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ABSTRACT

Detecting music notation symbols is the most immediate
unsolved subproblem in Optical Music Recognition for
musical manuscripts. We show that a U-Net architecture
for semantic segmentation combined with a trivial detec-
tor already establishes a high baseline for this task, and
we propose tricks that further improve detection perfor-
mance: training against convex hulls of symbol masks,
and multichannel output models that enable feature shar-
ing for semantically related symbols. The latter is help-
ful especially for clefs, which have severe impacts on the
overall OMR result. We then integrate the networks into an
OMR pipeline by applying a subsequent notation assembly
stage, establishing a new baseline result for pitch inference
in handwritten music at an f-score of 0.81. Given the au-
tomatically inferred pitches we run retrieval experiments
on handwritten scores, providing first empirical evidence
that utilizing the powerful image processing models brings
content-based search in large musical manuscript archives
within reach.

1. INTRODUCTION

Optical Music Recognition (OMR), the field of automat-
ically reading music notation from images, has long held
the significant promise for music information retrieval of
making a great diversity of music available for further
processing. More compositions have probably been writ-
ten than recorded, and more have remained in manuscript
form rather than being typeset; this is not restricted to the
tens of thousands of manuscripts from before the age of
recordings, but holds also for contemporary music, where
many manuscripts have been left unperformed for rea-
sons unrelated to their musical quality. Making the con-
tent of such manuscript collections accessible digitally
and searchable is one of the long-held promises of OMR,
and at the same time OMR is reported to be the bottle-
neck there [17]. On printed music or simpler early mu-
sic notation, this has been attempted by the PROBADO
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Figure 1. OMR pipeline in this work. Top-down: (1) input
score, (3) symbol detection output, (4) notation assembly
output. Obtaining MIDI from output of notation assem-
bly stage (for evaluating pitch accuracy and retrieval per-
formance) is then deterministic. Our work focuses on the
symbol detection step (1) — (3); notation reconstruction is
done only with a simple baseline.

[17,28] or SIMSSA/Liber Usualis [3] projects. However,
for manuscripts, results are not forthcoming.

The usual approach to OMR is to break down the prob-
lem into a four-step pipeline: (1) preprocessing and bina-
rization, (2) staffline removal, (3) symbol detection (local-
ization and classification), and (4) notation reconstruction
[2]. Once stage (4) is done, the musical content — pitch,
duration, and onsets — can be inferred, and the score itself
can be encoded in a digital format such as MIDI, MEI !
or MusicXML. We term OMR systems based on explicitly
modeling these stages Full-Pipeline OMR.

Binarization and staff removal have been successfully
tackled with convolutional neural networks (CNNs) [4,11],
formulated as semantic segmentation. Symbol classifica-
tion achieves good results as well [12, 13,33]. However,
detecting the symbols on a full page remains the next ma-
jor bottleneck for handwritten OMR. As CNNs have not
been applied to this task yet, they are a natural choice.

Full-Pipeline OMR is not necessarily the only viable ap-
proach: recently, end-to-end OMR systems have been pro-
posed. [16,24]. However, they have so far been limited to
short excerpts of monophonic music, and it is not clear how
to generalize their output design from MIDI equivalents to

'http://music-encoding.org/
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lossless structured encoding such as MEI or MusicXML,
so full-pipeline approaches remain justified.

Our work mainly addresses step (3) of the pipeline, ap-
plied in the context of a baseline full-pipeline system, as
depicted in Fig. 1. We skip stage (2): we treat stafflines as
any other object, since we jointly segment and classify and
do not therefore have to remove them in order to obtain a
more reasonable pre-segmentation. We claim the follow-
ing contributions:

(1) U-Nets used for musical symbol detection. Apply-
ing fully convolutional networks, specifically the U-Net ar-
chitecture [38], for musical symbol segmentation and clas-
sification, without the need for staffline removal. We ap-
ply improvements in the training setup that help overcome
OMR-specific issues. The results in Sec. 5 show that the
improvements one expects from deep learning in computer
vision are indeed present.

(2) Full-Pipeline Handwritten OMR Baseline for
Pitch Accuracy and Retrieval. We combine our stage
(3) symbol detection results with a baseline stage (4) sys-
tem for notation assembly and pitch inference. This OMR
system already achieves promising pitch-based retrieval re-
sults on handwritten music notation; to the best of our
knowledge, its pitch inference f-score of 0.81 is the first
reported result of its kind, and it is the first published full-
pipeline OMR system to demonstrably perform a useful
task well on handwritten music.

2. RELATED WORK

U-Nets. U-Nets [38] are fully convolutional networks
shaped like an autoencoder that introduce skip-connections
between corresponding layers of the downsampling and
upsampling halves of the model (see Fig. 2). For each
pixel, they output a probability of belonging to a specific
class. U-Nets are meant for semantic segmentation, not
instance segmentation/object detection, which means that
they require an ad-hoc detector on top of the pixel-wise
output. On the other hand, this formulation avoids domain-
specific hyperparameters such as choosing R-CNN anchor
box sizes, is agnostic towards the shapes of the objects we
are looking for, and does not assume any implicit priors
on their sizes. This promises that the same hyperparameter
settings can be used for all the visually disparate classes
(the one neuralgic point being the choice of receptive field
size). Furthermore, U-Nets process the entire image in a
single shot — which is a considerable advantage, as music
notation often contains upwards of 500 symbols on a single
page. A disadvantage of U-Nets (as well as most CNNs)
is their sensitivity to the training data distribution, includ-
ing the digital imaging process. Because of the variability
of musical manuscripts, it is likely real-world applications
will require case-specific training data, and data augmen-
tation would therefore be used to mitigate this sensitivity;
fortunately, fully convolutional networks are known to re-
spond well to data augmentation over sheet music [30] as
well as over other application scenarios [9,23]. Therefore,
we consider this choice reasonable, at the very least to es-
tablish a strong baseline for handwritten musical symbol

detection with deep learning.

Object Detection CNNs. A standard architecture for
object detection is the Regional CNN (R-CNN) family,
most notably Faster R-CNN [40] and Mask R-CNN [26]).
These networks output probabilities of an object’s pres-
ence in each one of a pre-defined sets of anchor boxes, and
make the bounding box predictions more accurate with re-
gression. In comparison, the U-Net architecture may have
an advantage in dealing with musical symbols that have
significantly varying extents, such as beams or stems, as
it does not require specifying the appropriate anchor box
sizes, and it is significantly faster, requiring only one pass
of the network (the detector then requires one connected
component search). Furthermore, Faster R-CNN does not
output pixel masks, which are useful for archival- and
musicology-oriented applications downstream of OMR,
such as handwriting-based authorship attribution. Mask
R-CNN, admittedly, does not have this limitation, but still
requires the same bounding box setup.

Another option is the YOLO architecture [25], specifi-
cally the most recent version YOLOv3 [36], which predicts
bounding boxes and confidence degrees without the need
to specify anchor boxes. A similar approach was proposed
in [22], achieveing a notehead detection f-score of 0.97,
but only with a post-filtering step.

Convolutional Networks in OMR. Convolutional net-
works have been applied in OMR to symbol classifica-
tion [33], indicating that they can in principle handle the
variability of music notation symbols, but not yet in also
finding the symbols on the page. Fully convolutional net-
works have been successfully applied to staff removal [4],
and to resolving the document to a background, staff, text,
and symbol layers [11]. However, these are semantic seg-
mentation tasks; whereas we need to make decisions about
individual symbols. The potential of U-Nets for sym-
bol detection was preliminarily demonstrated on noteheads
[22,31], but compared to other symbol classes, noteheads
are “easy targets”, as they look different from other ele-
ments, have constant size, and appear only in one pose (as
opposed to, e.g., beams).

OMR Symbol Detection. Localizing symbols on the
page has been previously addressed with heuristics rather
than machine learning, e.g. with projections [8, 18],
Kalman Filters [14], Line Adjacency Graphs [37], or other
combinations of low-level image features [39]. On hand-
written music, due to its variability, more complex heuris-
tics such as the algorithm of [1] that consists of 14 interde-
pendent steps have been applied.

OMR for Content-Based Retrieval. The idea of us-
ing imperfect OMR for retrieval is not new, although orig-
inally OMR was attempted in the context of transcribing
individual scores. In the PROBADO project [17, 28], an
off-the-shelf OMR system was applied to printed Com-
mon Western Music Notation (CWMN) scores, allowing
retrieval and measure-level score following in a database of
1200 printed scores. The Liber Usualis project at SIMSSA
is another such project, on square plainchant notation; it
operates at a more fine-grained level that allows for ex-
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Figure 2. Baseline U-Net model architecture.

ample accurate motif retrieval [3]. However, for CWMN
manuscripts, we are not aware of similar experiments.

3. MODEL

For all experiments, we use as a basis the same fully con-
volutional network architecture [38] as shown in Figure 2.
There are three down-sampling blocks and three corre-
sponding up-sampling blocks. Each down-sampling block
consists of two convolutional layers with batch normal-
ization using the same number of filters; down-sampling
is done through 2x2 Max Pooling. After each downsiz-
ing step, we use twice the number of filters. The output
layer uses sigmoid activation; otherwise, ELU nonlinear-
ity is used. Additionally, we add element-wise-sum resid-
ual connections between symmetric layers of the encoder
and decoder part of the network.

In the rest of this section, we propose modifications for
both architecture and training strategy for symbol detection
in handwritten sheet music.

3.1 Convex Hull Segmentation Targets

Our first proposal is to use the convex hull region of indi-
vidual symbols as a target for training instead of the orig-
inal segmentation masks. Figure 3 shows an example of
the modified training targets. This simple adaptation is an
elegant way of dealing with symbols such as f-clefs or c-
clefs, which by definition consist of multiple components.
As we employ a connected components detector for recog-
nizing the symbols in our experiments in Section 4 we cir-
cumvent the need for treating these symbol classes in any
special way. This advantage also holds “pre-emptively”
for complex symbols which for example contain “holes”
and might break up into multiple components after imper-
fect automatic segmentation, or may be disconnected due
to handwriting style (e.g., flats).

3.2 Multichannel Training

Our second proposal is to train multichannel U-Nets pre-
dicting the segmentation simultaneously for multiple sym-
bol classes. This design choice has two advantages over

Figure 3. Training on convex hulls circumvents detection
problems for symbols consisting of multiple connected
components (see f-clef).

training separate detectors for each class. Firstly, at run-
time we can predict the segmentation for multiple symbols
with a single forward pass of the network. Furthermore, by
simultaneously training on multiple symbols at the same
time, we allow the model to share low-level feature maps
for a certain symbol group (i.e., noteheads, beams, flags
and stems), and on the other hand force the model to
learn upper-layer features that discriminate well between
the various symbols, which — because the capacity of the
model stays fixed, and the output layer only uses 1x1 con-
volutions — could lead to more descriptive representations
of the image. In other words, due to the strong correlations
across classes induced by music notation syntax, whatever
features are learned for one output channel will at the same
time be relevant for a different channel; the 1x1 convolu-
tion will simply weigh them differently.

However, this setup presents an optimization problem
due to imbalanced classes: both in terms of how many
foreground pixels there are (i.e. beams vs. duration dots),
and with respect to how often they occur on an “average”
page of sheet music (noteheads vs. clefs). We address the
first issue by splitting the multichannel model into groups
of symbols with roughly similar amount of foreground pix-
els across the dataset. To overcome the second issue, as the
training setup operates on randomly chosen windows of
the input image (see Sec. 4), we use oversampling: when
drawing the random window when a training batch is be-
ing built, we check whether the window contains at least
one pixel of the target class, and we retry up to five times if
there is none. If no target class pixel is found in five tries,
we concede and use the last sampled window, even though
no pixel of target class is in it. (As opposed to this over-
sampling, adjusting the weights of the output channels did
not lead to improvements.)

Furthermore, if model capacity becomes a limiting fac-
tor, we can opt out of sharing the up-sampling part of the
model and keep a separate “decoder” for each output chan-
nel. This is a compromise that retains some of the speed,
space and feature-sharing advantages, but at the same time
does not so severely restrict the capacity of the model.

4. EXPERIMENTAL SETUP

We restrict ourselves to the subset of symbol classes that
are necessary for pitch inference and basic duration infer-
ence (we currently do not detect tuplets — detecting hand-
written digits is straightforward enough, the difficulty with
tuplets lies in the notation assembly stage). Already this
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selection contains symbols with heterogeneous appear-
ance: constant-size, trivial shape (specifically, noteheads,
ledger lines, whole and half rests, duration dots), constant-
size, non-trivial shape (clefs, flags, accidentals, quarter-,
8th- and 16-th rests), and symbols that have simple shapes,
but varying extent (stems, beams, barlines). 2 We assume
binary inputs, not least because large-scale OMR symbol
detection ground truth is only available for binary images;
however, binarization can be done with the same model.

Dataset. We use the MUSCIMA++ dataset, version 1.0
[20]. This is the only publicly available dataset of hand-
written music notation with ground truth for symbol de-
tection at a scale that is feasible for machine learning.
The dataset contains over 90 000 manually annotated sym-
bols with pixel masks. We use the designated writer-
independent test set from MUSCIMA++.

Training Details. We set the network input size to a
256 x 512 window and randomly sample crops of this size
as training samples. We train all our models using the
Adam update rule with an initial learning rate of 0.001 [27]
and a batch size of 2 (with the 256 x 512 input window,
this is equivalent to batches of a single 512 x 512 image
of [38]). After there is no update on the validation loss for
25 epochs, we divide the learning rate by 5 and continue
training from the previously best model. This procedure is
repeated two times.

5. RESULTS

As there is no work to which we can compare directly, we
first gather at least related OMR solutions, in order to pro-
vide whatever context we can for the reader. Then, we
report results for symbol detection, and evaluate it in con-
text of downstream tasks: pitch inference in a baseline full-
pipeline OMR scenario, as well as first experiments apply-
ing our models in retrieval settings.

5.1 Comparison to Existing Systems

Comparison to existing systems is hard, because there are
few symbol detection results reported, and even fewer full-
pipeline OMR results. Direct comparison is not possible,
as the MUSCIMA++ dataset we use has been released only
very recently, and previous OMR pipelines (see Sec. 2)
generally do not have publicly available code. Further-
more, earlier literature on OMR rarely provides evalua-
tion scores, most of previous work on OMR has (sensi-
bly) focused on printed music rather than manuscripts, and
there are few established evaluation practices in OMR any-
way [15,21]. We do our best to at least gather literature
where some results on related tasks are given, in order to
provide context for our work.

Pitch accuracy, printed music. In printed music, re-
sults for pitch accuracy have been consistently very good,
when reported. Already in [32], the GAMUT system is
said to correctly recover 96 % of pitches in printed music.

2 There are also notation symbols that can have non-trivial shape and
varying extent, such as slurs or hairpins; however, these are not required
for neither pitch, nor duration inference, and we therefore leave them out.

The complex fuzzy system of [39] achieves near-perfect
pitch accuracy (98.7 %). Similarly, the CANTOR system
evaluated in [5] achieves 98 % semantic accuracy — this
time, including polyphonic music. On printed square nota-
tion, [19] achieves 95 % pitch accuracy. A combination of
systems in [42] achieves over 85 % joint pitch and duration
accuracy.

Symbol detection, handwritten music. The most ex-
tensive evaluation of symbol detection in handwritten mu-
sic has been carried out in [1]. Using a complex combi-
nation of robust heuristics for segmentation and machine
learning for classification, they achieve an average sym-
bol detection f-score of 0.75. These results seem ripe to
be surpassed with CNNs: in [31], 98 % handwritten note-
head detection accuracy has been reported. For staff detec-
tion, a similar architecture has been used in [4] with over
97 % pixel-wise f-score, and similar results are available
with a ConvNet pixel classification approach for seman-
tic segmentation into background, text, staffs, and notation
symbols [11]. At the same time, [33] reports symbol clas-
sification (without localization) accuracy over 98 %, indi-
cating that CNNs are well capable of generalizing over the
variety of handwritten musical symbols. However, we are
not aware of pitch accuracy results reported on handwritten
CWMN scores.

OMR for Retrieval. For retrieval, it is even harder to
find comparable results, since evaluation metrics for re-
trieval depend on the test collection, and there is no such
established collection for OMR. Using the open-source
Audiveris> OMR software, [7] matches 9803 printed
monophonic fragments from A Dictionary of Musical
Themes to their electronic counterparts, using a compara-
ble DTW alignment that also (mostly) ignores note dura-
tion, reporting a top-1 accuracy of 0.44; however, the col-
lection of themes is a difficult one, since it often contains
very similar melodies.

Object Detection F1 score: Writer-Independent
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Figure 4. Results for binary segmentation models for indi-
vidual symbols. Blue: baseline training with mask output;
green: training with convex hulls.

5.2 Symbol Detection

We report detection f-scores for the chosen subset of sym-
bols. Aggregating the results is not too meaningful: some
rare symbols have an outsized impact on downstream pro-
cessing (clefs). In Fig. 4, we show the baseline results and
compare them to the convex hull setup. Training against

3https://github.com/audiveris/audiveris
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Method c-clef g-clef f-clef

single channel — no convex hull ~ 0.48 0.58 0.52
single channel ~ 0.70 0.83 0.95

multi-channel —all ~ 0.16 0.37 0.49

multi-decoder — clefs, oversampling ~ 0.77 0.96 0.93

Table 1. Comparison of detection performance (F-score)
of clefs using different segmentation strategies.

convex hulls of objects does address the issue of detecting
otherwise disjoint symbols using connected components;
otherwise it achieves mixed results.

Compressing the detector with multichannel training
without a loss of performance was possible on corre-
lated sub-groups of symbols that bypass the class imbal-
ance problem, such as training together noteheads, stems,
beams, and flags; the results worsened when all classes
were trained at once. The clefs were most affected by all
the changes to the model described in Section 3: improved
by convex hull training, neglected when the multichannel
model was trained to predict all symbol classes at once, and
then drastically improved again when trained as a group
with separate decoders and the oversampling strategy. Ta-
ble 1 summarizes the results for clef detection. Clefs are
critical for useful OMR, since they affect the pitch inferred
from all subsequent noteheads.

6. APPLICATION SCENARIO: FULL-PIPELINE
HANDWRITTEN OMR IN RETRIEVAL

We now explore the utility of the symbol detectors within
an OMR pipeline. It is known in OMR that low-level er-
rors can lead to effects on recognition of wildly different
magnitudes [15, 35]; in the presence of detection errors,
one should therefore see how severely they impact down-
stream applications. We choose a retrieval scenario as the
application context for evaluating symbol detection. As
opposed to applications where we produce the transcribed
score [15,21,41], this is straightforward to evaluate.

To verify that our symbol detection approach can yield
useful results in an application context, we add a simple
notation assembly and pitch inference system on top of the
symbol detection results. We choose retrieval as the most
feasible application of handwritten OMR: there are music
manuscript archives with thousands of scores that contain
manual copies, and matching them cannot be done without
their musical content.

For inferring pitch, we must re-introduce stafflines.
However, we can safely assume they have been detected
correctly: both [4] and our replication of their experiments
with stafflines on this dataset exhibit extremely few er-
rors, and these can be filtered away with a trivial projection
heuristic such as that of [18].

6.1 Notation Assembly and Music Inference

Symbol detection alone is not sufficient for decoding mu-
sical information: meaningful units are configurations of

symbols rather than the symbols themselves [6,20]. The
notation assembly stage is the step where these configura-
tions are recovered (step (4) in the OMR pipeline: see 1).
In the MUSCIMA++ dataset, they are represented as an
oriented graph; once this graph is recovered, one can per-
form deterministic pitch inference.

Symbol detection outputs vertices of the notation graph;
we therefore need to recover graph edges. Replicating the
baseline established in [20], we train a binary classifier
over ordered symbol pairs. While this classifier achieves
an f-score of 0.92, it makes embarrassing errors: noteheads
connected to irrelevant ledger lines in chords, to beams that
belong to an entirely different staff, and sometimes to mul-
tiple adjacent stems. We discard these obviously wrong
edges using straightforward heuristics. We also discard de-
tected objects that are entirely contained within another de-
tected object. The last step is recovering precedence edges:
we just order rest and noteheads on each staff left-to-right;
noteheads connected to the same stem are considered si-
multaneous, but actual polyphony is ignored.

Once the pitches, durations, and onsets are inferred for
the detected noteheads, we then export them as a MIDI file.
MIDI is appropriate for retrieval, since it presents straight-
forward ways of computing similarity. This file then can
serve as both the query and the database key for the given
score. To compute the similarity of two MIDI files, we
align them using Dynamic Time Warping [29] (DTW) over
sequences of time frames that contain onsets. The DTW
score function for a pair of frames is 1 minus the Dice coef-
ficient of the onset pitch sets in the frames. Then, we match
individual pitches within the frame sets that are aligned by
DTW and measure the f-score of predicted pitches. DTW
is used as the similarity function in [7]; however, we do not
reduce polyphonic music to its upper pitch envelope.

6.2 Results

We now report how the full-pipeline baseline on top of the
object detection U-Nets predicts pitches, and how it can be
used to retrieve related scores.

Pitch accuracy. We use the DTW alignment to directly
evaluate pitch classification.® Performing DTW on the
inference outputs for page images, we achieve a (micro-
)average F-score of only 0.59. Rather than due to errors in
symbol detection, this is mostly due to the polyphony de-
synchronization effects of bad duration inference; indeed,
on (mostly) monophonic music, pitch F-score jumps to
0.78. In order to bypass de-synchronization problems that
in fact obscure correct pitch recognition, we split the scores
into individual staffs (118 in total) and evaluate pitch accu-
racy on these. The results for the test set staffs are reported
in Fig. 5. On average, we obtain pitch F-score 0.81, with
0.83 for monophonic staffs (and ignoring clef errors, 0.88).

Finally, we evaluate our detector in the context of a
retrieval application. We run experiments both on gold-

4 A proof-of-concept implementation: https://github.com/
hajicj/muscima.

5 We could evaluate duration classification as well, but due to errors by
the notation assembly baseline, this is too low to be worth reporting.
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Figure 5. Pitch F-score after DTW alignments on the 118
individual staffs in the writer-independent test set, ordered
by result. Monophonic staffs (darker green) predictably
score better than staffs with multiple voices or chords (yel-
low). We found no clear relationship between pitch accu-
racy and handwriting style.

standard MIDI retrieval and duplicate score retrieval, us-
ing the predicted scores; since the similarity metric is pitch
f-score, all retrieval experiments work in both directions.
Experiments with ground truth MIDI correspond to cross-
modal retrieval, where the modalities are a symbolic rep-
resentation, and the score projected into the MIDI modal-
ity using the OMR system; queries with predictions corre-
spond to a simpler scenario where we are querying scores
with scores, using the OMR system as a hash function.

Retrieving gold MIDI with scores. Given how small
the test set is, retrieving the correct ground truth page —
and even staff — should be near-perfect. For staff-to-staff
retrieval, Prec@1 is 0.93; for page-to-page and staff-to-
page retrieval, this is 1.0, indicating that with our U-Net
object detection stage, retrieving gold-standard MIDI us-
ing handwritten scores (and vice versa, as the similarity
metric is symmetrical) is feasible.

Retrieving scores with scores. The next scenario is
to run retrieval not against the ground truth, but against
MIDIs predicted from different versions of the test set
scores. While errors related to differences in handwriting
get compounded, the rest of the pipeline imposes consis-
tent limitations on both the database and query recognition
outputs and may make the same errors on both query and
database scores, making the task actually easier. There-
fore, we select a confuse-retrieval subset of 7 scores from
MUSCIMA++ that are as similar to each other as possi-
ble: mostly monophonic, and with 0 — 2 sharps. Some of
these pieces are musically closely related. For these exper-
iments, our database consists of recognition outputs com-
puted from all confuse-retrieval pages in the training sub-
set of MUSCIMA++. Queries are taken from predictions
on the writer-independent test set: we use both the 7 entire
pages and individual staffs (34 of those).

The system achieves perfect Prec@1 when pages are
used as queries, and 0.94 when using staff queries (2 staff
queries did not return the right piece as the top result). The
retrieval scores are plotted in Fig. 6. We checked this score
also with ground truth queries; this system made only 2 er-
rors as well, but in different queries, which we take as cir-
cumstantial evidence that the ground truth MIDI has differ-
ent issues when matching against a predicted MIDI than a
different prediction. When measuring MAP with the cutoff
k=6 (as there are 7 versions of each page in MUSCIMA++

Querying pages using staffs

Figure 6. Pitch f-score between predictions on test set
staffs and (predictions on) training set pages. Notice the
pages 07, 09 and 11: these are three movements from
J. S. Bach’s Cello suite no. 1, which contain musically
highly related material.

and one of them is used for querying), it drops to 0.86.

7. DISCUSSION & CONCLUSIONS

We consider our work a successful step towards enabling
applications of hitherto problematic handwritten OMR.
The retrieval scenario results are an indication that U-Nets
are a workable solution to the handwritten symbol detec-
tion bottleneck in the context of full-pipeline OMR. (Here,
we must re-state that these results should not be interpreted
as more than supporting evidence that our object detection
method is viable for such scenarios!)

However, U-Nets are still in principle limited by the size
of the receptive field: for instance the middle of a long
stem looks exactly the same as a barline. We could fur-
ther leverage syntactic properties of music notation: e.g.,
the self-attention layer of [34] allows building up the fi-
nal output from partial recognition results. Fragmenting of
long symbols could be overcome with instance segmenta-
tion embeddings [10].

To the best of our knowledge, this is also the first time
OMR was done with a machine-learning method for nota-
tion assembly. We in fact consider this the most interest-
ing line of follow-up work. Recovering the notation graph
itself seems like the next bottleneck, especially for dura-
tion inference. The non-independent nature of the edges
poses an interesting structured prediction challenge, and
one could also work towards models that jointly detect
symbols and recover their relationships.

Despite their limitations, U-Nets can be used to de-
tect handwritten music notation symbols. They establish
a new CNN-based baseline for the object detection task,
and we believe the results in pitch inference and a proof-
of-concept retrieval scenario indicate that a significant step
has been taken towards full-pipeline OMR systems, so that
the content of musical manuscripts can become accessible
digitally.
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