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ABSTRACT

We consider music classification problems. A typical ma-
chine learning approach is to use support vector machines
with some kernels. This approach, however, does not seem
to be successful enough for classifying music data in our
experiments. In this paper, we follow an alternative ap-
proach. We employ a (dis)similarity-based learning frame-
work proposed by Wang et al. This (dis)similarity-based ap-
proach has a theoretical guarantee that one can obtain accu-
rate classifiers using (dis)similarity measures under a natu-
ral assumption. We demonstrate the effectiveness of our ap-
proach in computational experiments using Japanese MIDI
data.

1. INTRODUCTION

Music classification is an important problem in information
retrieval from music data. There are a lot of researches to
tackle the problem (see, e.g., [1,3,4,10,11,14,18]), as highly
accurate music classifiers are useful for music search and
feature extraction.

One of typical approaches to classify music is to rep-
resent each music data as a feature vector, which is then
classified by standard machine learning methods. On the
other hand, finding good features for music classification is
a non-trivial task. For example, performance worm [15],
performance alphabet [16], and other approaches includ-
ing [1,10,11,18].

Another popular approach in Machine Learning is to use
support vector machines (SVMs) with kernels [7–9,12,19].
One way to improve accuracy of music classification is to
design a good kernel for music data. This approach, how-
ever, does not seem to be very successful so far. As we
will show later, well known string kernels such asn-gram
kernels [12] and mismatch kernels [8] for texts do not ob-
tain satisfactory results for music classification in our ex-
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periments. Further, to design a kernel, the function to be
designed needs to be positive semidefinite, which is a limita-
tion when we try to exploit the structure of music to improve
classification accuracy.

In this paper, we follow an alternative approach. We em-
ploy a (dis)similarity-based learning framework proposed
by Wang et al. [20]. This (dis)similarity-based approach has
a theoretical guarantee that one can obtain accurate classi-
fiers using (dis)similarity measures under a natural assump-
tion. In addition, the advantage of this approach is able to
useany (dis)similarity measures which do not have to be
positive semidefinite andanydata.

Further, we combine this (dis)similarity-based learning
approach with1-norm soft margin optimization formula-
tion [5,22]. An advantage of the formulation is that it is use-
ful for feature selection because of the sparse nature of the
underlying solution. In other words, the formulation help
us to find “relevant” instances (i.e., music data) to classify
music. Such relevant instances might contain representative
features of the class. Therefore, it might be useful to extract
good features.

For simplicity, throughout the paper, we deal with clas-
sification problems of symbolic music data such as MIDI
files only. Thus we do not consider audio signal data and we
assume (dis)similarity functions over texts. Note that our
framework using (dis)similarity functions does not depend
on the data format. We can deal with audio signal data as
well if we employ (dis)similarity functions over signals.

We demonstrate the effectiveness of our approach in com-
putational experiments using Japanese music data. Our ap-
proach, combined with non-positive semidefinite (dis)similarity
measures such as edit distance, shows better performance
than SVMs with string kernels.

2. LEARNING FRAMEWORK USING
DISSIMILARITY FUNCTION

In this section, we review a learning framework using dis-
similarity function proposed by Wang et al. [20]. LetX be
the instance space. We assume that a dissimilarity function
d(x, x′) is a function fromX × X to R+. A pair (x, y) of
instancex ∈ X and labely ∈ {−1, 1} is called anexample.
For instance,X might be some set of MIDI data and then
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an example is a pair of a MIDI file and positive or negative
label. The learner is given a setS of examples, where each
example is drawn randomly and independently from an un-
known distributionP overX×{−1, +1}. Then, the learner
is supposed to output a hypothesish(x) : X → {−1, 1}.
The goal of the learner is to minimize the error of the hy-
pothesish w. r. t. the distributionP , i.e., the probability
thath misclassifies the label of a randomly drawn example
(x, y) according toP , Pr

(x,y)∼P
(h(x) 6= y). In particular, we

assume that a hypothesis is constructed using a dissimilarity
functiond. Also, we will use the notation thatsgn[a] = 1 if
a > 0 and−1 otherwise.

Then we show a definition of “good” dissimilarity func-
tion.

Definition 1 (Strong (ε, η)-goodness, Wang et al. [20])
A dissimilarity functiond(x, x′) is said to be strongly (ε,η)-
good, if at least1−ε probability mass of examplesz satisfy:

Pr
z′,z′′∼P

(d(x, x′) < d(x, x′′)|y′ = y, y′′ = −y) ≥ 1/2+η/2

(1)
where the probability is over random examplesz′ = (x′, y′)
andz′′ = (x′′, y′′).

Roughly speaking, this definition says that for the most of
random examplesz = (x, y) and random positive and nega-
tive examples, the instancex is likely to be closer to the in-
stance with the same label. Then, under the natural assump-
tion that the given dissimilarity functiond is (ε, η)-good, we
can construct an accurate classifier based ond, as is shown
in the following theorem.

Theorem 1 (Wang et al. [20]) If d is a strongly(ε, η)-good
dissimilarity function, then with probability at least1 − δ
over the choice ofm = (4/η2) ln(1/δ) pairs of examples
(z′, z′′) with labelsy′ = 1, y′′ = −1, i = 1, 2, ..., m, the
following classifierF (x) = sgn[f(x)] where

f(x) =
1

m

n∑
i=1

sgn[d(x, x′′i )− d(x, x′i)]

has an error rate of no more thanε + δ. That is

Pr
z∼P

(F (x) 6= y) = Pr
z∼P

(yf(x) ≤ 0) ≤ ε + δ.

This theorem says that an unweighted voting classifier con-
sisting of sufficiently many randomly drawn examples is ac-
curate enough with high probability. We should note that
the existence of a(ε, η)-good dissimilarity function might
be too restrictive in some cases. For such cases, Wang et al.
also proposed more relaxed definitions of good dissimilarity
functions. Under such relaxed definitions, it can be shown
that there exists a weighted combination

f(x) =
m∑

i=1

wihi(x),

where eachwi ≥ 0,
∑

i wi = 1, hi(x) = sgn[d(x′′i , x) −
d(x′i, x)] andx′′i andx′i are positive and negative instances,
such thatsgn[f(x)] is accurate enough (see [20] for the de-
tails).

3. OUR FORMULATION

In this section, we consider how to find an accurate weighted
combination of base classifiers consisting of a pair of posi-
tive and negative instances. To do so, we employ the1-norm
soft margin optimization, which is a standard formulation
of classification problems in Machine Learning (see,e.g, [5,
21]). Simply put, the problem is to find a linear combi-
nation of base classifiers (or a hyperplane over the space
defined by base classifiers) which has large margin with re-
spect to examples, where the margin of a linear combination
w with respect to an examplez is a distance betweenw and
z. In fact, the large margin generalization theory (e.g., [17])
guarantees that a weighted combination of base classifier
is likely to have higher accuracy when it has larger margin
w.r.t. examples. Further, an additional advantage of1-norm
soft margin optimization is that the resulting linear combi-
nation of base classifiers is likely to be sparse since we reg-
ularize1-norm of the weight vector. This property is useful
for feature selection tasks.

3.1 The1-norm soft margin formulation

Suppose that we are given a setS = {(x1, y1), . . . , (xm, ym)},
where each(xi, yi) is an example inX × {−1, +1}. Here,
following the dissimilarity-based approach in the previous
section, we assume the set of hypotheses,H = {h(x) =
sgn[d(xi, x) − d(xj , x)] | xi andxj are positive and neg-
ative instances inS, respectively}. For simplicity of the
notation, we denoteH asH = {h1, . . . , hn}, wheren is
the number of pairs of positive and negative examples inS.
Then, the1-norm soft margin optimization problem is for-
mulated as follows (e.g. [5,21]):

max
ρ,b∈R,w∈Rn,ξ∈Rm

ρ− 1

ν

m∑
i=1

ξi (2)

sub.to

yi(
∑

j

wjhj(xi) + b) ≥ ρ− ξi(i = 1, . . . , m),

w ≥ 0,
n∑

j=1

wj = 1

ξ ≥ 0.

Here the termyi(
∑

j wjhj(xi)+b) represents the margin
of the hyperplane(w, b) w.r.t. an example(xi, yi) when the
1-norm of w is constrained to be1. It is known that the
margin is measured as∞-norm distance between(w, b) and
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(xi, yi) [13]. The parameterρ means the minimum margin.
Note that if the margin is positive w.r.t. all the examples,
the examples are linearly-separable. For the case when the
data is inseparable, we allow each example to violate the
minimum marginρ by the amount ofξi. So, the problem
is to maximize the minimum marginρ while minimizing
the sum of losses defined asξi. The parameterν ∈ [1,m]
controls the tradeoff between maximization of the margin
and minimization of losses.

By using Lagrangian duality (e.g. [2]), the dual problem
is given as follows:

min
γ,d

γ (3)

sub.to

Edged(hj) =
∑

i

diyihj(xi) ≤ γ(j = 1, . . . , n),

d ≤ 1

ν
1,

d ≥ 0,
m∑

i=1

di = 1

d · y = 0.

The dual problem is about finding a distributiond over
examples satisfying linear constraints. In particular, since
yihj(xi) = 1 if and only if hj(xi) = yi, Edged(hj) can
be viewed as a weighted accuracy of the hypothesis ofhj

w.r.t. the distributiond. So, in other words, a solutiond∗

of the dual problem is the most “difficult” distribution w.r.t.
hypotheses inH. Note that, since the both problems (2) and
(3) are linear programs, these problems are equivalent. That
is, if we solve one problem, we can obtain a solution of the
other problem as well.

We solve the dual problem (3) using LPBoost [5], which
is shown in Algorithm 1. LPBoost chooses a hypothesis
h ∈ H and solve a sub-problem of the dual problem (3) it-
eratively until some termination condition is satisfied. It is
known that after sufficient number of iterations, output by
LPBoost converges to a solution of the problem (3). More
precisely, the following statement holds for any given preci-
sion parameterλ > 0.

Theorem 2 (Demiriz et al. [5]) LPBoost outputs a final hy-
pothesis such that the corresponding solution(γT , dT ) sat-
isfiesγT ≤ γ∗ + λ, where(γ∗,d∗) is an optimal solution of
the dual problem (3).

4. COMPUTATIONAL EXPERIMENT

In this section, we show preliminary experimental results.
The task we consider is classification problems over a data
set of Japanese songs.

Algorithm 1 LPBoost(S,λ)

(1) Letd1 be the uniform distribution overS.

(2) Fort = 1, . . . ,

(a) Choose a hypothesish(t) ∈ H whose edge w.r.t.
dt is more thanγt + λ.

(b) If such a hypothesis does not exist inH, letT =
t− 1 and break.

(c) Solve the soft margin optimization prob-
lem (3) w.r.t. the restricted hypothesis set
{h(1), . . . , h(t)}. Let (γt+1, dt+1) be a solution.

(γt+1, dt+1) = arg min
γ,d

γ

sub. to∑
i

diyjh
(j)(xi) ≤ γ (j = 1, . . . , t)

d ≤ 1

ν
1.

(3) Outputf(x) =
∑T

t=1 wth
(t)(x), where eachwt (t =

1, . . . , T ) is a Lagrange dual of the soft margin opti-
mization problem (3).

4.1 Data set

Our data set of Japanese songs consists of119 pop songs
(JPOP) and119 Enka songs, where Enka is a genre of Japanese
songs whose style is rather close to traditional folklore songs.
We convert MIDI format into string data according to the
method specified in Kadota et al. [6].

For the original data in the MIDI format, we specify a
particular channel which corresponds to principal melody,
and extract a single sequence consisting of notes and rests,
where a note is a pair of pitch and duration values and a rest
has only a duration value. We choose the highest pitch if
more than one pitch is “NOTE ON” at an instant. In addi-
tion we quantize the obtained data so that all the duration
values are multiples of the MIDI delta time correspinding to
the sixteenth note. Then we convert the quantized note/rest
sequences into string data of three types (see Figure 1):

Pitch string We divide each note (rest) into sixteenth notes
(rests) to produce a string consisting of pitches and
rests. For simplicity, we ignore an octave difference,
and therefore the number of possible pitches is twelve.
The alphabet size is thus 13.

Rhythm string Similarly, we divide each note (rest) into
sixteenth notes (rests) and produce a string consisting
of four symbols:N (beginning fragment of a note),
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Classifier SVM our method
(dis)similarity measure n-gram kernel mismatch kernel n-gram kernel mismatch kernel edit distance LCS
Pitch Nontransposed 61.34 65.55 70.16 73.52 86.12 79.42

Transposed 61.34 65.55 70.16 73.52 86.12 79.42
Rhythm 86.97 86.97 88.67 89.90 87.79 92.87
Note Nontransposed 66.39 71.01 76.46 79.81 87.38 85.33

Transposed 66.39 71.01 76.46 79.81 87.38 85.33

Table 1. Classification accuracy (%)

!! !! !! "! "! #! $! $! $!

%! &! '! (! %! %! &! &! &!

!"#$%!

&%'#%(!
)! *! '! (! +! ,! -! -! -!)*#+!

)! )! '! '! +! ,! ,! ,! ,!

Figure 1. How to extract string data from note/rest se-
quence.

n (non-beginning fragment of a note),R (beginning
fragment of a rest) andr (non-beginning fragment of
a rest).

Note string Composition of pitch and rhythm strings. That
is, from pitch stringa1 . . . am and rhythm stringb1 . . .
bm for a same note/rest sequence, we composed the
string(a1, b1) . . . (am, bm). The alphabet size is 26.

For pitch strings and note strings, we have an option to
transpose them into C major (C minor).

4.2 Classification algorithms

The algorithms we examined are SVMs with string kernels
and LPBoost with the (dis)similarity-based learning frame-
work (our method). For SVMs, we usedn-gram kernels [9]
with n = 1, . . . , 10 and mismatch kernels [8] with parame-
tersn = 2, . . . , 20 andk = 1, . . . , n− 1. For other settings,
We used default parameters of LIBSVM for SVMs.

For our method, we used two (dis)similarity measures:
the length of Longest Common Subsequence (LCS) and the
edit distance, in addition to the string kernels used for SVMs.
For the parameterν, we setν = cm, wherem is the given
sample size andc = 0.05, 0.1, 0.15, 0.2, 0.25.0.3. As de-
scribed in Section 3, we used base classifiersh(x) = sgn[
d(xi, x)−d(xj , x)] associated with pairs of positive instance

xi and negative instancexj . In total, we used119 ∗ 119 =
14161 base classifiers.

We evaluated SVMs and our method by performing5-
fold cross validation. The results are summarized in Table 1,
where the accuracies of respective methods are shown with
best parameters.

4.3 Result

As is shown in Table 1, our method shows better perfor-
mance than SVMs with all kernels. For pitch string and note
string, the best value was obtained by our method with the
edit distance. For rhythm string, the best value was gained
by our method with LCS. For pitch string and note string,
transposition in the note did not affect the classification ac-
curacy in our experiments.

Our methods with the edit distance and with LCS have
better results than those with then-gram and the mismatch
kernels. This might be because the edit distance and LCS
capture characteristics of JPOP and Enka better. Over all of
the (dis)similarity measures and kernels we used, the best
classification results were obtained on rhythm string. This
might be because JPOP has rather high tempo while Enka
has slow tempo.

Finally, we investigate which base classifiers

h(x) = sgn[d(xi, x)− d(xj , x)],

associated with pairs of JPOPxi and Enkaxj , contribute an
accurate classification.

In the case of our method with the edit distance on rhythm
strings, among all possible 14,161 pairs, at most 66 pairs
have a non-zero weight in the final weighted combination
for all the parametersc. So, the obtained weighted combi-
nation is quite sparse.

We observe that the resulting final weighted combination
is sparser when we employ (dis)similarity measures.

For rhythm string, we choosec = 0.3 and c = 0.15
which give the best classification results for LCS and the
edit distance, respectively. We arrange all the pairs in de-
creasing order of their weights, and the top 10 pairs are dis-
played in Tables 2 and 3.
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c JPOP Title ENKA Title Weight Total of weight
0.3 Secret Heaven Norennohana 0.430940 0.43094

Secret Heaven Aiha Kirameite 0.146408 0.577349
In My Room Akashiabanka 0.140884 0.718233
Kimiga Suki Amagigoe 0.135359 0.853591
Raven Nyonin Kouya 0.116022 0.969613
Raven Okuhidabojou 0.024862 0.994475
Kimiga Suki Unga 0.005525 1

Table 2. Top 10 pairs with large weight in the final weighted combination for the edit distance.

c JPOP Title ENKA Title Weight Total of weight
0.15 Tsukiyo no koibitotachi Ohsakawan 0.208197 0.208197

Amenimo Makezu Kaettekoiyo 0.127717 0.335914
Totsuzen Otokogi 0.059798 0.395712
Only You Matsuri 0.054587 0.450299
Totsuzen Shiroi Yuki 0.050715 0.501013
FINAL DISTANCE Yukimoete 0.050270 0.551284
Tsukiyo no koibitotachi Hashi 0.046641 0.597925
Goodbye Yesterday Yoshida Shoin 0.044228 0.642153
Secret Heaven Kokoha Minatomachi 0.039791 0.681944
FINAL DISTANCE Ettou Tsubame 0.037098 0.719042

Table 3. Top 10 pairs with large weight in the final weighted combination for LCS.

In the case of the edit distance, only the top 3 pairs oc-
cupy more than 70% of total weight, and the top 5 pairs
occupy more than 90% of total weight. We omitted the last
three pairs in the top 10 list of Table 2 since their weights
are less than10−17. So, only at most5 pairs of JPOP and
Enka contribute the final classification significantly. Simi-
larly, in the case of LCS, the top 10 pairs have about 70%
of total weight. These songs in the top lists might be “repre-
sentatives” of JPOP or Enka, from which we might be able
to extract good feature representations.

5. CONCLUSION

In this paper we addressed the music classification problem.
We employed the (dis)similarity-based learning framework
proposed by Wang et al. [20]. Computational experiments
show that our method combined with string kernels such as
then-gram and the mismatch kernels outperform SVM with
them. One advantage of our approach is that it can be used
combined withany (dis)similarity measure, which do not
have to be positive semidefinite. In fact, our method with
LCS and the edit distance show better classification accu-
racy than with the string kernels. Among the three types
of string data we examined, the rhythm string seems most
suited for genre classification in our experiments. Songs in
the pairs with large weight in the resulting weighted com-
bination might be representatives of respective music gen-

res. We challenge classification problem with data set of
238 songs, however, the data set is too low to be general-
ity of this approach. We need to experiment bigger amounts
of data, and we measure classification accuracy of not only
symbolic data but also audio data. Future work is not only
music genre classification but also automatic extraction of
features of music genres or composers.
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