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ABSTRACT

This paper discusses a method for monophonic instrument
sound separation based on nonnegative matrix factoriza-
tion (NMF). In general, it is not easy to classify NMF com-
ponents into each instrument. By contrast, monophonic in-
strument sound gives us an important clue to classify them,
because no more than one sound would be activated simul-
taneously. Our approach is to classify NMF components
into each instrument based on basis spectrum vector sim-
ilarity and temporal activity disjointness. Our clustering
employs a hierarchical clustering algorithm: group average
method (GAM). The efficiency of our approach is evalu-
ated by some experiments.

1. INTRODUCTION

In music signals, there are usually multiple sound sources
such as a human singing voice and instruments sound. The
task to separate mixed signals into individual sources is
called sound source separation for music signals. It has
several applications such as music equalizer, music infor-
mation searching, automatic transcription, and structured
coding of music. This paper discusses a method to sepa-
rate monaural musical audio into individual musical instru-
ments.

Sound source separation for music signal has been widely
investigated recently. Some methods are based on super-
vised learning of individual source models [1–3]. They
need solo excerpts beforehand. Other unsupervised ap-
proaches have also been studied [4–6]. Because any prior
information for instrumental sound sources cannot be used,
some unsupervised methods make assumption about com-
mon harmonic structure [4, 5] or employ the excitation-
filter model of sound production [6]. We propose an ef-
ficient unsupervised method focusing on monophonic in-
strument sound.

Our method have two stages. At the first stage, we
factorize the observed spectrogram into some components
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based on nonnegative matrix factorization (NMF) [9, 10].
In the case of music signals, each component usually rep-
resents a musically meaningful element, so that different
elements are expected to correspond to different compo-
nents.

However, considering music instrumental source sepa-
ration, methods based on NMF generally encounter diffi-
culties in the components clustering step. And most of the
algorithm count on manual clustering [7]. Some clustering
methods separate percussive instrument sources [8,12], but
are rarely used with harmonic instruments sources.

This paper proposes a method for clustering compo-
nents that employs not only spectral information but also
temporal information. The outline of this paper is as fol-
lows. Section 2 gives a overview of NMF algorithm and
component-clustering problem. The proposed clustering
method is explained in Section 3, and experimental evalu-
ation of proposed method are presented in Section 4. Sec-
tion 5 covers the conclusions and future works.

2. NONNEGATIVE MATRIX FACTORIZATION

Nonnegative matrix factorization and some unsupervised
sound source separation algorithms are based on a signal
model where the spectrum vectorxt (t = 1, ..., T ) in frame
is modeled as a linear combination ofbasis vectorsbj (j =
1, ..., J). This can be written as

xt =
J∑

j=1

gj,tbj , (1)

whereJ is the number of basis vectors, and its time-varying
gain (amplitude)gj,t, T being the number of frames.

This model can be written using a matrix notation as

X = BG, (2)

whereX = [x1, ...,xT ], B = [b1, ...,bJ ], and[G]j,t =
gj,t.

Here,gj = [gj,1, ..., gj,t]T is defined asgain vectorcor-
responding to the basis vector, then the termcomponent
refers to one basis vectorbj and one corresponding gain
vectorgj . Each source is modeled as a sum of the compo-
nents. The separation is done by first factorizing the spec-
trogram of the input signal into components and second
grouping these to sound sources.
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Figure1. Flow diagram of the method.

The NMF algorithms proposed by Lee and Seung [9] do
the decomposition by minimizing the reconstruction error
between the observation and the model while constraining
the matrices to be entry-wise nonnegative as follows:

D(X‖BG) =
∑

f,t

d([X]f,t‖[BG]f,t), (3)

hered(y‖z) is a function of two scalar variables. The var-
ious measures for reconstruction error are proposed. The
Euclidean distance, the generalized Kullback-Leibler di-
vergence [9], or the Itakura-Saito divergence [11] are mostly
used. We choose here the generalized Kullback-Leibler di-
vergence, which has produced good results in earlier sound
source separation studies [14].

In standard NMF, the only constraints is the elemen-
twise non-negativity of all matrices. Then, several con-
straints have been proposed in order to achieve expected
solutions. The most famous constrains are sparsity [13]
and temporal continuity [11, 14]. We use the sparsity and
temporal continuity proposed in [14].

We wish to use NMF to decompose the observed sig-
nal into the components. However, it is not easy to know
which source each component is assigned to. In the next
section an automatic clustering method is proposed.

3. CLUSTERING OF NMF COMPONENTS

3.1 Outline

As a result of NMF, basis vectorsbj and gain vectorsgj

are obtained, each of which could ideally represent spec-
trum and temporal activity of each note, respectively. The

problem here is how to classify obtained components(bj ,gj)
into each instrument. The contribution of this paper is
to exploit both information ofbj andgj) for mixture of
monophonic instrumental tracks without any prior about
each instrument. Our approach consists of 1) measuring
the basis spectrum similarityC1(i, j) for any pairs ofbj

and bj , 2) measuring the temporal activity disjointness
C̃2(i, j) for any pairs ofgi andgj , 3) calculating a close-
ness measureC(i, j) for any pairs of(bi,gi) and(bj ,gj)
by product ofC1(i, j) andC̃2(i, j), and 4) applying a kind
of hierarchic clustering method.

3.2 Similarity of Basis Spectra

Monophonic source signal is represented by a sinusoidal
model [15] as

s(t) =
R∑

r=1

Ar(t) cos[θr(t)] + e(t) (4)

wheree(t) is the noise term,Ar(t) andθr(t) =
∫ t

0
2πrf0(τ)dτ

are the instantaneous amplitude and phase of therth har-
monic, respectively,f0(τ) is the fundamental frequency at
time τ , andR is number of the harmonic overtone. Har-
monic structure is an approximately invariant feature for a
harmonic instrument when it is played in a narrow pitch
range. [16]

In logarithmic frequency (log-frequency) scale, the har-
monic frequencies are locatedlog 2, log 3, . . . , away from
the log-fundamental frequency, and the relative-location
relation remains constant no matter how fundamental fre-
quency fluctuates and is an overall parallel shift depending
on the fluctuation degree. Thus among the harmonics be-
tween the two spectrums of the same instruments are sim-
ilar; even in case spectrums fundamental frequencies are
different, shapes of the spectrums are same when shifted.

The basis vectorbj , which NMF factorize into, rep-
resents average spectrum in logarithmic frequency scale.
Therefore the correlation-like criterion between two basis
vectors are defined as

C1(i, j) = max
q

∑
p bp+q,ibp,j

|bi||bj | , (5)

wherebp,j is pth value of the basis vectorbj . Put another
way, criterionC1(i, j) means maximum cross-correlation
between normalizedbi andbj . In intuitive explanation,
two spectra are compared, moving along the frequency axis,
and are measured largest overlap. For the spectra by har-
monic instrument, two spectrums overlap most when two
fundamental pitches nearly go over. As a side-effect, two
spectrums by inharmonic instruments mark higher value
than value between harmonic and inharmonic instrumental
spectrums.

Table 1 shows an example of this correlation-like crite-
rions that is calculated by real instrumental signals: RWC
music database [17] RWC-MDB-I-2001 No.31-1 and No.33-
1, down-sampled to 16 kHz single-channel files. Each
spectrum is taken by Wavelet transform of single tone sig-
nal. Two spectra of same instrument almost mark higher
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Clarinet Flute
A4 H4 C5 A4 H4 C5

ClarinetA4 1.00 0.96 0.81 0.58 0.67 0.81
ClarinetH4 1.00 0.74 0.63 0.66 0.72
ClarinetC5 1.00 0.82 0.73 0.92
FluteA4 1.00 0.95 0.80
FluteH4 1.00 0.80
FluteC5 1.00

Table1. The simirarity measure of basis spectra calculated
by indivisual instrumental signals. The higher values than
0.8 are shown in bold style.

value than two spectrums of other instrument mark. How-
ever in some cases two spectra which belonging to other in-
strument mark high numerical number: for example, Clar-
inet C5 and Flute C5. This result presents that criterion
as basis spectrum similarity (5) indicates measure to some
extent, but is not enough for the grouping.

3.3 Disjointness of Temporal Activities

Not only basis spectrumbj , but also temporal activitygj

should also include cues for clustering components into in-
strumental tracks. As a simple case to exploit such infor-
mation, we suppose that all instrumental tracks aremono-
phonic, which means each instrumental track consists of a
single note sequence.

Figure 2 shows an example of piano-roll representation
of three monophonic instrumental tracks. Obviously, any
different note activities are disjoint in the same track. Note
that there are also many pairs of disjoint note activities over
different tracks. Hence, we can’t assert that two different
note activities belong to the same track even if they are dis-
joint. However, if two different note activities are NOT dis-
joint, they should belong to different instrumental tracks.

The disjointness of two different temporal activities rep-
resented by gain vectorsgi andgj can be simply calculated
by

C2(i, j) = 1− gi · gj

|gi||gj | . (6)

If gi andgj aredisjoint,C2(i, j) = 1. While if they have
co-occurrence,C2(i, j) should take a small value. There-
fore, it can be exploited as a closeness measure. Figure
3 shows an expected result, which was calculated by (6)
with using temporal activities in piano roll representation
shown in Figure 2 asgj .

The magnitude ofC2(i, j) itself is not significant be-
cause it depends on the frequency of the co-occurence. It
is only important for clustering whether it is almost zero or
not. Furthermore, because of imperfect decomposition by
NMF, spectral leakage, reverbration, etc,C2(i, j) is actu-
aly not equal to zero even ifith component andjth com-
ponent belong to the same instrumental track. Therefore,
we 1) neglect tiny values ofgt,j and set them to be zero,
2) calculateC2(i, j) by (6), and 3) binarize it with a small

Figure 2. The piano roll representation of three mono-
phonic instrumental track. Any different note activities are
disjoint in the same track.

Figure 3. Criterions between two gain vectors according
to the equation (6), corresponding to figure 2. The two
vertical line and two horizontal line show the borderlines of
the instruments. Values on diagram position are ignorable
for the clustering.

thresholdε such as

C̃2(i, j) =
{

1 (C2(i, j) ≥ ε)
0 (C2(i, j) < ε) . (7)

3.4 Combining Two Different Criterions

Previous criterions are both scales running from zero to
one. In both criterions, higher value means two compo-
nents’ sameness. This paper examines the measure of two
different components’ closeness as

C(i, j) = C1(i, j) · C̃2(i, j). (8)

3.5 Clustering by Group Average Method

To find an optimal partitioning of the components intoN
classes, the following clustering algorithm calledgroup av-
erage method(GAM) is employed.

1. At the beginning, all components are considered as
different clusters.

2. Two components that have the highest criterion value
are connected into the same (new) cluster.

3. Criterions between new cluster and other cluster are
updated under the update rule:

d(K1,K2) =
1

n1n2

∑

i∈K1

∑

j∈K2

d (i, j) , (9)
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inputdata samplingrate 16 kHz
length 10sec
numberof instruments 3

frequency frameshift 16 ms
analysis frequency resolution 12.0 cent

frequency range 50–7961 Hz
NMF iteration 200
[9] numberof components 10–40

Clustering ε 0.05
numberof clusters 4

Table2. Experimental conditions

whered(A,B) is the criterion between clusterA and
B, d(i, j) = C(i, j) is the criterion between compo-
nentsi andj, n1 andn2 are the number of compo-
nents thatK1 andK2 contain.

4. Iteration: repeat step 2 and 3 until total number of
clusters reachesL.

Criterion-update avoids chaining effect where wrong com-
ponents connects into a chain reaction.

3.6 Reconstruction of Instrument-wise Spectrograms

Spectrograms corresponding to a certain instrumentKl (l =
1, ..., L) , X̂l, can be reconstructed by the equation:

X̂l =
∑

j∈Kl

X̂(j) =
∑

j∈Kl

bjgj . (10)

Spectrogram of instrumentl is reconstructed as

[Ŷl]f,t =
[X̂l]f,t

[X̂]f,t

[X]f,t. (11)

whereX̂ =
∑L

l=1 X̂l.

4. EXPERIMENTAL EVALUATION

4.1 Source Conditions

To verify the potential performance of the proposed method
as sound source separation, the proposed method was tested
on a real performance music data fromMIREX 2007 Eval-
uation Tasks[18] : transcription ofString Quartet No.5
3rd Movement Var.5composed by L. V. Beethoven (see ta-
ble 2 for the list of the experimental data). We used the
data composed of three woodwind instruments (flute, oboe
and bassoon). Mixed signal was the result of summing the
source signals in time domain, and 9 input signals (10 sec-
onds) were clipped from the mixed signal every 5 seconds.

Time series of amplitude spectrum was analyzed using
Gabor wavelet transform with a frame shift of16ms for
input digital signals of16kHz sampling rate. The lower
bound of the frequency range and the frequency resolution
were50Hz and12cent, respectively.

4.2 Evaluated Algorithms and Conditions

The following algorithms were tested.

• Proposed method 1: Components clustering employed
both basis vector similarity and gain vector disjoint-
ness.

Since there is no reliable method for the estimation
of the number of the components, proposed method
was tested by factorizing the input signal into 10–40
components and we decided it to earn the best result.

In the clustering step, the number of the clusters was
chosen as 4 because in the real performance music
other than pure instrumental sound (e.g. sounds of
breath) were contained.

• Proposed method 2: Components clustering employed
only basis vector similarity. Compared with Pro-
posed method 1, the contribution of the time activity
disjointness can be evaluated.

• Correct clustering: Components clustering to be as-
signed each component to a source which leads to
the highest signal-to-noise (SNR) as

SNR(m, j) = 10 log10

∑
f,t[Ym]2f,t∑

f,t([Ym]f,t − [X̂(j)]f,t)2
.

(12)
whereYm and X̂(j) are themth reference andjth
separated component. A componentj is assigned to
a sourcemwhich leads to the highest SNR.

• NMF2D [4]: Factorization is doned by NMF2D in-
stead of NMF. When analyzing real music signals,
the NMF2D was considered to give good results.

4.3 Evaluation Criterion

The quality of the separated sources was measured by cal-
culating the SNR improvement between the original spec-
trogramY and corresponding separated magnitude spec-
trogramŶ according to the equation

SNR[dB] =
1
M

M∑
m=1

10 log10

( ∑
f,t[Ym]2f,t∑

f,t([Ym]f,t − [Ŷl]f,t)2

−
∑

f,t[Ym]2f,t∑
f,t([Ym]f,t − [X]f,t)2

)
.

(13)

For each original spectrogram, the SNR improvement that
employs baseline using mixed signal are measured. The
SNR has been used in several source separation studies to
measure the separation quality.

4.4 Results

The SNR improvement for each data and algorithms are
shown in table 3. Average values are means among all of
data.

Proposed method 1 marks an average improvement 2.75
dB. For all data, proposed method 1 sets positive values.
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SNR[dB]
proposed1 proposed2 NMF2D correctclustering

data(1): 0–10 sec 5.62 -9.05 -0.16 5.94
data(2): 5–15 sec 4.87 -0.71 -0.88 4.88
data(3): 10–20 sec 4.41 -8.88 -0.30 4.45
data(4): 15–25 sec 0.25 -6.23 -2.82 2.52
data(5): 20–30 sec 2.08 -2.86 -1.29 3.34
data(6): 25–35 sec 3.00 -7.82 -0.48 3.66
data(7): 30–40 sec 0.72 -3.17 -1.12 1.48
data(8): 35–45 sec 1.11 -5.71 -3.15 1.42
data(9): 40–50 sec 2.70 -13.13 -1.65 3.93

average 2.75 -6.40 -1.32 3.51

Table3. SNR results of the evaluated algorithm in dB.
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Figure 4. An input signal with three instrumental tracks
(flute, oboe, and bassoon). Spectrogram (upper) and cor-
responding waveform (lower).

The average improvement value of correct clustering is
3.54 dB. For two data (data (2) and data (3)) proposed
method 1 and correct clustering mark almost same val-
ues. It shows that clustering step is maximally effective.
In some other data proposed method sets close values to
correct clustering.

Comparing SNR values between proposed method 1 and
2, it shows that in clustering step the contribution of the
gain vector disjointness is effective.

The SNR values of NMF2D method are lower than that
of proposed method 1. The reason is considered to be that,
in these real music data, the NMF2D assumption that all
notes for an instrument is an identical pitch shifted time-
frequency signature does not hold.

Figures 4 , 5 and 6 show an example of experimental
results: figure 4 is an input signal in which three instru-
mental signals (flute, oboe and bassoon) are mixed, figure
5 is a source signal with bassoon sounds, figure 6 is a sepa-
rated signal which is corresponded to the bassoon’s source
signal. Even in other two instrumental sounds the results
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Figure 5. A source signal (bassoon track) of the mixture
shown in figure 4.
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Figure6. A separated signal (bassoon track) from the mix-
ture shown in figure 4.
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equaledto it.

5. CONCLUSION

This paper discussed a method for monophonic instrument
sound separation. The method used nonnegative matrix
factorization to factorize the spectrogram of the input sig-
nal into components. Then we introduced an criterion that
measured two distinguish components: basis spectrum sim-
ilarity and temporal activity disjointness. The grouping
was done by clustering components under this measure.
The experiment results showed that in some data the pro-
posed method marked values equal to the correct clustering
which employed source signals.

Future work includes the improvement of nonnegative
matrix factorization by including the proposed criterion,
that aims at accuracy enhancement of the decomposition.
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