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Abstract

In this supplement we derive the precision-
recall analysis discussed in the main paper
for the mixture model likelihood (equations
(6)-(7) in Section 2.1 of the main paper).

Consider a query point i, and let the set of its actually
relevant neighbors be Pi. Assume that the user (or the
retrieval model) retrieves a set of points Ri as neigh-
bors based on the visualization. We may assume that
|Pi| ≥ 1 and |Ri| ≥ 1. Assume that the user (or the
retrieval model) places uniform high probabilities rij
across the set of points Ri and very low probabilities
for other points, and assume similarly that the prob-
abilities pij have uniform high values across the set of
points Pi and low values for other points, so that

pij =

{
ai ≡ 1−ε

|Pi| , if j ∈ Pi
bi ≡ ε

N−|Pi|−1 , otherwise (1)

rij =

{
ci ≡ 1−ε

|Ri| , if j ∈ Ri
di ≡ ε

N−|Ri|−1 , otherwise (2)

where ε is a very small positive number and N − 1 is
the total number of points other than i.

The log-likelihood of our mixture model for a single
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query point i can then be written as

L(i) =
∑
j 6=i

pij log qij =
∑
j 6=i

pij log
(
rij + γpij

1 + γ

)
= − log(1 + γ) +

∑
j 6=i

pij log(rij + γpij)

= − log(1 + γ) +
∑

j 6=i, j∈Pi∩Ri

ai log(ci + γai)

+
∑

j 6=i, j∈Pi∩Rc
i

ai log(di + γai)

+
∑

j 6=i, j∈P c
i ∩Ri

bi log(ci + γbi)

+
∑

j 6=i, j∈P c
i ∩Rc

i

bi log(di + γbi) (3)

where Rci and P ci denote complements of Ri and Pi.

Denoting the number of true positives by NTP,i = |Pi∩
Ri|, the number of false positives by NFP,i = |Ri∩P ci |,
the number of misses by NMISS,i = |Pi ∩Rci | and the
number of true negatives by NTN,i = |P ci ∩ Rci |, the
log-likelihood becomes1

1We assume |Pi| < N−1 and |Ri| < N−1. The special
cases where |Pi| = N−1 or |Ri| = N−1 are briefly treated
at the end of the proof, yielding the same results.
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L(i) = − log(1 + γ) +NTP,i · ai log(ci + γai)
+NMISS,i · ai log(di + γai)

+NFP,i · bi log(ci + γbi) +NTN,i · bi log(di + γbi)

= − log(1 + γ) +NTP,i
1− ε
|Pi|

log
(

1− ε
|Ri|

+ γ
1− ε
|Pi|

)
+NMISS,i

1− ε
|Pi|

log
(

ε

N − |Ri| − 1
+ γ

1− ε
|Pi|

)
+

NFP,i · ε
N − |Pi| − 1

log
(

1− ε
|Ri|

+ γ
ε

N − |Pi| − 1

)
+

NTN,i · ε
N − |Pi| − 1

log
(

ε

N − |Ri| − 1
+ γ

ε

N − |Pi| − 1

)
.

(4)

Rearranging terms, and noting that NTP,i+NMISS,i =
|Pi|, equation (4) becomes

L(i) =
NTP,i
|Pi|

(1− ε) log
(

(1− ε)
(

1
|Ri|

+
γ

|Pi|

))
+
|Pi| −NTP,i
|Pi|

(1− ε) log
(
γ(1− ε)
|Pi|

+
ε

N − |Ri| − 1

)
+

NFP,i
N − |Pi| − 1

ε log
(

1
|Ri|

+ ε

(
γ

N − |Pi| − 1
− 1
|Ri|

))
+

NTN,i
N − |Pi| − 1

[
ε log ε

+ ε log
(

1
N − |Ri| − 1

+
γ

N − |Pi| − 1

)]
− log(1 + γ) . (5)

If ε is close enough to zero, only the first two lines
on the right-hand side (arising from true positives and
misses) contribute strongly to the cost function. The
term − log(1 + γ) is constant with respect to the vi-
sualization neighborhood Ri and all other terms are

negligible in magnitude. We can thus write

L(i) ≈ − log(1 + γ)

+
NTP,i
|Pi|

(1− ε) log
(

(1− ε)
(

1
|Ri|

+
γ

|Pi|

))
+
|Pi| −NTP,i
|Pi|

(1− ε) log
(
γ(1− ε)
|Pi|

+
ε

N − |Ri| − 1

)

= − log(1+γ)+
NTP,i
|Pi|

(1−ε) log

 (1− ε)
(

1
|Ri| + γ

|Pi|

)
γ(1−ε)
|Pi| + ε

N−|Ri|−1


+ (1− ε) log

(
γ(1− ε)
|Pi|

+
ε

N − |Ri| − 1

)

= − log(1+γ)+
NTP,i
|Pi|

(1−ε) log

 |Pi|
|Ri| + γ

γ + ε
1−ε ·

|Pi|
N−|Ri|−1


+ (1− ε) log

(
γ(1− ε)
|Pi|

+
ε

N − |Ri| − 1

)
. (6)

Note that NTP,i/|Pi| = recall. We also note
that when NTP,i > 0, we have |Pi|/|Ri| =
(NTP,i/|Ri|)(|Pi|/NTP,i) = precision/recall, and
|Pi|/(N − |Ri| − 1) = ((N − 1)/|Pi| − |Ri|/|Pi|)−1 =
(a− recall/precision)−1 where a = (N − 1)/|Pi|. The
right-hand side of equation (6) can then be written as

− log(1 + γ)

+ recall · (1− ε) log

 precision
recall + γ

γ + ε
1−ε ·

(
a− recall

precision

)−1


+ (1− ε) log

(
γ(1− ε)
|Pi|

+
ε

N − |Ri| − 1

)
= − log(1 + γ)

+recall · (1− ε) log

(precisionrecall + γ
) (
a− recall

precision

)
γ
(
a− recall

precision

)
+ ε

1−ε


+ (1− ε) log

(
γ(1− ε)
|Pi|

+
ε

N − |Ri| − 1

)
≈ − log(1 + γ)

+ recall · log

(precisionrecall + γ
) (
a− recall

precision

)
γ
(
a− recall

precision

)
+ ε

1−ε


+ (1− ε) log

(
γ(1− ε)
|Pi|

+
ε

N − |Ri| − 1

)
(7)

which corresponds to equation (6) in the main paper
since − log(1 + γ) is a constant. If ε is much smaller
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than γ, equation (7) simplifies to

L(i) ≈ − log(1 + γ)

+ recall · log

(precisionrecall + γ
) (
a− recall

precision

)
γ
(
a− recall

precision

)


+ (1− ε) log
(
γ(1− ε)
|Pi|

)
= const.+ recall · log

(
1 +

1
γ
· precision

recall

)
(8)

which is the result in the main paper (equation (7) in
the main paper).

On the other hand, if γ is much smaller than ε, equa-
tion (7) instead simplifies to

L(i) ≈ − log(1 + γ)

+ recall · log

(precisionrecall + γ
) (
a− recall

precision

)
ε

1−ε


+ (1− ε) log

(
ε

N − |Ri| − 1

)
= const.+ recall · log

(
precision

recall
+ γ

)
+ recall · log

(
a− recall

precision

)
+ recall · log

(
1− ε
ε

)
+ (1− ε) log ε− (1− ε) log (N − |Ri| − 1)

≈ const.+ recall · log
(

1− ε
ε

)
= const.+ recall · const. (9)

where the approximation on the second-to-last line fol-
lows because the term recall · log ((1− ε)/ε) dominates
all other terms except (1−ε) log ε which is constant. At
this extreme, maximization of the cost function sim-
ply becomes maximization of recall, which is the same
result as what we obtained for the cost function of
stochastic neighbor embedding (in equation (3) in the
main paper).

Special case 1. In the special case where |Pi| =
N −1 and |Ri| < N −1, we set ai = 1/|Pi| and bi = 0.
From |Pi| = N − 1 it follows that NFP,i = NTN,i = 0.
The last two sums on the right-hand side of equation

(3) are then left out, and equation (3) becomes

L(i) = − log(1 + γ) +NTP,i · ai log(ci + γai)
+NMISS,i · ai log(di + γai)

= const.+NTP,i · ai log(ci + γai)
+NMISS,i · ai log(di + γai)

= − log(1 + γ)

+
NTP,i
|Pi|

log

 |Pi|
|Ri| + γ

1−ε
γ

1−ε + ε
1−ε ·

|Pi|
N−|Ri|−1


+ log

(
ε

N − |Ri| − 1
+

γ

|Pi|

)
(10)

where the right-hand side follows by rearranging
terms. The right-hand side is nearly the same as the
right-hand size of (6); when ε is much smaller than γ
the above becomes

L(i) ≈ const.+ NTP,i
|Pi|

log

 |Pi|
|Ri| + γ

γ

+ log
(

γ

|Pi|

)

= const.+ recall · log
(

1 +
1
γ
· precision

recall

)
(11)

which is the same result as in the general case.

Special case 2. In the special case where |Pi| <
N − 1 and |Ri| = N − 1, We set ci = 1/|Ri| and
di = 0. From |Ri| = N − 1 it follows that NMISS,i =
NTN,i = 0. The second and fourth sums on the right-
hand side of equation (3) are then left out, and the
equation becomes

L(i) = − log(1 + γ) +NTP,i · ai log(ci + γai)
+NFP,i · bi log(ci + γbi)

= − log(1 + γ) +NTP,i
1− ε
|Pi|

log
(

1
|Ri|

+ γ
1− ε
|Pi|

)
+

NFP,i · ε
N − |Pi| − 1

log
(

1
|Ri|

+ γ
ε

N − |Pi| − 1

)
(12)

which for small ε becomes

L(i) ≈ − log(1 + γ) +
NTP,i
|Pi|

(1− ε)

[
log(1− ε)

+ log
(

1
|Ri|

+
γ

|Pi|

)]

≈ − log(1 + γ) +
NTP,i
|Pi|

log
(

1
|Ri|

+
γ

|Pi|

)
(13)
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Since |Ri| = N − 1 we also have NTP,i = |Pi| and the
above becomes

L(i) ≈ − log(1 + γ) +
NTP,i
|Pi|

log
(

1
|Ri|

+
γ

|Pi|

)
+
NTP,i
|Pi|

(
log
(

γ

|Pi|

)
− log

(
γ

|Pi|

))
= − log(1 + γ) +

NTP,i
|Pi|

log
(
|Pi|
|Ri|

1
γ

+ 1
)

+
|Pi|
|Pi|

log
(

γ

|Pi|

)
= − log(1 + γ) + recall · log

(
precision

recall

1
γ

+ 1
)

+ log
(

γ

|Pi|

)
= const.+ recall · log

(
1 +

1
γ
· precision

recall

)
(14)

which is the same result as in the general case.

Special case 3. In the special case where |Pi| =
|Ri| = N − 1, we set ai = 1/|Pi|, ci = 1/|Ri| and
bi = di = 0. From |Pi| = |Ri| = N − 1 it follows that
NMISS,i = NFP,i = NTN,i = 0. The second, third,
and fourth sums on the right-hand side of equation
(3) are then left out, and we have

L(i) = − log(1 + γ) +NTP,i · ai log(ci + γai)

= − log(1 + γ) +
NTP,i
|Pi|

log
(

1
|Ri|

+
γ

|Pi|

)
(15)

which is the same as the right-hand size of (13), and
the analysis then proceeds in the same way as in Spe-
cial case 2, again yielding the same result as in the
general case.


