, or more than 50 exact matches (resources having all the queried tags)

in the original dataset. We randomly selected 50 queries from each of these three

sets, resulting in 150 total queries for the evaluation.

The results were evaluated by 18 users (mostly PhD students). Each user was

shown a search result page similar to the screenshot shown in Figure 5.1. The

query was shown at the top of each evaluation page with resources retrieved as

a result. The title of each resource was shown at the top of the resource, the

tags on the right side, and the evaluation options at the bottom of each resource.

Every user was given a set of queries and results obtained using different vector

space models as described in Section 5.2. Users were unaware of the method used

for creating the search result page. They were asked to mark a resource as very

relevant or relevant if the resource matched the query, mark as don’t know if they

were not sure about the resource, irrelevant or very irrelevant if the resource did

not match the given query. Queries were randomly distributed among users. The

resources marked as relevant or very relevant were considered as relevant and
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others as irrelevant in the evaluation.

Human-based evaluation on a large scale dataset limited the scope of exper-

iments. Out of all possible enriched vector space models, we selected three of

them, first based on cosine similarity and resource context (see Equation 5.16),

represented by LTC

R

, second based on modified overlap coefficient and resource

context (see Equation 5.17), represented by LTP

R

and the third based on cosine

similarity and the user context (see Equation 5.18), represented by LTC

U

.

In addition to the enriched vector space models, we also defined two other

vector space models, Semi Random (Semi Rand) as the baseline and the Best of

Breed (BB) as the best meta enriched vector space model against a particular

type of query. For the Semi Rand vector space model, the semantic relationship

matrix was created by associating random tags to each of the tags. The random

values generated are uniformly distributed on the interval (0,1). The number of

random tag associations generated for each tag is equal to the average number of

tag associations in the enriched vector space models. The similarity of each tag

to itself was explicitly set to 1 (maximum) in the Semi Rand vector space model.

The Best of Breed meta enriched vector space model selects an appropriate

enriched vector space model based on the type of the query. Based on empirical

analysis the Best of Breed model uses the enriched vector space model based on

the cosine similarity and the user context for the queries having 1 to 10 or 11

to 50 search results (exact matches) in the original data. For the queries having

more than 50 search results, the Best of Breed model uses the enriched vector

space model based on the resource context and the cosine similarity.

5.3.2 Dataset

The dataset we crawled consists of resources uploaded to Flickr during the years

2006 and 2007 to create a large-scale dataset1. The target of the crawling activity

was the core elements, namely users, tags, resources and tag assignments. The

statistics of the crawled dataset are summarized in Table 5.4.

1The reference dataset used for this evaluation is available at
http://west.uni-koblenz.de/Research/DataSets/
PINTSExperimentsDataSets/, last accessed in October 2010

http://west.uni-koblenz.de/Research/DataSets/PINTSExperimentsDataSets/
http://west.uni-koblenz.de/Research/DataSets/PINTSExperimentsDataSets/
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Figure 5.1: A screenshot of an evaluation page.

users tags resources tag assignments
319,686 1,607,879 28,153,045 112,900,000

Table 5.4: Flickr dataset statistics.
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We applied the following strategy to crawl the Flickr dataset. First, we started

a tag centric crawl of all resources that were uploaded between January 2004 and

December 2005 and that were still present in Flickr as of June 2007. For this

purpose, we initialized a list of known tags with the tag assignments of a random

set of resources uploaded in 2004 and 2005. After that, for every known tag

we started crawling all resources uploaded between January 2004 and December

2005 and further updated the list of known tags. We stopped the process after

we reached the end of the list.

We filtered our dataset by removing those tags which were used by less than

10 users. Those users and resources were also removed from the dataset who

did not use any tag. The final dataset was consisted of approximately 27 million

resources, 300,000 users, and 92,000 tags. The exact statistics of the dataset

are shown in Table 5.5. We conducted all our experiments presented in current

chapter on the filtered dataset.

users tags resources tag assignments
317,260 92,460 26,801,921 94,499,112

Table 5.5: Flickr filtered dataset statistics.

5.3.3 Results and Discussion

For evaluating the enriched vector space models, we used the standard Precision

at k method as the evaluation measure. We computed precision at 5, precision at

10, precision at 15, and precision at 20 for each of the methods and each query

set. In each of the results, the original vector space in the results show the aver-

age precisions obtained without enriching the vector space model. Res./Cosine,

Res./Overlap-M, and User/Cosine show the average precisions obtained using the

enriched vector space models LTC

R
, LTP

R
, and LTC

U
respectively. Semi Rand shows

the baseline results obtained using SEMI Rand vector space model (described in

the previous subsection). BB represents the Best of Breed model (also described

in the previous subsection). Note that the results in all the figures are shown in

this order Original, Res./Cosine, Res./Overlap-M, User/Cosine, Semi Rand, and

BB.
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Figure 5.2 shows the average precisions achieved for the queries which had 1

to 10 exact matches (resources associated with all the queried tags) in the original

vector space. The results on each of the evaluation page were ranked using the

ranking method described in Section 5.2. We achieve 0.4 to 0.45 precision at 15

and 20 for the original vector space model. This is due to the reason that retrieved

resources are still associated with some of the queried tags, hence making these

resources relevant.

We observe a significant improvement in the precision at all levels using the

enriched vector space models, especially using the vector space model based on

the cosine similarity and the user context (User/Cosine), which is also used in

the Best of Breed for queries having 1 to 10 exact matches. The reason for the

improvement in precision is the retrieval of those resources which do not contain

the queried tag(s) exactly, but have some relevant tag(s). If we consider arbitrary

tag relationships (Semi Rand), then we get even worse results than the original

vector space model. That suggests that the tags must be semantically related to

improve the resource retrieval.

Figure 5.3 shows the results of precision values at different levels for the queries

having 11 to 50 exact matches in the original vector space model. We observe

a slight decrease in the performance of the enriched vector space models when

compared to the original vector space model for precision at 5. But if we consider

higher precision levels (15, 20), the results of the enriched vector space models

are better than the results obtained from the original vector space model. Partic-

ularly, the model based on the user context and the cosine similarity performed

better than all other methods and is also used in the Best of Breed model for the

queries having 11 to 50 exact matches.

Figure 5.4 shows the results for the queries having more than 50 exact matches

in the original vector space model. The overall performance of all the methods

remains almost the same. The precision at 5 measure for the enriched vector

space model based on the resource context and the modified overlap coefficient

(Res./Overlap-M) is slightly higher. This is because some resources displayed in

the top 5 search results were more relevant than the results from the original

vector space model. For example, for the query blue, bedroom, the 3rd and the

4th resources displayed for the original vector space model had the tags blue, bed-
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Figure 5.2: Results of precision at 5, 10, 15 and 20 for the evaluation of the
queries having 1 to 10 relevant resources.



Evaluating Enriched Vector Space Models 49

��������

���

��������

���

����

���

����

���

����

���

����

���

����

���

� ! � � ! "� � ! "� � ! #�
���

����

���

����

���

����

���

����

���

����

���

�������� �	
��
�
��	 �	
����	������

�
	��
�
��	 �	������� $	
% �& $�		�

Figure 5.3: Results of precision at 5, 10, 15 and 20 for the queries with 11 to 50
relevant resources.
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room, plant and blue, bedroom, self-portrait respectively. Whereas the resources

displayed for the vector space model based on resource context and modified

overlap coefficient (Res./Overlap-M) at 3rd and 4th positions had the tags blue,

bedroom, home and blue, bedroom, house. The tags home and house were more

relevant to the queried keyword bedroom, as compared to the tags plant and self-

portrait associated to the resources in the original vector space model. This also

suggests that using the enriched vector space models also help in ranking relevant

resources higher where we already have many exact matches for the query in the

original data. Compared to other methods for precision at 20, the model based

on resource context and the cosine similarity performed better and is also used

in the Best of Breed model for queries having more than 50 exact matches.

Figure 5.5 shows the results of all the queries used for evaluation. We represent

the appropriate vector space model against a particular type of query as the

Best of Breed (BB) model. This model performs better than other methods and

achieves an improvement of 15% when comparing its results to the original vector

space model for precision at 20.

The main goal of this research is to improve search, particularly for queries

having only few relevant resources by enriching the vector space models. For

the queries which had 1 to 10 exact matches in the original vector space model,

we achieve great improvement in results using the enriched vector space mod-

els, which shows the significance of our proposed models. Figure 5.6 compares

the performance of all methods for queries having varying number of relevant

resources. The X axis represents the types of the queries.

We can observe that the enriched vector space models, particularly the best

selection Best of Breed model, perform better than the baselines and the original

vector space model. For queries having 1 to 10 relevant resources, we achieve an

improvement of 35%. The improvement decreases for the queries having many

relevant resources in the original vector space model (7% for 11 to 50 resources

and 1.5% for more than 50 relevant resources). The reason for the decrease in

improvement is that there are sufficient relevant resources in the original vector

space model to be ranked in the top 20 results. If we consider the results of all

the queries together, we still get an improvement of 12% using the Best of Breed

model.
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Figure 5.4: Results of precision at 5, 10, 15 and 20 for queries having more than
50 relevant resources.
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Figure 5.5: Results of precision at 5, 10, 15 and 20 for all the 150 queries. The
Best-of-Breed (BB) method performs better than all other methods at all preci-
sion levels.



Evaluating Enriched Vector Space Models 53

We also performed statistical significance tests (Student’s t-test) of results

achieved through the enriched vector space models and the original vector space

model. When considering search results for all queries, the results were signifi-

cantly different for precision at 10, 15, or 20 with p ranging from 0 (P at 20) to

0.003 (P at 10). However, the results were not significantly different for preci-

sion at 5 with p = 0.11. This was due to the fact that most relevant results are

listed at the top for all the methods. We achieve significantly different results for

precision levels higher than 5.
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Figure 5.6: Comparison of methods for different types of queries. The X axis
shows the number of relevant resources for the evaluated queries and the Y axis
shows the results for precision at 20. The results are most significantly visible for
the queries having 1 to 10 relevant resources.
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5.4 Conclusions

In this chapter we have shown that it is possible to improve search in folksonomies

by reducing the sparseness in the data. We have proposed methods to exploit the

semantically related tags having different types of relationships and contexts for

improving search in folksonomies. By enriching folksonomies using semantically

related tags, we have shown that the resources which are currently unsearchable

can be retrieved. Human-based evaluation of the enriched vector space models has

shown improvement in the search results, especially for the queries where many

relevant resources are not retrieved due to the lack of relevant tag annotations.

We have suggested using the appropriate vector space model against a query

based on the number of relevant resources for that query. Experimental results

have shown that such methods give an overall improvement in the search results.



Chapter 6

Exploiting Different Features for

Tag Recommendation

Tag recommendation is the process of suggesting relevant tags for a given resource

and a tag recommender is a system which recommends the tags. In a folkson-

omy without a tag recommender system, users have to manually annotate their

resources which could be inconvenient and time consuming. A tag recommender

system is therefore important for assisting users in the tagging phase.

Many of the existing tag recommendation methods exploit only the tagging in-

formation (Jäschke et al., 2007; Marinho and Schmidt-Thieme, 2008; Sigurbjörns-

son and van Zwol, 2008). However, many folksonomies support multiple resource

features like the geographical coordinates. In addition to the tags, these features

can also be exploited for improving the tag recommendation. In this chapter,

we compare three types of resource features for tag recommendation. The fea-

tures we consider are geographical-coordinates, low-level image descriptors and

tags. We investigate the performance of each of these features independent of

each other. First, the existing data collection is clustered separately for the geo-

graphical coordinates, tags, and low-level features.

The rest of the chapter is structured as follows. Section 6.1 gives an overview

about the tag recommendation system we propose to compare different resource

features. In Section 6.2 the content description methods (features) used in so-

cial media are shortly explained, especially those used in our framework. Sec-
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tion 6.3 explains how generating image annotations works in our framework. In

Section 6.4, we describe the dataset used for experiments and evaluate tag recom-

mender systems of the architecture proposed at large-scale. The tests compare

different image representation methods in terms of precision and recall in the

process of tag recommendation. Section 6.5 concludes our investigations and the

results presented in this chapter.

6.1 System Overview

We split the overall system for tag recommendation into two parts: training

and tag recommendation. The system is trained based on the image features

available in social media, once the system is trained, it is used for recommending

tags for new images. Figure 6.1 shows the tag recommendation process. The

training phase is shown in the bottom (shaded region) of the figure. The tag

recommendation process is shown in the top (non-shaded region) of the figure.

Following is the brief description of the training and the tag recommendation

phases:

Training: In the training phase images are clustered (see Section 6.3.1) based

on their features. A cluster contains homogeneous images depending upon the

types of features used for clustering. For this research work, we considered ge-

ographical coordinates, low-level image features and tags as image features. As

an example, a cluster based on geographical coordinates represents the images

taken in a particular location. A cluster based on low-level image features con-

tains images sharing a particular texture or a color like the images of a sea or a

forest. A cluster based on tagging data represents resources related to high level

concepts like concert or river. The clustering process used in this research work

is described in Section 6.3.1. Representative tags of a set of homogeneous images

are used to annotate new images. The method of identifying representative tags

is described in Section 6.3.2.

Classification: For recommending tags to a new image, we map the image

to its closest representative group of images and assign the representative tags

(see Section 6.3.2) of the mapped group to the new image. The method of clas-

sifying an image to its closest cluster and recommending tags are described in
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Figure 6.1: Overview of the tag recommendation system.
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Section 6.3.3. In the following section, we describe the features that we have used

in our experiments and are also available in folksonomies on a large scale.

6.2 Features in Social Media

To analyze the effect of different type of features on the performance of tag rec-

ommendation, we use three different image features in our experiments, namely

Geographical Coordinates (G), Low-level image features (L), and Tags (T ). Fol-

lowing are the details of the features used in this research work.

Geographical Coordinates: With the advancement in camera and mobile

technologies, nowadays many devices are available in the market that are able

to capture the location of the image using a built-in or an external GPS (global

positioning system) device. In addition to the possibility of capturing the location

of an image using a GPS device, some folksonomies like Flickr facilitate the users

to add geographical coordinates to their images by providing a map interface

where users can place their images on the map as shown in Figure 6.2. Due to this

easiness, there are many images in Flickr which are enriched with geographical

information. In the CoPhIR dataset (Bolettieri et al., 2009), around 4 million out

of 54 million images are annotated with geographical coordinates. The number

of geographically annotated images is supposed to increase in future as more

devices will be able to capture the geographical coordinates. We represent the

geographical coordinates of the images in a two dimensional vector space G ∈ ℜ2.

Each row vector ~gi of the feature space G represents the geographical coordinates

of the image i.

Low-level Image Features: An image can be represented in a variety of

low-level image features. Some of these features are represented using MPEG-7

multimedia content description standard (Manjunath et al., 2002). There are

five different types of low-level MPEG-7 features available in the CoPhIR dataset

for 54 million images. Table 6.1 shows the properties and dimensions of the

low-level features available in the CoPhIR dataset. Based on initial experimen-

tal results, we consider two low-level features for evaluation, the MPEG-7 Edge

Histogram Descriptor (EHD) and Color Layout (CL), which outperformed other

available low-level image features. EHD represents the local edge distribution.
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Figure 6.2: Screenshot of Flickr interface where users can add geographical coor-
dinates to their images using a map.
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Each image is divided into 4× 4 non-overlapping blocks (resulting into 16 equal

partitions). Edges in each block are categorized into five directions: vertical, hor-

izontal, 45°diagonal, 135°diagonal and non-directional edges. The information

about these edges is stored in a vector of 80 coefficients (Bolettieri et al., 2009).

The Color Layout descriptor captures both color and spatial information. It is ob-

tained by applying the discrete cosine transformation (DCT) on a 2-dimensional

array of local representative colors in Y or Cb or Cr color space. The information

is stored in 12 co-efficients (Bolettieri et al., 2009). The low-level image features

based on EHD and CL are represented in 80 and 12-dimensional feature spaces

LE ∈ ℜ80 and LC ∈ ℜ12 respectively. A row vector ~ℓi of the feature space LE or

LC represents the edge histograms or color layout of the image i respectively.

Table 6.1: Properties and dimensions of low-level features available in the CoPhIR
dataset.

Low-level Feature Properties Dims
Scalable Color Color histogram 64
Color Structure Localized color distributions 64
Color Layout Color and spatial information 12
Edge Histogram Local-edge distribution 80
Homogeneous Texture Texture 62

Tags: Tags are freely chosen keywords associated with the images. There is

no restriction in selecting a tag for an image. A tag might represent a concept

in an image, describe the image itself or it might also represent the context of

the image (e.g. location, event, time etc.). On average there are only few tags

associated with the images. In 54 million images of the CoPhIR dataset, each

image has on average 3.1 tags. The tags are represented by a term by resource

matrix T . A row vector ~ti,∗ of the matrix T represents a resource. The non-zero

values of the row vector ~ti,∗ represent the tags associated with the resource i.

A column vector ~t∗,j represents a tag vector whose non-zero values represent the

resources associated with the tag j. A non-zero value of the matrix Ti,j represents

that the resource i is associated with the tag j.

To reduce the bias towards resources with many tags and very common tags,
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we assign Term Frequency (TF) and Inverse Document Frequency (IDF) weights

to the resource by tag matrix T . TF and IDF are computed as follows:

TFi,j =
ni,j

∑

k nk,j

(6.1)

Where ni,j is the number of times the tag ti appears in the resource j, and the

denominator is the sum of number of occurrences of all tags in the resource j.

IDFi = log
N

Ni

(6.2)

Where N is the number of resources in the dataset and Ni is the number of

resources in which the tag ti appears.

6.3 Tag Recommendation

This section explains the proposed tag recommendation system in detail. In

the training phase of tag recommendation, the resources are first clustered (see

Section 6.3.1), then for each cluster, its representative tags are identified (see

Section 6.3.2). In the tag recommendation phase, a new resource is mapped to its

closest cluster and the representative tags of the closest cluster are recommended

for the new image (see Section 6.3.3).

6.3.1 Clustering

We group (cluster) images to build a model which is used to assign tags to the

given resources. Many possibilities exist for clustering a set of resources, which

could affect the final quality of the recommended tags. For the presented tag rec-

ommender system, we adapt a well-known clustering technique called K-Means

(MacQueen, 1967). K-Means is capable of clustering very large and high dimen-

sional datasets. Of course, other clustering methods can also be employed in the

framework, when one desires to fine tune the performances or improve the results.

The K-Means algorithm we used is described in Figure 6.3.

In the following, we describe in detail how we set different parameters for

using K-Means.
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Input: Feature space F ∈ {G,L, T,D}, Number of clusters k
Output: A set of k clusters
Method:

1: Randomly select k vectors from the feature space F as initial cluster
centroids

2: while values of cluster centroids are updated do
3: for each resource r do
4: find the cluster c whose centroid is closest to the resource r

5: assign r to the cluster c
6: end for
7: for each cluster c do
8: recompute the centroid of the cluster c based on the document as-

signed to it
9: end for
10: end while

Figure 6.3: K-Means clustering algorithm.

Number of clusters: There is no generally accepted rule for setting the

number of clusters for using K-Means. For our experiments, we use the number

of clusters as suggested by Mardia et al. (1979, page 365). We define the number

of clusters for n images as follows:

k =

√

n

2
(6.3)

By using k as defined in the above equation, we get the same number of

clusters for each feature space.

Initial Cluster Centroids: In K-Means clustering, the quality of clustering

also depends on the selection of initial cluster centroids. For our experiments,

k images are randomly selected. The same sets of randomly selected images are

used as cluster centroids for each feature space.

Computing distance/similarity between resources: During the clus-

tering process, each image is assigned to its closest cluster (see Figure 6.3, step

4). We need a distance measure to compute the distance between an image

and its closest centroid. The most popular distance measure used is Euclidean

Distance (Han and Kamber, 2006, page 388). Euclidean Distance between two
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m-dimensional vectors ~f and ~c is defined as follows:

euclidean(~f,~c) =

√

√

√

√

m
∑

i=1

(~fi − ~ci)2 (6.4)

We use Euclidean distance for non-text feature spaces (i.e. geographical, and

low-level feature spaces). For text (or tag) based feature spaces it is common to

use Cosine Similarity (Han and Kamber, 2006, page 397). We use Cosine simi-

larity to compute similarity between image tags (in feature space T ) and cluster

centroids. As defined in Eq. 4.2, cosine similarity between two m-dimensional

vectors ~f and ~c can be computed as:

cosine(~f,~c) =
~f · ~c

‖~f‖ · ‖~c‖
(6.5)

Experimental results show that Cosine similarity for tag/text based features

performs significantly better than Euclidean distance. For comparison between

different distance measures, we also evaluated the results on Manhattan distance

for non-text based features. Manhattan distance between two vectors ~f and ~c is

defined as follows:

manhattan(~f ,~c) =
m
∑

i=1

|~fi − ~ci| (6.6)

For low-level image features (specifically for Edge Histogram Descriptor-EHD)

we evaluate Histogram Intersection (Smith, 1997) similarity. Histogram Intersec-

tion is computed as:

HI(~f,~c) =

∑m

i=1min(~fi,~ci)

min(|f |, |c|)
(6.7)

6.3.2 Identifying Representative Tags

After grouping the images into k clusters, we identify the representative tags

for each cluster. Based on empirical analysis, we use the user frequency as the

criterion for tag representativeness. Let’s assume that Figure 6.4 represents the

tags in a cluster. The tags which are used by more users are ranked higher in
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the cluster, e.g., the tags Clocktower and Graz. The tags which are used by

fewer users are ranked lower, e.g., the tags HDR and Photomatix. Ranking by

user frequency instead of resource frequency avoids the situation where many

resources in a cluster are tagged by a single user. The ranked tags of a cluster

are recommended for the new image. Section 6.4.4 discusses about the number

of tags that should be recommended.
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Figure 6.4: Example showing the ranking of the tags. The tags used by more
users are ranked higher than other tags.

6.3.3 Classification and Tag Recommendation

The training for the proposed tag recommender system is completed after iden-

tifying the representative tags for each cluster. The tag recommendation system

can be trained off-line using a large dataset. After the completion of the training

phase, given a new image, it has to be mapped to the closest cluster, whose rep-

resentative tags are assigned to the image. As in the case of clustering, we have

many choices for training a classifier which learns its model based on the clusters

identified in Section 6.3.1. One can train a one-class classifier (Manevitz and

Yousef, 2002) considering images in a cluster as positive training examples. It is

also possible to use a two class classifier (Baeza-Yates and Ribeiro-Neto, 1999),
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where images in one cluster are used as positive training examples, and images

in other clusters are used as negative training examples. Instead of fine tuning

the classification process, we use a method similar to Rocchio classification (Roc-

chio, 1971). A new image is mapped to a cluster whose centroid is at minimum

distance from the image. Most representative tags associated with the mapped

cluster are assigned to the new image.

For clusters based on geographical coordinates, we classify the new image to

one of the clusters whose centroid is at minimum geographical distance from the

new image. For low-level clusters, we classify the new image based on the distance

between its low-level features and cluster centroids. For tag based clusters, as we

do not have any tags for the new image, we classify the new image based on

the distance between its geographical coordinates and the mean of geographical

coordinates of the tag based clusters. The mismatch between feature spaces used

for tag based clustering and the new image negatively affects the results of tags

based clustering.

6.4 Experiments and Results

In this section the experiments and results are presented. The image dataset is

briefly described in Section 6.4.1, the distinction between the training and the

test data comes in Section 6.4.2, which is followed by the evaluation method in

Section 6.4.3. Section 6.4.4 presents the comprehensive results achieved in our

work.

6.4.1 Image Dataset

The CoPhIR dataset (Bolettieri et al., 2009) consists of images uploaded to Flickr

by hundreds of thousands of different users, which makes the dataset very hetero-

geneous. One can find images of very different types like portraits, landscapes,

people, architecture, screen shots etc. To perform an evaluation on different types

of features (geographical coordinates, tags, low-level) on a reasonably large scale,

we created a subset of the original CoPhIR dataset.
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We selected the images taken in national capitals1 of all the world countries.

For this purpose, we considered all the images at a geographical distance of less

than 0.1 Euclidean units from the center of the capital cities. We ignored the

capital cities which had less than 1, 000 images; this resulted into a set of 58

cities. To keep the experiments scalable, we randomly selected 30, 000 images

for cities which had more than 30, 000 images. There were only three such cities

Paris, London, and Washington DC. In the end, we had images of 58 capital

cities, ranging from 1, 000 to 30, 000 images with an average of 8, 000 images per

city. Total number of images in our evaluation dataset was 413, 848. Images are

trained and evaluated separately for each city.

Base Line: In order to compare the effectiveness of different image features,

we created a random feature space for the images. We assign a random value

between 0 and 1 to each image in the dataset as its random feature. We consider

the random feature as the baseline for comparison. Same clustering methods are

applied on the random features as on the other features. Random feature space

is uni-dimensional and is represented as D ∈ ℜ.

6.4.2 Training and Test data

It is important to carefully select the training and test datasets, because when

a user uploads images to Flickr, he can perform batch operations on the set of

images. For example, he can assign the same tags or geographical coordinates to

all the images in a batch. It is also possible that the images have very similar

low-level features. Now if we randomly split the images into the training and the

test datasets, there is a chance that the images belonging to one user are used

in both of the training and the test dataset. Such a random split may affect the

final evaluation. Test images from one user might be mapped to a cluster which

is trained on the images from the same user. It is very likely that the test image

is annotated with the perfect tags, as the tags of both the test and the training

images were provided by the same user.

To make the evaluation transparent, instead of randomly splitting the re-

sources into training and test dataset, we split the users. For each city, we use

1http://en.wikipedia.org/wiki/National_capitals

http://en.wikipedia.org/wiki/National_capitals
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resources of 75% users for training and resources of 25% users as test dataset. No

image in the test dataset is annotated by a user who has also annotated images in

the training dataset. After splitting the users into training and test datasets, we

use 310, 590 images for training the system and 103, 258 images used as ground

truth for evaluating the system.

Another aspect of fair evaluation is the quality of the tags. There are some

tags which are very common in both test and training datasets. These tags

mostly represent city or country names, which can be suggested by looking into

a geographical database. Some common tags might not be very specific, e. g., the

tags geo-tagged, 2007, travel etc. Very common tags also affect the evaluation

results, as they are abundant in both test and training datasets, and are almost

always recommended for every test image. This results in higher precision and

recall values.

To make the evaluation more transparent, we do not consider the ten most

frequent tags for each city and we also ignore the frequent tags geo-tagged and

geotag, because all the images in our dataset are geo-tagged and most of the

images have these two tags. For each city, we also remove the very rare tags

which might be incorrectly spelled tags or tags specific to a particular user. For

this reason, for each city, we ignore those tags which are used by less than three

users.

6.4.3 Evaluation

We consider the tags associated with the 103, 258 test images as ground truth.

The images in the ground truth are tagged by different users and as there is

no restriction on the selection of tags for a resource, therefore the tags in the

ground truth are very noisy. The noise in the data leads to inferior results, but

the overall results show the comparative analysis of different feature spaces. We

evaluate the methods using standard evaluation methods used in information

retrieval: Precision P , Recall R, and F-Measure F . The evaluation measures are

defined as follows:

P =
Number of correctly recommended tags

Number of recommended tags
(6.8)
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R =
Number of correctly recommended tags

Number of expected tags
(6.9)

F =
2× P × R

P +R
(6.10)

If few tags are recommended correctly for most of the cases, micro evaluation

measures may have bias towards those few tags. To reduce this bias, we also

compute the macro precision Pm, macro recall Rm, and macro F-Measure Fm

over tags. The mean of averages in macro evaluations reduce the bias towards

certain tags correctly recommended. Macro evaluations are computed as follows:

Pm =

∑

t∈Tags recommended

# of times t correctly recommended

# of times t recommended

# of tags recommended
(6.11)

Rm =

∑

t∈Tags Expected

# of times t correctly recommended

# of times t expected

# of tags expected
(6.12)

Fm =
2× Pm × Rm

Pm +Rm

(6.13)

6.4.4 Results

The results presented in this section give a comparative view of tag recommen-

dation based on different types of features. The automated evaluation on one

hand provides the possibility to do evaluation on a large scale, but on the other

hand the ground truth (test data) might contain invalid tags, which gives inferior

results. We make the evaluation transparent and more meaningful by filtering

certain types of tags (see Section 6.4.2).

By removing very common tags, there is a certain decrease in the performance

of recommender system, but it is an important step towards a fair evaluation.

We have also evaluated the results without filtering the dataset, and in that case

even random feature space gives an F-Measure value of 0.42. This is because very

common tags are being recommended for the test images and there is always a
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major overlap between common tags of the training and the test data.

The precision, recall, and F-Measure values presented in this section might

appear to be low for the reader, but one should consider that the dataset was

filtered to make the evaluation more transparent.

The Figure 6.5, Figure 6.6, and Figure 6.7 depict the so called micro average

evaluation and were generated in accordance to the evaluation criteria (see Equa-

tion 6.8), (see Equation 6.9), and (see Equation 6.10) respectively. As one can

see, in all three cases the results are significantly better when using geographical

coordinates for image description.

The performance of the tag recommendation using low-level features and tex-

tual tags differs only slightly from the results based on random clustering. For

exactly one tag being recommended, the precision amounts to: 0.1385 for geo-

graphical coordinates, 0.0502 for low-level features, 0.0512 for textual tags, and

0.0338 for random clustering. Besides the fact that low-level image features per-

form worse than the geographical coordinates, one possible reason could be the

sparsity of tagging data in the training dataset. The training dataset consisted of

the images from Flickr where users might not added a sufficient amount of tags

to their resources. When observing the results of different clustering methods, we

noticed that though the low-level image features resulted into meaningful clus-

ters, the images in the clusters were not properly tagged. For example, a cluster

based on low-level image features depicting a football ground in all of its images

did not contain the tag ground. Similarly a cluster of images having close-ups

of crowd in the stadium did not contain the tag crowd. Such kind of sparsity

in the training data could have affected the results of tag recommendation using

low-level image features.

In addition to the problem of data sparsity, the worse results of tag recom-

mendation based on the tag feature could be a result of the feature mismatch

problem (see Section 6.3.3). The proposed framework recommends the tags for

new images, and as the new images are not already tagged, their feature space

cannot be used to map them on existing clusters. In our experiments, we have

used the geographical coordinates of the new image to map it on the existing

clusters (based on tag feature). This mismatch of different feature spaces of the

new image and the existing clusters (in case of tag clustering) could have affected
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the results of tag recommendation for tag feature.
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Figure 6.5: Micro precision for geographical, low-level (edge histogram descrip-
tor), tag, and random image features. Precision for geographical coordinates is
higher than all other image representations.

For more than 10 tag recommendations, random feature performs slightly

better than the tag features, this is due to the micro evaluation measures (see

Equations 6.8–6.10). In random feature, tags are equally distributed among differ-

ent clusters, and because some of the common tags like night or sky are correct

for many images, therefore overall performance of the random feature remains

comparable to the tag based features or low-level image features. However, for

macro evaluations (see Equations 6.11–6.13), random feature performs inferior

than other image representations. This is because of the reason that macro-

evaluation reduces the bias that only few common tags recommended for most of

the images.

The Figures 6.8, 6.9, and 6.10 present the so called macro average over tags

evaluation and were generated in accordance to the evaluation criteria (see Equa-
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Figure 6.6: Micro recall for geographical, low-level (edge histogram descriptor),
tag, and random image features. Recall for geographical coordinates is higher
than all other image representations. For more than 5 tag recommendations,
random feature performs slightly better than the tag feature due to the micro
recall evaluation measure. When using macro-recall, tag feature performs better
than the random feature.
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Figure 6.7: Micro F-measure for geographical, low-level (edge histogram descrip-
tor), tag, and random image features. Geographical feature performs better than
all the other image representations.
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tion 6.11), (see Equation 6.12), and (see Equation 6.13) respectively.

Similar to the micro average evaluation, the results here are significantly better

for geographical coordinates, while the performance in case of textual tags, low-

level features, and random clustering is almost the same. For exactly one tag

being recommended, the macro precision for geographical coordinates amounts

to 0.1584, for low-level features - 0.0521, for textual tags - 0.05, and the baseline

is 0.0312.
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Figure 6.8: Macro precision for geographical, low-level (edge histogram descrip-
tor), tag, and random image features. Precision for geographical coordinates is
higher than all other image representations.

The results also suggest the threshold for the number of tags that should be

recommended for a new resource. For a tag recommender whose focus is more

on the correctness of the tags, only the top few tags should be recommended,

as obvious from Figure 6.8, when more tags are recommended, the precision of

the recommendation gets lower. In the case of a tag recommender system which

does not require the tag recommendations with higher precision, ten tags can be
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Figure 6.9: Macro recall for geographical, low-level (edge histogram descriptor),
tag, and random image features. Recall for geographical coordinates is higher
than all other image representations. Random feature performs worse than all
other features.
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Figure 6.10: Macro F-Measure for geographical, low-level (edge histogram de-
scriptor), tag, and random image features. F-Measure for geographical coordi-
nates is higher than all other image representations. Random feature performs
worse than all other features.
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recommended. As shown in Figure 6.10, the best results (in terms of F-Measure)

are achieved when ten tags are recommended, this is the best compromise between

the precision and the recall for the tag recommendations.

Although we avoided fine tuning of experiments for most of the cases, we

performed experiments to compare effectiveness of different alternative methods

related to the features of the resources. In the Figures from 6.11 to 6.15 results of

further evaluations are presented. The Figure 6.11 explains why using the simple

Euclidean distance has appeared to be sufficient in our approach. The results

remain almost the same when using Manhattan distance.
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Figure 6.11: Micro F-Measure comparison of Manhattan (Manh) and Euclidean
(Eucl) distances for non-text based features. Dark lines show the results obtained
using Euclidean distance and gray lines show results obtained using Manhattan
distance. Performance for both distances is almost same for all the image features.

Using different low-level features did not significantly affect the performance

of the tag recommender system. As one can see in the Figure 6.12, that the Edge

Histogram Descriptor (EHD) performs almost the same as the Color Layout (CL)
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feature in terms of micro F-Measure.
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Figure 6.12: Micro F-Measure comparing results of two different low-level features
Edge Histogram Descriptor (EHD) and Color Layout (CL). Both of the low-level
image features performs almost the same.

When measuring similarity between resources based on low-level features, a

variety of options are available, we evaluated the similarity between images using

histogram intersection (see Equation 6.7) in addition to simple Euclidean dis-

tance. Figure 6.13 shows the micro F-Measure applied the two different distance

measures.

Euclidean distance for tag recommendation performs significantly better than

the histogram intersection. The performance of tag recommendation using Eu-

clidean distance starts to decline when more than 10 tags are recommended,

however, in case of histogram intersection the performance continues to improve

for 15 and 20 tag recommendations.
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Figure 6.13: Micro F-Measure comparison of Euclidean (Eucl) and Histogram In-
tersection (HI) metrics for MPEG-7 Edge Histogram Descriptor. Recommenda-
tions based on Euclidean distance perform significantly better than the histogram
intersection measure.
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Cosine similarity was used for tag based feature space and Figure 6.14 shows

a clear advantage of the Cosine distance over the Euclidean distance for tag based

features.
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Figure 6.14: Micro F-Measure comparison of Cosine (Cos) and Euclidean (Eucl)
distances for tag/text based features. Cosine distance performs significantly bet-
ter than the Euclidean distance when using tag feature for recommendation.

To investigate the effect of different weight schemes for the tag features, we

evaluated the results using two different normalization strategies, which are, term

frequency (TF), and term frequency-inverse document frequency (TF-IDF). Al-

though the overall effect of normalization is not significant, but applying TF-IDF

normalization on simple tag feature slightly improves the tag recommendation

process as shown in Figure 6.15.
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Figure 6.15: Micro F-Measure comparison of Tags features with different nor-
malization strategies (Tag Frequency-TF, Tag Frequency Inverse Document
Frequency-TF-IDF). TF-IDF normalized tag features perform better than no
normalization and TF based normalization.
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6.5 Conclusions

The methods discussed in this chapter exploit three kinds of image description

techniques, namely geographical coordinates, tags, and low-level features, to rec-

ommend tags for the new resources uploaded to a social tagging system. In order

to compare the benefits each of these description types brings to a tag recom-

mender system on its own, we investigated them independently of each other.

First, the existing data collection was clustered separately for the geographi-

cal coordinates, tags, and low-level features. Additionally, random clustering was

performed in order to provide a baseline for experimental results. Once a new

image was uploaded to the system, it was assigned to one of the clusters using ei-

ther its geographical or low-level representation. Finally, the most representative

tags for the resulting cluster were recommended to the user for annotation of the

new image. Section 6.4 evaluated tag recommender systems of the architecture

proposed.

Large-scale experiments performed for more than 400, 000 images compared

the different image representation techniques in terms of precision and recall in

tag recommendation. A tag recommender system of the architecture proposed

benefits the most from geographical information associated with the images.

One of the important contributions of this chapter is the evaluation on a

large-scale image database. For our experiments we used the CoPhIR dataset

(Bolettieri et al., 2009) including images uploaded to Flickr by hundreds of thou-

sands of different users. The total number of images in our evaluation dataset

was 413, 848.

Another significant contribution was considering the tag recommendation

problem separately for images described with tags, geographical coordinates, and

low-level features, as well as comparing the results to a baseline achieved based

on random clustering.

The results presented in Section 6.4 showed that geographical coordinates are

the most helpful image descriptors for tag recommendation, while textual tags

and low-level features provide only a slightly better performance than the random

baseline. It might sound disappointing, but low-level features and textual tags do

not seem to be suitable for tag recommender systems connected to large-scale het-
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erogeneous image databases. However, textual tags and low-level features might

be very helpful for small image databases with a clearly defined domain (e.g.,

medical domain (Müller et al., 2003)) and also in a situation where geographical

coordinates are not available.

In the future, we will keep investigating the tag recommendation problem for

large-scale heterogeneous image archives. We will further develop our framework

to allow comprehensive experimental studies. We will also investigate the problem

for some more domain dependent data collections.



Chapter 7

Exploiting Semantics for

Classification

Folksonomies are expanding tremendously. Everyday more resources are added

to them. As the size of folksonomies increases, it becomes difficult to explore

them. The tags help in exploring folksonomies to some extent, but sometimes

tags might not be sufficient enough to identify the semantics of the resources

available on folksonomies. For example, if a person searches for the landmarks

of a city, he might get results related to the people or some objects. However,

if we know the semantics of the tags and the resources, we can provide the user

with the particular type of resources he is searching for, e.g., those related to the

landmarks of a city. Hence we need a classifier which can identify the semantics

of the tags and the resources.

In this chapter we propose two methods for identifying the semantics of the

tags and the resources. The first method is called T-ORG (Tag ORGanizer). It

exploits web resources like web search engines to identify the semantics of a partic-

ular tag. It classifies the tags into predefined categories. In contrast to supervised

classification, T-ORG uses its own algorithm called T-KNOW (Tag classification

through KNOwledge on the Web), which does not require any training data. The

second method called TG-SVM (Tag Group Support Vector Machine) exploits

the information available in form of social groups available in some folksonomies.

Many people upload resources to these groups, created around particular themes.



Exploiting Web Resources for Classification 84

TG-SVM exploits these thematic groups to identify resources related to a partic-

ular class, for example, landmarks of a city. We evaluate the proposed methods

based on human evaluation. The results are encouraging and show that it is

possible to identify the semantics of tags and resources in folksonomies.

7.1 Exploiting Web Resources for Classification

Users search and browse resources using the tags attached to the resources. Folk-

sonomies also provide “Tag Clouds” (see Section 3.1.3, and Figure 3.2) to browse

resources. In a “Tag Cloud”, frequently used tags are displayed in a bigger font

size and less frequently used tags are used in a smaller font. Sometimes it might

become difficult to browse resources related to a particular category. Just con-

sider the scenario in which a user wants to explore vehicle images. Considering

the current searching and browsing facilities provided by folksonomies, it seems

difficult to browse only a particular type of resources like landmarks, people, or

vehicles etc. The problem of exploring resources of a particular type can be solved

by additional classification of tags and resources.

Classifying resources into predefined categories provides a mechanism to ex-

plore resources related to a particular category. One way of classification is to

build a training dataset which is then used to train a (supervised) classifier.

Building a training dataset is a time consuming task. The manual classification

of resources might also be not feasible, because of the tremendous amount of

data present and being added to folksonomies. Therefore a system is required

that classifies resources into categories without any supervision.

To handle the problem of classification in an unsupervised manner, we have

explored means to automatically organize tags into classes. For this purpose,

we have developed a system called T-ORG (Tag-ORGanizer), which classifies

the tags and resources of a folksonomy into predefined categories. It helps in

browsing resources related to a particular class. The classification of resources is

based on the classification of tags attached to these resources. If a resource has

two tags related to two different categories, the resource is classified into both of

these categories. For example, if a resource is annotated with the tags Paris and

Peugeot and these tags are classified as Location and Vehicle respectively, then
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the resource is placed in Location and Vehicle categories.

We developed a classification algorithm called T-KNOW (see Section 7.1.3)

for the T-ORG system. To avoid the efforts that are required for training a

classifier, the T-KNOW algorithm exploits a web search engine, few linguistic

patters and the context of the tags. It does not require any training data for

learning the classification model. We evaluate the proposed algorithm for four

different types of tag contexts (see Section 7.1.2).

The tag classification can help a user to browse a folksonomy in a more or-

ganized way. Instead of representing different tags in a tag cloud based on their

frequency (see Figure 3.2), a tag cloud can display the tag classes. When a user

clicks on a tag class, resources belonging to that tag class are displayed. In such

way, a user explores different types of tags and resources available on a folkson-

omy, that is not be possible with a simple tag cloud.

7.1.1 Tag Organization using T-ORG

The purpose of T-ORG is to organize resources by classifying their tags into

categories. This process is done by selecting concepts from single or multiple

ontologies related to the required categories and then pruning and refining these

ontologies. These concepts are considered as categories into which the tags are

classified. Figure 7.1 shows the overall process of T-ORG while each step is

described as follows:

1. Select Ontologies

The user of T-ORG has to decide about the categories into which the resources

are classified. The user selects ontologies relevant to the required categories.

Concepts from these ontologies are used as categories. For example, to browse

through the images of vehicles on the Flickr website, one would select vehicle

ontology. Currently this step is done manually in T-ORG.

2. Prune and Refine Ontologies

After selecting ontologies, they must be pruned and refined for the desired cate-

gories. Only those concepts from these ontologies are considered which have some

relation to the required categories. Unwanted concepts are pruned. Redundant

and conflicting concepts are refined. Missing concepts are also added into the
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Figure 7.1: Process of T-ORG.

given ontology. For example, to include the images of a draisine, one might have

to add this concept into a given vehicle ontology. Once the ontology is pruned

and refined, its concepts are used as categories. Currently this step is also done

manually in T-ORG.

3. Classify Tags using T-KNOW

Classifying the tags is a major step in the process of T-ORG. Once the ontology

is selected, pruned, and refined, and categories are extracted from this ontology,

then these categories and the context of the tags (see Section 7.1.2) are used for

classification. Once all tags are classified into categories, each category is sub-

sumed by its parent category, for example, every tag classified as Train, Bulldozer

or Bus is finally classified as Vehicle. Section 7.1.3 describes the detailed process

of classifying tags using T-KNOW.

4. Browse Resources

After classifying each tag, resources may be browsed according to the categories

assigned to their tags. The browser may use information of resources to display

them in categories, so that the user browses any particular type of resources

classified into these categories.

In the following section, we define different contexts of the tags which are used

in the T-KNOW algorithm for classifying the tags.
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7.1.2 Exploiting the Context of the Tags

The context of a tag facilitates in understanding the meaning of a tag. We have

already discussed the resource and the user context of the tags in Chapter 4 and

their application for improving search in Chapter 5. In this section we define two

more contexts, the tag context and the social group context. Social groups in

Flickr1 contain resources and tags related to particular themes. For example, a

group related to vehicles would contain images and tags of vehicles2 and a group

about landmarks would contain images and tags related to the landmarks3.

To understand the different contexts of the tags, consider the three images in

Figure 7.2. The left most image is of “Eiffel Tower”. The middle image is “Notre

Dame”. The right most is the image of a “Cow”. The images of “Cow” and

“Eiffel Tower” are associated with “Group 1” and “Notre Dame” with “Group

2”. The image “Eiffel Tower” has been annotated by the “User A” and the other

two images by “User B”.

Table 7.1 shows the elements of Figure 7.2 in a tabular form. As an example

of a context, the resource context for the tag Paris in the image Notre Dame

consists of the tags “Notre-Dame, France, Night and Lights”. Similarly different

contexts of the different tags can be visualized using the Figure 7.2 and Table 7.1.

These images in Figure 7.2 and Table 7.1 are used in the following paragraphs to

explain the different contexts.

Table 7.1: Details of the images in Figure 7.2.

Image Tags User Group
Eiffel Tower Eiffel Tower, Paris, France, Miniatures, Eif-

fel, Eyeful, Big
A 1

Notre Dame Notre-Dame, France, Night, Lights, Paris B 2
Cow Savoie, France, 2001, Field, Cow B 1

1http://www.flickr.com/groups/, last accessed in October 2010
2http://www.flickr.com/groups/cardirectory/, last accessed in October 2010
3http://www.flickr.com/groups/historicalbuildingslandmarks/, last ac-

cessed in October 2010

http://www.flickr.com/groups/
http://www.flickr.com/groups/cardirectory/
http://www.flickr.com/groups/historicalbuildingslandmarks/
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Figure 7.2: Sample images with tags.
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7.1.2.1 Resource Context (R)

The resource context of a tag t associated with a resource r consists of the tags

which appear in the resource r. To formally define the different contexts of the

tags, we use the same formulation of folksonomies used in Chapter 3, Section 3.2.

A folksonomy F is defined as a tuple F := (U, T,R, Y ), where U , T , and R are

finite sets representing users, tags, and resources respectively. Y represents the

tag assignments by the users U , using the tags T for the resources R. The tag

assignments Y are denoted as: Y ⊆ U ×T ×R. In addition to these sets, we also

use the set of groups G which exists in some folksonomies (like Flickr). Now the

Resource Context of a tag t associated with the resource r is defined as follows:

CR(t, r) = {t′ ∈ T\{t} | (u, t′, r) ∈ Y } (7.1)

We are also interested in the frequency of ti in resource rj to create a bag of

words using this context. In the case of Flickr it is at most 1, because one tag can

occur only at most once in a resource. WR(t, r) represents the number of times

tag t appears with resource r.

WR(t, r) =| {(u, t, r) ∈ Y } | (7.2)

We get the Resource Context of a tag t of resource r using CR(t, r) and for

each tag t in the Resource Context of tag t, we get its number of occurrences

in resource r using WR(t, r). We also define a bag-of-words resource context

representation of a tag t appearing in resource r, i.e. by

BR(t, r) = {(t′,WR(t
′, r)) | t′ ∈ CR(t, r)} (7.3)

Note that BT , BSU , and BSG can be defined in the similar manner for the tag,

the user, and the social group contexts respectively, as we will see in the following

sections.

Consider that we want to classify the tag Paris of the image Eiffel-Tower in

Figure 7.2, only the tags of the image Eiffel-Tower are selected as the context, i.e.

CR(“Paris”, Eiffel-Tower) = {“Eiffel Tower”, “France”, “Miniatures”, “Eiffel”,

“Eyeful”, “Big”}. The bag-of-words representation of the tag Paris of Eiffel-
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Tower will be BR(“Paris”, Eiffel-Tower) = {(“Eiffel Tower”, 1), (“France”, 1),

(“Miniatures”, 1), (“Eiffel”, 1), (“Eyeful”, 1), (“Big”, 1)}.

7.1.2.2 Tag Context (T)

In the case of Tag Context, we select all tags associated to the resources having

the tag t, except the tag t itself. Tag Context is defined as

CT (t) = {t′ ∈ T\{t} | (u, t, r) ∈ Y ∧ (u′, t′, r) ∈ Y } (7.4)

For creating a bag of words representation (like Equation 7.3) using this con-

text, we define WT (t, t
′) that represents the number of times the tag t appears

with the tag t′.

WT (t, t
′) =| {t, t′ ∈ T | (u, t, r) ∈ Y ∧ (u, t′, r) ∈ Y } | (7.5)

We get the Tag Context of a tag t using CG(t) and for each tag t′ in the Tag

Context of tag t, we get its number of occurrences with tag t using WT (t, t
′). We

define a bag-of-words tag context representation of a tag t appearing with the

tag t′′, i.e. by

BT (t, t
′′) = {(t′,WT (t

′, t′′)) | t′ ∈ CT (t, t
′′)} (7.6)

Consider that we want to classify the tag Paris of the image Eiffel-Tower. All

tags of images having the tag Paris are selected as the Tag Context except the tag

Paris itself. In the example of Figure 7.2, Eiffel-Tower and Notre-Dame have the

tag Paris, so all the tags of the images Eiffel-Tower and Notre-Dame are added to

the context of the tag Paris except the tag Paris itself, and number of occurrences

of each of these tags with tag t is calculated using WT . Thus, BT (“Paris”, Eiffel-

Tower) = {(“Eiffel Tower”, 1), (“France”, 2), (“Miniatures”, 1), (“Eiffel”, 1),

(“Eyeful”, 1), (“Big”, 1), (“Notre-Dame”, 1), (“Night”, 1), (“Lights”, 1)} is the

bag-of-word representation constructed using Tag Context of the tag Paris.
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7.1.2.3 User Context (U)

In the case of User Context of a tag t, we select all the tags used by a user u,

except the tag t itself. The User Context of tag t of user u is defined as follows:

CSU(t, u) = {t′ ∈ T\{t} | (u, t′, r) ∈ Y } (7.7)

For creating a bag-of-words representation (like Equation 7.3) using this con-

text, we define WSU(t, u) that represents the number of times tag t is used by the

user u.

WSU(t, u) =| {(u, t, r) ∈ Y } | (7.8)

We define a bag-of-words user context representation of a tag t used by the

user u, i.e. by

BU(t, u) = {(t′,WU(t
′, u)) | t′ ∈ CU(t, r)} (7.9)

Consider that we want to classify the tag Paris of the image Notre-Dame

that belongs to user B. All tags of images that belong to the user B are selected

as the context except the tag Paris itself. In the example of Figure 7.2, the

images Notre-Dame and Cow belong to the user B, so all the tags of the images

Notre-Dame and Cow are added to the context of the tag Paris except the tag

Paris. Thus, BSU{(“Paris”, Notre-Dame) = (“Notre Dame”, 1), (“France”, 2),

(“Night”, 1), (“Lights”, 1), (“Savoie”, 1), (“2001”, 1), (“Field”, 1), (“Cow”, 1)}

is the bag-of-word representation constructed using the user context.

7.1.2.4 Social Group Context (SG)

In the case of Social Group Context of tag t that is present in groups g, we select

all the tags of all resources present in the same group g, except the tag t itself.

The Social Group Context is defined as follows:

CSG(t, g) = {t′ ∈ T\{t} | (u, t′, r) ∈ Y ∧ g ∈ Group(u, r)} (7.10)

Where Group(u, r) is a function which returns the groups that contain the
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user u and resource r.

For creating a bag-of-words representation using this context (like in Equa-

tion 7.3), we define WSG(t, g) that represents the number of times tag t appears

in the group g.

WSG(t, g) =| {(u, t, r) ∈ Y | g ∈ Group(u,r)} | (7.11)

We define a bag-of-words social group context representation of a tag t ap-

pearing in a group g, i.e. by

BG(t, g) = {(t′,WSG(t
′, g)) | t′ ∈ CSG(t, g)} (7.12)

Consider that we want to classify the tag Paris of the image Eiffel-Tower

that belongs to group 1. All tags of images present in group 1 are selected as the

context except the tag Paris itself. In the example of Figure 7.2, the images Eiffel-

Tower and Cow are present in group 1, so all the tags of the images Eiffel Tower

and Cow are added to the context of the tag Paris except the tag Paris itself.

BSG(“Paris”,group-1) = {(“Eiffel Tower”, 1), (“France”, 2), (“Miniatures”, 1),

(“Eiffel”, 1), (“Eyeful”, 1), (“Big”, 1), (“Savoie”, 1), (“2001”, 1), (“Field”,

1), (“Cow”, 1)} is the bag-of-word representation constructed using social group

context.

7.1.3 Tag classification using T-KNOW

The algorithm of T-KNOW uses lexico-syntactic patterns and web search engine

for finding the appropriate categories of the tags. Given a list of tags and the

categories, the algorithm of T-KNOW classifies these tags into categories. It

builds queries by combining the linguistic patterns (Hearst, 1992; Cimiano et al.,

2005) and the category names. It then searches these queries on a web search

engine. The process of classifying tags using T-KNOW is shown in Figure 7.3.

In what follows, we describe in more detail the steps shown in Figure 7.3.

Assume a tag like Paris to be classified in a context (see Section 7.1.2) as

depicted in Figure 7.2
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Figure 7.3: Process of T-KNOW.

Step 1: Queries are generated by concatenating the tag and the clues,

e.g. “such as Paris” is a query generated by combining the clue

“such as” and the tag “Paris”

Step 2: The queries are searched using a web search engine and ab-

stracts of search results are downloaded, e.g. “To witness a

city such as Paris surrendered itself . . . ” is a search result

abstract downloaded for the query “such as Paris”

Step 3: The similarity between each abstract and context of tag is com-

puted, e.g. between the abstract “To witness a city such as

Paris . . . ” and context of the tag “Paris” (Eiffel tower, France,

miniatures). If similarity is above a certain threshold value,

then depending upon the clue used, the abstract is matched

against the pattern, e.g. the abstract “To witness city such as

Paris . . . ” is matched against the Hearst pattern (Hearst,

1992) “CONCEPT such as (INSTANCE,?)+ ((and—or) IN-

STANCE)”, where CONCEPT is the expected category and

INSTANCE is the tag. Hence “City” is extracted as an ex-

pected category of the tag “Paris” from this abstract.
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Step 4: The results are aggregated and the category having highest sim-

ilarity with the tag’s context is returned, e.g. for the tag “Paris”

the category “City” is returned, because it has higher similarity

than the other category e.g. “University”
The pseudo-code for T-KNOW is shown in Figure 7.4. CN is the total num-

ber of clues used. clue(t,i) is a function which returns a query string by con-

catenating the tag (t) with a clue (i) (value of i ranges from 1 to CN ). This

query is searched on the web search engine using an API1. The function down-

load search abstracts(query,n) takes the query (query) and number of abstracts

required (n) as parameters and returns the abstracts of search results found for

the given query. The cosine measure is calculated between each abstract (a) and

context (ctx) of the tag (t). If the value of the cosine measure is above a certain

threshold, then the abstract (a) is considered for further processing. Patterns

(find the complete list in (Cimiano et al., 2005), and example in step 3) for clue

i are matched against the abstract a using the function pattern match(a,i). If

the pattern is matched, then the category of the current tag is extracted. The

category having the highest similarity with context of the tag is returned.

There are multiple ways for computing the similarity between the search re-

sult and the tag depending upon the context of the tag. We have proposed four

methods (see Section 7.1.2) for selecting the context of a tag. For measuring

similarity between the search result and the context of a tag, the cosine measure

is computed between the bag of word representations of the abstract of the down-

loaded search result ~a and the context ~c of the tag t. If this cosine measure is

above a certain threshold value, the result is considered for further processing.

7.1.4 Evaluating T-ORG based Classification

In order to evaluate our system, we have used images, tags, user, and group

information from the Flickr website. We asked two persons to classify the data

into four categories. We have then classified the same data set using T-KNOW

in order to evaluate T-KNOW.

1For experiments presented in Section 7.1.4, we have used the Google API.
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TKNOW(Tag t, Context ctx) {

  for i = 1 to CN {

    query = clue(t,i)

    abstracts = download_search_abstracts(query,n);

    foreach a in abstracts {

      sim = calculate_similarity(a,ctx);

      if (sim > threshold) {

        if (pattern_match(a,i)) {

          c = get_category(a);

          Res[c] = Res[c]+sim;

        }

      }

    }

  }

  return maxargc Res[c];

}

Figure 7.4: Pseudo-code of T-KNOW.

7.1.4.1 Experimental Setup

To organize tags into predefined categories, we have chosen four categories “Per-

son”, “Location”, “Vehicle”, and “Organization”. To get ontologies related to

these categories, we have searched Swoogle1 (Ding et al., 2004) for general pur-

pose ontologies and used the ontology OntoSem2. From this ontology, we have

used concepts and sub-concepts of vehicle, organization, place, geopolitical-entity,

and human as categories. We have used a total of 932 concepts as categories from

this ontology.

After selecting the categories, we have gathered data from groups present

at the Flickr website. Users post their images to the different groups on the

Flickr website. One group usually contains images related to the topic of that

group. For example, the vehicles group contains images of vehicles. We have

searched for groups related to the topics (i) people, (ii) locations, and (iii) vehicles

1http://swoogle.umbc.edu/
2http://morpheus.cs.umbc.edu/aks1/ontosem.owl, last accessed in October

2010

http://swoogle.umbc.edu/
http://morpheus.cs.umbc.edu/aks1/ontosem.owl
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using the group search facility provided by the Flickr API, and then selected

three groups from each topic. We have selected only those groups which had at

least 100 images and 25 members. The groups selected were candid celebrity,

35212032@N00 (famous people), politicians, CarDirectory, classic cars, vehicles,

PraiseAndCurseOfTheCity, signcity, and cities. Out of these groups, only the

“famous people” group had 27 members and 165 images, all other groups had at

least 100 members and more than 500 images. We have then randomly selected

21 images from each of these nine groups. There were a total of 1754 tags in all

of these 189 images.

We asked two persons K and S (human classifiers) to classify the tags into

the classes defined in the ontology. They did not have any kind of information

about this research and method. They have classified all the tags regardless of

the language and spelling mistakes, which has of course affected the results of T-

KNOW because the algorithm of T-KNOW uses English patterns for identifying

categories. For example, the users have classified the tags Russia and Russland

(German word for Russia) as location, whereas T-KNOW was unable to identify

Russland, as this is not an English word and hence is not supported by the

pattern library used. A spreadsheet was provided to each human classifier with

resources, tags, and links to the original Flickr images, Wikipedia, and the web

search engine. For example, if a user finds a tag Essen (a German city as well

as the German word for meal) and is unable to decide about its category, he can

view the image (in which this tag is present) on the Flickr website, if this image

is not helpful to identify the tag, he can search it in Wikipedia1, and still if it is

unclear, then he can find it in a web search engine2. Human classifiers (K and S)

agreed upon a classification of only 1166 tags out of 1754 tags.

7.1.4.2 Results

This section contains the results obtained by classifying tags using T-KNOW

with different contexts and threshold values. Table 7.2 shows the number of tags

and resources classified manually (by user K) and using the T-KNOW algorithm

with the threshold value of 0.0 and the Social Group (SG) context.

1http://en.wikipedia.org/wiki/Special:Search/essen
2http://www.google.com/search?hl=en&q=essen, last accessed in October 2010

http://en.wikipedia.org/wiki/Special:Search/essen
http://www.google.com/search?hl=en&q=essen
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Table 7.2: Number of tags and resources classified per category by User K and
T-KNOW with Threshold = 0 and the Social Group context.

Resources Tags
Category User K th=0, SG User K th=0, SG
Location 139 155 519 485
Organization 39 54 89 67
Person 86 107 287 229
Vehicle 69 64 259 109
Other 155 177 600 864

We have used F-measure and Cohen’s Kappa for evaluation of our method.

F-measure is a common measure in information retrieval. To compute the F-

Measure we set:

A = number of correct classifications by test

B = number of all classifications by Gold Standard

C = number of all classifications by test

Then we define the Precision, the Recall, and the F-measure as follows:

Precision =
A

C
(7.13)

Recall =
A

B
(7.14)

F-Measure =
2 ∗ Precision ∗Recall

P recision+Recall
(7.15)

In our evaluation, user K is the gold standard, and test is either the user S or

the system T-ORG. Figure 7.5 displays the F-measure with user K defining the

gold standard and T-KNOW using different threshold values and contexts and it

also shows the F-measure of the classification of user K and user S (shown as a

constant line).

Due to the possibility of classification that might occur just by chance, we have

also calculated the Cohen’s Kappa (Cohen, 1960) between a user’s classification
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Figure 7.5: F-Measure with user K defining the gold standard.

and the system’s prediction. Cohen’s Kappa is defined as:

K =
P0 − Pc

1− Pc

(7.16)

Where P0 is the observed agreement between classifiers and Pc is the agree-

ment occurred due to chance. If the two classifiers agree completely, then the

value of Cohen’s Kappa is 1. Figure 7.6 shows the Kappa values of the classifica-

tion of user K and T-KNOW (with different threshold values and contexts) and

it also shows the Cohen’s Kappa value between the classifications of user K and

user S (shown as a straight line).

The task of organizing resources by classifying tags in a folksonomy is not

trivial. It is observed that two humans classifying the same data set might not

totally agree with each other, as observed in the case of human classifiers of user

K and user S, the kappa value was 0.53, whereas this value would be 1 in the case

of complete agreement between the classifiers.

Table 7.2 shows the number of tags and resources per category. The difference

between number of resources or tags classified by different classifiers per category
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Figure 7.6: Cohen’s Kappa values for classification of T-KNOW and User S with
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is small. As the average resources per user were 1.39 in the data set, the difference

between F-measures of Resource (R) and User (U) contexts is hardly visible. We

believe that if there are more resources per user, then the results of classification

will be different for these context types. The best F-measure obtained was 0.66

with the social group context for the threshold values of 0.10 and 0.15.

The F-measure is affected by the problem of classification by chance. There-

fore we have calculated Cohen’s Kappa (Cohen, 1960) to measure the agree-

ment between two users and between T-KNOW and user K. The majority class

(“Other” in our case) scores zero in Cohen’s Kappa (Cohen, 1960). F-measure

lacks this property. The Cohen’s Kappa between classification of users K and S

was 0.53 (shown as a straight line in Figure 7.6), which shows the disagreement

between the classifications of human users. Best kappa value for gold standard

(user K) was 0.35 with Social Group (SG) context and using threshold of 0.10 or

0.15.

The results show that, the different approaches for selecting a context are

statistically not significantly different. Among the different contexts of the tags,
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the Social Group (SG) context has given slightly better results. This is because

the tags which are chosen as context belong to the same type of resources/images

(as a group mostly contains same type of resources). In the case of other contexts,

the tags of the resources with different subjects are selected as context, which

affects the results of the classification. In the next section, we exploit the social

groups for classifying resources in a folksonomy.

7.2 Exploiting Social Groups for Classification

As discussed in the previous section, the social groups on folksonomies like Flickr

provide useful contextual information in identifying the semantics of the tags.

We have used the social group context in the T-ORG system to identifying the

categories of the tags. In this section we focus on exploiting the information

available in the social Flickr groups for identifying the semantics of the resources,

particularly for identifying images representing the landmarks of a city. The

literature refers to the task of identifying landmark images as the landmark finding

problem.

Researchers have proposed different applications for solving the landmark find-

ing problem. One of such applications called World Explorer (Ahern et al., 2007)

is the current state-of-art system. The system has a reasonable performance, but

it only works with geo-tagged photos (supplied with geographical coordinates).

The problem is that many interesting places around the world are still represented

by photos without geo-tags and their landmarks cannot be found using World Ex-

plorer. The focus of our research is to exploit the tagging features and the social

Flickr groups to train a classifier with minimum efforts which can identify the

landmark photos.

Recognizing a landmark in a photo is a hard task: First, content-based im-

age analysis has very limited capabilities to solve this problem in general, given

that photos are taken in different light and weather conditions, from different

viewpoints and angles. Second, text-based or tag-based methods are much more

appropriate for this task, but they do not have extra information if a tag repre-

sents a landmark or a family photo taken in a city. We propose to obtain this

extra information from social groups in which users are involved. Flickr is en-
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riched with plenty of photo groups related to landmarks, cars and other types of

objects and themes. We exploit these groups for classifying resources related to

the landmarks of a city.

7.2.1 TG-SVM for Landmark Classification

We propose a method TG-SVM (Tag Group Support Vector Machine) which

exploits the tags and the social Flickr groups to train a classifier to identify

landmark photos and tags. The method requires minimum human efforts. It

only requires the links to the relevant Flickr groups. The system automatically

trains a classifier based on the data retrieved from the Flickr groups. The method

also ranks all the suggested relevant tags by their representativeness.

It is also possible to generalize our approach for other problems like car find-

ing, mobile phone finding, etc. Although, due to high cost of user studies, in

this chapter we test the performance of our method for landmarks only. The

proposed solution is among the first ones to solve the landmark finding problem

by exploiting tags and information from the photo communities. It does not use

low level image features or GPS-coordinates. The presented user study shows

that our approach outperforms the state-of-the-art World Explorer.

For the rest of the chapter we will consider that the landmark finding appli-

cation has to automatically create a summary of photos, giving a comprehensive

overview of landmarks at some place of interest. We will decompose this task

into several sub-problems, as presented in Figure 7.7.
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Figure 7.7: Decomposition of Landmark Finding Problem.

The first step consists of selecting a set of photos related to a particular city.

Since we do not consider geo-tagged photos, we rely on a simple heuristic of

having the city name (and also the country name in the case of an ambiguous

city name) as a tag associated with a photo. This way we may miss many relevant
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photos, but for our task it is not a problem, since we still get a lot more photos

than we need for a summary generation. In the second step all collected photos

are automatically classified as either landmarks or non-landmarks.

It is important to understand that at this point, we do not have a summary

of city landmarks. We have just a list of pictures classified as landmark or non-

landmark. What we want to achieve is a list of names representing city landmarks

and based on these names create a comprehensive city landmark summary. In

the third step, tags of the photos classified as landmarks are ranked according to

their likelihood of representing city sights. Once a ranking score is available for

all tags in the set, in the fourth step we select top-k most representative tags.

For each of these k tags we retrieve a Flickr photo which has as tags both the

name of the city, as well as the landmark tag.

For returning a Flickr picture satisfying the conditions described above, we

use the Flickr API1 for tag-based search and sort the pictures by relevance. In

this chapter, we focus on the two most important steps of the Figure 7.7, which

are the second and the third steps.

In the following we present the details of the main sub-problems compos-

ing our landmark finding method. We focus on step 2, classification of photos

into landmarks and non-landmarks, and step 3, selecting the most representative

landmark tags.

For understanding the algorithms presented in this section, we reuse the same

formalization of folksonomies (F := (U, T,R, Y )) as discussed in Chapter 3 and

earlier in this chapter, in Section 7.1.2.1. In addition to the standard formaliza-

tion, we define some additional terms. fr(t) denotes the number of times a tag t

appears with a resource r. The normalized tag frequency TFr(t) of a tag t in a

resource r is then defined as follows:

TF r(t) =
fr(t)
∑

fr(t′)
, (u, t, r) ∈ Y, (u, t′, r) ∈ Y, t′ ∈ T, u ∈ U, (7.17)

Inverse Resource and User Frequencies, like Inverse Document Frequency in IR,

1http://www.flickr.com/services/api, last accessed in October 2010

http://www.flickr.com/services/api
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are computed as follows:

IRF (t) = log

(

| R |

| {(t, r), u ∈ U, r ∈ R, (u, t, r) ∈ Y } |

)

(7.18)

IUF (t) = log

(

| U |

| {(u, t), u ∈ U, r ∈ R, (u, t, r) ∈ Y } |

)

(7.19)

From the set of pictures containing a city tag, we want to select photos repre-

senting landmarks. For classification we use a SVM (Support Vector Machine)

binary classifier (Vapnik, 1999). SVM is a state-of-the-art method for classifica-

tion. We use the SVMLight implementation (see (Joachims, 2002)) of SVM. For

every picture we create a feature vector based on the tags which were used to

annotate it and the SVM classifier assigns each photo to either “landmark” or

“non-landmark” category. We assign weights to the tags in the feature vectors

based on the usage of tags among resources and users as follows:

F (r) = [TFr(t1) · IRF (t1), TFr(t2) · IRF (t2), · · · , TFr(t|T |) · IRF (t|T |)] (7.20)

We tested several weighting schemes, however, the combination given by Equa-

tion 7.20 provided the best results.

One of the main challenges for SVM or other machine learning technique is

to create a good training set. Once a model is learned based on the labeled data

from the training set, the SVM classifies unseen examples based on the learned

model. Our hypothesis is that some of the Flickr groups like “Landmarks around

the world” can serve as positive examples, while arbitrary general groups, like

“Birds” or “Airplanes” represent negative examples. The idea to use the Flickr

groups as training data can be used for any arbitrary photo classification task

beyond the landmark finding problem. If a relevant group of photos exists on

Flickr, one can use it as a training data to find more photos on the same topic

within Flickr. For example, “CAR directory” or “Mobile Phones” groups can be

helpful for finding photos of cars and mobile phones. Nevertheless, applicability of

the Flickr groups for such tasks needs to be studied with additional experiments.

Once we have selected a set of city photos and filtered only landmark-related

ones, the third step consists of ranking the tags by how well they represent land-
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marks. What we would like to achieve is a ranked set of tags representing land-

marks specific to a particular city. When looking at the whole dataset, we would

like to give low score to common tags. The assumption is that representative

landmark tags appear in landmark photos, but not very common among the

whole collection of images (globally). Let us consider R as the set of all photos

(both landmark and non-landmark related ones), and T the associated set of

tags. Supporting this first assumption, we compute IRF (see Equation 7.18) of

the considered tag. If a tag is frequently used to tag photos in the dataset, it

has a low IRFR,T (t)
1 value and vice versa. Similarly, if a tag is globally very

common amongst users, it must be scored low. This is achieved by computing

IUF , IUFR,T (t) (see Equation 7.19).

After defining global scoring factors, we come to local measures computed

on part of the collection with landmark photos only. When considering the

dataset containing only pictures associated to a particular city and classified

as landmarks, our assumption is that common tags should be scored high. Let

us represent the set of landmark-related photos selected for a city as Rc and the

corresponding tag set as Tc. If a tag is common among the photos for a particular

city, this tag might represent some famous entity of the city, e.g. some museum,

or an old and famous building. Let nrtc(t) be a number of times a tag t appears

within landmark photos for a city c. Then we compute the normalized City Tag

Frequency, CTF (t), as follows:

CTF (t) =
nrtc(t)

MAX(nrtc(t′))
, t, t′ ∈ Tc (7.21)

Similarly, if a tag is used frequently by users, then it might represent a land-

mark or a famous place of the city. Let nutc(t) be the number of users using a

tag t for the landmark photos for a city c. We compute the normalized City User

Tag Frequency CUTF as follows:

CUTF (t) =
nutc(t)

MAX(nutc(t′))
, t, t′ ∈ Tc (7.22)

The decision values returned by the SVM classifier against the classified photos

1Computation is relative to R and T
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represent a confidence measure of the classification. Let dr be the decision value

for the photo r and let Rt be all the resources associated with a tag t. The

confidence value CONF (t) for the tag t is calculated as:

CONF (t) = log

(

∑

r∈Rt

dr

)

(7.23)

We combine all the above mentioned factors that affect the ranking of the

tags and compute a representativeness score for each tag t occurring along with

the resources classified as landmarks of a city c. The representative score of each

tag for a city c is computed as follows:

SCORE(t) = IRFR,T (t)·IUFR,T (t)·CTF (t)·CUTF (t)·CONF (t), t ∈ Tc (7.24)

The overview of the system as described in this section is shown in Figure 7.8.
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Figure 7.8: Example of a system classifying landmark photos.
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7.2.2 Evaluating Landmarks Classification

The goal of our experiments is to evaluate the performance of the algorithm in

finding city landmarks. We evaluate the accuracy of city landmark findings on

more than 600,000 images for a list of 50 different cities. The results of this

analysis have been collected through a user survey. Additionally, with this user

study we also compared our results against results produced by an existing system

called World Explorer which solves the same problem. Since World Explorer uses

as input for its algorithms the pictures with the GPS information – i.e. richer

input data than we needed – our aim was to obtain at least comparable quality.

7.2.2.1 Datasets and Evaluation Setup

We use different datasets for training and evaluating the proposed method. For

the training dataset we use more than 400,000 images and for the test dataset

we use more than 200,000 images. The detail for each of these datasets is given

as follows:

Training Data (DStrain): The training dataset was used for training the land-

mark vs. non-landmark classifier. The DStrain dataset was constructed by down-

loading 430,282 photos from several Flickr groups, uploaded by 57,581 different

users. For positive examples we manually picked few groups like “Landmarks”,

“Landmarks around the world”, “City Landmarks”, etc. As negative examples we

used groups like “Airplanes”, “Birds”, “Cars”, “Mobile Phones”, etc. The dataset

thus created contains 14,729 positive examples (related to landmark groups) and

415,553 negative examples (related to general groups). None of these 430,282

photos was included in the test dataset. This is real-world data so “positive

groups” might also contain some non-landmark photos and vice versa. However,

no additional noise reduction technique has been applied.

Test Data (DStest): This dataset from Flickr consists of pictures corresponding

to 50 cities (for which World Explorer (Ahern et al., 2007) has at least 10 land-

mark tags), 60% European ones and the rest of 40% representing Asian, North-,

South- American and Australian cities. We downloaded 4,000 to 5,000 photos per

city, so that in total we gathered 232,265 photos, uploaded by 32,409 different

users. Pictures from dataset DStest were used for testing the classifier, after a
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model was learned based on DStrain.

For the evaluation setup we recruited 20 volunteers among our colleagues.

Each user was asked to evaluate two result sets for 10 randomly selected cities

out of the set of 50. The selection process picked each city so that by the end of the

experiment it was evaluated by at least 4 users. Two photo summaries were mixed

on a single screen, with one result set created using our algorithm and one coming

from the World Explorer API. The users did not know which system produced

which photo, as the photos from the two systems were randomly interleaved.

Each photo was supplied with a title and a single landmark tag produced by

either World Explorer or by our algorithm and used to retrieve this photo. A radio

button was placed near each photo, where users could select between “landmark”,

“non-landmark”, and “don’t know” options. The users were asked to judge if a

photo is a landmark or not, in total producing between 400 and 500 judgments

per user. The experiment took about 30 minutes per user.

Participants were instructed that a landmark photo must (1) contain a whole

landmark or large part of it and (2) the landmark must be a main topic, not just

a background for a person photo. Users were allowed to use photo title and tag

as hints when they could not decide based on the picture only.

7.2.2.2 Evaluation Results

We observed quite different user assessment patterns, some participants consid-

ered as landmarks lots of photos, while some others accepted only few of them.

As a first analysis, we measured the performance of the two algorithms for each

city separately. Having each city assessed by 4 users, we applied simple majority

vote aggregation function.

In Table 7.3 we present micro-average (averaged across all judgments per

city) precision for the 50 analyzed cities. In total, our method (TG-SVM), out-

performed World Explorer (WE) on 30 out of 50 cities (on the left part of the

table), i.e. 60% of the cases. On average World Explorer has a precision value of

0.32, and our method, TG-SVM, 0.34.

Results in Table 7.3 show an interesting aspect: for some of the cities the

precision values were very good, while for others they were poor. By inspecting
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Table 7.3: Results of the Micro-Average Precision for 50 Cities. The left part of
the table shows the results where TG-SVM performs better. The right part of
the table shows the cities where World-Explorer performs better.

City World-
Explorer

TG-
SVM

City World-
Explorer

TG-
SVM

Amsterdam 0.33 0.40 Bucharest 0.62 0.36
Athens 0.21 0.28 Cairo 0.73 0.56
Barcelona 0.37 0.44 Chicago 0.33 0.28
Beijing 0.27 0.29 Cologne 0.53 0.48
Berlin 0.25 0.48 Florence 0.67 0.48
Birmingham 0.19 0.28 Genoa 0.50 0.42
Brasilia 0.40 0.52 Hannover 0.75 0.33
Buenos Aires 0.06 0.28 Leeds 0.28 0.24
Dresden 0.56 0.75 London 0.29 0.16
Glasgow 0.39 0.40 Madrid 0.41 0.32
Hamburg 0.19 0.36 Mexico City 0.32 0.08
Helsinki 0.23 0.30 Munich 0.26 0.25
Hong Kong 0.16 0.21 New York 0.41 0.27
Istanbul 0.40 0.60 Palermo 0.50 0.40
Liverpool 0.47 0.56 Paris 0.45 0.16
Los Angeles 0.09 0.16 Rio de Janeiro 0.38 0.20
Moscow 0.50 0.75 Singapore 0.21 0.13
Naples 0.13 0.40 Sydney 0.26 0.08
Oslo 0.16 0.17 Tokyo 0.25 0.19
Prague 0.20 0.48 Vienna 0.37 0.30
Rome 0.42 0.52
Rotterdam 0.25 0.48
Santiago 0.23 0.28
Sao Paulo 0.04 0.13
Seville 0.38 0.46
Shanghai 0.43 0.50
Stockholm 0.14 0.16
Toronto 0.05 0.24
Turin 0.25 0.48
Yokohama 0.10 0.16
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the pictures corresponding to London, Paris, or Tokyo we could observe that the

majority represented aerial views of the city where the landmarks were extremely

difficult to identify, or were not present at all. In contrast to these, for Moscow,

Istanbul, etc. the corresponding images depicted indeed the landmarks they also

have been tagged with. Results are strongly dependent on the quality of the

pictures included in the corresponding city set and consistency of users’ tagging

behavior.

In Table 7.4 we present the results from each user using macro-average pre-

cision, when all photos marked by users as landmarks are normalized by the

total number of photos returned by an algorithm. Out of 20 users, 16 preferred

our algorithm, 3 considered World Explorer-based results better and in one case

the algorithms performed equally well. We obtained 12% improvement in preci-

sion with our method over World Explorer (statistically significant at level α =

0.001 using paired t-test). These results support our hypothesis that landmark

finding based on photo classification can replace geo-tagging based methods in

situations where geo-spatial information is not available. They also show that

our algorithm significantly outperforms state-of-the-art algorithms for landmark

search. There was no particular tuning of the representativeness score as defined

by Equation 7.24. Estimating the best combination of these parameters might

give additional boost to results’ quality.

7.3 Conclusions

This chapter addressed the problem of identifying semantics of tags and resources.

Identifying semantics helps in browsing resources of a particular type. We have

proposed two different methods for identifying semantics, one based on web re-

sources call T-ORG and the second called TG-SVM (Tag Group Support Vector

Machine) based on information available in social groups present on folksonomies.

T-ORG uses T-KNOW for unsupervised classification of tags which exploits the

web search engine and linguistic patterns. We have proposed to exploit different

contexts of a tag. Experimental results show that the classification accuracy for

this unsupervised method is indeed encouraging, especially in the light of the low

agreement between the classifications done by two humans. The second method
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Table 7.4: Results of the Macro-Average Precision for 20 Users for World Explorer
and TG-SVM.

User World-
Explorer

TG-SVM

1 0.42 0.44
2 0.45 0.47
3 0.38 0.45
4 0.26 0.43
5 0.23 0.28
6 0.32 0.39
7 0.26 0.30
8 0.29 0.35
9 0.11 0.16
10 0.22 0.29
11 0.45 0.41
12 0.77 0.78
13 0.24 0.29
14 0.22 0.20
15 0.40 0.37
16 0.27 0.27
17 0.35 0.40
18 0.18 0.25
19 0.15 0.21
20 0.62 0.63

Average 0.33 0.37
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TG-SVM addresses the problem of identifying resource related to a specific type.

Particularly resources related to the landmarks of a city or a region using informa-

tion gathered from tags and social groups. For finding relevant landmark-related

tags we apply an SVM classifier for which the training data is extracted from

the thematic Flickr groups. Our results show that the two-class SVM classifier

effectively finds landmark photos based on the Flickr Groups training data. User

evaluation results demonstrate that our method outperforms a state-of-the-art

system. Apart from that the approach introduced here has a potential of being

generalizable to help identifying not only city landmarks but also other topical

photos, such as “cars”, “mobile phones”, etc.





Chapter 8

Conclusions

This thesis addresses the problems associated with everyday use of folksonomies.

The problems that are particularly focused in this thesis include: improving

search in folksonomies, recommending tags for resources, and browsing interesting

resources. In the following paragraphs, we discuss the contributions of this thesis

with respect to these problems.

Improving Search: The sparsity of tagging information in folksonomies leads

to the problem of search in folksonomies. We have proposed methods to discover

semantically related tags, and use these semantically related tags to reduce the

sparseness in folksonomies. Although research work already exists for finding

semantic relationships between tags, the contribution of this thesis to the existing

research work is the utilization and formalization of contextual information of

tags in discovering semantically related tags. Further contribution with respect to

improving search in folksonomies includes the exploitation of semantically related

tags for enriching the folksonomy data. The experiments presented in this thesis

show that it is possible to improve search in folksonomies, particularly for the

queries which have only a few relevant resources in the folksonomy.

There could be many applications where results of this thesis can be applied.

One is the search in folksonomies. Especially, when a user faces difficulties in

finding some particular resources, enriched data can be used to facilitate him.

Another application could be the utilization of enriched data in other methods

like tag recommendation or clustering. As discussed in this thesis, the results of

tag recommendation are affected by the sparsity of the input data. The enriched
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data can be used to address this problem of sparsity and might help in developing

improved tag recommendation methods.

Tag Recommendation: The problem of assigning tags to the resources is ev-

ident from the fact that in a data collection of 54 million images from Flickr,

on average each image is associated with only 3.1 tags. This could be due to

the lack of motivation among users in tagging their resources. In this thesis,

we presented a framework for recommending tags to the users, in particular for

the new resources which have not been already tagged. The main contribution

of the presented framework is that, it allows comparing the performance of dif-

ferent rich media features in the process of tag recommendation. The proposed

tag recommendation framework does not require supervised learning, it learns

its classification model from already tagged resources and makes tag recommen-

dations for new resources based on their content or metadata information. In

comparison, most of the tag recommendation systems require an input of few

tags for the new resource to suggest further tags.

The tag recommendation system can be incorporated into a folksonomy, so

that when the users upload their resources, they are given suggestions for possible

tags related to their resources. The proposed framework can also be used to tag

existing untagged resources.

Browsing Interesting Resources: To facilitate the users in browsing interest-

ing resources in folksonomies, we have proposed two novel methods for identifying

interesting resources. The first method T-ORG and its classification algorithm

T-KNOW identify the semantics of tags by exploiting the information available

through web search engines along with lexico-syntactic patterns. The usage of

web search engines and lexico-syntactic patterns minimize the need of supervised

training which is required for learning a classifier. Although web search engines

and lexico-syntactic patterns have already been used by other researchers to anno-

tate web documents, our contribution in this thesis is twofold: first we formulate

the problem of identifying semantics with respect to folksonomies, and second

we use the information available in different contexts like users or social groups.

Exploiting the contextual information is the novelty of T-ORG and had not been

explored before.

The second method for identifying semantics of resources exploits informa-
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tion available in online communities. The method TG-SVM learns information

about landmarks (and possibly other categories) from Flickr groups. TG-SVM is

the first method to utilize the information available in Flickr groups to identify

landmark photos. The performance of TG-SVM remains comparable to other

state-of-the-art methods.

Once the semantics of tags and resources are discovered, they can be used in

a variety of applications. One such application is focused browsers, where users

can browse the resources in which they are particularly interested. For example,

before visiting a city, it would be interesting to have an idea about the information

of landmarks and worth visiting sights in that city. Similarly current browsing

facilities can be improved by adding semantics to them. For example, by showing

the users a list of categories or facets in which he is interested, a user should be

able to narrow down his browsing experience by selecting the categories of his

interest.

The contributions of this thesis are not the ultimate solution in addressing

the problems faced in folksonomies. There is still a lot of room for improvements

and further research. The algorithms and methods implemented for this thesis

were tested in a lab environment. Further research is required to integrate the

proposed methods into live systems and to build intuitive user interfaces which

make the outcomes of this thesis more tangible. The presented methods can be

further enhanced by improving their individual steps like clustering, ranking, and

classification etc. For example, the clustering method used in tag recommenda-

tion is K-Means, there are other sophisticated clustering methods which should

improve the system performance. The methods used for discovering semantically

related tags might also be improved by exploiting information available in on-

tologies and external data sources. It still remains to be investigated that the

information used from online communities to identify landmark photos can also

be used to identify other concepts like persons or events. The application of the

T-ORG system in personalized environments also remains to be investigated, for

example, for organizing the tags and resources of a user, based on his individual

requirements.
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