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Abstract 
The automation infrastructure needed to reliably run 

CERN's accelerator complex and its experiments 
produces large and diverse amounts of data, besides 
physics data. Over 600 industrial control systems with 
about 45 million parameters store more than 100 terabytes 
of data per year. At the same time a large technical 
expertise in this domain is collected and formalized. The 
study is based on a set of use cases classified into three 
data analytics domains applicable to CERN's control 
systems: online monitoring, fault diagnosis and 
engineering support. A known root cause analysis 
concerning gas system alarms flooding was reproduced 
with Siemens' Smart Data technologies and its results 
were compared with a previous analysis. The new 
solution has been put in place as a tool supporting 
operators during breakdowns in a live production system. 
The effectiveness of this deployment suggests that these 
technologies can be applied to more cases. The intended 
goals would be to increase CERN's systems reliability and 
reduce analysis efforts from weeks to hours. It also 
ensures a more consistent approach for these analyses by 
harvesting a central expert knowledge base available at all 
times. 

INTRODUCTION 

CERN employs about 600 industrial Supervisory 

Control and Data Acquisition (SCADA) systems for the 

supervision and monitoring of its accelerators, detectors 

and infrastructure machines. While the day-to-day 

operations are running smoothly, a growing need 

appeared to exploit the data generated by these 

applications. Indeed, collectively they produce more than 

100 terabytes of control data over 45 million parameters. 

The gathered data could be seen as a deep reflection of 

the current state of the processes under control. A lot of 

information about the performance, stability and overall 

behaviour of the machines resides within these data. 

Today, an expert can manually follow the signals deemed 

important and apply his/her knowledge to maintain a 

good level of service. However, current tools for 

industrial control systems are not properly designed for 

doing such dedicated analysis. The external analysis tools 

used today are not well integrated with the operator 

applications. Moreover the size and complexity of some 

systems does not allow running advanced data analytics 

methods in normal office computers. In addition, this way 

of working is a non-sense for analyses that have to be part 

of the operational tools themselves. Lastly, while the 

experts are knowledgeable about their domain, they are 

not properly skilled to perform these data analysis or 

computing problems tasks. 

In this context, formalizing expert knowledge means 

capturing the methods and knowledge used by experts 

and transforming them into analyses that can be scaled 

out to all similar systems without burdening the users 

with a vast amount of manual operations to carry out. 

From a computer science point of view, this problem is 

part of the Data Analytics, or Big Data, field which 

combines technologies for processing vast amount of data 

carrying out analytical tasks tailored in our case to 

industrial control system needs 

Once an analysis can be applied to solve a control 

problem, it becomes part of the control system itself 

making possible to raise awareness of operators on 

specific issues from the supervision application they are 

accustomed to. 

This paper will present the knowledge capture and the 

methods used to detect specific conditions traditionally 

done "by hand" (exporting data, importing them into a 

spreadsheet software or writing an adhoc script) or by 

looking at trends. Then, we discuss briefly their 

implementation as analytics tools that were then scaled 

out and applied automatically with the help of readily 

available software solutions. 

CONTROL SYSTEM DATA ANALYSIS 

Control systems play an essential role to run the CERN 

accelerators complex and generate a huge amount of data 

that can be used to analyse the behaviour of these systems 

and to find insights useful to operators and experts. The 

data analytics activities have been divided into three 

different categories:  Online monitoring  Fault diagnosis  Engineering design 
These three families of analysis focus on control data to 

offer analytical services as added value on top of the 

traditional industrial services. 

Online Monitoring 
Currently the monitoring and operation of CERN 

industrial systems is – for most parts – achieved through 

the deployment of specific applications based on the 

commercial SCADA software WinCC Open Architecture 

[1]. 

Therefore, these data analytics activities aim to add new 

features and services to this monitoring layer. This close 

integration allows reaching a high level of automation 
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necessary to provide both real-time and historical 

information on their performances. 

Events Threshold Learning Analysis 
Most events produced by the control systems are 

already filtered out and only the most relevant are 

checked by the operators in order to take appropriate 

actions. Nevertheless, the rejected events that cannot be 

handled manually may contain valuable insight on the 

status of the running systems [2]. 
The main objective here was to analyse these hidden 

data to provide operators with valuable information 

improving their understanding of the systems. 

An online analysis system - based on Complex Event 

Processing (CEP [3]) engines - has been designed and 

developed to continuously collect events generated by 

each device. These messages have been clustered by type 

to avoid replicas and to produce structured data 

 Then, the generated data stream has been parsed by an 

online learning algorithm in order to discover behavioural 

patterns [4][5]. 

Specifically, the analysis goes through two different 

steps. Firstly, the stream of events is used to learn the 

amount of messages produced by single devices in normal 

conditions. Secondly, the algorithm uses the learnt 

behaviours to detect anomalies [6], with the assumption 

that faults in the system would result in the generation of 

an increasing number of messages (as shown in Fig. 1).  

 
Figure 1: Cumulative alarms number and learnt threshold. 

 

The nature of CERN systems, continuously updated 

both in hardware and software, imposes that the learning 

phase runs continuously, trying to detect new behaviours. 

Signal Oscillation Analysis of the LHC 
Cryogenics System 

The signal oscillation detection analysis [7] represents a 

second example of online monitoring activity [8]. Unlike 

the previous scenario where textual events were analysed, 

this time it makes use of numerical data (such as pressure 

values or valve position). The analysis can be applied to 

any control system where signal oscillation detection [9] 

is of interest. 

For instance, in the cryogenics systems several 

abnormal behaviours have been identified by inconsistent 

sensor readings when the system was running smoothly. 

In this specific analysis the attention was focused on the 

detection of the oscillation of control valves. Under 

nominal conditions the process values oscillate, causing 

the valves to open or to close as expected. However, for 

various reasons these valves may start oscillating with an 

unexpected frequency or amplitude causing hardware 

damage. 

The developed algorithm follows the analysis flow 

shown in Fig. 2. It consists first in a univariate signal 

analysis with a sliding time window. Then, the discrete 

Fourier transform is calculated to detect possible peaks in 

the spectrum [10][11][12] comparing each component 

against a given threshold. This threshold is calculated on 

the base of expert knowledge with a shape of a 

logarithmic function, which best fits the frequencies 

component amplitudes.  

 

 

Figure 2: Analysis flow of the oscillation detection 
algorithm on a sample signal.  

To verify it the initial signal is given as input to a band 

pass filter built on the previously discovered candidate 

frequencies. The frequencies that have passed the 

precedent conditions are further analysed. A zero-crossing 

analysis [13] is applied to the demeaned version of the 

filtered signal to check the presence of oscillations. This 

condition is verified if the number of zero-crossing is 

higher than a parameterised threshold, the zero-crossing 

rate. This rate is proportional to the frequency under 

analysis: lower frequencies will be associated to lower 

zero-crossing rates. As a final step the regularity of both 

the oscillation period and amplitude is checked by 

comparing the standard deviation of the period/amplitude 

with its mean. After an initial tuning the above algorithm 

has been able to detect the presence of multiple 

oscillations [14] and found their relative oscillation 

periods by recognizing regular patterns in the analysed 

data.  

Parallelization of the Control Analysis  
The huge amount of data produced by the CERN 

control systems will make necessary to run the developed 

algorithms against a large dataset of control signals and 
events. A cluster-based computing approach would be 

able to handle the enormous computation needs. This is 

the reason why a Docker-based cluster solution has been 

designed to parallelize the execution of such algorithms, 

showing the positive benefits of scaling the analysis 

across multiple nodes. Moreover, the lightweight 

portability of Docker containers minimizes the 

deployment issues linked to differences in execution 

environments. 
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Fault Diagnosis 
This category includes the activities which perform an 

analysis posteriori to a fault occurrence. Therefore, it 

mainly aims at finding out the possible reasons for 

malfunctions looking into historical data. However, due to 

the complexity of the analysed systems it is generally not 

possible to identify the real initial cause factors. 

Nevertheless, it is necessary to reach a convenient degree 

of accuracy (diagnostic resolution) to which faults origin 
can be located to guide operators to relevant 

events/anomalies which need to be further investigated. 

As an example of this analysis category the GAS system 

alarms avalanche is presented. 

Use Case: Gas System Alarms Avalanche 
Supervision systems trigger alarms when process 

variables are out of their acceptable ranges. Alarms are 

the visible symptoms of an anomaly that may have 
occurred even several hours before, but they do not 

pinpoint to the exact root cause of the problem. 

When a fault appears many alarms and events are 

raised rapidly by the system due to interaction between 

the different sub-systems. Moreover, the 1st raised alarm 

is not necessarily the most relevant to identify the root 

cause of the problem. Thus, alarm and event sequences 

must be analysed in depth by the operators to deduce a 

correct diagnosis before taking the appropriate actions 

[15]. This flood of information often overloads operators, 

generated by slowing down the diagnosis process.  

Our analysis consists of a fault isolation method based 

on event pattern matching. As initial step all the events 

generated by specific faults are collected. These 

information are then processed to detect events that were 

always present in a specific fault list, even with different 

orders. As a last step, these fault signatures are injected 

into an expert knowledge database which can be used to 

detect occurrences of similar faults in the future (Fig. 3). 

It must also be pointed out that the method proposed here 

is quite generic and not dedicated to a specific process. 

For the purpose of this work a simulator has been used to 

replicate the faults and extract accordingly the generated 

event list. 

 

 
 

Figure 3: Analysis flow of the gas system alarms. 

Engineering Design 
The last family of activities is related to the analysis of 

historical data to draw conclusions about systems 

behaviour. The results can then help engineers to optimize 

specific system aspects like control regulation, 

parameterisation, or even drive the design of new parts of 

a system. Several use-cases, such as the analysis of 

historical data related to the CERN electric network 

which belong to this category, are under investigation and 
their results will be published later. Then, future 

consumption of different CERN areas can be predicted 

according to external factors like the accelerators 

schedule, weather conditions, technical interventions, and 

so on.  

CONCLUSION 

The control system of a facility produces a large 

amount of data and the regular extraction of insights from 

these data is a burdening task for experts, especially in the 

context of a very large and complex machine. 

Capturing expert knowledge and formalizing how it can 

be used to deter issues is a first and essential step to 

provide assisting tools. 

Once an abstract knowledge is converted into a tool it 

can be connected to the control system. This tool allows 

automation of advanced monitoring and pre-emptive 

maintenance, tasks that were previously triggered mostly 

by manual operators and experts actions. It helps them to 

look for abnormal conditions leveraging both their 

knowledge and scalable computing resources. It increases 

efficiency and availability of a machine, and lowers risks 

of disastrous events. 

Knowledge capture and analysis is not always a 

straightforward task. Firstly, the expert needs a good 

understanding of the potential of an analysis tool in order 

to express problems that are addressable. Then, a 

mathematical approach is needed to transform a problem 

statement into a program able of discovering the actual 

issues from the data. Also, often an intermediate data 

science expert is needed as the machine experts are not 

fluent in the data analysis tools available at hands. 

In addition, the set of available data analysis tools is 

limited by the interoperability capabilities of industrial 

control systems. These tools also have to be a good match 

for computing parallelisation frameworks. This includes 

the capacity of their algorithms to be parallelised, as well 

as for the software itself to be scheduled in a greater 

infrastructure. 

Despite these limitations we have seen that these 

projects led to improved confidences into analyses on 

control systems. Involving machine experts for their 

knowledge is a prerequisite. Naïve approaches such as 

large-scale cross-correlations are not enough to extract 

meaningful insights. Further work is planned on different 

use cases of online monitoring, fault diagnosis and 

engineering design. 

Furthermore, to address these limitations, we plan to 

provide a data analysis service (DAaaS) adapted to 
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control systems needs and their classical infrastructure, 

available to the experts directly. 
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