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ABSTRACT

The rapid expansion of social media in music has pro-
vided the field with impressive datasets that offer insights
into the semantic structures underlying everyday uses and
classification of music. We hypothesize that the organiza-
tion of these structures are rather directly linked with the
”qualia” of the music as sound. To explore the ways in
which these structures are connected with the qualities of
sounds, a semantic space was extracted from a large collec-
tion of musical tags with latent semantic and cluster anal-
ysis. The perceptual and musical properties of 19 clus-
ters were investigated by a similarity rating task that used
spliced musical excerpts representing each cluster. The re-
sulting perceptual space denoting the clusters correlated
high with selected acoustical features extracted from the
stimuli. The first dimension related to the high-frequency
energy content, the second to the regularity of the spec-
trum, and the third to the fluctuations within the spectrum.
These findings imply that meaningful organization of mu-
sic may be derived from low-level descriptions of the ex-
cerpts. Novel links with the functions of music embedded
into the tagging information included within the social me-
dia are proposed.

1. INTRODUCTION

Attempts to craft a bridge between acoustic features and
the subjective sensation they provoke [3] have usually started
with concepts describing instrument sounds, using adjec-
tives or bipolar scales (e.g., bright-dark, static-dynamic)
and matching these with acoustic descriptors (such as shape
of the envelope and energy distribution) [11,20].

In this study, we present a purely bottom-up approach
to the conceptual mapping between sound qualities and
emerging meanings. We utilized social media to obtain a
wide sample of music and extract an underlying semantic
structure of this sample. Next, we evaluated the validity
of the obtained mapping by investigating the acoustic fea-
tures underlying the semantic structures. This was done
by an analyzing of the examples representing the semantic
space, and by having participants to rate the similarity of
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random spliced sound examples representing the semantic
space.

Social tagging is an activity, where descriptive verbal
characterizations are given to items of interest, such as
songs, images, or links as a part of the normal use of the
popular online services. Tags can be considered as se-
mantic representations of abstract concepts created essen-
tially for mnemonic purposes and used typically to orga-
nize items [14]. Tagging music is not a novel idea, as any
labeling scheme such as musical genres may be considered
as tags themselves, but in recent years in the context of so-
cial networks, tagging has acquired a new relevance and
meaning [1].

Despite all the possibilities offered by large databases
containing tags, a central problem remains on how to de-
rive an ontology from them [19]. Starting with the assump-
tion of an underlying structure existing in an apparently
unstructured set, we consider a sample of tags to extract a
semantic structure, explained next.

2. ANALYSIS OF TAGS
2.1 Material

A collection of 6372 songs [7] representing 15 musical
genres (Alternative, Folk, Finnish Iskelmi, Pop, World,
Blues, Gospel, Jazz, Rock, Classical, Heavy, Soul, Elec-
tronic, Hip-Hop, Soundtrack) served as the initial database
of music. Musical genres were used in establishing the
sample in order to maximize musical variety in the collec-
tion and to be compatible with a host of music preference
studies (e.g., [6,22]) that have provided lists of 13 to 15
broad musical genres relevant for most Western adult lis-
teners. The tags related to the songs in this collection were
retrieved from an online music service (last.fin!) with a
dedicated API (Application programming interface) named
Pylast?.

2.2 Description of the corpus

The retrieved corpus consists of 5,825 lists of tags (mean
length of 62.27 tags), each list (document in this context)
is associated with a piece of music. The number of times
each tag had been used in the system until the time of
the retrieval was also obtained, representing a measure of
“popularity”.

"http://www.last.fm
2http://code.google.com/p/pylast/
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In total, the corpus contains 362,732 tags, from which
77,537 are distinct. Each tag is formed by one or more
words (M=2.48, SD=1.86), a small proportion of the dis-
tinct tags in the corpus contain long expressions (e.g. 6%
of the distinct tags are formed by 5 words or more). In
this study a tag is considered as a unit representing an ele-
ment of the vocabulary, disregarding the number of words
that compose it. Treating tags as collocations (i.e. frequent
juxtaposition of words) shifts the focus from data process-
ing to concept processing [2], also allowing the tags to
function as conceptual expressions [23] instead of words
or phrases.

2.3 Lexical layers of the vocabulary

Preprocessing is necessary in any text mining application
because retrieved data does not follow any particular set of
rules, and there are not standard steps to follow [13].

Three filtering rules where applied to the corpus in the
quantitative domain. First, hapax legomena (i.e. tags used
only once in the corpus), are removed under the rationale
of discarding unrelated data. To capture the most prevalent
and relevant tags, a second filter uses the associated popu-
larity measure of each tag to eliminate the tags below the
mean popularity index of the vocabulary. The third step
eliminates tags with three or more words to prune short
sentence-like descriptions from the corpus. The subset re-
sulting from such reductions represents 46.6% of the cor-
pus (N=169,052, Vocabulary=2,029 tags).

At this point, data has been de-noised but for the ex-
traction of a meaningful semantic ontology from the tags,
a semantic analysis and qualitative filtering is necessary.
To categorize the tags at a functional level [24] (e.g. musi-
cological and lexicological), an analysis was performed by
using the Brown Corpus [9] as parts-of-speech (POS) tag-
ger, Wordnet database [8] for word sense disambiguation,
and Urban Dictionary online?® and Last.fm database for
general reference. Tags are looked-up in these sources and
the selection of a category is decided by reviewing each
case. The criteria applied in this process favors categories
closely related to music, such as genre, artist, instrument,
form and company, then adjectives, and finally other types.
For instance, “Acid” is a noun but it is also a term exten-
sively used to describe certain musical genres, so it was
classified according to its musical function. Proposed cat-
egories, percentage of the vocabulary, definition and exam-
ples are shown in Table 1. The resulting layers were used
to make a finer discrimination of the tags to uncover the se-
mantic structure. Since one of the main motivations of this
project was to obtain prototypical timbral descriptions, we
focused on tags related to adjectives, nouns, instruments,
temporal and verbs.

2.4 Semantic structure

Tag structure (or folksonomy) is obtained by using latent
semantic analysis (LSA) as a framework [5], a method
that has been used before in the domain of musical tags

3http://www.urbandictionary.com

[17,18]. In this study, detection of semantic structure has
three stages: 1) construction of a Term-Document Matrix,
2) calculation of similarity coefficients, and 3) cluster anal-
ysis. First, a Term-Document Matrix X = {x;;} is con-
structed. Where each song ¢, corresponds to a “Document”
and each unique tag (or item of the vocabulary) j, to a
“Term”. The result is a binary matrix X(0, 1) containing
information about the presence or absence of a particular
tag to describe a given song. Second, a similarity matrix
n x n D with elements d;; where d;; = 0 for all 4, is cre-
ated by computing similarity indexes between tag vectors
Tixj of X with:

dij = o (1)
V(e+b)(a+c)(d+b)(d+c)
where a is the number of (1,1) matches, b for (1,0), ¢ for
(0,1) and d for (0,0).

There are several methods to compute similarity coef-
ficients between binary vectors (c.f., [10]). This coeffi-
cient was selected because of its symmetric quality, which
considers the double absence (0,0) as important as (1,1),
that presumably has positive impact on ecologic applica-
tions [10]. A hierarchical clustering algorithm was used to
transform the similarity matrix into a sequence of nested
partitions. The method used in the hierarchical clustering
was Ward’s minimum variance, to find compact, spheri-
cal clusters [21] and because it has demonstrated its profi-
ciency in comparison to other methods [12].

After obtaining a hierarchical structure, the clusters are
derived from the resulting dendrogram by “pruning” the
branches with an algorithm that uses a partitioning around
medioids (PAM) clustering method in combination with
the height of the branches [15]. Figure 1 shows a two di-
mensional projection (obtained with multidimensional scal-
ing) of the similarity matrix used in the hierarchical clus-
tering. Each dot represents a tag, and the numbers show
the centers of their corresponding clusters. Each number
is enclosed in a circle that shows the relative size of the
cluster in terms of the number of tags contained in it. A
more detailed reference on the content of the clusters can
be consulted in Table 2.

2.5 Ranking of musical examples in the clusters

In order to explore any acoustic or musical aspects of the
clusters, we need to link the clusters with the specific songs
represented by the tags. For this, a m x n Term Docu-
ment Matrix (TDM) X = {z;;} is constructed, where lists
of tags attributed to a particular song are represented as
m, and preselected tags as n. A list of tags is a finite set
{1,....,k}, where 1 < k < 96. Each element of the matrix
contains a value of the normalized rank of a tag if found on
a list, and it is defined by:

Where 7}, is the cardinal rank of the tag j if found in ¢, and
k is the total length of the list. To obtain a cluster profile,
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Categories % Definition Examples

Genre 36.72% | Musical genre or style Rock, Alternative, Pop
Adjective 12.17% | General category of adjectives Beautiful, Mellow, Awesome
Noun 9.41% General category of nouns Love, Melancholy, Memories
Artist 8.67% Artists or group names Coldplay, Radiohead, Queen
Locale 8.03% Geographic situation or locality British, American, Finnish
Personal 6.80% ‘Words used to manage personal collections | Seen Live, Favourites, My Radio
Instrument 4.83% Sound source Female vocalists, Piano, Guitar
Unknown 3.79% Unclassifiable gibberish aitch, prda, <3

Temporal 2.41% Temporal circumstance 80’s, 2000, Late Romantic

Form 2.22% Musical form or compositional technique Ballad, Cover, Fusion

Company 1.72% Record label, radio station, etc. Motown, Guitar Hero, Disney
Verb 1.63% General category of verbs Chillout, Relax, Wake up
Content 1.03% Emphasis in the message or literary content | Political, Great lyrics, Love song
Expression 0.54% Exclamations Wow, Yeah, lol

Table 1. Main categories of tags, their prevalence, definition and examples.
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Figure 1. 19 clusters obtained with hierarchical clustering
and hybrid pruning.

mean rank of the tag across the TDM is calculated with:

= 2=t ©

m

Thus the cluster profile or mean ranks vector is defined
as:

Pl = Tjec, 4)
C) denotes a given cluster [ for 1 <[ < 19 (optimal num-
ber of clusters for this dataset), and p is a vector {5, ..., k},
where 5 < k < 334.

Last step aims to obtain ranked lists of songs ordered
in terms of its closeness to each cluster profile. This is
carried out by calculating the euclidean distance between
each song rank vector x; jcc, and the cluster profile p;:

&)

The examples of the results can be seen in Table 2, where
top artists of each cluster are displayed below central tags
of the cluster.

3. EXPERIMENT

In order to explore whether the obtained clusters are per-
ceptually meaningful and to further understand what kinds
of acoustic and musical attributes they consist of, empirical
data unrelated to the existing structures about the clusters
is needed. A similarity rating experiment was designed to
assess the timbral qualities of songs pertaining to each of
the clusters. We chose to emphasize the low-level, non-
structural qualities of music since we wanted to minimize
the confounding factors caused by recognition of songs,
artists and the subsequent associations with these as well
as the lyrical contents of the music. To this end, the stim-
uli for the experiment consisted of semi-randomly spliced,
brief excerpts, explained in detail below.

3.1 Experiment details
3.1.1 Stimuli

Initially, 5-second audio samples were taken from a ran-
dom middle part (25% after the beginning and 25% before
the end) of the 25 top ranked songs (see ranking proce-
dure in section 2.5) from each cluster. For each sample,
the temporal position of notes onsets were estimated based
on spectral flux using MIRToolbox [16]. The highest onset
was selected as a reference point from which slices of ran-
dom length (150ms < t < 250ms) were taken from 10ms
before the peak onset of each sample, then equalized in
loudness, and finally mixed together using a fade in-out of
50ms with an overlap window of 100ms This resulted in
19 excerpts (each representing a cluster) of variable length,
that were finally trimmed to 1750ms, with a fade in-out of
100ms To prepare these 19 excerpts for a similarity rating,
the 171 paired combinations were mixed with a silence of
600ms. between them.

3.1.2 Participants

12 females and 9 males (age M=26.8, SD=4.15) partici-
pated to the experiment. 9 of them possessed least one
year of musical training. 12 reported listening to music
attentively between one and 10 hours per week.
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Cluster ID | Tags proximate to cluster centroids

Top artists in the cluster

Energetic, Female vocal, Powerful, Hot, Sex
Dreamy, Chill out, Haunting, Sleep, Moody
Sardonic, Sarcastic, Cynical, Humorous, Funny

Composer, Cello, Piano, Cello rock, Violin

Mellow, Beautiful, Chillout, Chill, Sad
Hard, Angry, Loud, Aggressive, Rock out
60s, 70s, Guitar virtuoso, Sixties, Guitar solo

High school, 90’s, 1990s, 1995, 1996

50s, Saxophone, Trumpet, Tenor sax, Sax
1980s, 80’s, Eighties, 80er, Voci maschili
Affirming, Lyricism, Life song, Vocalization
Choral, A capella, Acapella, Choir, A cappella

Tangy, Coy, Sleek, Attitude, Flirty

CESEGEGSISeR IR L~

Awesome, Amazing, Male vocalist, Loved, Great

Female vocalist, Female vocalists, Female, 00s, Sexy

Feelgood, Summer, Feel good, Cheerful, Gute laune
Autumnal, Wistful, Intimate, Sophisticated, Reflective

Voce femminile, Femmina, Voci femminili, Femmine

Rousing, Exuberant, Confident, Playful, Passionate

Amy Adams, Fred Astaire, Kelly Clarkson

Nick Drake, Radiohead, Massive Attack

Alabama 3, Yann Tiersen, Tom Waits

Guns N’ Roses, U2, Metallica

Camille Saint-Saéns, Tarja Turunen, Franz Schubert
Fergie, Lily Allen, Amy Winehouse

Katie Melua, Phil Collins, Coldplay

System of a Down, Black Sabbath, Metallica

Simon & Garfunkel, Janis Joplin, The Four Tops
Mika, Goo Goo Dolls, Shekinah Glory Ministry
Soulsavers, Feist, Leonard Cohen

Fool’s Garden, The Cardigans, No Doubt

Miles Davis, Thelonious Monk, Charles Mingus

Ray Parker Jr., Alphaville, Michael Jackson

Lisa Stansfield, KT Tunstall, Katie Melua

Medizval Bebes, Alison Krauss, Blackmore’s Night
Auvril Lavigne, The Cranberries, Diana Krall

Kylie Minogue, Ace of Base, Solange

James Brown, Does It Offend You, Yeah?, Tchaikovsky

Table 2. Most representative tags and typical artists of each of the 19 clusters.

3.1.3 Procedure

Participants were presented with pairs of sound excerpts in
random order using a computer interface and high-quality
headphones. Their task was to rate the similarity of sounds
on a 9-level Likert scale, whose extremes were labeled as
dissimilar and similar. Before the actual experimental tri-
als, they were given instructions and practice trials to fa-
miliarize themselves with the task.

3.1.4 Audio features

To explore the acoustic and musical features underlying
the perceptual similarities of the clusters, 41 audio features
(listed on Table 3) were extracted from each spliced stim-
uli using MIR toolbox [16]. The choice of features was
restricted to those which would be applicable to spliced
examples and would not require high-level feature analysis
such as structural repetition or tonality. The extraction was
carried out using frame-based approach with 50ms analy-
sis frame using 50% overlap.

3.2 Results

Highly consistent pattern of similarities between the 21
participants were obtained (Cronbach a = 0.94). For this
reason, a mean similarity matrix of the individual ratings
was subjected to metric multidimensional scaling (MDS)
analysis based on stress minimization by means of ma-
jorization (SMACOF) [4]. This yielded adequate low -
dimensional projections of the data, from which we fo-
cus on 2 - dimensional (stress=0.065) and 3 - dimensional
(stress=0.027) solutions.

The organization of the clusters (represented with sliced
samples) illustrates a clear organization in terms of the se-
mantic qualities of the clusters (see Figure 2), showing the
Awesome and Hard examples on the left uppermost corner,
and the semantically distant, Autumnal and Dreamy in the
lower right-hand corner.

To investigate the perceived organization of the seman-
tic clusters in terms of the acoustic qualities, the 3 dimen-
sions were correlated with the extracted audio features.

Category | No. | Feature

Dynamics | 1-2 RMS energy

3-4 Attack time (M, SD)

Rhythm | 5-6 Fluctuation peak pos. (M, SD)

7 Fluctuation centroid (M, SD)

Pitch 8-9 Pitch (M, SD)

10-11 | Chromagram (unwr.) centr. (M, SD)
Harmony | 12 Entropy (oct. collap. spectr.) (M)
13 Roughness (M)

14 Inharmonicity (M, SD)

Timbre 15-16 | Brightness (cut-off 110 Hz) (M, SD)
17-18 | Spectral centroid (M, SD)

19-20 | Zerocross (M, SD)

20-21 | Spread (M)

22 Spectral entropy (M)

23 Spectral flux (M)

24 Flatness (M)

25 Kurtosis (M)

26-27 | Regularity (M, SD)

28-29 | Ist MFCC (M, SD)

30-41 | 7th MECC (M, SD)

Table 3. List of extracted audio features (M= mean, SD=
standard deviation)

Highly significant correlations, top five shown in Table 4,
were observed for dimensions 1 and 2. We may interpret
these correlations in terms of the qualities of the sound
spectrum: The first dimension is related to the distribution
of energy along the frequency (spectral centroid, flatness,
brightness, MFCC1, etc.), where the items in the MDS so-
lution are arranged from the high-frequency energy content
in the left to the prevalence of low-frequency energy con-
tent in the right. The second dimension may be interpreted
as the periodic organization of the spectrum, i.e., whether
the spectrum is harmonic (roughness,skewness, spread and
fluctuation centroid). The clusters represented by the items
in the lower part of the MDS solution possess clearer orga-
nization of the spectrum in comparison with the the items
high on the MDS solution. The third dimension seem to be
related the temporal fluctuation of the spectrum (MFCC6
[SD], Fluctuation position [M], MFCC22 [M]).
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Dimension 1

Dimension 2

Dimension 3

Acoustic feature r Acoustic feature Acoustic feature r
MECC 1 (M) 0.94 *** | Fluctuation centroid (M) -0.72 *** | MFCC 6 (SD) 0.51
Flatness (M) -0.86  *** | Roughness (M) 0.68 ** Fluctuation position (M) -0.50
Centroid (M) -0.83  *#** | Skewness (M) 0.67 ** MFCC 2 (M) -0.46
Brightness (M) -0.81  *** | Spread (M) -0.65  ** Fluctuation peak (M) 0.45
Spectral entropy (M) -0.80 *** | Kurtosis (M) 0.57 * Irregularity (SD) 0.44

* k% =p < .001,%xx=p < .0l,*x=p<.05

Table 4. Correlations between the dimensions of the multidimensional scaling solution and acoustic descriptors.
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Figure 2. Dimensions 1 and 2 of the MDS with be-
havioural responses and associated tags

3.3 Discussion

In sum, when brief and spliced excerpts taken from the
clusters representing semantic structures of the music de-
scriptions are presented to listeners, they are able to form
coherent distances between them. An acoustic analysis of
the excerpts was used to label the dimensions embedded
in the cluster similarities. This analysis showed clear cor-
relations between the dimensional and timbral qualities of
music. However, it should be emphasized that the high rel-
evance of many timbral features is only natural since the
timbral characteristics of the excerpts were preserved and
structural aspects were masked by the semi-random splic-
ing.

We are careful in not taking these early results to mean
literally that the semantic structure of the initial sample
would be explainable by means of the same timbral fea-
tures. This is of course another question which is easily
empirically approached using feature extraction of the typ-
ical examples representing each cluster and either classify
the clusters based on features, or predict the coordinates of
the clusters within a low dimensional space by means of
regression using a larger set of acoustic features (includ-
ing those that are relevant for full excerpts such as tonality
and structure). However, we are positively surprised at the

level of coherence from the part of the listener ratings and
their explanations in terms of the acoustic features despite
the limitations we imposed on the setting (i.e. discarding
tags connected with musical genres), splicing and having a
large number of clusters to test. Our intention is to follow
this analysis with more rigorous selection of acoustic fea-
tures (PCA and other data reduction techniques) and use
multiple regression to assess whether linear combinations
of the features would be necessary for explaining the per-
ceptual dimensions.

4. CONCLUSIONS

The present work provided a bottom-up approach to se-
mantic qualities of music descriptions, which capitalized
social media, natural language processing, similarity rat-
ings and acoustic analysis. Semantic structures of music
descriptions have been extracted from the social media pre-
viously [18] but the main difference here was the careful
filtering of such data. We used natural language process-
ing to focus on categories of tags that are meaningful but
do not afford immediate categorization of music in a way
that, for example, musical genre does.

Although considerable effort was spent on finding the
optimal way of teasing out reliable and robust structures
of the tag occurrences using cluster analysis, several other
techniques and parameters within clustering could also have
been employed. We realize that other techniques would
probably have led to different structures but it is an open
empirical question whether the connections between the
similarities of the tested items and their acoustic features
would have been entirely different. A natural continua-
tion of the current study would be to predict the typical
examples of the clusters with the acoustic features by us-
ing either classification algorithms or mapping of the clus-
ter locations within a low dimensional space using corre-
lation and multiple regression. However, the issue at stake
here was the connection of timbral qualities with semantic
structures.

The implications of the present findings are related to
several open issues. The first one is the question whether
structural aspects of music are required in explaining the
semantic structures or whether the low-level, timbral char-
acteristics are sufficient, as was indicated by the present
findings. Secondly, what new semantic layers (as indicated
by categories of tags) can be meaningfully connected with
the acoustic properties of the music? Finally, if the timbral
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characteristics are indeed strongly connected with such se-
mantic layers as adjectives, nouns and verbs, do these arise
by means of learning and associations, or are the underly-
ing regularities connected with emotional, functional and
gestural cues of the sounds?

(1]

(3]

(5]

—
e o]
—_

[9]

(10]

(11]

[12]

5. REFERENCES

J.J. Aucouturier and E. Pampalk. Introduction-from
genres to tags: A little epistemology of music informa-
tion retrieval research. Journal of New Music Research,
37(2):87-92, 2008.

J. Brank, M. Grobelnik, and D. Mladenic. Automatic
evaluation of ontologies. In Anne Kao and Stephen
R.Poteet, editors, Natural Language Processing and
Text Mining. Springer, USA, 2007.

0. Celma and X. Serra. Foafing the music: Bridging
the semantic gap in music recommendation. Web Se-
mantics: Science, Services and Agents on the World
Wide Web, 6(4):250-256, 2008.

J. de Leeuw and P. Mair. Multidimensional scaling us-
ing majorization: SMACOF in R. Journal of Statistical
Software, 31(3):1-30, 2009.

S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Lan-
dauer, and R. Harshman. Indexing by latent semantic

analysis. Journal of the American society for informa-
tion science, 41(6):391-407, 1990.

M.J. Delsing, T.F. ter Bogt, R.C. Engels, and W.H.
Meeus. Adolescents music preferences and personal-
ity characteristics. European Journal of Personality,
22(2):109-130, 2008.

T. Eerola and R. Ferrer. Setting the standards: Norma-
tive data on audio-based musical features for musical
genres. In Proceedings of the 7th Triennial Conference
of European Society for the Cognitive Sciences of Mu-
sic, ESCOM, 20009.

Christiane Fellbaum, editor. WordNet: An electronic
lexical database. Language, speech, and communica-
tion. MIT Press, Cambridge, Mass, 1998.

W.N. Francis and H. Kucera. Brown corpus. A Stan-
dard Corpus of Present-Day Edited American English,
for use with Digital Computers. Department of Lin-
guistics, Brown University, Providence, Rhode Island,
USA, 1979.

J.C. Gower and P. Legendre. Metric and euclidean
properties of dissimilarity coefficients. Journal of clas-
sification, 3(1):5-48, 1986.

J.M. Grey. Multidimensional perceptual scaling of mu-
sical timbres. Journal of the Acoustical Society of
America, 61(5):1270-1277, 1977.

A K. Jain and R.C. Dubes. Algorithms for clustering
data. Prentice Hall, Englewood Cliffs, NJ, 1988.

[13]

[17]

(18]

[19]

(22]

576

Anne Kao and Stephen R. Poteet, editors. Natural Lan-
guage Processing and Text Mining. Springer Verlag,
2006.

P. Lamere. Social tagging and music information re-
trieval. Journal of New Music Research, 37(2):101—
114, 2008.

P. Langfelder, B. Zhang, and S. Horvath. dynamicTree-
Cut: Methods for detection of clusters in hierarchi-
cal clustering dendrograms., 2009. R package version
1.20.

O. Lartillot, P. Toiviainen, and T. Eerola. A matlab tool-
box for music information retrieval. Data Aalysis, Ma-
chine Learning and Applications, pages 261-8, 2008.

C. Laurier, M. Sordo, J. Serra, and P. Herrera. Music
mood representation from social tags. In Proceedings
of the 10th International Society for Music Information
Conference, Kobe, Japan, 2009.

M. Levy and M. Sandler. Learning latent semantic
models for music from social tags. Journal of New Mu-
sic Research, 37(2):137-150, 2008.

H. Lin, J. Davis, and Y. Zhou. An integrated approach
to extracting ontological structures from folksonomies.
In Proceedings of the 6th European Semantic Web
Conference on The Semantic Web: Research and Ap-
plications, page 668. Springer, 2009.

S. McAdams, S. Winsberg, S. Donnadieu, G. De Soete,
and J. Krimphoff. Perceptual scaling of synthesized
musical timbres: Common dimensions, specificities
and latent subject classes. Psychological Research,
58(3):177-192, 1995.

R Development Core Team. R: A Language and En-
vironment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2009. ISBN 3-
900051-07-0.

P.J. Rentfrow and S.D. Gosling. Message in a ballad:
the role of music preferences in interpersonal percep-
tion. Psychol Sci, 17(3):236-242, 2006.

J.M. Siskind. Learning word-to-meaning mappings.
Models of language acquisition: inductive and deduc-
tive approaches, pages 121-153, 2000.

B. Zhang, Q. Xiang, H. Lu, J. Shen, and
Y. Wang. Comprehensive query-dependent fusion us-
ing regression-on-folksonomies: a case study of multi-
modal music search. In Proceedings of the seventeen
ACM international conference on Multimedia, pages
213-222. ACM, 2009.





