
addenda and errata

666 https://doi.org/10.1107/S2059798323004825 Acta Cryst. (2023). D79, 666–667

Received 23 May 2023

Accepted 2 June 2023

Edited by R. J. Read, University of Cambridge,

United Kingdom

Keywords: Phenix; anisotropy; bulk solvent;

scaling.

Bulk-solvent and overall scaling revisited: faster
calculations, improved results. Corrigendum.

P. V. Afonine,a* R. W. Grosse-Kunstleve,a P. D. Adamsa,b and A. Urzhumtsevc,d

aLawrence Berkeley National Laboratory, One Cyclotron Road, MS64R0121, Berkeley, CA 94720, USA, bDepartment of

Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA, cIGBMC, CNRS–INSERM–UdS, 1 Rue

Laurent Fries, BP 10142, 67404 Illkirch, France, and dUniversité Nancy: Département de Physique – Nancy 1, BP 239,
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Equations in Sections 2.3 and 2.4 of the article by Afonine et al. [Acta Cryst.

(2013). D69, 625–634] are corrected.

In the article by Afonine et al. (2013) some improper notations

and errors in several equations in Sections 2.3 and 2.4 have

been corrected. We note that the Computational Crystal-

lography Toolbox (Grosse-Kunstleve et al., 2002) has been

using the correct version of these equations since 2013.

Updated versions of Section 2.3 and equations (42), (43) and

(45) are given below.

2.1. Bulk-solvent parameters and overall isotropic scaling

Assuming the resolution-dependent scale factors kmask(s)

and kisotropic(s) to be constants kmask and kisotropic in each thin

resolution shell, the determination of their values is reduced to

minimizing the residualP
s

fjFcalcðsÞ þ kmaskFmaskðsÞj
2

� ½koverall kanisotropicðsÞkisotropic�
�2F2

obsðsÞg
2; ð22Þ

where the sum is calculated over all reflections s in the given

resolution shell, and koverall and kanisotropic(s) are calculated

previously and fixed. This minimization problem is generally

highly over-determined because the number of reflections per

shell is usually much larger than two.

Introducing ws = |Fmask(s)|2, vs ¼
1
2 ½FcalcðsÞF

�
maskðsÞ +

F�calcðsÞFmaskðsÞ�, us = |Fcalc(s)|2, Is ¼ ½koverall kanisotropicðsÞ�
�2F2

obsðsÞ

and K ¼ k�2
isotropic and substituting them into (22) leads to the

minimization of

LSðK; kmaskÞ ¼
P

s

½ðk2
maskws þ 2kmaskvs þ usÞ � KIs�

2
ð23Þ

with respect to K and kmask. This leads to a system of two

equations:

@

@K
LSðK; kmaskÞ ¼ �2

P
s

½ðk2
maskws þ 2kmaskvs þ usÞ � KIs�Is

¼ 0;
@

@kmask

LSðK; kmaskÞ ¼ 4
P

s

½ðk2
maskws þ 2kmaskvs þ usÞ � KIs�

� ðkmaskws þ vsÞ

¼ 0:

8>>>>>>><
>>>>>>>:

ð24Þ
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Developing these equations with respect to kmask,

k2
mask

P
s

wsIs þ 2kmask

P
s

vsIs þ
P

s

usIs � K
P

s

I2
s ¼ 0;

k3
mask

P
s

w2
s þ 3k2

mask

P
s

wsvs þ kmask

P
s

ð2v2
s þ usws � KIswsÞ

þ
P

s

usvs � K
P

s

Isvs ¼ 0;

8>>><
>>>:

ð25Þ

and introducing new notations for the coefficients, we obtain

k2
maskC2 þ kmaskB2 þ A2 � KY2 ¼ 0;

k3
maskD3 þ k2

maskC3 þ kmaskðB3 � KC2Þ þ A3 � KY3 ¼ 0:

�
ð26Þ

Multiplying the second equation by Y2 and substituting KY2

from the first equation into the new second equation, we

obtain a cubic equation with fixed coefficients

k3
maskðD3Y2 � C2

2Þ þ k2
maskðC3Y2 � C2B2 � C2Y3Þ

þ kmaskðB3Y2 � C2A2 � Y3B2Þ þ ðA3Y2 � Y3A2Þ ¼ 0: ð27Þ

The senior coefficient in equation (27) satisfies the Cauchy–

Schwarz inequality:

D3Y2 � C2
2 ¼

P
s

w2
s

P
s

I2
s �

P
s

wsIs

P
s

wsIs > 0: ð28Þ

Therefore, equation (27) can be rewritten as

k3
mask þ ak2

mask þ bkmask þ c ¼ 0 ð29Þ

and solved using a standard procedure.

The corresponding values of K are obtained by substituting

the roots of equation (29) into the first equation in equation

(26),

K ¼ ðk2
maskC2 þ kmaskB2 þ A2Þ=Y2: ð30Þ

If no positive root exists, kmask is assigned a zero value, which

implies the absence of a bulk-solvent contribution. If several

roots with kmask � 0 exist then the one that gives the smallest

value of LS(K, kmask) is selected.

If desired, one can fit the right-hand side of expression (10)

to the array of kmask values by minimizing the residualP
s

½kmask � ksol expð�Bsol s2=4Þ�2 ð31Þ

for all kmask > 0. This can be achieved analytically as described

in Appendix A. Similarly, one can fit koverall exp(�Boverall s2/4)

to the array of K values.

Equations (42), (43) and (45) in Section 2.4 of Afonine et al.

(2013) are also updated as follows

b ¼
P

s

IðsÞI1ðs1Þ; . . . ;
P

s

IðsÞINðsNÞ; 1

� �t

; ð42Þ

LSðK; kmaskÞ ¼
P

s

PN
j¼1

�jjFcalcðsjÞ þ kmaskFmaskðsjÞj
2

" #
� KIs

( )2

;

ð43Þ

LSðK; kmaskÞ ¼
P

s

ðk2
maskws þ 2kmaskvs þ usÞ � KIs

� �2
: ð45Þ
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A fast and robust method for determining the parameters for

a flat (mask-based) bulk-solvent model and overall scaling

in macromolecular crystallographic structure refinement and

other related calculations is described. This method uses

analytical expressions for the determination of optimal values

for various scale factors. The new approach was tested using

nearly all entries in the PDB for which experimental structure

factors are available. In general, the resulting R factors are

improved compared with previously implemented approaches.

In addition, the new procedure is two orders of magnitude

faster, which has a significant impact on the overall runtime of

refinement and other applications. An alternative function

is also proposed for scaling the bulk-solvent model and it is

shown that it outperforms the conventional exponential

function. Similarly, alternative methods are presented for

anisotropic scaling and their performance is analyzed. All

methods are implemented in the Computational Crystallo-

graphy Toolbox (cctbx) and are used in PHENIX programs.
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1. Introduction

Macromolecular crystals typically contain a substantial

amount of disordered solvent, ranging from approximately

20 to 90% of the crystal volume, with a mean of 55%, in the

Protein Data Bank (PDB; Bernstein et al., 1977; Berman et al.,

2000). Anisotropy in the diffracted intensities is another

common feature of macromolecular crystals that arises from

various sources including crystal lattice vibrations (Shakked,

1983; Sheriff & Hendrickson, 1987). When modelling

diffracted intensities, for example in structure refinement or

automated model building, it is therefore critical to account

for these two phenomena (see, for example, Jiang & Brünger,

1994; Urzhumtsev & Podjarny, 1995; Kostrewa, 1997; Badger,

1997; Urzhumtsev, 2000; Fokine & Urzhumtsev, 2002a; Fenn et

al., 2010). The flat bulk-solvent model (Phillips, 1980; Jiang &

Brünger, 1994) combined with overall anisotropic scaling in

either exponential (Sheriff & Hendrickson, 1987) or poly-

nomial (Usón et al., 1999) forms is a well established and

computationally efficient approach. Alternatives have been

proposed (Tronrud, 1997; Vassylyev et al., 2007), but are not

currently in wide use.

In the commonly used approach, the total structure factor is

defined as

Fmodel ¼ ktotalðFcalc þ kmaskFmaskÞ; ð1Þ

where ktotal is the overall Miller-index-dependent scale factor,

Fcalc and Fmask are the structure factors computed from the

atomic model and the bulk-solvent mask, respectively, and

kmask is a bulk-solvent scale factor. The mask can be computed



efficiently using exact asymmetric units as described in

Grosse-Kunstleve et al. (2011).

The overall scale factor ktotal can be thought of as the

product

ktotal ¼ koverall kisotropic kanisotropic; ð2Þ

where koverall is the overall scale factor and kisotropic and

kanisotropic are the isotropic and anisotropic scale factors,

respectively.

koverall is a scalar number that can be obtained by mini-

mizing the least-squares residual

LS ¼
P
ðFobs � koveralljF

0
modeljÞ

2; ð3Þ

where Fobs are the observed structure factors and

F0model ¼ kisotropic kanisotropicðFcalc þ kmaskFmaskÞ: ð4Þ

The sum is over all reflections. Solving @LS/@koverall = 0 leads to

koverall ¼
P

FobsjF
0
modelj=

P
jF0modelj

2: ð5Þ

In the exponential model the anisotropic scale factor is

defined as

kanisotropic ¼ expð�2�2stUcrystsÞ; ð6Þ

where Ucryst is the overall anisotropic scale matrix equivalent

to U* defined in Grosse-Kunstleve & Adams (2002); st = (h, k, l)

is the transpose of the Miller-index column vector s.

Usón et al. (1999) define a polynomial anisotropic scaling

function that can be rewritten in matrix notation as follows:

kanisotropic ¼ stV0sþ ðstV1sÞs2; ð7Þ

where V0 and V1 are symmetric 3 � 3 matrices, s2 = stG*s and

G* is the reciprocal-space metric tensor. Expression (7) is

equivalent to the first terms in the Taylor series expansion of

the exponential function (6),

expð�2�2stUcrystsÞ ’ 1� 2�2stUcrystsþ 2�4
ðstUcrystsÞðs

tUcrystsÞ;

ð8Þ

with the constant term omitted. The omission of the constant 1

means that kanisotropic is equal to zero for the reflection F000, as

follows from (7). Therefore, in this work we modify (7) by

adding the constant

kanisotropic ¼ 1þ stV0sþ ðstV1sÞs2: ð9Þ

The bulk-solvent scale factor is traditionally defined as

kmask ¼ ksol expð�Bsols
2=4Þ; ð10Þ

where ksol and Bsol are the flat bulk-solvent model parameters

(Phillips, 1980; Jiang & Brünger, 1994; Fokine & Urzhumtsev,

2002b).

Depending on the calculation protocol, kisotropic may be

assumed to be a part of kanisotropic or it can be assumed to be

exponential: kisotropic = exp(�Bs2/4), where B is a scalar

parameter. Alternatively, it may be determined as described in

x2.3 below.

The determination of the anisotropic scaling parameters

(Ucryst or V0 and V1) and the bulk-solvent parameters ksol and

Bsol requires the minimization of the target function (3) with

respect to these parameters. Despite the apparent simplicity,

this task is quite involved owing to a number of numerical

issues (Fokine & Urzhumtsev, 2002b; Afonine et al., 2005a).

Previously, we have developed a robust and thorough proce-

dure (Afonine et al., 2005a) to address these issues. This

procedure is used routinely in PHENIX (Adams et al., 2010).

However, owing to its thoroughness the procedure is relatively

slow and may account for a significant fraction of the execu-

tion time of certain PHENIX applications (for example,

phenix.refine).

In this paper, we describe a new procedure which is

approximately two orders of magnitude faster than the

approach described in Afonine et al. (2005a) and often leads

to a better fit of the experimental data. The speed gain is the

result of an analytical determination of the optimal bulk-

solvent and scaling parameters. The better fit to the experi-

mental data is partially the result of employing a more detailed

model for kmask compared with the exponential model in

equation (10) and is partially a consequence of the new

analytical optimization method. Analytical optimization

eliminates the possibility of becoming trapped in local minima,

which exists in all iterative local optimization methods,

including the procedure used previously.

2. Methods

2.1. Anisotropic scaling: exponential model

To obtain the elements of the anisotropic scaling matrix (6),

the minimization of (3) is replaced by the minimization of

LSL ¼
P

s

½lnðFobsÞ � lnðjFmodeljÞ�
2: ð11Þ

For this, we assume that Fobs and |Fmodel| are positive. We also

assume that the minima of (3) and (11) are at similar locations.

This assumption is not obvious and, as discussed below, may

not always hold (see x3.3 and Table 2). Expression (11) can be

rewritten as

LSL ¼ ð2�2
Þ

2 P
s

ðZ þ stUcrystsÞ
2: ð12Þ

Here, Z = [1/(2�2)]ln[Fobs(koverallkisotropic|Fcalc + kmaskFmask|)�1].

Defining gLSLLSL ¼ LSL=ð2�2
Þ

2
ð13Þ

and using

Ucryst ¼

U11 U12 U13

U12 U22 U23

U13 U23 U33

0@ 1A; ð14Þ

the target function determining the optimal Ucryst isgLSLLSL ¼
P

s

ðZ þ U11h2 þ U22k2 þ U33l2

þ 2U12hkþ 2U13hl þ 2U23klÞ
2: ð15Þ

The Ucryst values that minimize (15) are determined from the

condition rU
gLSLLSL = 0, which gives a system of six linear

equations
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M Ucryst ¼ b: ð16Þ

where M =
P

s V� V, V = (h2, k2, l2, 2hk, 2hl, 2kl)t,� denotes

the outer product and b = �
P

s ZV.

The desired Ucryst matrix is determined by solving the

system (16):

Ucryst ¼ M�1b: ð17Þ

Crystal-system-specific symmetry constraints can be incor-

porated via a constraint matrix (C), which we derive from first

principles by solving the system of linear equations RtUR = U

for all rotation matrices R of the crystal-system point group.

Alternatively, symmetry constraints are often derived manu-

ally and tabulated (Nye, 1957; Giacovazzo, 1992). For

example, the constraint matrix for the tetragonal crystal

system is

C ¼
1 1 0 0 0 0

0 0 1 0 0 0

� �
: ð18Þ

The number of rows in C determines the number of inde-

pendent coefficients of Ucryst. Let Uind be the column vector

of independent coefficients; the (redundant) set of six coeffi-

cients Ucryst is then obtained via

Ucryst ¼ U11 U22 U33 U12 U13 U23

� �
¼ Ct Uind: ð19Þ

The constraint matrix C is introduced into equations (16) and

(17) above as follows:

MCUind ¼ bC ð20Þ

with MC =
P

h VC � VC, VC = CV, bC = �
P

h ZVC and

Uind ¼ M�1
C bC: ð21Þ

The full Ucryst is then determined via equation (19).

2.2. Anisotropic scaling: polynomial model

The polynomial model (Usón et al., 1999) for anisotropic

scaling allows the direct use of the residual (3) to find the

optimal coefficients for V0 and V1 in equation (9). An

advantage of this model is that no assumptions about the

similarity of the location of the minima of targets (3) and (11)

are required. Conceptually, a disadvantage of equation (9) is

that it is only an approximation of equation (6), as was shown

above. However, the number of parameters is doubled in

equation (9) compared with equation (6), since V0 and V1 are

treated independently. The increased number of degrees of

freedom may therefore compensate for approximation in-

accuracies.

Similarly to x2.1, the optimal coefficients for V0 and V1 are

determined by the condition rVLS = 0 and can be obtained by

solving a system of 12 linear equations. We follow the argu-

ments of Usón et al. (1999) for not using symmetry constraints

in this case.

2.3. Bulk-solvent parameters and overall isotropic scaling

Defining K = k�2
total = (koverall kisotropic kanisotropic)

�2, the

determination of the desired scaling parameters kisotropic and

kmask is reduced to minimizing

LSsðK; kmaskÞ ¼
P

s

ðjFcalc þ kmaskFmaskj
2
� KIÞ

2
ð22Þ

in resolution bins, where koverall and kanisotropic are fixed. This

minimization problem is generally highly overdetermined

because the number of reflections per bin is usually much

larger than two.

Introducing w = |Fmask|2, v = (Fcalc, Fmask) and u = |Fcalc|
2 and

substitution into (22) leads to

LSsðK; kmaskÞ ¼
P

s

½ðk2
maskwþ 2kmaskvþ uÞ � KI�2: ð23Þ

Minimizing (23) with respect to K and kmask leads to a system

of two equations:

@

@k
LSsðK; kmaskÞ ¼ �

P
s

½ðk2
maskws þ 2kmaskvs þ usÞ � KIs�Is

¼ 0
@

@kmask

LSsðK; kmaskÞ ¼ 2
P

s

½ðk2
maskws þ 2kmaskvs þ usÞ � KIs�

� ðkmaskws þ vsÞ ¼ 0:

8>>>>><>>>>>:
ð24Þ

Developing these equations with respect to kmask,

k2
mask

P
s

wsIs þ 2kmask

P
s

vsIs þ
P

s

usIs � K
P

s

I2
s ¼ 0

k3
mask

P
s

ws þ 3k2
mask

P
s

wsvs þ kmask

P
s

ð2v2
s þ usws � KIswsÞ

þ
P

s

usvs � K
P

s

Isvs ¼ 0;

8>>><>>>:
ð25Þ

and introducing new notations for the coefficients, we obtain

k2
maskC2 þ kmaskB2 þ A2 � KY2 ¼ 0

k3
maskD3 þ k2

maskC3 þ kmaskðB3 � KC2Þ þ A3 � KY3 ¼ 0:

�
ð26Þ

Multiplying the second equation by Y2 and substituting KY2

from the first equation into the new second equation, we

obtain a cubic equation

k3
maskðD3Y2 � C2

2Þ þ k2
maskðC3Y2 � C2B2 � C2Y3Þ ð27Þ

þ kmaskðB3Y2 � C2A2 � Y3B2Þ þ ðA3Y2 � Y3A2Þ ¼ 0:

The senior coefficient in (27) satisfies the Cauchy–Schwarz

inequality:

D3Y2 � C2
2 ¼

P
s

w2
s

P
s

I2
s �

P
s

wsIs

P
s

wsIs > 0: ð28Þ

Therefore, equation (27) can be rewritten as

k3
mask þ ak2

mask þ bkmask þ c ¼ 0 ð29Þ

and solved using a standard procedure.

The corresponding values of K are obtained by substituting

the roots of equation (29) into the first equation in (26):

K ¼ ðk2
maskC2 þ kmaskB2 þ A2Þ=Y2: ð30Þ

If no positive root exists kmask is assigned a zero value, which

implies the absence of a bulk-solvent contribution. If several

roots with kmask � 0 exist then the one that gives the smallest

value of LSs(K, kmask) is selected.
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If desired, one can fit the right-hand side of expression (10)

to the array of kmask values by minimizing the residual

LS ¼
P

s

½kmask � ksol expð�Bsols
2=4Þ�2 ð31Þ

for all kmask > 0. This can be achieved analytically as described

in Appendix A. Similarly, one can fit koverall exp(�Boveralls
2/4)

to the array of K values.

2.4. Presence of twinning

In case of twinning with N twin-related domains, the total

model intensity is

ImodelðsÞ ¼
PN
j¼1

�jIjðTjsÞ; ð32Þ

where �j is the twin fraction of the jth domain, Tj is the

corresponding twin operator (a 3 � 3 rotation matrix) and

IjðTjsÞ ¼ ktotalðTjsÞjFcalcðTjsÞ þ kmaskðTjsÞFmaskðTjsÞj
2: ð33Þ

ktotal includes all scale factors (overall, isotropic and aniso-

tropic). We make the reasonable assumption that ktotal and

kmask are identical for all twin domains.

Finding the twin fractions �j can be achieved by solving the

minimization problem

LSð�1; . . . ; �NÞ ¼
P

s

PN
j¼1

�jIjðsjÞ � IðsÞ

" #2

; ð34Þ

with the constraint condition

Cð�1; . . . ; �NÞ ¼
PN
j¼1

�j � 1 ¼ 0; ð35Þ

where I(s) = F 2
obs and sj = Tjs. This constrained minimization

problem can be reformulated as an unconstrained minimiza-

tion problem by the standard technique of introducing a

Lagrange multiplier:

LSð�1; . . . ; �N; �Þ ¼ LSð�1; . . . ; �NÞ þ �Cð�1; . . . ; �NÞ: ð36Þ

The values {�1, . . . , �N, �} that minimize (36) are the solution

of the system of N + 1 linear equations with N + 1 variables:

@LSð�1; . . . ; �N; �Þ=@�1 ¼ 0

. . .
@LSð�1; . . . ; �N; �Þ=@�N ¼ 0

@LSð�1; . . . ; �N; �Þ=@� ¼ 0

8><>: ð37Þ

or

P
s

PN
j¼1

�jIjðsjÞ � IðsÞ

" #
I1ðs1Þ þ � ¼ 0

. . .P
s

PN
j¼1

�jIjðsjÞ � IðsÞ

" #
INðsNÞ þ � ¼ 0

PN
j¼1

�j � 1 ¼ 0:

8>>>>>>>>><>>>>>>>>>:
ð38Þ

The solution of this system is

ð ~��1; . . . ; ~��N; ~��Þt ¼ M�1b ð39Þ

with the (N + 1) � (N + 1) matrix

M ¼

P
s

V� V 1

1 0

 !
; ð40Þ

and

V ¼ ½I1ðs1Þ; . . . ; INðsNÞ�: ð41Þ

Here, 1 is a row or column containing N unit elements to

complete the matrix M and

b ¼
P

s

IðsÞI1ðs1Þ; . . . ;
P

s

IðsÞINðsNÞ; 1

� �t

: ð42Þ

The values of " are expected to be between 0 and 1, and � is

proportional to the sum of squared intensities. Therefore, it is

numerically beneficial to multiply the �C(�1, . . . , �N) term

in (36) by a constant
P

s I2ðsÞ in order to make the value for �
numerically similar to the values for the twin fractions �.

Once the twin fractions have been found, the procedure

described in x2.3 can be used to obtain the overall and bulk-

solvent scale factors. Similarly to (23), we can write

LSsðK; kmaskÞ ¼
P

s

PN
j¼1

�jjFcalcðsjÞ þ kmaskFmaskðsjÞj
2
� KI

" #2

;

ð43Þ

where �j are known twin fractions and K and kmask are the

scale factors to be determined. Similarly to x2.3, we obtainPN
j¼1

�jjFcalcðsjÞ þ kmaskFmaskðsjÞj
2
¼
PN
j¼1

f�jjFcalcðsjÞj
2

þ 2kmask�j½FcalcðsjÞFmaskðsjÞ� þ k2
mask�jjFmaskðsjÞj

2
g: ð44Þ

Introducing new variables as before for equation (23) leads to

LSsðK; kmaskÞ ¼
P

s

½ðk2
maskwþ 2kmaskvþ uÞ � KI�2: ð45Þ

The determination of the twin fractions � and scales ktotal and

kmask are iterated several times until convergence. The deter-

mination of � does not guarantee that the individual twin

fractions �j are in the range 0–1. For any �j outside this range

the corresponding twin operation is ignored for the current

iteration and the new smaller set of twin fractions and scales

are redetermined. However, in the next iteration the full set of

� is tried again.

3. Results

3.1. Implementation of the new protocol

The scale factors involved in the calculation of Fmodel

according to equation (1) are highly correlated. Therefore, the

order of their determination is important. Empirically, we

found that the determination of kisotropic and kmask followed by

the determination of kanisotropic works optimally in most cases.

The determination of (kmask, kisotropic) and kanisotropic is re-

peated several times until the R factor decreases by less than

0.01% between cycles. The number of cycles required to reach

convergence is typically between 1 and 5.
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To determine kanisotropic, our protocol can make use of three

available scaling methods: polynomial (poly; x2.2), exponen-

tial with analytical calculation of the optimal parameters

(expanal; x2.1) and exponential with the optimal parameters

obtained via L-BFGS (Liu & Nocedal, 1989) minimization

(expmin; Afonine et al., 2005a). The three methods can be

tested independently, in which case the result with the lowest

R factor is accepted. However, because expmin is up to an

order of magnitude slower than the other two methods it is not

expected to be used routinely.

The calculation of kisotropic and kmask requires dividing the

data into resolution bins (x3.2). If oscillation of kmask between

bins occurs, smoothening (Savitzky & Golay, 1964) is applied

to the bin-wise determined values of kmask such that it reduces

the oscillations without altering the monotonic behavior of

kmask as a function of resolution (see Fig. 1). Finally, the

smoothed values are assigned to individual reflections using

linear interpolation. The kisotropic scales are updated using

equation (5) in order to account for the changed kmask.

As illustrated in x3.2, the minimum of the R-factor function

R ¼
P		Fobs � jFmodelj

		=P jFobsj ð46Þ

and the minimum of the least-squares function (22) can be at

significantly different locations in the (kmask, kisotropic) para-

meter space. To assure that the final (kmask, kisotropic) values

correspond to the lowest R factor, a fast grid search is

performed around the optimal values of the least-squares

function.

3.2. Binning

The goal of binning is to group data by common features to

characterize each group by a set of common parameters. Here,

the key parameter is the resolution d of reflections. Binning

schemes with bins containing an approximately equal number

of reflections (i.e. the resolution range is uniformly sampled in

d�3) or a predefined number of bins are typically used. Since

the low-resolution region of the data is sparse, such binning
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Figure 1
Examples of smoothening of kmask. The original kmask (blue; obtained as the solution of equation 29) and that after smoothening (red) are shown for
three PDB entries with the PDB codes shown on the plots.

Table 1
Comparison of binning schemes performed with d�3 and ln(d) spacing for three selected PDB data sets: 1kwn, 3hay and 3gk8.

All three data sets have very low completeness in the lowest resolution bin, which d�3 binning obscures while ln(d) binning makes clear even when using
approximately half the number of bins. Completeness in the high-resolution region is similar in the two binning schemes. For each binning method three columns of
data are presented: resolution range (Å), completeness and number of reflections.

1kwn 3hay 3gk8

Bin No. d�3 ln(d) d�3 ln(d) d�3 ln(d)

1 19.96–3.25 0.967 4363 19.96–7.87 0.860 301 44.86–13.44 0.932 715 44.86–17.61 0.852 300 22.18–5.00 0.906 1938 22.18–8.16 0.610 300
2 3.25–2.58 0.997 4280 7.87–6.33 0.971 300 13.43–10.71 1.000 716 17.58–14.23 1.000 301 5.00–3.98 0.994 2052 8.15–7.00 0.993 300
3 2.58–2.26 0.999 4214 6.33–5.10 0.966 564 10.71–9.37 1.000 688 14.22–11.51 1.000 556 3.98–3.48 0.997 2060 7.00–6.01 0.996 452
4 2.26–2.05 1.000 4218 5.10–4.10 0.961 1037 9.37–8.52 1.000 693 11.51–9.31 1.000 1011 3.48–3.16 0.995 2051 6.01–5.16 0.994 700
5 2.05–1.90 0.990 4135 4.10–3.30 0.986 1987 8.52–7.91 1.000 679 9.31–7.53 1.000 1853 3.16–2.93 0.976 1988 5.16–4.43 0.993 1087
6 1.90–1.79 0.993 4133 3.30–2.66 0.997 3772 7.91–7.45 1.000 673 7.53–6.10 1.000 3448 2.93–2.76 0.968 1973 4.43–3.81 0.996 1735
7 1.79–1.70 0.992 4119 2.66–2.14 0.999 7177 7.45–7.08 1.000 675 6.10–4.99 0.997 5905 2.76–2.62 0.958 1902 3.81–3.27 0.996 2716
8 1.70–1.63 0.989 4070 2.14–1.72 0.993 13453 7.08–6.77 1.000 657 2.62–2.51 0.952 1961 3.27–2.81 0.979 4149
9 1.63–1.57 0.988 4094 1.72–1.38 0.990 25516 6.77–6.51 1.000 672 2.51–2.41 0.954 1941 2.81–2.41 0.955 6410
10 1.57–1.51 0.990 4093 1.38–1.20 0.989 28106 6.51–6.29 1.000 671 2.41–2.33 0.941 1876 2.41–2.07 0.931 9748
11 1.51–1.46 0.987 4036 6.28–6.09 1.000 657 2.33–2.26 0.933 1897 2.07–1.85 0.827 9681
12 1.46–1.42 0.990 4073 6.09–5.92 1.000 655 2.26–2.19 0.940 1881
13 1.42–1.39 0.993 4088 5.91–5.76 1.000 666 2.19–2.13 0.931 1876
14 1.39–1.35 0.992 4057 5.76–5.62 1.000 656 2.13–2.08 0.914 1838
15 1.35–1.32 0.992 4077 5.62–5.49 1.000 667 2.08–2.03 0.897 1834
16 1.32–1.29 0.995 4052 5.49–5.38 1.000 653 2.03–1.99 0.891 1766
17 1.29–1.27 0.991 4047 5.38–5.27 1.000 635 1.99–1.95 0.865 1765
18 1.27–1.24 0.991 4045 5.27–5.17 1.000 663 1.95–1.92 0.825 1645
19 1.24–1.22 0.988 4026 5.17–5.08 1.000 660 1.91–1.88 0.767 1537
20 1.22–1.20 0.972 3993 5.08–4.99 0.973 623 1.88–1.85 0.732 1497



schemes tend to produce only one or very few low-resolution

bins, which is insufficient to best model the bulk-solvent

contribution. Unfortunately, decreasing the number of

reflections per bin will disproportionally increase the number

of bins (Nbins) at higher resolution and may still provide

insufficient detail for the low-resolution data (Table 1).

An alternative approach which divides the resolution range

uniformly on a logarithmic scale ln(d) (Urzhumtsev et al.,

2009) efficiently solves this problem. The flowchart of the

algorithm is shown in Fig. 2. This scheme allows the higher

resolution bins to contain more reflections than the lower

resolution bins and more detailed binning at low resolution

without increasing the total number of bins. An additional

reason for using logarithmic binning is that the dependence of

the scales on resolution is approximately exponential (see

previous sections), which makes the variation of scale factors

more uniform between bins when a logarithmic binning

algorithm is used. Table 1 compares binning performed

uniformly in d�3 and in ln(d) spacing for three data sets (PDB

entries 3hay, 1kwn and 3gk8). Note the data completeness of

the low-resolution bins.

3.3. Systematic tests

We evaluated the performance of the new scaling protocol

by applying it to approximately 40 000 data sets selected from

the PDB. The structures were selected by evaluating all PDB

entries using phenix.model_vs_data (Afonine et al., 2010) and

excluding all entries for which the recalculated Rwork was

greater than the published value by five percentage points.

To score the test results three crystallographic R factors (46)

were computed using all reflections, using only low-resolution

reflections and using only high-resolution reflections. Low-

resolution reflections were selected using the condition dmin >

8 Å but selecting at least the 500 lowest resolution reflections.

High-resolution reflections were taken from the highest

resolution bin. Each of the three anisotropic scaling methods

(poly, expanal and expmin) was tested independently within

each run. Additionally, two other tests were performed: one

combining poly and expanal as described in x3.1 (referred to as

poly+expanal) and the other using the protocol of Afonine et al.

(2005a) (referred to as old).

Fig. 3 shows a comparison of the alternative methods for

determining kanisotropic (see x3.1). Comparing the polynomial

model (poly) versus the analytical exponential model (expanal),

with a few minor exceptions poly results in slightly lower R

factors overall and for the low-resolution reflections, while

expanal results in lower R factors for the high-resolution

reflections. Comparing poly versus the original exponential

model using minimization (expmin), the R factors are very

similar overall and for the high-resolution reflections, while

poly often results in lower R factors for the low-resolution

reflections. Comparing the two different exponential models,

expmin results in lower R factors overall and nearly identical

results for low-resolution reflections, but expanal results in

lower R factors for the high-resolution reflections. Fig. 4

compares the new protocol combining poly and expanal with

the old protocol. With very few exceptions, the new protocol

performs better for all three resolution groups.

As described above, occasionally the minima of the R-factor

function (46) and the LS function (22) are at significantly

different locations in the (kmask, kisotropic) parameter space (see

Fig. 5). For example, considering kisotropic to be a single-value
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Figure 2
Flowchart of the logarithmic resolution-binning algorithm.

Table 2
Comparison of Ucryst corresponding to the minima of the functions LS
(3), LSL (11) and R factor (46).

To improve readability, the Ucryst are shown as B values with respect to a
Cartesian basis (Grosse-Kunstleve & Adams, 2002). To reduce the runtimes
for the systematic parameter searches (see text), we have selected examples
with symmetry constraints leading to all-zero off-diagonal elements.

PDB code
Optimization
target B11, B22, B33 R factor

2fih R factor �2.15, �1.85, �1.60 0.1935
LS �4.20, �3.90, �3.35 0.2179gLSLLSL �2.65, �1.95, �1.60 0.1939

2fih (data cut at 2.5 Å) R factor �9.30, �10.20, �10.35 0.2417
LS �18.35, �19.65, �20.75 0.2599gLSLLSL �38.25, �42.15, �46.20 0.3769

1ous (data cut at 6.5 Å) R factor 9.25, �2.20, 4.35 0.2082
LS 2.90, �2.45, 8.60 0.2086gLSLLSL 19.55, 6.55, 12.85 0.2088



scalar the pair (kmask, kisotropic) that minimizes the R factor

in the low-resolution range of PDB data set 1kwn is (0.2913,

0.0961), while the pair (0.3218, 0.0863) minimizes the LS

function. The corresponding R factors are 0.3073 and 0.3372,

respectively. The data for PDB entry 1hqw lead to an even

more dramatic difference, in which the pairs (kmask, kisotropic)

that minimize the R factor and the LS function are (0.25,

0.0131) and (0.6166, 0.0151), respectively, and the corre-

sponding R factors are 0.2924 and 0.5046. We made a similar

observation for the overall anisotropic scale kanisotropic, as
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Figure 3
A comparison of the new scaling protocol using different models for the anisotropic scale factor. R versus R factor scatter plots for (a) poly versus expanal,
(b) poly versus expmin and (c) expanal versus expmin R factors were computed using all reflections (left), low-resolution reflections only (middle) and high-
resolution reflections only (right). See x3.3 for details.



illustrated in Table 2. For this, the best

values for Ucryst were determined via a

systematic search for the minima of the

functions (3), (11) and (46) for three

combinations of structures and high-

resolution cutoffs. Note the difference

in the optimal Ucryst values and the

corresponding R factors.

The parameterization of the total

model structure factor (1) does not

make any assumption about the shape

of kmask; for example, it does not assume

it to be exponential (10). This provides

an opportunity to explore the behavior

of kmask as a function of resolution and

compare it with kmask obtained via (10).

Fig. 6 illustrates the differences between

the two methods of determining kmask

for six representative PDB entries

selected from approximately 40 000

entries after inspection of the kmask

values. We observe that the plots of the

values obtained using our new approach are in general

significantly different from the exponential function. This

observation is in line with Fig. 1 of Urzhumtsev & Podjarny

(1995).

At very low resolution the structure factors computed from

the atomic model are approximately anticorrelated to the

structure factors computed from the bulk-solvent mask:

Fmask ’ �pFcalc: ð47Þ

Here, p is a scale factor (Urzhumtsev & Podjarny, 1995).

Relation (47) is the basis for alternative bulk-solvent

scaling methods that employ the Babinet principle (Moews &

Kretsinger, 1975; Tronrud, 1997). Substitution of relation (47)

into equation (1) yields

Fmodel ’ ktotalð1� p kmaskÞFcalc: ð48Þ

Obviously, Fmodel is invariant for any combination of scale

factors ktotal and kmask satisfying the condition

ktotalð1� p kmaskÞ ¼ const: ð49Þ

Since our new scaling procedure determines kmask and kisotropic

(which are part of ktotal) simultaneously, without imposing

constraints on their values, these scale factors may assume

unusual values in the low-resolution range. However, we
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Figure 4
R versus R factor scatter plots comparing the new scaling protocol using poly+expanal for the anisotropic scale factor with the old protocol. For each
structure the full set of structure factors available from the PDB was used to calculate scale factors and to calculate R factors (left). Using the same scale-
factor values the R factors were calculated separately for the low-resolution reflections (middle) and high-resolution reflections (right). A large spread of
points in the vertical direction above the diagonal (red line) in these latter plots indicates that in many cases the scale factors produced by the old
protocol resulted in a poorer fit to the data at low and high resolutions, while the new protocol generates scale factors with a good fit across all resolution
ranges. See x3.3 for details.

Figure 5
Plots of R factors (with kisotropic = 0.0961) and the LS function (with kisotropic = 0.0863) for PDB entry
1kwn (left) and R factors (with kisotropic = 0.0131) and the LS function (with kisotropic = 0.0151) for
PDB entry 1hqw (right), illustrating that the minima of the R-factor function (46) and the LS
function (22) can be at significantly different locations in parameter space. In such cases, a line
search around the value of kmask obtained by minimization of the LS function is necessary in order
to obtain a value that minimizes the R factor. For plotting purposes, the values of the LS function
were scaled to be similar to the R factors.



observe that in practice this only happens for a very small

number of the test cases.

4. Discussion

A new method for overall anisotropic and bulk-solvent scaling

of macromolecular crystallographic diffraction data has been

developed which is an improvement over the existing algo-

rithm of flat (mask-based) bulk-solvent modeling and overall

anisotropic scaling, versions of which are routinely used in

various refinement packages such as CNS (Brunger, 2007),

REFMAC (Murshudov et al., 2011) and phenix.refine (Afonine

et al., 2012). In the process of developing this method, we

concluded that the bulk-solvent scale factor kmask deviates

quite significantly from the exponential model that has tradi-

tionally been used. This new method is approximately two

orders of magnitude faster than the previous implementation

and yields similar or often better R factors. Table 3 compares

runtimes for a number of selected cases covering a broad

range of resolutions and atomic model sizes. Therefore, the

computational speed of the new method makes it possible to

robustly compute bulk-solvent and anisotropic scaling para-

meters even as part of semi-interactive procedures.

An inherent feature of the mask-based bulk-solvent model

is that it relies on the existing atomic model to compute the

mask. This in turn implies that any unmodeled (as atoms)

parts of the unit cell are considered to belong to the bulk-

solvent region. This may obscure weakly pronounced features

in residual maps such as partially occupied solvent or ligands.

This is common to all mask-based bulk-solvent modeling

methods, leading to the development of algorithms to account

for missing atoms (Roversi et al., 2000). In the future,

improved maps may be obtained by combining this latter

approach with the new fast overall anisotropic and bulk-

solvent scaling method that we have presented.

The new method is implemented in the cctbx project

(Grosse-Kunstleve et al., 2002) and is used in a number of

PHENIX applications since v.1.8 of the software, most notably

phenix.refine (Afonine et al., 2005b, 2012), phenix.maps and

phenix.model_vs_data (Afonine et al., 2010). The cctbx project

is available at http://cctbx.sourceforge.net under an open-

source license. The PHENIX software is available at http://

www.phenix-online.org.

All results presented are based on PHENIX v.1.8.1.

APPENDIX A
Analytical derivation of a one-Gaussian approximation
of a one-dimensional discrete data set

Our goal is to approximate a set of data points {Y(x)}N
j = 1 with

a Gaussian function,

a expð�bx2Þ: ð50Þ

For this, we use the standard approach of minimizing a least-

squares (LS) function,

research papers

Acta Cryst. (2013). D69, 625–634 Afonine et al. � Bulk-solvent and overall scaling 633

Table 3
Runtime comparison for selected PDB entries.

Absolute runtimes for the new protocol range from a few hundredths of a
second to a second.

PDB
code

Resolution
(Å)

No. of
atoms

No. of
reflections

Speed
gain

1us0 0.66 3679 511265 105
1akg 1.10 136 4471 132
1ous 1.20 3784 104889 86
1yjp 1.80 66 495 64
1f8t 1.95 3593 28288 104
1av1 4.00 6588 16201 110
1jl4 3.99 4474 7428 78
2i07 4.0 12157 20412 126
2gsz 4.2 16344 17131 166

Figure 6
Plots of kmask as a function of resolution (s2) for six selected PDB entries. The blue lines show kmask as determined using the new method. The red lines
show kmask based on the exponential function (10) using optimized ksol and Bsol parameters.



LS ¼
PN
j¼1

½YðxjÞ � a expð�bx2
j Þ�

2: ð51Þ

If Y(xj) � 0 8 xj, j = 1, N, the minimization of LS can be

replaced by the minimization of

LSL ¼
PN
j¼1

fln½YðxjÞ� � ln½a expð�bx2
j Þ�g

2: ð52Þ

The minimum of this LSL function can be determined

analytically,

LSL ¼
PN
j¼1

f½lnðYðxjÞ� � ln½a expð�bx2
j Þ�g

2

¼
PN
j¼1

flnðaÞ � bx2
j � ln½YðxjÞ�g

2: ð53Þ

Defining u = ln(a), vj = xj
2, dj = ln[Y(xj)], we obtain

LSL ¼
PN
j¼1

ðu� bvj � djÞ
2: ð54Þ

The variables {a, b} minimizing the LSL function are deter-

mined by the condition

@LSL

@u
¼ 0

@LSL

@b
¼ 0:

8><>: ð55Þ

This leads to

�2
PN
j¼1

ðu� bvj � djÞ ¼ 0

�2
PN
j¼1

ðu� bvj � djÞvj ¼ 0

8>>><>>>: ð56Þ

and

uN � b
PN
j¼1

vj �
PN
j¼1

dj ¼ 0

u
PN
j¼1

vj � b
PN
j¼1

v2
j �

PN
j¼1

vjdj ¼ 0:

8>>><>>>: ð57Þ

Defining p =
PN

j¼1 dj, q =
PN

j¼1 vj, r =
PN

j¼1 v2
j and s =

PN
j¼1 vjdj,

we obtain

uN � bq� p ¼ 0

uq� br� s ¼ 0

�
ð58Þ

and

u ¼
1

N
ðbqþ pÞ

b ¼
1

r
ðuq� sÞ:

8><>: ð59Þ

From this, we obtain

u ¼
p�

sq

r

N �
q2

r

; b ¼
1

r
uq� sð Þ ð60Þ

and finally

a ¼ expðuÞ; b ¼
1

r
ðuq� sÞ: ð61Þ
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