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ABSTRACT

We propose a new approach for assigning audio data in large
missing audio parts (from 1 to 16 seconds). Inspired by im-
age inpainting approaches, the proposed method uses the
repetitive aspect of music pieces on musical features to re-
cover missing segments via an exemplar-based reconstruc-
tion. Tonal features combined with a string matching tech-
nique allows locating repeated segments accurately. The
evaluation consists in performing on both musician and non-
musician subjects listening tests of randomly reconstructed
audio excerpts, and experiments highlight good results in
assigning musically relevant parts. The contribution of this
paper is twofold: bringing musical features to solve a sig-
nal processing problem in the case of large missing audio
parts, and successfully applying exemplar-based techniques
on musical signals while keeping a musical consistency on
audio pieces.

1. INTRODUCTION

Audio signal reconstruction has been of major concern for
speech and audio signal processing researchers over the last
decade, and a vast array of computational solutions have
been proposed [6, 7, 9, 10]. Audio signals are often subject
to localized audio artefacts and/or distortions, due to record-
ing issues (unexpected noises, clips or clicks), or to packet
losses in network transmissions, for instance [1]. Recov-
ering such missing data from corrupted audio excerpts to
restore consistent signals has thus been challenging for ap-
plicative research, in order to restore polyphonic music re-
cordings, to reduce audio distortion from lossy compression,
or to bring network communications robustness to back-
ground noise, for example [10].

The problem of missing audio data reconstruction is usu-
ally addressed either in the time domain, aiming at recov-
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ering entire gaps or missing excerpts in audio pieces, or
in the time-frequency domain, aiming at recovering miss-
ing frequencies that cause localized distortions of audio pie-
ces [18]. A typical trend for the latter one, often referred to
as audio inpainting, is to treat distorted samples as missing
and to attempt to restore original ones from a local analy-
sis around missing parts. Common approaches include lin-
ear prediction for sinusoidal models [9], Bayesian estima-
tors [7], autoregressive models [6] or non-negative matrix
factorization solving [10]. These studies usually either base
on the analysis of distributions of signal features around
missing samples, or use local or global statistical charac-
teristics over audio excerpts [18].

However, missing data problems are usually addressed
on relatively small segments of audio data at the scale of
audio piece duration. Indeed, most audio reconstruction
systems proposed so far are based on signal features. The
non-stationary aspect of such features makes it particularly
difficult to assign data for large missing parts. Thus, audio
gaps are generally reduced to a maximum duration of 1 or 2
seconds under particular conditions for the recovered qual-
ity to remain satisfying (see [9] for instance). In this paper,
we address the challenging problem of reconstructing larger
missing audio parts, namely audio gaps over several seconds
(from 1 up to 16 seconds of missing data), in music audio
pieces.

A similar problem is already addressed in image process-
ing. Indeed, image inpainting aims at restoring and recov-
ering missing data in images in a not easily detectable form
(see for instance [2] and references therein). A common and
simple approach, from texture synthesis, uses the notion of
self-distance by considering that an image has a lot of rep-
etitions of local information. This approach can be seen as
an exemplar-based copy-and-paste technique [3,5].

Similarly to exemplar-based image inpainting approaches,
the proposed method analyses perceived repetitions in mu-
sic audio to recover large missing parts. Note that while po-
tentially allowing the reconstruction of large parts, suchan
exemplar-based approach induces the limit of reconstructing
exclusively parts that are approximately repeated to main-
tain a musical consistency. To restore such an amount of
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missing information, we consider the signal not only as au-
dio excerpts but also as music pieces, therefore taking into
account that sounds are temporally organized and may fea-
ture redundancies. Indeed, it is the organization and rela-
tionships between sound events in music that make music
differ from random sound sequences [14]. In Western pop-
ular music, for instance, choruses and verses often are ap-
proximately repeated parts whose occurrences share a high
degree of perceptual similarity. Other examples include clas-
sical music pieces, where the repetition of musical phrases
structures the forms, or electronic music where repetitive
loop techniques are frequently employed. We propose to use
this kind of musical redundancy in order to recover missing
data. Note that the method described in this paper aims at
assigning a musically consistent part, and could be easily
combined with signal-based approaches to be used for prac-
tical signal reconstruction of large missing parts.

Our method consists in representing each music piece as
a sequence of tonal features employed to describe the per-
ceived harmonic progressions. Then, a string matching tech-
nique is applied to retrieve the part that best fits the miss-
ing segment, according to its left- and right-sided tonal con-
texts. The identified repetition is finally used as a reference
to fill-in missing data. Technical details of the method are
described in Section 2. We detail in Section 3 the test proto-
col employed for evaluating the effectiveness of the system
on human listeners and present the results obtained on mu-
sician and non-musician subjects. Section 4 finally brings
concluding remarks and depicts future work.

2. METHOD

2.1 Musical representation

In a first step, audio signals are represented on musical-
based criteria. The key to a well-suited representation in
the particular application of finding perceived repetitions is
to characterize some meaningful local variations in music
while being robust to musical changes. As such, pitch con-
tent is particularly adapted to retrieve musical repetitions in
the context of analyzing Western music. Indeed, harmonic
and melodic progressions are constantly identified by listen-
ers, consciously or not, and composers classically organize
the whole structure of their pieces around such progressions
and their variations or repetitions. Most state of the art meth-
ods dealing with musical structure analysis [16] or relatedto
the detection of musical repetitions [11] rely on the richness
of tonal information to retrieve similar segments. We there-
fore chose to use pitch-related features to represent audio
pieces on their musical structure.

Harmonic Pitch Class Profiles (HPCP) are often used to
describe this type of musical informations [8]. These fea-
tures can be summarized as a classified representation of
spectral energies into separate bins that correspond to the

frequency class where they appear. The considered frequen-
cy classes take into account the cyclical perception of pitch
in human auditory system: thus, two harmonic sounds con-
tribute to the same chroma bin, or pitch class. Moreover,
HPCP features were proven to be rather insensitive to non-
pitched variations in noise, timbre, dynamic, tuning or loud-
ness for instance, which makes them very efficient in quali-
fying only tonal contexts in audio pieces [8].

2.2 Tonal features extraction

Audio signals are first divided inton segments, or audio
frames. We chose to use constant-length frames (as oppo-
site to beat-synchronous windows, for instance) in order to
optimize the proposed mono-parametric signal representa-
tion and to enable our system to be potentially used on di-
verse musical genres. Each frame is represented by aB-di-
mensional vectorh = (h1, · · · , hB) that corresponds to a
HPCP holding its local tonal context. The dimension value
B stands for the precision of the note scale, or tonalreso-
lution, usually set to 12, 24 or, in our case, 36 bins. Each
HPCP feature is normalized by its maximum value; each
vectorh is thus defined on[0, 1]B. Hence, each audio sig-
nal can be represented as a sequenceu = h1h2 · · ·hn of n

B-dimensional vectors.
In the following process, we need a similarity measure

to compare audio features between each other. The Pearson
correlation measurer is better adapted to pitch class pro-
files comparisons than Euclidean-based measures, for in-
stance, because it provides invariance to scaling. Such a
measure then yields a good estimation of tonal context sim-
ilarities [20], and is used in the following. It is defined as:

r(hi, hj) =

∑B

k=1
(hi

k − hi)(hj
k − hj)

√

∑B

k=1
(hi

k − hi)2
√

∑B

k=1
(hj

k − hj)2
(1)

wherehi andhj denote the mean value over the vectorshi

andhj , respectively.
In the particular case of comparing HPCP features, an

enhanced measure was proposed by Serràet al. [17] based
on theOptimal Transposition Index(OTI). The principle is
to compute the local similarity measure, herer, between the
first HPCP vector and each musical transposition (i.e., cir-
cular shift) of the second compared vector. The OTI denotes
the transposition index of the lowest distance found. Finally,
according to the OTI, a binary score is assigned as the re-
sult of the comparison. In the case of a 12-split note scale
(B = 12), for instance, a low cost is assigned to the OTI
equals to 0 (no transposition was necessary: the local tonal
context is similar) whereas a higher cost is given for any
greater value of the OTI. Authors highlighted in their paper
the superiority of such a binary measure over usual similar-
ity metrics for HPCP. Based on this comparison technique,
the similarity measures employed for our system is:
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s(hi, hj) =

{

µ+ if OTI(hi, hj) ∈ {0, 1, B − 1}
µ− otherwise

(2)

whereµ+ andµ−, are two possible scores assigned for the
comparison ofhi andhj .

The first representation step of our system thus computes
an HPCP vector for each frame, which provides a sequence
of chroma features that can now be treated as an input for
string matching techniques.

2.3 String matching techniques

A string u is a sequence of zero or more symbols defined
on an alphabetΣ. In our context, each HPCP vector repre-
sents a symbol. We introduce a particular “joker” symbol
φ assigned to each frame that contains at least one missing
audio sample. Thus, the alphabet considered in our context
is denoted byΣ = [0, 1]B ∪ {φ}. We denote byΣ∗ the
set of all possible strings whose symbols are defined onΣ.
The ith symbol ofu is denoted byu[i], andu can be writ-
ten as a concatenation of its symbolsu[1]u[2] · · ·u[|u|] or
u[1 · · · |u|] where|u| is the length of the stringu. A stringv

is asubstringof u if there exist two stringsw1 andw2 such
thatu = w1vw2.

Needleman and Wunsch [15] proposed an algorithm that
computes a similarity measure between two stringsu and
v as a series of elementary operations needed to transform
u into v, and represent the series of transformations by dis-
playing an explicit alignment between strings. A variant of
this comparison method, the so-calledlocal alignment[19],
allows finding and extracting a pair of regions, one from
each of the two given strings, which exhibit the highest sim-
ilarity. In order to evaluate the score of an alignment, several
scores are defined: one for substituting a symbola by an-
other symbolb (possibly the same symbol), denoted by the
following functionCm(a, b), and one for inserting or delet-
ing symbols, denoted by the functionCg(a). The particular
values assigned to these scores form thescoring schemeof
the alignment.

The local alignment algorithm [19] computes a dynamic
programming matrixM such thatM [i][j] contains the lo-
cal alignment scores between the substringsu[1 · · · i] and
v[1 · · · j], according to the recurrence:

M [i][j] = max















0
M [i− 1][j] + Cg(u[i]) (α)
M [i][j − 1] + Cg(v[j]) (β)
M [i− 1][j − 1] + Cm(u[i], v[j]) (γ)

(3)
whereu andv represent the two strings (HPCP sequences)

to be compared, and with the initial conditionM [0][0] =
M [i][0] = M [0][j] = 0, ∀i = 1 . . . |u|, ∀j = 1 . . . |v|. (α)

  

  

   

 

 

   

 

  

  

 

    

 

 

 

Figure 1. Overview of the algorithm.(a): audio wave-
form with missing data.(i): string provided by the mu-
sical representation step (Section 2.2).(ii): string align-
ments performed by our algorithm.(iii): aligned strings
(Section 2.4).(b): reconstructed audio waveform. Dashed-
circled regions correspond to an overlap-add reconstruction
(Section 2.5).

represents the deletion of the symbolu[i], (β) represents the
insertion of the symbolv[j], and(γ) represents the substitu-
tion of the symbolu[i] by the symbolv[j].

In the following, the local alignment algorithm is denoted
by the functionalign(u, v). As a result, it yields a triplet
(x, u′, v′) wherex is the best similarity score between two
strings, andu′ andv′ are the two aligned substrings respec-
tively in u andv.

Considering two HPCP featureshi andhj , the scoring
scheme used in our experiments is defined as follows:

µ+ = 1
µ− = −0.9
Cg(h

i) = −0.7 if hi 6= φ, 0 otherwise

Cm(hi, hj) =







s(hi, hj) if hi 6= φ andhj 6= φ

0.1 hi = φ xor hj = φ

0 otherwise
(4)

Numerical values were obtained empirically on a subset
of 80 songs from the datasets presented in Section 3.2. The
disjunction case for symbolφ is motivated by constraints
over the alignment of frames that correspond to frames of
missing data.

2.4 Algorithm

The general principle of our exemplar-based method is to
identify in the partially altered music piece sequence the part
that best fits the missing section. We call this best-fitting
part thereference part. We denote aslocal tonal context
tonal progressions that occur prior and after the missing part.
More formally, we introduce a thresholdδ that corresponds
to the size of tonal contexts considered before and after the
missing segment, as a number of frames.
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Figure 1 depicts an overview of the applied algorithm.
Formally, the computation is performed as follows:

(i) Let u be the string representing a music piece,i.e., the
HPCP sequence obtained from the signal representa-
tion step. By hypothesis,u contains a stringvφ =
φ · · ·φ of joker symbols, and there existst1, t2 in Σ∗

such thatu = t1vφt2.

(ii) Define as the left (resp. the right)context stringvl

(resp. vr) of vφ the unique string of lengthδ such
that there existst′1 andt′2 ∈ Σ∗ verifying t1 = t′1vl

and t2 = vrt
′

2. Compute(x1, u1, v1) as the result
of align(t1, vlvφvr) and(x2, u2, v2) as the result of
align(t2, vlvφvr).

(iii) If x1 > x2, then keepu1 as the reference part,u2

otherwise.

This process provides both areference partu′ (u1 or u2)
corresponding to the excerpt that best fits the missing sec-
tion, and adestination partv′ (v1 for u1, v2 for u2) that was
aligned withu′. Note that the scoring constraints described
in Eq. 4 ensure that the identified partv′ contains the miss-
ing segmentvφ.

2.5 Audio data assignment

In order to fill-in missing data, the method consists in as-
signing data from the identified reference part into the des-
tination part. Since the identified destination partv′ may be
longer than the missing data segmentvφ, the samples as-
signment may overlap existing samples in the audio piece.
In order to ensure a smooth audio transition, overlap-add
reconstructions are performed [4].

Note that we deliberately chose not to implement any
beat, onset or any kind of synchronization, in order to avoid
the addition of potential analysis errors and to enable the
strict evaluation of this exemplar-based audio alignment me-
thod. We leave as a perspective such more advanced audio
synchronizations or overlapping techniques.

3. EXPERIMENTS AND RESULTS

Our alignment system is based on musical features. The
identified repetitions only depend on a musical criterion:
pitch content. Therefore, variations in timbre, rhythm or
lyrics may appear between occurrences of an identified rep-
etition and original and reconstructed audio signals may be
completely different. Hence, standard signal processing met-
rics such as SNR seem inadequate to the evaluation of mu-
sical resemblance. Since it works on a musical abstraction,
the aim of the method is to produce perceptually consistent
results,i.e., reconstructions satisfactory for human listen-
ers. The proposed experiments are therefore based on hu-
man subjective evaluation of reconstructed audio files.

3.1 Test data generation

The tests of our method consist in erasing random audio
parts in a dataset of music pieces, recovering missing data
with our system and asking human listeners to evaluate the
audio reconstruction. Since our method uses an exemplar-
based approach, a part needs to be approximately repeated
in the same piece at least once in order for our system to
recover it. Thus, we introduce arepetitiveness hypothe-
sis prior to the evaluation of the proposed system: every
concealed part for audio tests must belong to a repeated
structural section, according to a structural ground truth.
For instance, for a music piece annotated with the structure
ABCAAB, the hypothesis force concealed parts to be chosen
within one of the repeated patternsA, B or AB.

The test data generation is performed according to the
following process:
1. Select randomly a concealment lengthl between 5 and
16 seconds.
2. According to an annotated structural ground truth, select
randomly a repeated section lasting at leastl.
3. Select randomly a beginning time instantd in this chosen
part.
4. Perform the concealment: erase every sample betweend

andd + l.
5. Perform the reconstruction using the algorithm described
in Section 2.4.
6. Finally, select two random durationst1, t2 between 5 and
10 seconds, and trim the reconstructed audio piece between
d − t1 andd + l + t2.
The last step is dedicated to reducing the duration of ex-
cerpts in order to reduce the test duration. Note that whereas
this last step makes the experiment more comfortable (faster)
for the testers, it tends to sharpen up their attention around
to the reconstructed region, and requires the reconstruction
to be specially accurate.

3.2 Dataset

As a test dataset, we elected the OMRAS2 Metadata Project
dataset [13] that provides structural annotations for Western
popular audio music of different artists1 . For our experi-
ments, we chose to test on 252 music pieces mostly from
The Beatles(180 pieces),Queen(34 pieces) andMichael
Jackson(38 pieces). These artists were most likely to be
known by listeners, hence reinforcing their judgment. Note
that audio pieces were taken from mp3-encoded music col-
lections compressed with a minimum bit-rate of 192 kbps.

In order to compute HPCP features on audio signals, we
chose the window size of46ms in order to keep accurate
alignment on audio data. Performing preliminary tests on a
few songs, the local context threshold value ofδ = 4 sec-
onds appeared to be sufficient for consistent alignments.

1 http://www.isophonics.net/content/reference-annotations
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Figure 2. Probability of randomly choosing repeated parts
according to the ground truth. Plain line shows the average
values over the whole dataset, while dashed lines stand for
the different artists’ songs: square points forQueen, circle
points forMichael Jacksonand triangle points forThe Bea-
tles.

To evaluate how restrictive the repetitiveness hypothesis
may be on this specific dataset, we computed the average
percentage of parts in audio pieces that are repeated accord-
ing to the structural ground truth. Figure 2 shows the aver-
age probability of finding a repetition as a function of the
size of the randomly chosen part. The plain line shows the
average values over the dataset. The graphic shows for in-
stance that a random part that lasts8 seconds corresponds
to a fully repeated section in structural ground truth48%
of the time on average. Repetitiveness seems to vary be-
tween artists in the dataset, as suggested by the different
dashed lines. Thus, the probability of finding repeated parts
in pieces fromThe Beatles, for instance, is between8.7%
and16.2% higher than on pieces fromQueen. The hypothe-
sis of deleting exclusively random parts inside repeated sec-
tions therefore induces the consideration of35% of 15 sec-
onds parts in audio pieces, to65% for 1 second parts on
average.

The previously described data generation process was
performed once for each music piece in the dataset.252
excerpts were thus generated, each lasting between10 and
30 seconds, with an average duration of21.8 seconds over
the set. The artificial data concealment durations were ran-
domly generated between1 and16 seconds, with an average
value of8.2 seconds.

3.3 User tests

The test protocol employed for evaluating our system is in-
spired from the MUSHRA audio subjective test method [12].
In order to respect a maximum test duration of approxi-
mately 10 minutes, each subject is asked to listen for 26 au-

dio excerpts from the generated test dataset. Among these,
5 excerpts are proposed in every test and correspond to non-
altered audio excerpts. These are supposed to observe in-
dividual effect, enabling for instance the detection of ran-
domly answering subjects. The 21 remaining excerpts are
randomly chosen among the reconstructed database. Each
subject is asked to listen to each of these excerpts once, with
no interruption, and to indicate whether or not he detected
any audio artefact or distortion. If so, the subject is asked
to rate the quality of the reconstruction applied: 1) Very dis-
turbing, 2) Disturbing, 3) Acceptable, 4) Hardly perceptible.
The rate of 5 is assigned for no distortion heard. Note that
the exact meaning of terms in the context of the experiment
is not provided to the testers, hence letting them define their
own subjective scale. Finally, a few additional information
is asked, such as which audio restitution material is used,
and whether or not the tester is a musician.

3.4 Results

Tests were carried out on80 distinct listeners,34 musicians
and46 non musicians. The average number of observations
per audio excerpt is7.1, values ranging from1 to 15 ob-
servations for altered excerpts. The5 common non-altered
pieces logically led to400 observations among which10
were incorrectly evaluated (artefacts perceived). Since all
of these invalid rates were attributed by distinct users, we
chose to take into account every subject in the evaluation
(no abnormal behavior). Table 1 summarizes the results ob-
tained for both classes of testers and for the different artists
in the dataset. Note that the rates attributed to the5 non-
altered excerpts were not used for computing these average
values. Overall results highlight an average rate of4.04 out
of 5 for the quality of the applied data assignment. More
precisely,30% of reconstructed excerpts were attributed the
rate5 by all of their listeners, which highlights very accurate
audio assignments on a third of the dataset. The distribution
of other average rates is as follows:31% pieces rated be-
tween4 and5, 17% pieces between3 and4, 15% between
2 and3 and7% between1 and2. Reminding that 4 corre-
sponds to a “hardly perceptible” reconstruction and 5 to no
distortion perceived, the method therefore seems successful
in performing inaudible or almost inaudible reconstructions
in 61% of the cases.

As one could expect, musician subjects perceive more
distortions with an average rate of3.92 against4.13 for non
musicians. Scores obtained for each audio material class
highlight a slightly better perception of reconstructionsfor
headset restitution, with an average value of3.98 against
4.05 for other material. However, since all musician testers
chose to use headset, musician and headset scores may be
closely related. Reported distortions include short rhyth-
mic lags, unexpected changes in lyrics, sudden changes in
dynamics or abrupt modification of instruments. Results
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Musicians Non musicians Total
The Beatles 3.95 4.13 4.05
Michael Jackson 4.21 4.26 4.24
Queen 3.40 3.94 3.71

Whole dataset 3.92 4.13 4.04

Table 1. Audio test results. Values correspond to average
rates on a 1 (very disturbing reconstruction) to 5 (inaudible
reconstruction) scale.

also vary between artists; for instance, reconstructions on
Michael Jacksonsongs seem to be better accepted, with an
average value around4.24 whether listeners are musicians
or not. Contrastingly, reconstructions onQueenpieces were
more often perceived, with an average value of3.94, and
musicians assigned a0.5 lower rate on average. An ex-
planation for such gaps between artists may be the more or
less repetitive aspect of similar structural sections, such as
choruses that tend to vary often alongQueenmusic pieces.
Moreover, a few pieces such asWe will rock youby Queen
were assigned particularly low rates (1.25 in this case for8
observations) probably because their pitch content is insuf-
ficient for the algorithm to detect local similarities.

4. CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of reconstructing
missing data in large audio parts. We used a tonal represen-
tation to obtain a feature sequence on a musical criterion,
and analyzed it using string matching techniques to extracta
musically consistent part as a reference for substitution.We
generated audio test data introducing random concealments
between1 and16 seconds long in repeated structural parts,
and tested out our music assignment system in an audio
evaluation on 80 subjects. Results highlighted a good per-
formance of the method in recovering consistent parts with
30% random reconstructions undetected, and31% hardly
perceptible.

As a future work, in order to make this method useful in
practice, the algorithm may be combined with other signal-
based approaches. For instance, audio synchronizations could
be applied by aligning assigned beats with original ones.
Other possible audio improvements include the correction
of dynamics, or the combined use of other musical descrip-
tions (timbre features, rhythm,etc.). We also leave as a
perspective the improvement of the comparison algorithm,
which could retrieve a set of parts locally fitting the missing
data section and combine such parts iteratively, or the devel-
opment of an inspired approach performing real-time audio
reconstruction.
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