Proceedings of ICALEPCS2015, Melbourne, Australia

MOPGEF025

ENHANCING THE DETECTOR CONTROL SYSTEM OF THE CMS
EXPERIMENT WITH OBJECT ORIENTED MODELLING

R. Jiménez Estupinan, A. Andronidis, T. Bawej, O. Chaze, C. Deldicque, M. Dobson, A. Dupont,
D. Gigi, F. Glege, J. Hegeman, M. Janulis, L. Masetti, F. Meijers, E. Meschi, S. Morovic,
C. Nunez-Barranco-Fernandez, L. Orsini, A. Petrucci, A. Racz, P. Roberts, H. Sakulin, C. Schwick,
B. Stieger, S. Zaza (CERN, Geneva, Switzerland), U. Behrens (DESY, Hamburg, Germany),
O. Holme (ETH Zurich, Switzerland), J. Andre, R. K. Mommsen, V. O’Dell
(Fermilab, Batavia, Illinois, USA), Petr Zejdl (Fermilab, Batavia, Illinois; CERN, Geneva),
G. Darlea, G. Gomez-Ceballos, C. Paus, K. Sumorok, J. Veverka
(MIT, Cambridge, Massachusetts, USA), S. Erhan (UCLA, Los Angeles, California, USA),
J. Branson, S. Cittolin, A. Holzner, M. Pieri (UCSD, La Jolla, California, USA)

Abstract

WinCC Open Architecture (WinCC OA) is used at
CERN as the solution for many control system
developments. This product models the process variables
in structures known as datapoints and offers a custom
procedural scripting language, called Control Language
(CTRL). CTRL is also the language to program
functionality of the native user interfaces (UI) and is used
by the WinCC OA based CERN control system
frameworks. CTRL does not support object oriented (OO)
modelling by default. A lower level OO application
programming interface (API) is provided, but requires
significantly more expertise and development effort than
CTRL. The Detector Control System group of the CMS
experiment has developed CMSfwClass, a programming
toolkit which adds OO behaviour to the datapoints and
CTRL. CMSfwClass reduces the semantic gap between
high level software design and the application domain. It
increases maintainability, encapsulation, reusability and
abstraction. This paper presents the details of the
implementation as well as the benefits and use cases of
CMSfwClass.

INTRODUCTION

The Detector Control System (DCS) applications of the
CMS experiment are written with WinCC OA, mostly
using the native CTRL language with the process variables
being modelled in tree-like data structures, called
datapoints. Datapoints are the default persistence layer and
they are used by the runtime database to hold the process
variables. CTRL language does not include a type
definition syntax to declare and manipulate new structures.
This can only be done by means of functions from the
standard library or through the WinCC OA graphical
editing interface. Low encapsulation and coupling between
CTRL language and WinCC OA datapoints make data
manipulation complex, compared to other languages.

The design of software, from the software engineering
point of view, must be an independent process, unaware of
the technology specifics [1]. During the formalization of a
software design, abstract domain problems need to be
transferred into algorithms and organized in data models.
For that reason, the resources available in the programming

Control System Upgrades

platform, such as data structure definition mechanisms or
programming language features, have a direct impact on
the project implementation. When the semantic distance
between the modelling language (e.g. UML) and the
programming language is large, then the time and
complexity of the translation process increases. Also other
aspects of the software may be affected, like the readability
of the code and maintainability of the entire software.

The CMS DCS team has attempted to close this gap by
creating a development toolkit to add OO behaviour as well
as code and data encapsulation down to the datapoint level.
CMSfwClass toolkit revises the original WinCC OA and
JCOP framework [2] device modelling concepts, enabling
more abstract and powerful software architectural designs.

CMSFWCLASS TOOLKIT

The toolkit is composed of two different layers. The first
layer is the back-end to add object orientation into WinCC
OA. The second toolkit layer is a graphical user interface
to provide easy and comprehensive access to the object
oriented abstraction layer.

CMSfwClass 00 back-end JCOP

Figure 1: CMSfwClass toolkit modules.

Though the OO back-end has been designed to work in
any WinCC OA project, the GUI has a certain level of
integration with the CERN JCOP framework. Classes can
be registered and accessed as JCOP device definitions. The
GUI also uses CERN made libraries for syntax checking
capabilities.

CMSfwClass OO Back-end Features

The OO back-end of CMSfwClass provides most of the
commonly used features of modern OO programming and
some custom object management features:

e Single inheritance and method overriding.

e Interface definition.

ISBN 978-3-95450-148-9
145

MOPGF025

e Subtyping and interface polymorphism.

e In-memory objects (without datapoints).

e Object serialization in files.

The toolkit provides a default base class
(CMSfwObject). This class serves as a baseline for other
classes and provides several useful methods to handle
objects at any level in the class hierarchy. CMSfwClass
implements some custom features to express other design
aspects of the model, such as specialization of objects at
runtime, or composition and aggregation relations between
objects. These features facilitate object management; for
instance cascaded object deletion.

CMSfwClass toolkit GUI features

The CMSfwClass GUI was conceived as a computer-
aided software engineering tool. The user interface guides
developers during the process of creating classes and
objects. The user drives the development process through
different panels where attributes and methods can be
introduced, while consistency and programming best-
practices are assured by CMSfwClass.

The most relevant features of the GUI are the following:

e Code generation.

e Guided development process.

e Syntax checker.

e Object management.

The user interface provides code generation capabilities
and live messages to remind the user how to proceed
during the construction of a class. When a new class is
created based on a super class, the constructor already
includes code for inheriting the behaviour of the super
classes. Then developers can override the default
behaviour. When a new attribute is added to a class,
datapoint structures are automatically altered to include
the new element. The toolkit GUI offers the developer the
possibility of creating accessor methods (getters and
setters) for all class attributes. To insert method
implementation details, the WinCC OA CTRL language
editor is opened automatically for the scope of the method.

Apart from enforcing many of the development
guidelines in the auto-generated code, CMSfwClass toolkit
drives the users through different panels and pop-up
messages to avoid several classic programming mistakes.
For example, when adding a new attribute of class type (by
composition), the toolkit warns the user about the need of
updating the constructor and destructor methods.

Since CTRL language is an interpreted language, there
is no compiler at our disposal. Basic syntax checking is
provided in a library created at CERN. The library gives
information about common defects of the code such as
missing variable declarations, missing return statements
and other problems that would otherwise only be
discovered at runtime. It also contains some other useful
functionality to extract function signature information and
function location in the analysed files.

Another important aspect of the GUI is the object
browser and operation interface which give a
comprehensive visualization of the data structures. From

ISBN 978-3-95450-148-9
146

Proceedings of ICALEPCS2015, Melbourne, Australia

the class browser, users can navigate across the class
hierarchy, edit class definitions, access object collections
and execute the methods of any object.

DEVICE MODELLING USING
CMSFWCLASS

WinCC OA datapoints allow engineers to model pieces
of hardware and logical entities in a hierarchy of basic data
structures. The JCOP framework additionally provides
utilities to register, configure and handle datapoints as
devices [3]. CMSfwClass toolkit goes one step further and
adds full encapsulation by putting together the device data
structure and its behaviour in a single file. A class
definition file also contains a description of how the model
interacts with other classes and libraries. Classes are
written in CTRL language and include the following
sections:

e Header: Libraries and constant values.

e List of attributes: primitive types or class types.

e Interactions: parent class, implemented interfaces.

e (Class methods.

With CMSfwClass we can model hardware entities and
connections between them using classes. To do this, we
need to classify components by their common features, to
make a proper division of concerns

A possible device classification is in Figure 2, where the
model starts with a generic channel class definition
inheriting from the baseline class CMSfwObject. An object
of this class implements the basic behaviour of a channel.
For example, actions to switch the device ON/OFF or a
method to access the status of the channel. The original
behaviour of a channel baseline class can be overridden to
compile with different specifications for high and low
voltage channels.

CMSfwObjectlist

+invokeMethodForList()

Channel

+SwitchOn(
+SwitchOfff

—_—

foue]

Switchable

LowVoltage HighVoltage

Figure 2: hardware model example.

This particular organization of entities implemented in
objects can be useful when handling large, heterogeneous
item collections. We can treat them in the same way since
they inherit from the same base class “channel” and they
implement the interface “Switchable”. We can easily go
across the collection and perform the “SwitchON”

Control System Upgrades

Proceedings of ICALEPCS2015, Melbourne, Australia

operation, abstracting from the detailed implementation
required for every channel.

ARCHITECTURAL DESIGN USING
CMSFWCLASS

In addition to modelling devices, developers can use
CMSfwClass to model abstract domain problems. The
CMS DCS team decided to refactor a small application
called CMSfwScheduler, to get a more maintainable and
clean implementation of the program. A comparison of the
two implementations, with and without CMSfwClass, is
shown in Table 1.

Table 1: Code Metrics

Procedural CMSfwClass
Code files 4 2
Core code lines 545 369
Auto-generated 0 329
Total 545 698

In this example, we see there is 47 % of code that has
been automatically generated by CMSfwClass to perform
OO consistent operations. As a result, by implementing the
same program with CMSfwClass, the developer wrote
32% fewer lines of code. This comparison does not count
the time spent on implementing data structures, defining
naming conventions to handle data or creating user
interfaces to access the data. These features are available
by default in CMSfwClass and also speed-up the
development process.

When control system software reaches a certain
complexity, it is much easier to translate to code using OO
than a procedural approach. The implicit mechanisms of
OO modelling are meaningful during the software design
but also in the code. CMSfwClass empowers the code by
doing complex operations in fewer lines. Design patterns
can also be applied in this context, providing tested, proven
development paradigms.

TOOLKIT IMPLEMENTATION DETAILS

One of the goals of CMSfwClass is to help create a
proper separation of concerns when modelling software.
For that reason, the engine itself complies with modern
software engineering principles such as modularity,
encapsulation and information hiding. The toolkit is
composed of different modules.

Model Data Hierarchy

The first time a class file is used in the toolkit it has to
be registered. The registration of the class file creates the
necessary internal structures to operate with the class,
establishing the relation with other available classes and
binding the library to a particular datapoint type. For every
class in the hierarchy there will be a datapoint type using
the class name and grouping the specific attributes for that
class. For every object there will be one datapoint per

Control System Upgrades

MOPGEF025

implemented class. The tool transparently handles a
parent-child representation of the classes to determine
where to find a particular attribute in the hierarchy. Thus
CMSfwClass maintains a clear separation of concerns
between attributes and objects of different classes.

OO Syntax in CTRL Language

The implementation of OO features is subject to certain
limitations of the CTRL language. Methods and object
names have to fulfil the following naming convention and
rules:

e A method always uses the first parameter to transfer

the object name inside the function scope.

e References to objects and class names are stored in
variables of type string.

e A method is uniquely identified by its signature,
using the class and method name with underscore in
between: <class name>_<method name>

e Overriding a method implies changing the signature
of the function, using the class name where the
method is implemented.

o <class-A>_<method name>
o <class-B>_<method name>

e Object names are unique.

e An object can implement many classes, and its
attributes are distributed in many datapoints (one
per class) using the following convention:

o CMSfwClass/<class-A>/<object>
o CMSfwClass/<class-B>/<object>

e Objects can be referenced by any of its datapoint

names.

Subtyping and Interface Polymorphism

Object information and behaviour can be hidden using
subtyping and interface polymorphism. CMSfwClass
considers that the relation between a class and its super
class is an inclusive specialization of the superclass
(subtyping). Therefore, methods written in the super class
can operate on objects of the subclass. This feature enables
treatment of objects of a specialized class as if they were
instances of any of its super classes. Indeed, since
CMSfwClass distributes the class attributes through
different datapoints (one structure per implemented class),
we can use any of its datapoint names to reference the same
object. In CMSfwClass this feature is called object shapes.

Interfaces are also used to abstract and hide object
details. Interfaces can be used to define what objects must
offer in different parts of the software and to limit contexts
only to objects implementing a certain interface.

Single Inheritance and Method Overriding

CMSfwClass implements single inheritance. This means
that a class can only extend the functionality of a single
super class. This mechanism provides children classes not
only with all the attributes declared in the extended class
and above, but also with all the behaviours described in the
class hierarchy.

There are two different ways of invoking a method.
Developers can explicitly invoke a method using its

ISBN 978-3-95450-148-9
147

MOPGF025

original function name, or they can delegate to
CMSfwClass to perform a dynamic method invocation
(using wrapper functions). Dynamic method invocation
verifies the method’s accessibility and looks for the most
specialized version of the method. The class an object is
instantiated determines the method implementation to be
executed. However, the shape of the object determines the
accessibility of its attributes and methods. Since there
might be more than one method implementation,
CMSfwClass performs a search across the hierarchy from
the instantiated object class to the less specialized class.

B3,
€ oh:
Objeqc‘la
ISs .
- Method 1% implementation
Q g \
o o
_g =2
— |8 |28 =
LY
hapeoft g .5 2
he op - g
el |2 5
: 2
7] B
a 8
S E T
Most specialized <
ta"?fated ® _~" implementation
s
et
E‘J'a_gs J
Ot”.n
DIEmE‘Dted . Non accessible method
Clas implementation

Figure 3: Method lookup

Interface Definition

CMSfwClass provides a mechanism to define sets of
method signatures by class interfaces. When a class
implements an interface, CMSfwClass toolkit enforces the
creation of the methods defined in the interface. This
mechanism adds a level of homogenization, flexibility and
modularity from the point of view of software engineering.
A class implementing an interface provides a first
implementation of the methods. The following sub-classes
extending from the parent class comply with the interface
definition and therefore also implement the interface.

In-memory Objects

While in other languages, data structures are allocated
in memory by default, datapoints are not. CMSfwClass
introduces the possibility of instantiating objects in
memory, eliminating unnecessary /O operations to the
persistence layer. This feature has a positive impact in
terms of performance for volatile data, but adds extra
complexity used for persistent data. An object can be
instantiated directly in memory, or can be copied from
datapoints to memory and vice versa. All class elements
are created in a global memory variable. CMSfwClass

ISBN 978-3-95450-148-9
148

Proceedings of ICALEPCS2015, Melbourne, Australia

provides a set of functions to manipulate and add event-
driven messaging functionality to in-memory objects.

Object Serialization in Files

The file format to export and import datapoint
structures in WinCC OA can be complex and hard to
manipulate from a text editor. CMSfwClass includes a tool
to export object collections into XML formatted files. This
can be particularly useful for backing up and recovery
tasks.

CMSFWCLASS STANDARD LIBRARY

As mentioned before, CMSfwClass includes a set of
basic classes to help developers in the construction of the
software. They form the standard CMSfwClass library, and
provide with an OO version of common programming
features such as:

e Polymorphic object lists and sets.

e Runnable interface for object threading.

e Event-driven object messaging.

e Design pattern solutions for object visualization.

CONCLUSION

The software described in this paper has been built,
tested and used in the DCS context for the CMS
experiment. The CMS DCS central team identified
multiple use cases for CMSfwClass before and after
releasing the first version of the toolkit. It has been proven
to be an efficient environment for creating complex and
high abstraction software architectures with a short
development time.

Apart from the implicit benefits of using an OO oriented
programming approach, CMSfwClass toolkit helps in the
construction of more robust software. The real-time
semantic checks and the enforced best practices in the code
generation are propagated throughout all software layers.

The toolkit has helped CMS DCS team to balance the
amount of time spent in different tasks of the software
construction process, spending more time in designing
quality architectures rather than writing code.

REFERENCES
[1T Rebecca Wirfs-Brock; Alan McKean, Object Design:
Roles, Responsibilities, and Collaborations.

(Addison-Wesley, 2003).

[2] O. Holme et al. “The JCOP Framework,”
ICALEPCS’05, Geneva, Switzerland, October 2005,
WE2.1-60.

[3] L. Del Caiio et al. “Extending the capabilities of
SCADA — Device modelling for the LHC
experiments”, ICALEPCS’03, Gyeongju, Korea,
October 2003, TU212.

Control System Upgrades

