
A MODULAR APPROACH TO DEVELOP STANDARDIZED HVAC

CONTROL SYSTEMS WITH UNICOS CPC FRAMEWORK

W. Booth, B. Bradu, E. Blanco, M. Quilichini, M. Bes, M. Zimny, R. Barillere,

CERN, Geneva, Switzerland

Abstract

At CERN there are currently 200 ventilation air handling

units in production, used in many different applications,

including building ventilation, pressurization of safe

rooms, smoke extraction, pulsion/extraction of

experimental areas (tunnel, cavern, etc.), and the

ventilation of the computing centre. The PLC applications

which operate these installations are currently being

revamped to a new framework (UNICOS CPC [1]). This

work began 3 years ago, and we are now in a position to

standardize the development of these HVAC applications,

in order to reduce the cost of initial development (including

specification and coding), testing, and long-term

maintenance of the code. In this paper we will discuss the

various improvements to the process, and show examples,

which can thus help the community develop HVAC

applications. Improvements include templates for the

"Functional Analysis" specification document,

standardized HVAC devices and templates for the PLC

control logic, and automatically generated test

documentation, to help during the Factory Acceptance Test

(FAT) and Site Acceptance Test (SAT) processes.

OVERVIEW

The development of an HVAC (Heating, Ventilation and

Air Conditioning) control system follows a standard

development cycle including data gathering, requirements

specification, application development, implementation,

and testing, as outlined below.

DATA GATHERING

The data gathering process collects information on the

hardware that is, or will be, on-site. The process control

overview is shown in the Process & Instrumentation

Diagram (P&ID), see Figure 1. The electrical wiring

diagram provides the information on the specific signals

available in the PLC. Early on in the migration of cooling

and ventilation applications to the UNICOS CPC (Unified

Industrial Control System: Continuous Process Control)

framework, a standard input/output (IO) list format was

adopted, which provides all the pertinent information

regarding the IO (e.g. unit name, unit number, actuator,

position, hardware type, address, etc), based on the

electrical wiring diagram, in a convenient form (Excel

spreadsheet), see Figure 2. These two documents form the

initial inputs for the control system design and

requirements specification.

.

Figure 1: Example Process and Instrumentation

Diagram (P&ID)

Figure 2: Example IO list format

REQUIREMENTS SPECIFICATION

The requirements of the control system are specified in

the functional analysis (FA) document, which defines the

functional breakdown of the control system into a

hierarchy of individual units as specified in IEC 61512-1

or ANSI/ISA S88 [2]. After 3 years development of

Ventilation plants, many different variations were found.

Therefore, an analysis of the various ventilation control

systems revealed that they are based on two key features:

the Stepper (i.e. the state diagram) governing the operation

of the individual unit, see Table 1, and the type of

temperature regulation, see Table 2.

Unit Name UAPQ

Unit Number 481_1

Actuator UMRM

Position B04

Generic Name UBLP

Special Name

Description

DAMPER POSITION

EXTERNAL AIR 1

UVUM_B04_481.1

GMAO

Remarks Attention [2 10] V

Hard. Type [0 10] V

Address PIW128

Range Min 0

Range Max 100

Unit %

DeviceIdentification

DeviceDocumentation

FEDeviceIOConfig

FEDeviceParameters

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF094

Software Technology Evolution

ISBN 978-3-95450-148-9

919 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Overview of AHU Steppers

The result of the analysis of the variation of steppers

among the existing applications is shown in Table 1. This

demonstrates that 2/3 of the applications can be classified

as type 1 through 4. As a result of this analysis, the standard

requirements for type 1 through 4 were captured, as a

template, that the designer can then use to create FAs in the

future.

Table 1: AHU Stepper Type Summary

AHU

stepper

Description #

Type0 No stepper 1

Type1 Start-Up phase 26

Type2 Start-Up+Post-Ventilation 8

Type3 Cold-Start-Up+Post-Ventilation 10

Type4 Post-Ventilation 2

Specific x 21

The template specification includes the state diagram, or

stepper, an example of which is shown in Figure 3, as well

as the definition of the operating states, and the table of

actuator behaviour, as well as standard interlocks for the

unit and the equipment.

Figure 3 : State diagram for 'Type 2' AHU

Overview of Types of Temperature Regulation

The second key feature of a ventilation control system is

the type of temperature regulation. After analysing the

applications which have been deployed, it was found that

2/3 can be classified into a few different types, thus

allowing us to standardize the implementation.

Table 2: Temperature Regulation Summary

Regulation Description #

Type0 No Temperature regulation 7

Type1 1 Cascade for Ambient+Supply

with split range with set point

filtering on ambient

19

Type2 1 Single Loop for Supply 8

Type3 Type 1 + De-humidification on

cooling valve

14

Type4 3 cascades in parallel for supply 1

Type5 3 single loops in parallel for

supply

2

Specific x 17

IMPLEMENTATION

Once the requirements for the ventilation control system

have been clearly specified in the Functional Analysis

document, the development phase starts. Normally this

phase of the project can take up to 4 weeks, depending on

the complexity of the project.

The first phase is building the UNICOS CPC

specification (spec) defining all the objects in the control

system, beginning with the Ventilation Spec Tool as

described in the next section.

The next phase is creating the specific logic for the

various equipment, per the requirements.

Finally, the PLC program is tested in various phases,

initially in simulation on a real PLC in the lab, Factory

Acceptance Testing (FAT) and finally on site on the real

PLC, Site Acceptance Testing.

Spec Creation with Ventilation Spec Tool

Based on the IO list mentioned above, a tool called the

Ventilation Spec Tool has been developed. It takes an IO

list and creates an initial version of the UNICOS CPC

specification (spec) which defines all the devices in the

control system. Note, this is very similar to the Cooling

Spec Tool, see [3], except it accounts for the unique naming

convention employed in Ventilation systems.

Completing the UNICOS CPC Spec

Once the user has an initial version of the specification,

the control engineer completes it by hand, with the control

devices needed for the project. These comprise interlocks,

regulation loops, operator parameters and calculations, as

specified in the Functional Analysis. This is one of the

most tedious parts of the control development. There are a

few possible ways of automating this, none of which are

entirely flawless. The interlocks/alarms could be generated

directly from the Functional Analysis, but this is not perfect

because of the lack of formal language and signal names

which do not match the IO list. Alternatively, a predefined

STOP

FAULT

RUN

OPEN

DAMPERS

POST

VENT

START

FAN

WEPGF094 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

920C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

list of alarms for a given equipment could be an alternative,

but this tends to be incomplete because the alarms at the

unit level (i.e. the master of a group of actuators) cannot be

easily generalized.

Once the user has a completed version of his

specification, he can then generate all the instances and

standard logic for the PLC and create a preliminary version

of the control code.

Logic Development Using User Templates

The next step is to create specific logic for the individual

units and actuators, based on the requirements. In the

baseline UNICOS CPC framework, all 'user defined logic'

is, as the name implies, left up to the user to define, either

in the IDE (Integrated Development Environment)

provided by the PLC supplier (either Unity for Schneider

PLCs or Step-7 for Siemens PLCS), or by means of

'templates', which allow more advanced programming

capabilities of the PLC logic by means of the use of

scripting languages such as Python. However, these

templates are completely open for the user to create. In the

case of the cooling and ventilation applications, this open

approach, resulted in each programmer (there have been up

to 10 individuals programming cooling and ventilation

PLC applications over the last 3 years) adopting his own

approach and the code was somewhat heterogeneous, and

more difficult to maintain as a result.

Therefore, more recently, new templates have been

adopted for each given type of UNICOS CPC field object.

The advantages of these new user templates is shown in

Figure 4. They include standard implementations of the

various features needed to program ventilation units. For

example, work time counters, and "anti restart" protection,

which ensures that an equipment cannot be turned back on

immediately after being switch off, to avoid overheating.

The programmer just has to enable a feature by adding a

keyword to his specification file, and in some cases

providing a few additional UNICOS objects for storing

counters, or temporary variables. This avoids unnecessary

work and programming errors; once you have defined a

given function, it can easily be re-used elsewhere.

Figure 4: Advantages of new user templates

In addition, the templates make it simple to specify the

operation of equipment as a function of the stepper state.

As explained above, a significant piece of the functional

design, is the state machine for a given unit. Each state has

a name, and using the HVAC templates, it is easy to specify

in which state a valve should be open or closed, or in which

state a fan should be regulating, or at a fixed speed. This

connects the programming with the functional

specification, and therefore simplifies the overall

complexity of the system.

In the future generating the initial logic directly from the

Functional Analysis could be possible, once a formal way

for designers to specify their requirements is available.

SCADA Synoptics

The final step before testing is the development of

SCADA synoptic views, using Siemens WinCC OA, the

standard solution adopted at CERN. The synoptics are

developed based on the P&ID following internal standards,

with additional input from the operators where necessary.

The process of generating synoptics from the P&ID could

be automated now that the P&IDs are being developed in

more modern tools.

In the majority of cases, there is a requirement to develop

a local operation facility based on industrial touch panels.

The constraint is 100% availability, as the user needs to

operate the plant on-site even in the case that network

access is not available. This represents significant

additional effort and it would be preferable to generate

these touch panel views directly from the WinCC OA

synoptics, but this is currently not possible.

TESTING

Once the PLC control system logic is implemented and

the SCADA synoptics created, the test phase starts. First in

a simulation in a lab PLC, a static simulation is built, using

a custom-made PLC function to simulate the IO of the

actual hardware. This involves modifying the PLC code

slightly in order to wrap-around the actuator outputs to the

actuator inputs, with some simple dynamics. Also

normally-closed fault inputs are artificially forced, and

delays are added to other inputs (pressure and flow

switches, etc.) as a crude approximation of the dynamics of

the installation.

Once a working simulation is built and the code is loaded

on a PLC in the lab (this is quick and can be done in less

than an hour) the Factory Acceptance Testing using the

FAT commissioning file as outlined below is started.

FAT / SAT Commissioning File

During the design, development and test process, the

amount of time testing and that of implementing the

requirements are approximately the same. Therefore, it is

imperative that an exhaustive test document is established,

which covers all the requirements. Thus a commissioning

file for use during Factory Acceptance Testing (FAT) in the

lab and Site Acceptance Testing (SAT) on-site is generated.

This file gives an overview of the application, including all

inputs/outputs (IO), all actuators (including the

parameterization, if any), all parameters which can be

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF094

Software Technology Evolution

ISBN 978-3-95450-148-9

921 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

modified during plant operation, a list of all the alarms

which are sent to the CERN control centre (CCC), as these

will be visible to the operators who monitor these

applications 24/7, and a list of all the regulation loops.

Also, broken down by individual unit of operation (for

example, an extraction unit), this file includes the list of

alarms, see Figure 5, the stepper states, the various

actuators, the parameters, and the commands, and where

possible a comparison of the AF requirement against the

actual code implementation (a traceability matrix). Thus

the tester (who in most cases is someone other than PLC

programmer) can easily navigate the various pieces of the

program, in order to test, validate, and ensure compliance

with the high-level functional requirements.

Figure 5: Example of an alarm for a particular unit, with

requirements, completed during FAT testing

In addition, the stepper is extracted from the code and

displayed visually, in an automated way, in order to

validate the implementation against the requirement. This

was previously not possible without manually opening

each stepper in the suppliers’ IDE.

In fact, this commissioning file can be used for any

UNICOS-CPC PLC program, and is delivered with the

UNICOS-CPC resource package, but it has been developed

in close collaboration with the Cooling and Ventilation

group, based on their significant testing expertise

developed during the migration of their old PLC

applications to the UNICOS-CPC framework.

HVAC FOR LHC SURFACE BUILDINGS

For the renovation of the LHC surface building

ventilation systems, the control systems of 20 surface

ventilation buildings will be re-engineered, beginning with

those which contain the surface cryogenics installations.

In order to expedite the control system development, a

generic control system and applicable set of templates were

developed. These are used to generate the 7 similar

installations by replacing generic names with the specific

installed equipment codes. This approach ensures that all

the control systems are alike, and significantly reduces the

time it takes to develop each application. This approach

works well for applications which are identical. However,

the remaining 13 surface installations, which will be

completed in 2016, are slightly different and thus the

current approach will have to be adapted. In general, over

the past 3 years we have commissioned ~60 ventilation

applications, and during the next 5 years, we expect to

commission a further ~100, and hopefully these

improvements will significantly reduce the development

effort.

CONCLUSION

A noticeable improvement of the process of developing

HVAC control systems with the UNICOS CPC framework

has been done. This comprises improved templates for

creating the requirements (Functional Analysis),

implementing the PLC code (using user templates), and

testing (using the commissioning file). However, there is

still room for improvement such as enhancing the process

to automatically generate more code, directly from the

requirements if possible, and generate the SCADA

synoptics directly from the P&IDs. Also the IO list could

be generated automatically from the wiring diagram itself,

thus simplifying the design process yet further. With these

additional improvements, coding errors would be

drastically reduced, and the effort required to develop the

control system minimized.

ACKNOWLEDGMENT

We would like to thank the CERN Cooling and

Ventilation (EN-CV) group and specially the operation and

control teams for working closely with us over the last few

years and sharing their control system expertise, in order to

improve our development process.

REFERENCES

[1] B. Fernandez et al., UNICOS-CPC6: Automated code

generation for process control applications”

ICALEPCS’11, Grenoble, October 2011.

[2] IEC 61512-1 or ANSI/ISA S88. Batch Control - Part

1: Models and terminology. 1995.

[3] B. Bradu et al., “Re-engineering Controls Systems

Using Automatic Generation Tools and Process

Simulation: The LHC Water Cooling Case”,

THPPC076, ICALEPCS’13, San Francisco, USA

(2013)

Name UAPQ_481_AL6

Description PROBLEME TEMPS D'OUVERTURE REGISTRES

FA Condition Open Dampers Delay 180 s

Code Condition

(for reference only)

DB_GRAPH_UAPQ.OPEN_DAMPERS_AR.X OR

DB_GRAPH_UAPQ.OPEN_DAMPERS_AN.X

Type FS

Master UAPQ_481

Folio 4.10

Threshold

Delay UAPQ_481_AL6Dt

CCC Alarm UAPQ_481_CCC_MAJ

Alarm activation OK

Alarm Action OK

Date 22/05/2015

Responsible

Remarks

WEPGF094 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

922C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Software Technology Evolution

