
LEARNING FEATURES FROM MUSIC AUDIO WITH DEEP BELIEF
NETWORKS

Philippe Hamel and Douglas Eck
DIRO, Université de Montréal
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ABSTRACT

Feature extraction is a crucial part of many MIR tasks. In
this work, we present a system that can automatically ex-
tract relevant features from audio for a given task. The fea-
ture extraction system consists of a Deep Belief Network
(DBN) on Discrete Fourier Transforms (DFTs) of the au-
dio. We then use the activations of the trained network
as inputs for a non-linear Support Vector Machine (SVM)
classifier. In particular, we learned the features to solve
the task of genre recognition. The learned features per-
form significantly better than MFCCs. Moreover, we ob-
tain a classification accuracy of 84.3% on the Tzanetakis
dataset, which compares favorably against state-of-the-art
genre classifiers using frame-based features. We also ap-
plied these same features to the task of auto-tagging. The
autotaggers trained with our features performed better than
those that were trained with timbral and temporal features.

1. INTRODUCTION

Many music information retrieval (MIR) tasks depend on
the extraction of low-level acoustic features. These fea-
tures are usually constructed using task-dependent signal
processing techniques. There exist many potentially-useful
features for working with music: spectral, timbral, tempo-
ral, harmonic, etc (see [21] and [3] for good reviews), and
it is not always obvious which features will be relevant
for a given MIR task. It would be useful to have a sys-
tem that can automatically extract relevant features from
the audio, without having to depend on ad-hoc domain-
dependent signal processing strategies.

Among the most widely used frame-level features for
audio-related MIR tasks Mel-Frequency Cepstral Coeffi-
cients (MFCCs). MFCCs take advantage of source/filter
deconvolution from the cepstral transform and perceptually-
realistic compression of spectra from the Mel pitch scale.
Because the first few MFCC values capture pitch-invariant
timbral characteristics of the audio, they are commonly
used in tasks where it is useful to generalize across pitch,
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such as multi-speaker speech recognition and musical tim-
bre recognition.

Practically all audio-based music genre classification
models use different types of acoustic features to drive su-
pervised machine learning [4, 13, 14, 23]. These include
sparse audio encodings in the time domain [17] and in the
frequency (spectral) domain [8]. Other approaches use a
Hidden Markov Model (HMM) to build a semantic rep-
resentation of music [7, 22]. The best reported accuracy
on the Tzanetakis dataset [23] for genre classification was
achieved by a system that used auditory cortical represen-
tations of music recordings and sparse representation-based
classifiers [20]. The challenges and motivations of genre
classification are discussed in [18]. In these approaches it
is difficult to know whether the acoustic features or the ma-
chine learning techniques are responsible for success. To
address this we apply our model to the Tzanetakis dataset.

A closely related task to genre classification is that of
“autotagging” (automatic tag-based annotation of music
audio). As for genre classification, timbral and temporal
features are often used to solve this task [5]. To test the
robustness of our learned features, we applied them to the
task of autotagging on the Majorminer dataset [16].

Some work in automatic feature extraction for genre
classification have been done. In [19], automatic feature
selection was done with genetic algorithms, and used for
one-on-one genre classification. In our approach, we use a
Deep Belief Network (DBN) [10] to learn a feature repre-
sentation. DBNs have already been applied in some MIR
tasks. In [9], a DBN is compared to other classifiers for the
instrument recognition task. In [12], convolutional DBNs
are used to learn features for speech recognition and for
genre and artist classification.

Can we learn features for a given task directly from mu-
sical audio that would better represent the audio than engi-
neered signal-processing features? In this work, we inves-
tigate this question.

We propose a method to automatically extract a rele-
vant set of features from musical audio. We will show that
these learned features compare favorably against MFCCs
and other features extracted by signal-processing.

The paper is divided as follows. In Section 2, we de-
scribe the datasets that were used in our experiments. We
then explain briefly the DBN model in Section 3. In Section 4
we describe the feature learning process. Then, in Section 5
we give the results of our features used in genre classifica-
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tion and autotagging tasks. Finally, we conclude and pro-
pose future work in Section 6.

2. DATASETS

We used two different datasets in our experiments. The
first one is the Tzanetakis’ dataset for genre recognition.
We trained our feature extractor over this dataset. To test
the robustness of our learned features, we then applied
these same features to the task of autotagging on the Ma-
jorminer dataset.

2.1 Tzanetakis

This dataset consists of 1000 30-second audio clips as-
signed to one of 10 musical genres. The dataset is bal-
anced to have 100 clips for each genre. The dataset was
introduced in [24], and have since been used as a reference
for the genre recognition task.

2.2 Majorminer

This dataset for autotagging was introduced in [16]. The
tags were collected by using a web-based “game with a
purpose”. Over 300 tags have been assigned to more than
2500 10 second audio clips. For our experiment, we used
only the 25 most popular tags and compared our results to
those obtained in [16].

3. DEEP BELIEF NETWORKS

In the last few years, a large amount of research has been
conducted around deep learning [1]. The goal of deep
learning is to learn more abstract representations of the in-
put data in a layer-wise fashion using unsupervised learn-
ing. These learned representations can be used as input for
supervised learning in tasks such as classification and re-
gression. Standard neural networks were intended to learn
such deep representations. However, deep neural networks
(i.e. networks having many hidden layers) are difficult or
impossible to train using gradient descent [2]. The DBN
circumvents this problem by performing a greedy layer-
wise unsupervised pre-training phase. It has been shown
[2, 10] that this unsupervised pre-training builds a repre-
sentation from which it is possible to do successful super-
vised learning by “fine-tuning” the resulting weights us-
ing gradient descent learning. In other words, the unsuper-
vised stage sets the weights of the network to be closer to
a good solution than random initialization, thus avoiding
local minima when using supervised gradient descent.

The Deep Belief Network (DBN) is a neural network
constructed from many layers of Restricted Boltzmann Ma-
chines (RBMs) [2,10]. A schematic representation is shown
in Figure 1. A RBM is structured as two layers of neurons:
a visible layer and a hidden layer. Each neuron is fully
connected to the neurons of the other layer, but there is no
connection between neurons of the same layer. The role
of a RBM is to model the distribution of its input. We
can stack many RBMs on top of each other by linking the
hidden layer of one RBM to the visible layer of the next
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Hidden Layer 3

Hidden Layer 2 

Hidden Layer 1

}}
}RBM 1

RBM 2

RBM 3

Figure 1. Schematic representation of a DBN. The num-
ber of layer and the number of units on each layer in the
schema are only examples. We do not require to have the
same number of units on each hidden layer.

RBM. In our experiments, we used an algorithm inspired
by Gibbs sampling called Contrastive Divergence (CD) to
optimize our RBMs. Our focus here is on analyzing the
performance of the DBN, not in explaining the technical
details of DBNs. The main idea for our purposes is that
that DBNs offer an unsupervised way to learn multi-layer
probabilistic representations of data that are progressively
“deeper” (nonlinear) with each successive layer. For tech-
nical and mathematical details see [2, 10]. We used the
Theano 1 python library to build and train our DBNs.

4. LEARNING THE FEATURES

Our goal is is to learn a representation of audio that will
help us to solve the subsequent tasks of genre classification
and autotagging.

4.1 Training the DBN

To learn our representation, we split the Tzanetakis’ dataset
in the following way: 50% for training, 20% for valida-
tion and 30% for testing. We divided the audio into short
frames of 46.44ms (1024 samples at 22050 Hz sampling
rate). For each of these frames, we calculated the discrete
Fourier transform (DFT). We kept only the absolute values
of the DFTs, and considering the symmetry in the DFT, we
ended up with inputs of dimension 513.

The DBNs were first pre-trained with the training set in
a unsupervised manner. We then proceeded to the super-
vised fine-tuning using the same training set, and using the
validation set to do early-stopping. The supervised step
used gradient descent to learn a weighted mixture of ac-
tivations in the deepest layer to predict one of 10 genre.
Both soft max and cross-entropy costs were minimized
with comparable results.

We tried approximately 200 different hyper-parameters
combinations and chose the model with the best validation
error on the frame level. The chosen DBN model is de-
scribed in Table 1.

1 http://deeplearning.net/software/theano/
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Number of hidden layers 3
Units per layer 50
Unsupervised learning rate 0.001
Supervised learning rate 0.1
Number of unsupervised epochs 5
Number of supervised epochs 474
Total training time (hours) 104
Classification accuracy 0.737

Table 1. Hyper-parameters and training statistics of the
chosen DBN

The classifier trained from the last layer of the DBN
yields a prediction of the genre for each frame. We aver-
age over all predictions for a song and choose the highest
score as the wining prediction. This gave us a prediction
accuracy of 73.7%.

Once trained, we can use the activations of the DBN
hidden units as a learned representation of the input audio.
We analyzed the performance of each layer of the network
independently, and also all the layers together. To illustrate
what is learned by the DBN, in Figure 2 we have plotted
a 2-dimensional projection of some of the representations
used. The projection was done by using the t-SNE algo-
rithm described in [25]. Notice how the clustering of the
activations of the hidden layers is more definite than for the
input or the MFCCs. As we will see in Section 5, this will
improve the accuracy of the classifiers.

5. CLASSIFICATION USING OUR LEARNED
FEATURES

In this section, we use our learned features as inputs for
genre classification and autotagging. In the first task we
explore different ways of using our features to get the best
classification accuracy. In the second task, we use the
method that gave us the best result in the genre recogni-
tion in order to do autotagging.

For both experiments, we use a non-linear Support Vec-
tor Machine (SVM) with a radial basis function kernel [6]
as the classifier. It would also be possible to train our DBN
directly to do classification. However our goal is to com-
pare the DBN learned representation with other represen-
tations. By using a single classifier we are able to carry out
direct comparisons.

5.1 Genre classification

5.1.1 Frame-level features

In our first experiment, we used our frame-level features
as direct input to the SVM. Since the SVM doesn’t scale
well with large datasets, we subsampled the training set by
randomly picking 10, 000 frames. We compared these ac-
curacies to the accuracy of the SVM trained with MFCCs
over these same frames of audio. As in Section 4.1, we
used the frame predictions of a whole song and voted for
the best genre in order to compute the test accuracy. The
results for this experiments are shown in Table 2. We see

Inputs (DFTs)

DBN Activations

MFCCs

blues
classical
country
disco
hiphop

jazz
metal
pop
reggae
rock

Figure 2. 2-Dimensional projections of different represen-
tations of the audio with respect to their genre.
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Accuracy
MFCCs 0.630
Layer 1 0.735
Layer 2 0.770
Layer 3 0.735
All Layers 0.770

Table 2. Classification accuracy for frame-level features

that, at the frame level, our learned features performed sig-
nificantly better than the MFCCs alone. We also see that
the second layer seems to have the best representation out
of the three layers. By using all the layers as the input, we
don’t see any improvement compared to the second layer
alone. Since we used the same dataset here that we used
for learning the features, we took care to reuse that same
training, validation and testing splits as in Section 4, so as
not to contaminate our testing set. Because our learned
DBN representation was learned on a single test/train split,
we were unable to do cross-validation on this dataset with
the SVM classifier, since this would have given us a biased
result.

5.1.2 Aggregated features

Bergstra et al [4] investigated the impact of feature ag-
gregation on classification performance for genre recog-
nition. It is demonstrated that aggregating frame-level fea-
tures over a period of time increases classification accu-
racy. The optimal aggregation time depend depends on the
nature of the features and the classifier, with many popu-
lar features having optimal aggregation times of between
3 and 5 seconds. With this in mind, we aggregated our
features over 5 seconds periods. Thus, for each 5 seconds
segment of audio (with 2.5 seconds overlap), we computed
the mean and the variance of the feature vectors over time.
This method not only raised our classification accuracy, but
also reduced the number of training examples, thus accel-
erating the training of the SVMs. With the aggregation, our
classification accuracy by jumped to 84.3%, which is bet-
ter than the 83% accuracy reported in [4]. However, since
this result was reported on a 5-fold cross-validation on the
dataset, we cannot directly compare our results. More im-
portantly we observe that our results are in general com-
petitive with the state-of-the-art signal-processing feature
extraction for the genre classification task. Also, given a
fixed classifier (the nonlinear SVM) our learned represen-
tation outperforms MFCCs. As in Section 5.1.1, we see
that the second layer gives the best representation of all the
layers, but we gain a bit of accuracy by using all of the
layers.

5.2 autotagging

To test the robustness of our learned features, we tested
their performance on an autotagging task. Following the
results in Section 5.1, we used the activations of all the
layers of the DBN aggregated on 5 second windows as in-
puts for the SVMs. We will refer to this set of feature as

Accuracy
MFCCs 0.790
Layer 1 0.800
Layer 2 0.837
Layer 3 0.830
All Layers 0.843

Table 3. Classification accuracy for features aggregated
over 5 seconds
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Figure 3. Accuracy of the DBN and the MIM feature sets
for the 25 most popular tags. As each tag training set was
balanced for positive and negative examples, the vertical
line at 0.5 indicates chance accuracy.

the DBN feature set. We compare it to a set of timbral and
temporal features presented in [15]. We will refer to this
set of feature as the MIM feature set. We used the same
method as in [16] to train the SVMs over the dataset. The
results for the 25 most popular tags in the dataset are shown
in Figure 3 and summarized in Table 4.

Mean Accuracy Standard Error
DBN 0.73 0.02
MIM 0.70 0.02

Table 4. Mean and standard error of the autotagging re-
sults.

The results show that our features give a better classi-
fication performance for almost all the tags. In particular,
our features performed significantly better better for tags
such as ’rock’, ’guitar’, ’pop’ and ’80s’. Except for ’gui-
tar’, these particular tags represent genres, which is what
our features were optimized to classify.

5.3 Discussion

From the results presented in Section 5.1 and Section 5.2,
we see that it is indeed possible to learn features from audio
relevant to a particular task. In the case of genre classifi-
cation, our DBN features performed as well if not better
than most signal-processing feature extraction approaches.
The features were optimized to discriminate between the
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10 genres shown in Figure 2, but we showed that these fea-
tures were also relevant to describe many other tags, such
as ’guitar’, that were not related to genre. We believe this
is evidence that a DBN can in fact learn to extract impor-
tant and robust characteristics from audio. Another posi-
tive point is that, once the DBN is trained, the feature ex-
traction from audio is very fast and can be done easily in
real-time, which could be useful for many applications.

However, there are several areas for improvement. The
main one is the long computation time necessary to train
the DBN. The model that we used required a few days to
train. This is mainly due to the size of the dataset. Since
we used uncompressed audio frames overlapping over half
a frame, the combination of the training and validation set
required around 2 gigabytes of memory. There are many
ways to reduce the size of the training set and to speed up
the training. We could compress the DFTs with Princi-
pal Component Analysis (PCA). We could also aggregate
the DFTs over small windows before sending them to the
DBN. Randomly choosing a subset of the frames in the
dataset could also help. Another solution would be to aug-
ment the mini-batch size to optimize the time of training
process. However, it is not clear how each of these so-
lutions will affect the quality of the representation. This
requires further investigation.

Reducing the training time of a single model would also
help to solve the second issue, which is the hyper-parameter
search. As mentioned in Section 4.1, there are many hyper-
parameters to optimize. It is not clear how the optimal
hyper-parameters vary depending on the input and the task.
Current research on deep learning is investigating the mat-
ter, and some techniques to automatically adjust the hyper-
parameters are being developed.

Another flaw of our model is that the features are ex-
tracted at the frame level only, so that our model cannot
model long-term time dependencies. To better represent
musical audio, we would need features that are able to
capture the long-term time structure. Convolutional DBNs
might provide a suitable model for time hierarchical repre-
sentations [11].

6. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the ability for DBNs to
learn higher level features from audio spectra. We showed
that these learned features can outperform MFCCs and carefully-
tailored feature sets for autotagging. These results moti-
vate further research with deep learning applied to MIR
tasks.

In future work, we will continue investigating ways to
reduce the training time of our models. Furthermore, we
will learn features over a wider range of datasets and MIR
tasks. We are interested, for example, in using the unsuper-
vised DBN training approach to observe a large amount
of unlabeled audio data. Finally, we will continue to in-
vestigate how we can take advantage of structure found at
multiple timescales in music. To this end, a hierarchical
convolutional DBN may be appropriate.
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